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Abstract

Transcriptome assays are increasingly being performed by high-throughput RNA sequencing (RNA-seq). For

organisms whose genomes have not been sequenced and annotated, transcriptomes must be assembled

de novo from the RNA-seq data. Here, we present novel algorithms, specific to bacterial gene structures and

transcriptomes, for analysis of bacterial RNA-seq data and de novo transcriptome assembly. The algorithms are

implemented in an open source software system called Rockhopper 2. We find that Rockhopper 2 outperforms

other de novo transcriptome assemblers and offers accurate and efficient analysis of bacterial RNA-seq data.

Rockhopper 2 is available at http://cs.wellesley.edu/~btjaden/Rockhopper.

Introduction
High-throughput RNA sequencing (RNA-seq) is being

used increasingly for transcriptome assays [1]. One of the

challenges for studies employing RNA-seq experiments is

efficient and reliable extraction of transcriptomic insights

from the wealth of RNA-seq data. Often, following RNA-

seq experiments, the large resulting data sets are subjected

to various stages of computational analysis, such as quality

control, normalization, transcriptome assembly, quantifi-

cation of transcript abundance, and testing for differential

gene expression under various conditions [2]. Analysis

of the data can be a bottleneck in RNA-seq studies

owing to the size of the data, the complexity of the ana-

lysis, and a lack of user-friendly software tools.

In particular, assembling transcripts is often a core

stage of RNA-seq data analysis, yet efficient and accurate

transcriptome assembly remains a challenging problem

owing to a variety of factors, including artifacts from li-

brary construction, errors in sequencing, variable intra-

read and inter-read error rates, repeat sequences, and

transcript expression ranges that span several orders of

magnitude [3]. Most approaches for assembling tran-

scripts from short read sequences relate to one of two

families: reference-based assembly and de novo assembly

[4]. Reference-based assembly involves aligning sequen-

cing reads to a sequenced reference genome. Reference-

based assembly is generally preferable when a high-quality

genome sequence is available since reference-based ap-

proaches are fast and relatively precise. De novo assem-

bly involves assembling transcripts from sequencing

reads by combining overlapping reads. De novo assem-

bly is necessary when a high-quality reference genome

is unavailable, such as for many non-model organisms,

when analyzing complex microbial communities, in meta-

transcriptome studies, and when investigating uncultur-

able microorganisms.

A number of mature computational tools exist for

both reference-based transcriptome assembly [5-7] and

de novo transcriptome assembly [8-11]. However, most of

the aforementioned tools were designed primarily for

eukaryotic transcriptomes. Bacterial transcriptome assem-

bly faces different challenges than eukaryotic transcriptome

assembly. For example, bacterial genomes are generally

denser than eukaryotic genomes and neighboring bacterial

transcripts frequently overlap, making it challenging to

distinguish the boundaries of neighboring bacterial tran-

scripts. Polycistronic messages further complicate bacter-

ial transcriptome assembly, particularly when different

promoters of an operon are employed under different

conditions. Also, models for noncoding RNAs in eukary-

otes are generally inappropriate for the small regulatory

RNAs common in bacteria.

In an attempt to address the paucity of computational

methods for assembling bacterial transcriptomes from

RNA-seq data, we previously developed Rockhopper

[12], a system that supports reference-based assembly of

bacterial transcriptomes. In the current study, we have
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developed novel algorithms for de novo assembly of bac-

terial transcriptomes, which we have implemented in the

system Rockhopper 2. We show that our algorithms for

de novo assembly of bacterial transcriptomes outperform

other leading approaches, in terms of both sensitivity

and specificity. Further, our algorithms offer dramatic

improvements in efficiency, so that our de novo assem-

bly is comparable to reference-based assembly in terms

of execution time. While many de novo assemblers require

high-performance computing platforms, Rockhopper 2

has been designed with limited resource requirements so

that it performs effectively on common laptop machines.

In addition to de novo transcriptome assembly, Rockhopper

2 is a comprehensive system that supports the various

stages of RNA-seq data analysis, including normalizing

data from different experiments, quantifying transcript

abundance, and testing for differential transcript expres-

sion. Details of the Rockhopper 2 workflow are illustrated

in Figure 1. Finally, we developed Rockhopper 2 with

user-friendliness in mind, so that it would be accessible to

a broad range of scientists that use bacterial RNA-seq ex-

periments in their investigations. Rockhopper 2 is open-

source software implemented in Java, released under the

GNU GPL license, and is available for all major platforms

at [13,14].

Materials and methods

Assembly algorithm

As input, Rockhopper 2 requires one or more files of se-

quencing reads. Sequencing read files may be in fastq,

qseq, fasta, sam, or bam format [15]. Files in fastq, qseq,

or fasta format optionally may be gzipped. Rockhopper 2

works with single-end reads as well as paired-end reads,

and reads may be strand-specific or strand-ambiguous.

De novo transcriptome assembly in Rockhopper 2 pro-

ceeds in two stages (Figure 1). In the first stage, candi-

date transcripts are assembled from k-mers found in the

sequencing reads (k = 25 by default). After the first stage,

every k-mer in an assembled candidate transcript will

correspond to at least one k-mer from a sequencing

read. However, candidate transcripts may not be sup-

ported by full-length reads. Thus, in a second stage, se-

quencing reads are mapped to candidate transcripts in

order to filter candidate transcripts into a set of high

quality final transcripts that are well supported by full-

length sequencing reads. Algorithmic details of each

stage are provided below.

In the first stage of de novo transcriptome assembly,

Rockhopper 2 maintains two data structures, a de Bruijn

graph [16,17] and a Burrows-Wheeler index [18,19].

While de Bruijn graphs are common among de novo

assemblers [4,17], Burrows-Wheeler indices are not.

Instead, Burrows-Wheeler indices are common in

reference-based assemblers [2]. But it is precisely the

integration of the two structures, working in concert,

that enables Rockhopper 2’s speed and minimal mem-

ory usage, distinguishing it from other de novo assem-

blers. Both data structures are initially empty and are

populated as sequencing reads are processed in the

first stage. The de Bruijn graph is implemented with a

hash table, where k-mer graph edges are stored as keys

in the table and k-mer edge occurrences are stored as

values in the table. Graph nodes are stored implicitly.

The Burrows-Wheeler index keeps track of assembled

candidate transcripts. For each sequencing read, its set

of k-mers is determined. If a k-mer already occurs in

the Burrows-Wheeler index, that is, is already part of

an assembled candidate transcript, then the k-mer is

not considered further. If the k-mer is not part of an

assembled candidate transcript, then the de Bruijn

graph is updated with the k-mer.

As k-mers are added to the de Bruijn graph, it grows

in size. As more memory is consumed and the amount

of available memory approaches zero, Rockhopper 2 re-

duces the size of the de Bruijn graph by assembling can-

didate transcripts. Paths through the graph are traversed,

beginning with the most frequently occurring edges. For

each edge with frequency at least α, a path is started and

greedily extended if a neighboring edge can be found

with frequency at least β (default values α = 50 and β = 5

were determined empirically). When an edge is traversed,

it is removed from the graph. A path corresponds to an

assembled candidate transcript. When a path is extended

as far as possible, the corresponding assembled candidate

transcript is added to the Burrows-Wheeler index.

A de Bruijn graph has 4k potential edges, which requires

more memory to store than is available on most personal

computers. As RNA-seq experiments continue to generate

increasing amounts of sequencing data, this limit will be

approached in de Bruijn graph-based assemblers, unless

sequencing error rates drop dramatically. Thus, most as-

semblers require high-performance computing hardware

with enhanced memory resources. Rockhopper 2 takes a

different approach and limits the size of de Bruijn graphs.

Rockhopper 2’s approach has two main advantages: it en-

ables the system to run on common personal computers

and it quickly channels resources away from low fre-

quency k-mers that are likely to correspond to sequencing

errors or other artifacts.

In the first stage, we assemble candidate transcripts and

store them in a Burrows-Wheeler index. In the second

phase, we make a second pass through the sequencing

reads, aligning each read to the index. Importantly, the

Burrows-Wheeler index allows for rapid alignment in that

a read of length m can be aligned to the set of candidate

transcripts with total length N in O(m) time with small

constants. In the case of paired-end reads, we require that

the paired-ends for each read form a scaffold consistent
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with the transcript. We keep track of how many full-

length reads align to each candidate transcript and at

what loci. Sufficiently long regions of candidate tran-

scripts are retained as high quality finalized transcripts

if at least ε reads align throughout the length of the re-

gion (ε = 20 by default).

Following de novo assembly of high quality transcripts,

Rockhopper 2 proceeds with several post-assembly phases

of analysis. To enable comparison between different

samples and experiments, Rockhopper 2 normalizes

each RNA-seq data set using upper quartile normalization

[20]. Transcript abundance levels are estimated using a

Figure 1 Rockhopper 2 workflow depicting the various phases of Rockhopper 2’s analyses. As input, Rockhopper 2 requires one or more

files of sequencing reads from RNA-seq experiments. In the first analysis stage, Rockhopper 2 determines k-mers from the sequencing reads and

builds a de Bruijn graph from the k-mers. The de Bruijn graph is used to assemble candidate transcripts, which are stored in a Burrows-Wheeler

index. In the second analysis stage, Rockhopper 2 aligns the sequencing reads to the assembled candidate transcripts to determine a final set of

high-quality assembled transcripts. After the second stage, transcriptome assembly is complete and Rockhopper 2 performs several downstream

analyses, including normalizing data from different experiments, quantifying transcript abundance, and testing for differential gene expression

across multiple conditions.
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measure similar to RPKM (reads per kilobase per million),

which sums the number of reads for a transcript and

divides by the transcript’s length and a normalization

factor [7]. While the total number of reads in the sam-

ple is often used to determine the RPKM normalization

factor, Rockhopper 2 uses the more robust normalizer

of upper quartile transcript expression [20]. Finally,

Rockhopper 2 tests for differential transcript expression

in pairs of conditions using the algorithm of DESeq

[21]. In summary, Rockhopper 2 estimates the variance

of a transcript’s expression, uses local regression to

obtain a smooth estimate of the variance, and then per-

forms a statistical test to determine whether a transcript

shows differential expression in data from two or more

conditions. The negative binomial distribution is used

as the statistical model in order to compute a P-value

indicating the probability of observing the transcript’s

expression levels in the different conditions by chance.

To correct for multiple tests across the set of transcripts,

P-values are corrected and q-values are reported that con-

trol the false discovery rate using the Benjamini-Hochberg

procedure [22].

High-throughput sequencing data

Escherichia coli strain MG1655 was used in three biological

replicate DNA-seq experiments (Cari Vanderpool, personal

communication). Library construction and sequencing on

an Illumina HiSeq 2500 were performed at the WM Keck

Center for Comparative and Functional Genomics at the

University of Illinois at Urbana-Champaign. The DNA li-

braries were prepared with the KAPA Library Preparation

Kits (KAPA Biosystems (Wilmington, MA, USA)). The li-

braries were quantified by quantitative PCR , pooled in

equimolar concentration, and sequenced on one lane for

101 cycles from one end of the fragments using a TruSeq

SBS version 3 sequencing kit (Illumina (San Diego, CA,

USA)). The fastq files were generated with Casava 1.8.2

(Illumina).

RNA-seq data from E. coli, Streptococcus pyogenes,

Mycobacterium tuberculosis, Bacillus subtilis, Staphylococ-

cus aureus, Pyrococcus abyssi, Acinetobacter oleivorans,

Propionibacterium acnes, Methanobrevibacter smithii,

Clostridium acetobutylicum, and Deinococcus gobiensis

were downloaded from the Sequence Read Archive

(SRA) [23]. Details on each RNA-seq data set, including

accession number in the SRA, length of the reads,

whether the reads are single-end or paired-end, and the

number of reads, is provided in Table 1. The Schizosac-

charomyces pombe RNA-seq data [24] were downloaded

from the Trinity tutorial [25].

Performance evaluation

In order to evaluate Rockhopper 2’s performance, we

compared it with two leading de novo transcriptome as-

semblers: Trinity version trinityrnaseq_r20140413p1

[8,25] and SOAPdenovo2 version 2.04 [10,26]. Default

parameters were used for Trinity (Trinity –seqType fq -JM

10G -CPU 8) and SOAPdenovo2 (SOAPdenovo-63mer

all -p 8 -d 49). All three assemblers were executed on the

same hardware with the number of processors set to 8.

The three software systems were used to assemble tran-

scriptomes using sequencing data from 12 microorganisms

Table 1 Sequencing data sets

Organism Type Domain Class SRA accession
number

Read type Length of
reads (bp)

Number
of reads

Number of
reference
genes

Escherichia coli DNA-seq Bacteria Gammaproteobacteria SRP049375 Single 100 67,713,365 -

Escherichia coli RNA-seq Bacteria Gammaproteobacteria SRX254784 Single 100 34,085,732 4,190

Acinetobacter oleivorans RNA-seq Bacteria Gammaproteobacteria SRX560107 Paired 101 19,140,537 2,934

Deinococcus gobiensis RNA-seq Bacteria Deinococci SRX061110 Paired 75 18,676,333 610

Mycobacterium tuberculosis RNA-seq Bacteria Actinobacteria SRX380298 Paired 51 2,364,009 752

Streptococcus pyogenes RNA-seq Bacteria Bacilli SRX252449 Single 72 7,049,947 372

Bacillus subtilis RNA-seq Bacteria Bacilli SRX533166 Single 51 14,010,827 1,917

Staphylococcus aureus RNA-seq Bacteria Bacilli SRX172891 Paired 101 9,067,797 1,720

Propionibacterium acnes RNA-seq Bacteria Actinobacteria SRX278003 Single 75 195,541,304 1,777

Clostridium acetobutylicum RNA-seq Bacteria Clostridia SRX316281 Single 50 13,256,052 202

Pyrococcus abyssi RNA-seq Archaea Thermococci SRX556571 Single 40 51,342,770 133

Methanobrevibacter smithii RNA-seq Archaea Methanobacteria SRX031877 Single 36 32,744,832 211

Schizosaccharomyces pombe RNA-seq Eukarya Schizosaccharomycetes NA Paired 68 4,000,000 3,591

The table summarizes the DNA-seq data set and the 12 RNA-seq data sets used in this study. Information in the table includes the length and number of sequencing

reads in each data set. NA, not available.
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with sequenced and annotated genomes, though the

genomes and their annotations were not used by any of

the software systems during assembly. The genome se-

quences and annotations were used only to evaluate

the de novo assembled transcriptomes.

A variety of measures was used to evaluate the perform-

ance of the different assemblers [4,27]. In some cases, the

correspondence between assembled transcripts and anno-

tated genes is assessed. Since not all genes are likely to be

expressed in a given experiment, the de novo assembled

transcripts are compared not against all annotated genes

but against a subset of annotated genes, which we call ref-

erence genes. A reference gene is defined as a gene where

every k-mer in the gene sequence (k = 25) occurs in at

least one sequencing read. Reference genes can possibly

be reconstructed by the de novo assemblers whereas non-

reference genes cannot. The set of reference genes is

analogous to the Oracle Set used to evaluate the Trinity

system [8].

Specificity is a measure that represents the percentage

of assembled transcripts that align to the genome. Specifi-

city can be expressed as (1.0 - False positive rate), where a

false positive is an assembled transcript that does not align

to the genome. Specificity is calculated as:

X

t∈T
I

at
Gj j
tj j ≥ δ

� �

Tj j

where T is the set of assembled transcripts and G is a

genome. atG is the alignment of the sequence of t to

the sequence of G, and atG
�

�

�

� is the length of the align-

ment. I is an indicator function with parameter δ set

to 1.0.

Sensitivity represents the percentage of sequence

from reference genes covered by assembled transcripts.

Sensitivity in this context is sometimes referred to as

the coverage or completeness of an assembler. Sensitivity

is given by:

X

g∈R
gT
�

�

�

�

X

g∈R
gj j

where R is the set of reference genes. Following align-

ment of assembled transcripts in T to the set of refer-

ence genes R, |gT| is the number of nucleotides in the

sequence of reference gene g that are covered via align-

ment by one or more transcripts from T. In the special

case of assessing the quality of assemblies from DNA-

seq data rather than RNA-seq data, sensitivity represents

the percentage of sequence from the entire genome,

rather than from reference genes, covered by assembled

transcripts:

GT
�

�

�

�= Gj j

Contiguity represents the percentage of reference genes

that are at least δ = 80% covered by a single longest assem-

bled transcript [4]. Contiguity is defined as:

X

g∈R
I

gT
0�

�

�

�

gj j ≥ δ

� �

Rj j

where gT
0

�

�

�

�

�

� is the number of nucleotides in the sequence of

reference gene g that are covered via alignment by the

transcript from T that has the longest alignment to g. I is

an indicator function with parameter δ set to 0.8.

RMBT (reads mapping back to transcripts) represents

the percentage of sequencing reads that align to an as-

sembled transcript. RMBT is given by:

X

s∈S
I

as
Tj j
sj j ≥ δ

� �

Sj j

where S is the set of sequencing reads, asT is the align-

ment of the read s to the set of assembled transcripts T,

and asT
�

�

�

� is the length of the alignment. I is an indicator

function with parameter δ set to 1.0.

Accuracy represents the percentage of correctly as-

sembled bases; that is, for those transcripts that align to

the genome, the accuracy is the percentage of perfect

matches in the alignments (as opposed to mismatches or

gaps). Accuracy is calculated as:

X

t∈T
PM atG

� �

X

t∈T
atG
�

�

�

�

where PM atG
� �

is the number of perfect matches in the

alignment of the sequence t to the sequence of G, and

atG
�

�

�

� is the length of the alignment. Efficiency represents

the execution time of an assembler, as measured in mi-

nutes. Resourcefulness represents the amount of memory

(RAM) required during an assembly.

Results
In order to assess Rockhopper 2’s ability to assemble

transcriptomes de novo, we executed Rockhopper 2 on

high-throughput sequencing data from a variety of or-

ganisms whose genomes have been sequenced and anno-

tated. The genome sequences and annotations were not

used by Rockhopper 2, rather they allow us to evaluate

Rockhopper 2 by investigating the correspondence be-

tween the de novo assembled transcriptomes it produces
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and the genome sequences and annotations. To provide

points of comparison, two leading de novo transcriptome

assemblers, Trinity [8,25] and SOAPdenovo2 [10,26],

were executed on the same data, and their results are

compared with those of Rockhopper 2.

Genomic DNA-seq data

We used three biological replicates of genomic DNA-seq

data from E. coli (see Materials and methods) for pre-

liminary assessment of Rockhopper 2’s performance.

Genome assembly based on DNA-seq data is generally

more straightforward than transcriptome assembly

based on RNA-seq data since RNA-seq data correspond

to transcripts with highly variable expression levels and

lengths, whereas DNA-seq data do not. Thus, the perform-

ance of an assembler using DNA-seq data can suggest an

upper bound on the quality of the assembly that we can ex-

pect from the assembler using RNA-seq data.

Figure 2 and Additional file 1 provide statistics on as-

semblies based on the DNA-seq data. Rockhopper 2 and

SOAPdenovo2 both had close to 100% specificity, indicat-

ing that the vast majority of their assembled contigs could

be aligned to the E. coli genome (Figure 2A). In contrast,

just over half of the contigs assembled by Trinity were

considered false positives in that they did not align to the

E. coli genome (Figure 2A). Further, Rockhopper 2’s as-

sembly had a sensitivity of approximately 90%, indicating

that 90% of the genome was covered by Rockhopper 2’s

assembled contigs (Figure 2B). While Rockhopper 2 was

not designed as a genome assembler, these results suggest

that it does a plausible job of reconstructing most of the

E. coli genome. For comparison, the contigs assembled

by SOAPdenovo2 and Trinity covered just under half

the E. coli genome (Figure 2B). Regions of the genome

that were not covered by contigs from any of the as-

semblers generally correspond to some combination of

repeat regions, errors in sequencing reads, and biases

during library construction and high-throughput sequen-

cing. Finally, we found that Rockhopper 2 required about

32 minutes to generate its assembly, a rate comparable to

Figure 2 Performance assembling E. coli genome from DNA-seq data. The performance of Rockhopper 2 as well as two other assemblers,

SOAPdenovo2 and Trinity, on three biological replicate DNA-seq experiments from E. coli is illustrated. (A) Specificity is the percentage of assembled

contigs that align to the E. coli genome. (B) Sensitivity is the percentage of the E. coli genome sequence that is covered by assembled contigs aligning

to the genome. (C) Execution time is the number of minutes that an assembler requires to execute on the DNA-seq data.
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that of SOAPdenovo2 and substantially faster than that of

Trinity (Figure 2C).

RNA-seq data

While DNA-seq data provide a starting point for under-

standing the quality of assemblies, the performance of

an assembler using RNA-seq data is more meaningful.

Thus, we gathered data from RNA-seq experiments con-

ducted by 12 different labs for 12 different microorganisms

(see Materials and methods). The organisms included nine

bacteria, two archaea, and one fungus. While Rockhopper

2 was not designed for eukaryotic transcriptome assembly,

we evaluated its performance on data from the fungus S.

pombe primarily because this same data set was used by

the authors of the Trinity assembler to assess Trinity’s per-

formance [8,25]. The 12 organisms represented in our ana-

lysis were chosen to reflect a wide range of phylogenetic

diversity in order to help us understand the robustness

of our assemblies. The 12 RNA-seq data sets range in

size from approximately 2 million reads to 200 million

reads and include 7 sets of single-end sequencing reads

and 5 sets of paired-end sequencing reads (Table 1).

A variety of statistics (see Materials and methods) was

used to evaluate the assemblies produced by Rockhopper

2, Trinity, and SOAPdenovo2 across the 12 RNA-seq data

sets and the results are provided in Figure 3 and Additional

file 1. Rockhopper 2 and SOAPdenovo2 generally had the

highest specificity, generating fewer false positive assem-

bled transcripts that did not align to the corresponding

genome (Figure 3A). Interestingly, Rockhopper 2’s specifi-

city was lowest among the three assemblers on the two ar-

chaea data sets, but otherwise was among the highest.

Assembly of additional RNA-seq data sets from prokary-

otes beyond the 11 used in this study will help illuminate

whether Rockhopper 2’s higher specificity on bacterial

data and lower specificity on archaeal data, relative to the

other two assemblers, is a broad trend resulting from

biases toward certain domains or if it is an artifact of a

small sample size. In terms of sensitivity, Rockhopper 2

demonstrated the highest sensitivity of the three assem-

blers across the 12 data sets, with its assembled transcripts

covering a significantly larger percentage of reference

genes than those of the other two assemblers (Figure 3B).

Contiguity reflects the percentage of reference genes cov-

ered by a single longest transcript and is a useful measure

for distinguishing whether an assembly contains tran-

scripts covering a gene with multiple short transcripts or a

single long transcript. Rockhopper 2’s assemblies demon-

strate greater contiguity than those of the other two as-

semblers for 11 of the 12 data sets, with Trinity’s assembly

demonstrating the greatest contiguity for the S. pyogenes

data set (Figure 3C). RMBT indicates the percentage of

sequencing reads that align to assembled transcripts; this

measure is often used to evaluate assemblers under the

assumption that higher RMBT corresponds to a greater

percentage of reads used in constructing an assembly,

which is desirable in that it is more likely to lead to a ro-

bust assembly than using a smaller percentage of reads

when generating an assembly. Trinity and Rockhopper 2

consistently had high RMBT, in contrast to SOAPde-

novo2, suggesting that these two assemblers generally

use the majority of sequencing reads to construct their

assemblies (Figure 3D). Finally, the execution time of

the assemblers was assessed. Both SOAPdenovo2 and

Rockhopper 2 demonstrated substantially greater efficiency

than Trinity across the 12 data sets (Figure 3E).

In order to investigate how Rockhopper 2’s assemblies

are affected by expression level, we evaluated Rockhopper

2’s sensitivity and contiguity across the 12 RNA-seq data

sets at different expression deciles (Figure 4). Each point

represents an average across the 12 data sets (Figure 4).

For example, the leftmost point corresponds to the aver-

age sensitivity (purple) or contiguity (yellow) of Rockhopper

2’s assemblies across the 12 data sets for the 10% least

highly expressed reference genes. The rightmost point

corresponds to the average sensitivity (purple) or con-

tiguity (yellow) of Rockhopper 2’s assemblies across the

12 data sets for the 10% most highly expressed reference

genes. For this analysis, rather than requiring assembled

transcripts to align exactly to reference genes, we used a

more permissive alignment criterion and allowed assem-

bled transcripts to align to reference genes with a small

number of gaps or mismatches (BLAST E-value <0.01).

Unsurprisingly, Rockhopper 2 is better able, in terms of

sensitivity and contiguity, to assemble transcripts with

higher expression than lower expression, as performance

generally improves as the expression decile increases

(Figure 4). However, there is a small decrease in perform-

ance at the very highest expression deciles (Figure 4). This

asymmetric rainbow-shaped curve is consistent with what

others have observed [27], namely that assembly perform-

ance generally improves rapidly from the lowest expres-

sion quantiles to mid-level expression quantiles, plateaus

across mid-level expression quantiles to higher-level ex-

pression quantiles, and decreases slightly at the highest

level expression quantiles. These results provide one indi-

cation as to how confident a user can be in Rockhopper

2’s assembled transcripts for transcripts expressed at dif-

ferent levels.

We also considered a couple of additional measures of

assembly performance. Accuracy is the percentage of cor-

rectly assembled bases and is computed by aligning as-

sembled transcripts to the corresponding genome and

calculating, for those transcripts that align, the percentage

of bases in the alignment that correspond to perfect

matches as opposed to mismatches or gaps [4]. All three

assemblers showed accuracies greater than 99% across all

12 RNA-seq data sets (Additional file 1). Resourcefulness
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Figure 3 Performance assembling transcripts from RNA-seq data. The performance of each of three assemblers on 12 RNA-seq data sets is

illustrated. The 12 RNA-seq data sets correspond to nine bacteria, two archaea, and one fungus. (A) Specificity is the percentage of assembled

transcripts that align to the genome. (B) Sensitivity is the percentage of the reference gene sequences that is covered by assembled transcripts

aligning to the reference genes. (C) Contiguity is the percentage of reference genes that are at least δ = 80% covered by their single longest

aligning transcript. (D) RMBT is the percentage of sequencing reads to align to assembled transcripts. (E) Execution time is the number of minutes

that an assembler requires to execute on the RNA-seq data set.
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reflects the amount of RAM consumed during an assem-

bly. A comparison of memory usage by SOAPdenovo2

and Trinity has been performed by others [27] and we did

not repeat the analysis here. With default parameters,

Rockhopper 2 uses at most 1.2 GB (gigabytes) of memory.

For the assemblies in this study, we allowed Rockhopper 2

to use up to 2.0 GB of memory, an amount generally avail-

able on any common laptop. In contrast, the authors of

the Trinity assembler recommend approximately 1 GB of

memory per million paired reads for Trinity [25]. The

RNA-seq data sets used in this study contained between 2

million and 195 million reads, with an average of 36 mil-

lion reads. Thus, Trinity’s memory consumption typically

requires high-performance computing hardware whereas

Rockhopper 2 has no such requirement. All three assem-

blers are fully parallelizable and their runtime performance

scales inversely with the number of processors available

for computation in the machine on which the assembler

is executed.

Conclusions
Transcriptome assembly is a common step in the analysis

of RNA-seq data. When a sequenced genome is available,

assembly approaches can leverage the reference genome

by aligning sequencing reads to the genome. When a

high-quality reference genome is not available, transcrip-

tomes must be assembled de novo. While a number of ma-

ture tools exist for de novo assembly of transcriptomes

from RNA-seq data, these tools were designed primarily

for eukaryotic data and their performance suffers when

applied to bacterial data. In this study, we propose novel al-

gorithms for de novo assembly of bacterial transcriptomes.

The algorithms have been implemented in an open-source

software system called Rockhopper 2.

We evaluated Rockhopper 2 using one set of DNA-seq

data and 12 sets of RNA-seq data corresponding to a range

of microorganisms. We found that Rockhopper 2 produced

high quality transcriptome assemblies and outperformed

other leading assemblers. Rockhopper 2 has several other

advantageous features, including a graphical interface and

the ability to run on common laptops rather than necessi-

tating a high-performance computing environment. In

addition to de novo transcriptome assembly, the Rockhopper

2 system integrates algorithms for normalization of

data across experiments, quantification of transcript

abundance, and testing for differential gene expression.

Thus, Rockhopper 2 reduces the initial stages of ana-

lysis of large bacterial RNA-seq data sets to a matter of

minutes, enabling investigators to spend more time on

downstream interpretation of results and extraction of

new biological insights.

Additional file

Additional file 1: For the DNA-seq data set and the 12 RNA-seq data

sets used in this study, the table provides details on the performance

statistics for each of three assemblers when generating assemblies

from each data set.
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