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Abstract
A new generation of sequencing technologies is revolutionizing molecular biology. Illumina’s Solexa and Applied
Biosystems’ SOLiD generate gigabases of nucleotide sequence per week. However, a perceived limitation of these
ultra-high-throughput technologies is their short read-lengths. De novo assembly of sequence reads generated by
classical Sanger capillary sequencing is a mature field of research.Unfortunately, the existing sequence assembly pro-
grams were not effective for short sequence reads generated by Illumina and SOLiD platforms. Early studies sug-
gested that, in principle, sequence reads as short as 20^30 nucleotides could be used to generate useful assemblies
of both prokaryotic and eukaryotic genome sequences, albeit containing many gaps. The early feasibility studies
and proofs of principle inspired several bioinformatics research groups to implement new algorithms as freely avail-
able software tools specifically aimed at assembling reads of 30^50 nucleotides in length.This has led to the genera-
tion of several draft genome sequences based exclusively on short sequence Illumina sequence reads, recently
culminating in the assembly of the 2.25-Gb genome of the giant panda from Illumina sequence reads with an average
length of just 52 nucleotides. As well as reviewing recent developments in the field, we discuss some practical
aspects such as data filtering and submission of assembly data to public repositories.
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INTRODUCTION
A new generation of sequencing technologies is

revolutionizing molecular biology [1–15]. They

have dramatically lowered the costs per sequenced

nucleotide and increased throughput by orders of

magnitude. Illumina’s Solexa and Applied Bio-

systems’ SOLiD can generate gigabases of nucleotide

sequence per week. However, a perceived limitation

of these ultra-high-throughput technologies is their

short read-lengths. The first incarnation of Illumina’s

Genome Analyzer (GA) typically generated sequence

reads of just 36-nucleotides long. Currently Illumina

support generation of up to 100-nucleotide read-

lengths, but many laboratories are still opting for

read-lengths shorter than this and currently SOLiD

generates reads of 30–50 nucleotides. Until recently,

it was generally assumed that such short read-lengths

would restrict these technologies to resequencing

applications. Resequencing [12, 13] implies the

availability of a reference sequence (usually a com-

plete genome sequence) against which the short

reads can be aligned. The objective of resequencing

is the discovery of single-nucleotide polymorphisms

(SNPs) or other genetic variations between indivi-

duals of the same species or between healthy and

cancerous cells. In the absence of a reference se-

quence against which to compare sequence reads,

the key step in computational analysis is de novo
sequence assembly. Several recently published

reviews have dealt with the assembly of short

sequence reads [15–20]. The current manuscript

complements these by focussing on practical issues

facing the biologist who wants to leverage the low

cost and high-throughput of short-read sequence

technologies for de novo assembly. We mainly focus

on Illumina’s Solexa technology [21], because this is
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the platform with which we are most familiar and

that appears most frequently in the published primary

literature. However, much of what we write applies

equally to assembly of sequence reads generated

by Applied Biosytems’ SOLiD [22] and Complete

Genomics [23].

THE CHALLENGEOFASSEMBLING
SHORT SEQUENCE READS
Denovo sequence assembly is the process whereby we

merge together individual sequence reads to form

long contiguous sequences (‘contigs’) sharing the

same nucleotide sequence as the original template

DNA from which the sequence reads were derived.

Assembly of sequence reads generated by classical

Sanger capillary sequencing is a mature field of

research [17]. Two main types of algorithm are com-

monly used: (i) the overlap-layout-consensus (OLC)

approach and (ii) algorithms based on a de Bruijn

graph. These have been well reviewed previously

[15–20] and have been implemented in very effec-

tive genome-assembly software packages including

Arachne [24], AMOS [25], Atlas [26], Celera

Assembler [27], CAP3 [28], Euler [29], PCAP [30],

Phrap [31], RePS [32] and Phusion [33].

Unfortunately, these genome sequence assembly

programs are not well suited to short sequence

reads generated by Illumina and SOLiD platforms,

for several reasons. First, the numbers of reads pro-

duced by Illumina and SOLiD systems are around

three to four orders of magnitude greater per run per

instrument per day than that from capillary sequen-

cers. OLC methods require overlaps to be scored

between all possible pairs of reads, which is compu-

tationally costly, scaling with the square of the

number of reads. Second, the shorter sequences

mean any base-calling errors have a much greater

potential impact. Third, unique overlaps between

pairs of reads are much less likely, given the short

read-lengths. Finally, it is often not possible to

resolve repetitive sequences where the length of

the repeated unit is longer than the sequence read.

Given these challenges, most recent de novo genome

sequencing projects have opted for Roche’s 454

GS-FLX sequencing technology (rather than the

Illumina or the SOLiD platforms). These decisions

were probably influenced by its significantly lower

cost per nucleotide (compared to capillary sequen-

cing) yet longer read-length (compared to Illumina

and SOLiD) and the availability of Roche’s

proprietary ‘Newbler’ assembler, which is optimized

for GS-FLX data. Another approach has been to

perform ‘hybrid’ assemblies of mixtures of both

long and short reads in an attempt to gain the respec-

tive benefits of both (e.g. [34–38]). However, given

the even lower per-nucleotide costs of Illumina

and SOLiD, some researchers, especially those with

access to a local instrument, have been tempted to

use these short-read platforms for de novo genome

sequencing. This has led to the generation of several

draft genome sequences (Table 1) [39–48] based

exclusively on short sequence Illumina sequence

reads, recently culminating in the assembly of the

2.25 Gb genome of the giant panda from Illumina

sequence reads with an average length of just

52 nucleotides [40, 49]. Of the currently published

genome assemblies built exclusively from short reads,

most are no more than a few megabases in length

and they still contain on the order of hundreds of

gaps. The assembly of the panda genome from short

reads, although it is a momentous achievement, con-

tains significantly more gaps than previous mamma-

lian genome assemblies based on longer reads and

questions have been raised about its completeness

and accuracy [49].

THE FEASIBILITYOFASSEMBLING
GENOMES EXCLUSIVELY FROM
SHORT SEQUENCE READS
Early studies [50, 51] suggested that, in principle,

sequence reads as short as 20–30 nucleotides could

be used to generate useful assemblies of both prokar-

yotic and eukaryotic genome sequences, albeit

containing many gaps. For example, using reads of

30 nucleotides, 75% of the prokaryotic Escherichia coli

Table 1: Genomes assembled de novo exclusively from
Illumina short sequence reads

Organisms References

Turkey (Meleagris gallopavo) [39]
Giant panda (Ailuropoda melanoleuca) [40]
Bacillus subtilis 168 [57]
Bacillus subtilis natto [41]
Pseudomonas syringae pv. tabaci 11528 [42]
Pseudomonas syringae pv. syringae Psy642 [43]
Pseudomonas syringae pv. tomatoT1 [44]
Pseudomonas syringae pv. aesculi [45]
Apple scab (Ventura inaequalis) [46]
Pine (Pinus species) chloroplast [47, 48]
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genome could be assembled into contigs of longer

than 10 kb and 96% of genes were covered by a

single contig [50]. For assemblies of the larger and

more repetitive genome of the eukaryote

Caenorhabditis elegans, 51% of the genome is covered

by contigs of at least 10 kb. More recently, Kingsford

and colleagues [52] examined the complete nucleo-

tide sequences of 408 prokaryotic chromosomes and

calculated the best possible assemblies achievable

from idealized data, that is error-free reads uniformly

and comprehensively distributed over the genome.

Consistent with the earlier study [50], they found

that from 25-nucleotide reads it was possible to

assemble at least 90% of the genes from 89% of the

chromosomes. Not surprisingly, they found that

longer reads tended to yield more contiguous assem-

blies. The biggest improvements came with increases

from 25 to 35 nucleotides; beyond 35 nucleotides,

increasing read-length yielded diminishing returns.

Interestingly, they found that contiguity of assembly

did not always correlate closely with genome size.

For example, the genome of Yersinia pestis yielded

much smaller contigs than that of E. coli, even

though both genomes are around 4.4 Mb. In prac-

tice, this means that there is no easy formula for

predicting the quality of an assembly as a simple

function of genome size. It also means that we

cannot predict the quality of a genome assembly

for one species based on results from another species.

On a more optimistic note, this study suggested that

for most prokaryotic genomes it is theoretically

possible to assemble the vast majority of protein-

encoding genes from reads of no longer than

40 nucleotides. Those genes that failed to assemble

correctly were mostly associated with repetitive

elements such as transposons.

REALDATAYIELD POORER
ASSEMBLIES THAN
DO SIMULATED IDEALIZED
DATA
These feasibility studies demonstrated the potential

for generating informative draft genome assemblies

entirely from short sequence reads; but there were

several caveats. Although a significant proportion of

the genome might be represented in large contigs,

the assembly contained many gaps and large numbers

of short contigs. Therefore, the precise order of the

contigs is unknown, limiting studies of synteny

and genome rearrangements. Even studies aimed at

gene-discovery could not be exhaustive; at least 2%

of the genes were disrupted in the average prokar-

yotic genome assembly from 50-nucleotide reads

[52]. Furthermore, this study presents a best-case

scenario; that is, it describes the upper limits of

what is achievable, based on idealized simulated

data. The errors and bias observed in real sequence

data can dramatically reduce the quality of assem-

blies. Real Illumina sequence data are different

from idealized data in two important respects: real

sequence reads contain errors and the distribution of

sequence reads is not uniform (nor random) over the

genome (Figures 1 and 2). Both of these phenomena

have a negative effect on sequence assembly. This is

illustrated empirically by comparing the assembly

(using Velvet) of a simulated error-free dataset of

36-nucleotide reads (from Pseudomonas syringae patho-

var syringae B728a) against an equivalent Illumina

dataset from the same strain [53]. The simulated

dataset yielded longer contigs (N50¼ 13 771 versus

6963 nucleotides) that contained significantly fewer

errors. We also found that real Illumina data from the

E. coli genome produced poorer assemblies than

simulated ideal data (Figure 3). Several previous stu-

dies have reported non-uniform and non-random

representation over the genome [54–57]. This may

be partly explained by amplification biases, correlat-

ing with sequence properties such as GþC content

[54, 55]. In our experience, the degree of bias can

vary between samples even from very similar tem-

plate sequences, thus leading to unpredictable assem-

bly quality. Furthermore, with bacterial genomes,

we often observe a systematic over-representation

of sequences close to the origin of replication

(Figure 1), a pattern also reported by refs. [56, 57].

The effects of such biases on quality of sequence

assembly have not been systematically analysed,

though they will likely be detrimental. For example,

the Celera assembler uses distributions of read start

points to resolve repeats. Several of the most popular

assembly software packages assume random sampling

of the genome in order to correct sequence errors.

EULER [58, 59] and ALLPATHS [60] attempt to

correct errors in reads prior to assembly, whilst

Velvet [61] and FragmentGluer [62] deal with

errors by editing the graphs. Velvet assumes a bimo-

dal frequency distribution for the depth of coverage

of contigs. The peak at shallow coverage is assumed

to comprise errors and eliminates them from

the assembly. The user can set a parameter called

‘coverage cut-off’ to specify the stringency of this

De novo assembly of short sequence reads 459
D

ow
nloaded from

 https://academ
ic.oup.com

/bib/article/11/5/457/1746253 by guest on 21 August 2022



purging of low-coverage contigs. Given the same

total quantity of sequence data, over-representation

of some genomic sequences inevitably means shal-

lower coverage of other parts of the genome. It has

been well established that assembly contiguity and

accuracy are poor at very shallow coverage (e.g. [53]).

NOTALLASSEMBLERSARE
EQUALçCHOOSINGTHERIGHT
TOOL FORTHE JOB
The early feasibility studies and proofs of principle

[50, 51] inspired several bioinformatics research

groups to implement new algorithms as freely

Figure 1: Biases in real short-read sequence data. A set of Illumina 36-nucleotide genomic sequence reads [53]
from P. syringae pathovar syringae B728a was aligned against the previously published [116] genome sequence of this
strain. (A) Illustrates the depth of coverage by aligned reads over the 6Mb circular chromosome. Coverage is shal-
lower around the 3Mb region than it is near the origin of replication (position 0), (B) illustrates the expected fre-
quency distribution of alignment depth, assuming random sampling of the genome and (C) illustrates the observed
frequency distribution of alignment depth, which is broader than the expected distribution, indicating greater
variance due to biased sampling.
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available software tools specifically aimed at assem-

bling reads of 30–50 nucleotides in length. These

programs [60, 61, 63–96] are listed in Table 2. It is

essential for the genome biologist to have at least a

basic knowledge of the underlying algorithms in

order to make rational decisions about analysing

his/her data. All three types of algorithm have

been extensively reviewed elsewhere (e.g. [17, 19]

and so are only briefly described here. Some pro-

grams attempt to further assemble contigs into

longer assemblages known as ‘supercontigs’ or ‘scaf-

folds’. This step is commonly known as ‘scaffolding’,

and exploits additional information available in

paired sequence reads and/or conservation of gene-

order in related biological species. Scaffolding is

briefly discussed further in a following section.

Although the assembly programs are all based on a

small number of algorithms, they differ from each

other in the details of how they deal with errors,

inconsistencies and ambiguities. It should also be

noted that scaffolding is not the only use for paired

reads. Some assemblers, notably EULER [58], utilize

read-pairing information during the assembly of con-

tigs prior to any scaffolding step.

Assembly algorithms
The sequence assembly problem is essentially one

of constructing a DNA sequence superstring that

explains the observed set of sequence reads. This

superstring might represent the chromosome, bacter-

ial artificial chromosome, or other template DNA

that was subjected to sequencing. If the data were

completely error-free, then we would expect every

sequence read to be contained within the super-

string. So, we might be tempted to formulate

sequence assembly as finding a superstring that

NCPPB 3681 Illumina reads

P6617 Illumina reads

P6623 Illumina  reads

Predicted genes

Assembly

Figure 2: Biases in real short-read sequence data. Shown is a section of the P. syringae pathovar phaseolicola 1448A
genome [116], comprising five predicted genes. Sets of Illumina 36-nucleotide genomic sequence reads from three
strains (NCPPB 3681, P6617 and P6623) of P. syringae pathovar aesculi were aligned against the 1448A genome using
MAQ [117]. The thickness of the black tracks indicates the depth of the alignment. The distribution of the sequence
reads aligned on the genome is very variable both within each strain dataset and among the strains, illustrating
significant bias in sampling of the genome by Illumina sequencing and variation in the bias among datasets.

Figure 3: Real data produces poorer assemblies than
simulated idealized data. We downloaded the E. coli
strain K-12 MG1655 dataset SRR001665 from the NCBI
Sequence Read Archive and assembled using Velvet
0.7.61 with VelvetOptimiser 2.1 (script distributed with
the Velvet package). We also subjected the data to
two quality filtering regimes, removing all reads where
90% of the nucleotides had a quality score below 15
(moderate) or below 20 (stricter). We also generated
an equivalently sized set of simulated error-free
sequence 36-nucleotide reads. We assayed the quality
of each assembly by calculating the fraction correctly
assembled for each of the 4318 genes.
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contains all sequence-read strings as substrings. In real

biological sequence data, the problem is more com-

plicated. Sequencing error rates may be as high as

1–4% per nucleotide implying that many of the

sequence reads contain mismatches with respect to

the solution superstring. Furthermore, there will

inevitably be multiple solutions; that is, we could

propose many possible superstrings that satisfy the

criterion of containing all the observed sequence

reads. So which superstring is the best one? In a

spirit of parsimony, we might choose the shortest

superstring, but this would likely not be the biolo-

gically correct one. The reason is that real genomic

DNA sequences tend to contain large numbers of

perfectly and/or imperfectly repeated sequences,

which would be erroneously collapsed in the shortest

superstring. Some of the major differences between

the popular assembly programs are to be found in

their strategies for dealing with repeats. For example,

whilst the Celera assembler [27] masks-out repeat

sequences, EULER proactively utilizes repeats to

determine contig order. A further complication is

that sequence reads can originate from the reverse

complement as well as from the forward orientation

of the template DNA sequence.

Several assembly algorithms have been proposed

and implemented as excellent software packages that

can efficiently and accurately assemble capillary-

based sequence reads of 400–1000 nucleotides in

length into long contiguous sequences. Examples

include PCAP [30], CAP3 [28], ARACHNE [24],

Celera assembler [27], Phusion [33], Atlas [26] and

Phrap [31]. All of these take a common approach,

known as overlap-layout-consensus (OLC). The

EULER assembler [58, 59] takes a different

approach, based on de Bruijn graphs, which will be

discussed below. The first step in OLC is finding

overlaps between sequence reads. If we use the

jigsaw puzzle as a metaphor for sequence assembly

[58, 59], then this step is analogous to trying all

possible pairs of pieces to see which ones fit together.

The step of putting these pieces together corresponds

to the layout step. The final step is to derive a con-

sensus sequence from the layout.

The overlap step essentially involves an all-versus-

all sequence comparison; each pair of sequence reads

is ascribed a similarity score. This step is computa-

tionally expensive and scales quadratically with the

number of sequence reads. However, algorithmic

tricks such as ARACHNE’s sort-and-extend strategy

[24] can drastically improve this situation. The next

step, generation of a layout from the overlaps, is

often tackled using the principles of graph theory

[97, 98], though some popular OLC assemblers

(e.g. ARACHNE, PCAP, CAP3) do not explicitly

formulate it as such. The first formal description of

OLC assembly in terms of graph theory was that of

ref. [97], which introduced the concept of the over-

lap graph. The overlap graph consists of a set of

vertices (or nodes), each representing a sequence

read, connected by edges representing overlaps.

Finding an assembled sequence that explains the

observed sequence reads becomes equivalent to find-

ing a path through the graph that visits every vertex

exactly once; this is known as a Hamiltonian circuit.

Finding a Hamiltonian circuit in a graph is an NP-

hard problem, which means that for all but the smal-

lest and simplest graphs, it is effectively impossible to

calculate an optimal solution. Instead, the OLC

assembler must use an alternative pragmatic approach

such as approximation or heuristics. In practice,

OLC-based sequence assemblers such as CAP3 and

Table 2: Software for assembling short sequence
reads

Program Current version
(as of 27 February 2010)

References

ABYSS 1.1.2 (15 February 2010) [63, 64]
ALLPATHS 3 (3 December 2009) [60, 65, 66]
CLC NGS Cell 3.0 2.2.1 (28 July 2009) [67]
Curtaina 0.0.2 (16 December 2009) [68]
Edena 2.1.1 (17 March 2008) [69, 70]
Euler-SR 1.1.12 (30 March 2009) [71^73]
FuzzyPath 3.1 (8 November 2009) [74, 75]
Oasesb 0.1.4 (29 January 2010) [76]
QSRA No version number

(11March 2009)
[77, 78]

SASSY No version number [17]
SeqCons No version number

(24 September 2009)
[79, 80]

SHARCGS No version number
(19 November 2007)

[82]

SHORTY 2.0 (date unknown) [83, 84]
SOAPdenovo 2.20 (13 August 2009) [85, 86]
SOPRA 1 (date unknown) [87, 88]
SSAKE 3.4 (14 April 2009) [89, 90]
Taipan 1.0 (15 May 2009) [91, 92]
VCAKE 1.1 (29 June 2009) [93, 94]
Velvet 0.7.59 (19 February 2010) [61, 95, 96]

These software packages are able to perform de novo assembly of
Illumina short sequence reads with the exception of SHORTY, which is
designed to assemble ABI SOLiD colour-space data.Velvet and SOPRA
can assemble sequence-space andcolour-space data. aCurtain is a pipe-
line, based on Velvet, for hierarchical assembly of short sequence
reads in order to overcomememory usage limitations. bOases is speci-
fically designed for assembling transcribed sequences.

462 Paszkiewicz and Studholme
D

ow
nloaded from

 https://academ
ic.oup.com

/bib/article/11/5/457/1746253 by guest on 21 August 2022



Phrap use a greedy strategy to generate a layout from

the set of overlaps. This consists of progressively mer-

ging pairs of strings displaying the greatest overlap

scores until only a single string remains. This

approach has the advantage of being intuitively

easy to understand but will not necessarily yield the

globally optimal solution; indeed the final assembly

sequence may depend on the order in which equally

scoring pairs are merged.

The lack of an efficient algorithm for the solution

of the layout problem (finding a Hamiltonian path

in an overlap graph) can be circumvented by taking

an alternative approach to assembly based on the de

Bruijn graph [58, 59, 99, 100]. This approach also

eliminates the need for an overlap phase (i.e. pairwise

comparisons of all the reads). In this approach, the

metaphoric jigsaw pieces (that is, the sequence reads)

are first cut into even smaller pieces [58, 59]; from

the set of sequence reads, a spectrum of k-tuples is

generated. A k-tuple is a DNA sequence word of

length k. For example, the sequence ATGTGCC

GCA contains the three-tuples ATG, TGT, GTG,

TGC, GCC, CCG, CGC and GCA. In the de

Bruijn graph (or spectrum graph), the vertices

(nodes) are (k� 1)-tuples that occur in the

k-tuples. In our example, the vertices would include

two-tuples AT, TG, GT, etc. An edge that connects

a pair of the vertices represents a k-tuples in which

both (k�1)-tuples are present. For example, AT and

TG are connected by an edge that represents the

k-tuple ATG. The problem of assembly is now to

find a shortest (or minimum weight) path or circuit

that visits every edge, also known as the Chinese

Postman Problem. If there exists an Eulerian path

(one that passes through each edge only once),

then that is the optimal solution. Finding an

Eulerian path is much easier computationally than

finding a Hamiltonian path. However, just as in

the overlap graph, there still remains the problem

of multiple solutions (due to repetitive sequences

that cause circuits in the de Bruijn graph) and

sequencing errors can cause de Bruijn graphs to

become highly branched and tangled. The EULER

assembler [58, 59] can use information from paired

reads to untangle the graph. EULER [58, 59] and

most of the widely used assemblers designed for short

sequence reads are based on the de Bruijn graph and

Eulerian path approach. They differ from each other

in details of implementation and in their strategies

for dealing with sequencing errors and resolution of

repeats. In the toy example above, the value of k

was 3. In practice, the bioinformatician assembling

short reads is likely to choose a value of k between

�19 and the read-length.

Myers [97] has proposed a third alternative to the

overlap graph and the de Bruijn/spectrum graph.

He introduced the concept of a string graph,

which is a simplified graph derived from one in

which the vertices are sequence reads and the

edges are overlaps, and described algorithms for effi-

ciently generating a string graph from a set of

sequence reads. The method consists of four steps:

(i) an overlap graph is generated from an all-against-

all alignment of the sequence reads, (ii) the overlap

converted to a string graph by merging and reducing

redundant overlaps and edges, (iii) false vertices and

edges are identified and eliminated using a network

flow approach, and (iv) an Eulerian path or circuit is

found, which defines the assembly. This is much

easier to find than the Hamiltonian path of an over-

lap graph. Thus Myers’ work demonstrates that the

cutting-up of reads into k-tuples is probably unne-

cessary. To our knowledge, the string graph

approach has not yet been used for assembly of

short sequence reads.

Methods for scaffolding
Once assemblers have generated contigs using one of

the above methods, it is necessary to group contigs

together in the correct orientation and order.

Typically this is done by exploiting the additional

information offered by paired-end reads. A read-

pair that spans two contigs is taken as evidence for

the juxtaposition of those two contigs within the

genome. Again, this problem can be formulated

using a graph-based approach; this time, the contigs

are modelled as nodes (vertices) and matching read-

pairs are modelled as edges connecting the pair of

contigs. Again the algorithm consists of finding an

optimal path through the graph. In practice, there

is often inconsistency in the pattern of read-pair

links arising from formation of chimaeric DNA

molecules and other technical issues. In the original

Drosophila melanogaster genome assembly project [27],

10–20% of the pairing information was believed to

be false. For example, the SOAPdenovo assembler

uses a minimum of three read pairs as the criterion

for defining order and distance between contigs [85],

whilst for ABySS the default criterion is five read-

pairs [64]. Scaffolding algorithms may attempt to

minimize incongruence between the proposed

assembly and the observed read-pair data using

De novo assembly of short sequence reads 463
D

ow
nloaded from

 https://academ
ic.oup.com

/bib/article/11/5/457/1746253 by guest on 21 August 2022



consensus from large numbers of read-pairs. The

EULER assembler [59] maps read pairs against the

de Bruijn graph. Where a pair of reads matches two

hitherto unlinked components of the graph, EULER

finds a path between these reads. The estimated

clone length should be approximately equal to the

distance between the reads; this criterion is used to

identify erroneous pairing data and to choose

between alternative paths.

Any scaffolding algorithm must solve three main

problems as described by ref. [19]: (i) find all con-

nected components in the defined graph, (ii) find a

consistent orientation for all nodes in the graph and

(iii) given length estimates of the edges, embed the

graph on a line/circle to minimize the number of

constraints that are invalidated. The last two pro-

blems are defined as NP-complete, but there are

good heuristics available to overcome this. Also, in

the final step, it is not necessary to minimize com-

pletely as the presence of multiple edges from a single

node can indicate the presence of mis-assemblies that

may require manual intervention and/or additional

data to correct.

Short reads make the added information offered

by paired-end data essential for denovo assembly of all

but the simplest genomes. The fundamental limita-

tion of any read length is that any contigs resulting

from an assembly will necessarily be limited to

regions of the genome that do not have repetitive

elements longer than the read length. Shorter read

lengths make this problem particularly difficult.

Additionally non-unique elements arising from

gene-duplication or multi-copy domains can lead

to mis-assemblies of contigs.

To resolve these problems paired-end data can

be used. Essentially each section of DNA is

sequenced twice—once from each end. By carefully

controlling this length of DNA (typically either

200–800 nucleotides, or with a circularization pro-

tocol 1–10 kb, the so-called insert size) it is possible

to obtain an estimate for how far apart each read

should appear in the final assembly. In this way,

assuming that at least one read can be mapped to a

unique position it is possible to assign at least an

approximate location for its partner. A combination

of coverage deviation from the median level of cov-

erage and paired-end information has been found to

be sufficient in most cases to obtain a good assembly

for even relatively long repetitive regions.

Paired reads are not the only source of long-range

information useful for scaffolding. Another approach

is to use long reads or contigs from another sequen-

cing technology such as 454 of capillary sequencing.

The Velvet assembler, for example, can take as input

mixtures of long and short sequences. Alternatively,

contigs assembled from short reads can be combined

with longer sequences using a long-read assembler

such as Minimus [101]. Other approaches to scaf-

folding include exploiting physical and/or genetic

maps. A method of scaffolding based on optical

maps is implemented in the SOMA software [102].

Choosing an assembler
For the biologist faced with assembling real data,

which of the programs in Table 2 is the ‘best’?

First, we should point out that any answer to that

question might soon become out of date as this is an

active field and existing software is continually being

improved whilst new programs are being developed.

However, the key issues likely to remain are usability

and assembly quality. Usability comprises a number

of factors including hardware and software require-

ments, ease of installation and execution, and speed.

The quality of an assembly comprises both the con-

tiguity (lengths of the contigs or scaffolds) and the

accuracy of the assembly. Cultural issues may also be

important. For example, the community of Velvet

users have reached a ‘critical mass’ such that there is

active discussion on the Velvet mailing list [103].

Most of the published papers describing individual

assembly programs include a comparison of the qual-

ity of its assembly results with those of other pro-

grams. As far as we are aware, there is not yet a

comprehensive survey of assembly quality among

the different programs published a by a ‘neutral’

research group. Such a survey would not be a

straightforward undertaking, since the quality of

the resulting assemblies is likely a function of both

the choice of program and the particulars of the

dataset; that is some programs may perform better

on some datasets than on others. Different programs

vary in the details of how they resolve errors and

inconsistencies in the data. The nature of these

errors and consistencies likely vary between haploid

versus diploid genomes, for example, and further

vary according to frequency of heterozygosity. An

additional complication is that each assembly pro-

gram takes several options and parameters. For

example, in algorithms based on the de Bruijn

graph, results are highly dependent on the choice

of k-mer (i.e. k-tuple) size. This means that, even

after having chosen which software to use, it is
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equally important to choose the optimal parameter

values. So there is no definitive answer as to which is

the ‘best’ short-read assembler and there is an urgent

need for a comprehensive comparison (or competi-

tion) between the candidates on a suitably broad

selection of datasets. Such a study should utilize a

range of different datasets varying in factors such as

size, error-rate, heterozygosity, repeat structure,

sequence complexity, sampling bias, read lengths,

insert lengths (for paired reads or mate pairs), etc.

In the meantime, we would make some suggestions

based on head-to-head comparisons in the literature

as well as our own experience. For assembling a

single library of non-hierarchical whole-genome

data, with a single insert-length, from small genomes

(<40 Mb), then Velvet would be as good a choice as

any. Simpson and colleagues [63] found that ABySS,

Velvet and EULER-SR performed much better

than SSAKE and Edena on Illumina reads from the

E.coli genome. Velvet generally runs much faster and

with a smaller memory footprint than ABySS for

relatively small datasets (e.g. bacterial genomes). On

Illumina datasets from five microbial genomes,

Velvet gave longer scaffolds and greater accuracy

than EULER-SR [65, 95]. ALLPATHS2 yielded

significantly more contiguous and more accurate

assemblies but only when supplied with multiple

DNA libraries with different insert lengths [65].

SOAPdenovo produced more contiguous and

more complete assemblies of a human genome

than did ABySS and also produced better assemblies

than ABySS, Velvet, EULER-SR, SSAKE and

Edena on E. coli genome [85]. QSRA yielded assem-

blies of chloroplast and bacterial genomes that were

competitive with Velvet in terms of contiguity, but

no information is available on accuracy of its assem-

blies [77]. Large memory requirements mean that

assembly of non-hierarchical reads from large (e.g.

mammalian) genomes is only practically feasible

using a parallelization strategy such as that of

ABYSS. However, a better solution might be to

generate hierarchical sequence data from such gen-

omes, as exemplified by refs. [104–107], though

these methods are more laborious and may require

larger quantities of expensive reagents.

Metrics of assembly quality
In order to compare the relative quality of one

assembly against another, we need some metrics of

quality. There are two dimensions of quality: conti-

guity and accuracy. Contiguity refers to the lengths

of the contigs and/or the scaffolds. In practice, the set

of contigs comprising an assembly will not be of

uniform length, so the measure of contiguity is

essentially a description of a distribution of lengths.

Therefore, useful metrics might include the mean,

median, minimum and maximum lengths.

However, arguably the most useful summary statistic

is the N50 length. N50 is calculated by first ordering

all contigs (or scaffolds) by length and then summing

their lengths (starting with the longest) until the sum

exceeds 50% of the total length of all contigs.

Alternatively, where the length of the target

genome is known, then N50 calculation is sometimes

based on 50% of the genome length rather than 50%

of the sum of contig lengths [108]. The N50 contig

(or scaffold) number is the number of contigs (or

scaffolds) of at least N50 in length.

Clearly, a high degree of contiguity is desirable

and may motivate the choice of method and para-

meter values. In practice, there is usually a trade-off

between contiguity and accuracy; maximizing con-

tiguity will likely mean a less accurate assembly

[108]. For example, in a recent comparative study

of chromosome 17 in two strains of mouse [74],

rather than using any of the previously published

programs for assembling their Illumina 36 nt reads,

the authors developed a new assembler, called

Fuzzypath [74]. The authors demonstrated that

Fuzzypath yielded significantly longer contigs than

either Velvet or Abyss. Unfortunately, they did not

attempt to measure the accuracies of the assemblies.

Several studies have devised metrics designed to

reflect the accuracy or ‘correctness’ of an assembly.

MacCallum and colleagues [65] assessed assemblies of

short (36 and 26 nucleotides) Illumina reads from

several bacteria and a fungus for which high-quality

complete genome sequences had previously been

determined by capillary sequencing. They consid-

ered two aspects: ‘base accuracy’ and ‘mis-assembly

rate’ for assemblies generated by Allpaths, Velvet and

EULER-SR [71, 72]. Base accuracy referred to the

frequency of calling the correct nucleotide at a given

position in the assembly and equivalent to a PHRED

quality score [109]. Mis-assembly rate refers to the

frequency of rearrangements, significant insertions,

deletions and inversions. MacCallum and colleagues

[65] estimated both rates from alignments of 10 kb

chunks of the Illumina assemblies against the pre-

viously published reference sequences. They calcu-

lated base accuracy from the rate of exact matches

between Illumina-based assembly and reference
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sequence in the alignments and counted mis-assem-

bly rate as the fraction of the assembly that fell within

10 Kb chunks that were <99% identical to the

reference.

Apart from benchmarking and proof-of-principle

studies, typically no suitable reference is available.

Therefore, there is a need for assembly-accuracy

metrics that are not based on alignment to a refer-

ence sequence. Of course, this issue is not restricted

to assemblies built from short reads; it applies equally

to assemblies of long reads and hybrid assemblies of

multiple data types. One approach to validating

hybrid assemblies is to check for consistency between

paired reads from two independent data sets, e.g.

Illumina versus capillary sequence datasets (e.g.

[35]). Internal consistency can be checked in a pure

short-read assembly, e.g. aligning original read-pairs

against the assembly and checking the frequency of

incongruence and regions of unusual coverage

depth. Some such methods have been implemented

in the ‘amosvalidate’ software [110]. A graphical

visualization tool such as Tablet [111] can be invalu-

able for exploring assembly quality. Another

common approach, used in the giant panda genome

project [40], is to compare the assembly to existing

independently obtained sequences (mRNA, cloned

genes, etc.) from the same organism in the public

databases. If sequences are not available from the

same organism, then a set of highly conserved

sequences from a set of related organisms can be

used to interpolate sequences that should be con-

served in the newly sequenced genome. For example,

we have prepared a list of highly conserved

Pseudomonas gene sequences against which we com-

pare our de novo assemblies of genomes from this

genus [43].

Assembling transcriptomic data
Most denovo DNA sequence assembly were designed

primarily to handle genomic sequence. However, it

is now clear that even a complete genome sequence

is not enough; the behaviour and biological state of

a cell largely depends on its transcriptome, i.e. the

repertoire of protein-coding messenger RNAs and

other transcripts. In practice, rather than directly

sequencing RNA, the transcriptome is reverse tran-

scribed into cDNA, which serves as the substrate for

sequencing. The transcriptome differs from the

genome in several important respects. Assembly of

transcript sequences (for example, expressed

sequence tags, ESTs) presents different challenges

from the assembly of genomic sequence. Transcrip-

tion is discontinuous, leading to much less contiguity

in the transcriptome than the genome. Repeat

sequences are less of a problem in the transcriptome;

ESTs come from only a subset of the genome and are

enriched for protein-coding sequences that tend

to be less repetitive than intergenic regions than in

the genome. The transcriptome has an additional

complication in that a single genomic region can

be transcribed into several different isoforms due to

multiple transcription start and end sites and differ-

ential splicing. This situation is further complicated

by contamination of the cDNA library by genomic

DNA. Despite these challenges, Birol and colleagues

[112] successfully assembled a transcriptome from a

human cancer cell line using the ABySS assembler.

Their cDNA library had been normalized using a

DNA molecular denaturization and re-association

method. Un-normalized cDNA would display

extreme sampling bias, with a few highly expressed

transcripts dominating the sample and rare transcripts

being below the limits of detection. Even normalized

cDNA shows some sampling bias, so Birol and col-

leagues chose a very low threshold depth-of-cover-

age value (2�, compared with a default value of 5�)

for trimming of (false) branches from the de Bruijn

graph. They also took care to record (rather than

simply discard) ‘bubble’ structures in the de Bruijn

graph, which might represent alternative isomforms.

As such they were able to discover examples of novel

transcripts with skipped or retained exons, alternative

50 splicing and other novel isoforms [112]. Mean-

while, Zerbino and colleagues have begun develop-

ing a new assembler specifically optimized for

transcript-derived short reads [76]. This tool, called

Oases, is based on the Velvet assembler.

New assembly approaches to overcome
limitations of short reads
In practice, the whole-genome shotgun assembly of

short sequence reads has yielded poorer quality assem-

blies than assembly of longer capillary reads (and,

indeed, 454 reads). Improvements in sequence assem-

bly can be made by assembling two or more paired-

read libraries with different insert lengths. However,

several recent reports have demonstrated much-

improved assemblies using a hierarchical approach

to sequencing large genomes, combining novel

in vitro protocols with in silico innovations. Young

and colleagues [106] partitioned the fly genome

into a series of eight overlapping libraries of fragments
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by digesting genomic DNA with two different

restriction enzymes and fractionating the digested

fragments into four size-classes. The sequence com-

plexity within each library was significantly decreased

compared with the whole genome. Each library was

computationally assembled (using Velvet) and then

the eight assemblies were merged (using Minimus).

This combined assembly was significantly more con-

tiguous than an assembly than the equivalent whole-

genome shotgun assembly, having a N50 of 4.2 kb

compared to just 1.4 kb for the whole-genome shot-

gun assembly. Their combined assembly was of ade-

quate quality for comparative genomics studies with

other fly genomes and the use of such libraries is a

scalable strategy that should be applicable for cost-

effective sequencing of mammalian genomes too.

A team from University of Washington took a

rather different approach to exploiting in vitro library

construction [105]. They proposed a strategy of ‘sub-

assembly’ whereby they first sheared genomic DNA

(from the bacterium Pseudomonas aeruginosa) into

fragments of around 550 nucleotides. Fragments were

then PCR-amplified along with a 20-nucleotide tag

sequence. Effectively each unique 550-nucleotide

fragment is labelled with a unique 20-nucleotide

tag. Tagged fragments were then concatenated with

each other, randomly sheared and PCR-amplified

once more, this time incorporating a so-called ‘break-

point-adjacent adaptor’ at the end of the fragment

furthest from the 20-nucleotide label. This produced

a library of fragments in which every short fragment is

linked to a label that indicates which 550-nucleotide

it came from. They performed paired-read sequen-

cing on this library using the Illumina Genome

Analyser II such that for each read-pair, one read

contained the label tag and the other contained the

genomic sequence adjacent to the breakpoint-

adjacent adaptor. Thus, they could divide their

short sequence reads into a series of pools, each ori-

ginating from a single 550-nucleotide genomic frag-

ment and assemble each independently. The result of

these assemblies is essentially a set of 550-nucleotide

sequence reads, comparable with the read-lengths

obtained by 454 or capillary sequencing but gener-

ated on the Illumina platform for a much lower cost.

In fact, these sub-assembled ‘reads’ will likely have a

much lower error-rate than reads from the other plat-

forms since they originate from the consensus of mul-

tiple overlapping reads. In principle, this kind of

approach could be scaled up to larger fragment sizes

and much larger genome sizes.

A third sample preparation technique was The

Long March, proposed by Sorber and colleagues

[107]. This approach is conceptually similar to the

classical strategy of nested deletions [113]. During

preparation for sequencing by Illumina 454 and

SOLiD, target fragments are first ligated to special

oligonucleotide sequencing adapters. Sorber and col-

leagues [107] modified Illumina sequencing adapters

such that they contained a recognition site for a spe-

cific restriction enzyme (GsuI) that cleaves DNA at a

site 14 nucleotides distal to the recognition site.

Thus, on exposing their library to the restriction

enzyme, the library fragments were cleaved resulting

in partial deletion of the end of the read. Of course,

the cleavage also resulted in loss of the adapter, so

they had to re-ligate the cleaved fragments to fresh

adapter oligonucleotides. They iteratively repeated

this procedure of restriction digestion and re-ligation

for two further rounds. They used slightly different

adapter sequences for each of the three rounds (a

technique known as barcoding) so that the adapter

sequence could be used to identify from which

round a given DNA sequence originated even after

pooling together samples from all rounds. The result

of these iterative rounds of digestion and ligation was

a nested set of sub-libraries for Illumina sequencing.

The same principle could be applied to other

sequencing technologies and different restriction

enzymes could be chosen to vary the length of the

deletion. The advantage of The Long March is that it

yields a greater degree of overlap between fragments

(from different rounds of deletion) than would be

obtained if, as the authors put it, ‘chance is relied

upon to produce reads with sufficient overlap for

assembly’ [107]. The authors did not explicitly test

whether their data yielded improved assemblies by

performing de novo assembly; however, based on

assembly by alignment to a reference genome

sequence, they convincingly demonstrated that The

Long March gave broader and more even coverage.

Given sufficient depth of sequence coverage and

truly random sampling, degree of read-overlap

should not be a limiting factor. Nested deletion

approaches such as The Long March might be a

good solution to overcoming the sequencing biases

that sometimes limit assembly quality.

Strategies for filtering sequence reads
prior to assembly
Although the commonly used assemblers are

remarkably robust to sequence errors, it is advisable
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to filter short-read sequence data prior to assembly.

The phrase ‘garbage in garbage out’ (GIGO)

holds here, though some of the more conservative

assemblers (e.g. Velvet) might be better described by

‘garbage-in, nothing-out’; their consistency and

error-elimination algorithms mean that they tend

to generate no assembly rather than a very inaccurate

assembly. In either case, input of large quantities of

erroneous sequence reads will also lead to a signifi-

cantly increased memory footprint; error-containing

reads generate additional vertices and erroneous

paths in the de Bruijn graph; a bigger graph requires

more memory, which is often the limiting resource.

As a minimum, when assembling Illumina short

sequence reads, we routinely discard all reads that

contain any ambiguities (‘Ns’). We also discard any

homopolymer reads (e.g. strings of ‘As’) and reads

that contain adapter sequences. The benefits of

these filtering steps have not been systematically ana-

lysed, but anecdotally, we find that such filtering

leads to better assemblies and less memory usage

during assembly. The Illumina data analysis pipeline

offers the option of ‘purity filtering’, which elimi-

nates sequence reads that might originate from mix-

tures of more than one template sequence due to

close proximity on the flowcell. Many sequencing

centres routinely apply this filter prior to de novo
assembly [55]. There is some controversy over the

value of further filtering short sequence reads accord-

ing to their quality scores. Prior to assembling long

sequence reads, it is usual to trim the 50 and 30 ends of

the reads to remove vector sequences and/or poor

quality base calls. Base calling in long sequence reads

is most commonly performed by the PHRED soft-

ware [109, 113, 114], which assigns a quality score to

each nucleotide in the read according to the esti-

mated probability of an error. The Illumina data

analysis pipeline provides similar quality scores,

which are encoded as ASCII characters in the

FASTQ sequence format that is commonly used

for Illumina sequence output. In principle, then, it

is possible to filter data by removing sequence reads

having poor quality scores or to trim the reads to

remove poor-scoring regions of reads. When adopt-

ing a trimming or filtering strategy it should be noted

that there are in fact three different variants of

the quality-score encoding [114]; it is important to

know which variant the data uses. In our anecdotal

experience, score-based trimming and filtering does

not yield improvements in assembly quality when

using Velvet; in fact it usually yields poorer

assemblies (see Figure 3). However, it is possible

that with some assembly algorithms and under some

circumstances, filtering and trimming might have

value. This issue deserves further systematic analysis.

Deposition of sequence into repositories
Having generated a sequence assembly that will form

the basis for further analysis (comparison with other

genomes, gene discovery, etc.) it will be essential, at

some point, to submit the data to a public repository

such as GenBank. Care needs to be taken and some

post-processing of the assembly will probably be

required. It may be helpful to illustrate this by briefly

describing some issues that we encountered when

submitting Velvet-derived assemblies of Illumina

paired short reads to GenBank. Similar issues will

arise from assemblies generated by other programs

too. First, it is important to realize that the raw

output from Velvet consists of scaffolds (or ‘super-

contigs’), although the default filename is ‘contigs.fa’.

In early versions of Velvet, there were often runs of

between one and nine Ns indicating a gap between

two adjacent contigs. However, GenBank does not

accept inter-contig gaps of shorter than 10 nucleo-

tides. Recent versions of Velvet comply with

GenBank in this respect. However, it is still necessary

to split the scaffold sequences into their component

contigs and also generate an AFG file, which specifies

the position of each contig within its cognate scaf-

fold. Also, the default identifiers that Velvet ascribes

to each scaffold do not comply with GenBank’s reg-

ulations, so they need to be renamed. These post-

processing steps can be easily automated using a

scripting language such as Perl, but it is important

to perform all downstream analyses on the processed

sequences rather than raw Velvet output in order

to avoid inconsistencies with the publicly available

version in GenBank.

CONCLUDING REMARKS
It is now feasible to generate, from short sequence

reads only, complete genome sequence assemblies of

at least good draft quality, even for large mammalian

genomes, though these assemblies contain many gaps

and are by no means ‘finished’. The great majority of

genome sequences published in the last couple of

years have been based on long reads (capillary or

454 sequences) or mixtures of long and short reads.

However, recent innovations in bioinformatics and

in vitro library preparation make assembly of short
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reads increasingly tractable. With the prevailing trend

towards increasing read-lengths in technologies such

as Illumina, it is quite possible that in 5 years from

now, de novo assembly of short reads will be obsolete

as sequencing becomes dominated by new long-read

technologies such as Pacific Biosciences’ SMRT plat-

form [115], which will present new challenges for

sequence assembly. However, the current cohort of

sequencers are generating enormous quantities of

short-read data, not to mention backlogs of unana-

lysed data, and will continue to do so for some time

to come. The accuracy and performance of short-read

assemblers looks set to continue to advance, with the

most popular software packages being actively devel-

oped. There may be a lag between algorithmic inno-

vation and implementation. For example, a recent

study [118] unified approaches based on de Bruijn

graphs, bidirected graphs and network flow to

develop an efficient (exact polynomial time) assembly

algorithm. As the fruits of such theoretical labour are

adopted, we can expect further improvements.

Key Points

� Short sequence reads can be used for de novo assembly of
genomes and transcriptomes, even though they were originally
envisaged as tools for resequencing applications where a
reference sequence is available.

� De novo sequencing projects have usually relied on the inclusion
of at least some longer sequence reads.

� Recent achievements using exclusively short reads culminated in
the complete sequencing of the giant panda genome.

� Recent innovations in bioinformatics and in vitro library pre-
paration promise to bring short read sequence assembly up to a
comparable level with longer-read technologies with respect to
assembly quality.

� There is a need for systematic comparisons of the available
assembly algorithms andmetrics of assembly quality.

� To obtain the best results it is important to consider the use of
insert length libraries with different lengths.

Acknowledgements
We are grateful to Anirvan Sengupta for making the SOPRA

assembler available to us prior to publication. We thank

Yasubumi Sakakibara for sharing unpublished data from the

Bacillus subtilis natto genome project. We are indebted to

Murray Grant and Nick Talbot for their guidance and strategic

support in establishing high-throughput sequence analysis facil-

ities at the University of Exeter. This manuscript benefitted

substantially from the constructive suggestions of the anonymous

reviewers, to whom we are also grateful.

References
1. Ansorge WJ. Next-generation DNA sequencing techni-

ques. NBiotechnol 2009;25:195–203.

2. Fox S, Filichkin S, Mockler TC. Applications of ultra-
high-throughput sequencing. Methods Mol Biol 2009;553:
79–108.

3. Hall N. Advanced sequencing technologies and their wider
impact in microbiology. J Exp Biol 2007;210:1518–25.

4. Holt RA, Jones SJ. The new paradigm of flow cell sequen-
cing. Genome Res 2008;18:839–46.

5. Imelfort M, Edwards D. De novo sequencing of plant gen-
omes using second-generation technologies. Brief Bioinform
2009;10:609–18.

6. MacLean D, Jones JD, Studholme DJ. Application of ‘next-
generation’ sequencing technologies to microbial genetics.
Nat RevMicrobiol 2009;7:287–96.

7. Mardis ER. Next-generation DNA sequencing methods.
Annu RevGenomics HumGenet 2008;9:387–402.

8. Metzker ML. Sequencing technologies – the next genera-
tion. Nat Rev Genet 2010;11:31–46.

9. Morozova O, Marra MA. Applications of next-generation
sequencing technologies in functional genomics. Genomics
2008;92:255–64.

10. Shendure J, Mitra RD, Varma C, Church GM. Advanced
sequencing technologies: methods and goals. Nat RevGenet
2004;5:335–44.

11. Varshney RK, Nayak SN, May GD, Jackson SA. Next-
generation sequencing technologies and their implications
for crop genetics and breeding. Trends Biotechnol 2009;27:
522–30.

12. Bentley DR, Balasubramanian S, Swerdlow HP, et al.
Accurate whole human genome sequencing using reversible
terminator chemistry. Nature 2008;456:53–9.

13. Bentley DR. Whole-genome re-sequencing. Curr Opin
Genet Dev 2006;16:545–52.

14. Margulies M, Egholm M, Altman WE, et al. Genome
sequencing in microfabricated high-density picolitre reac-
tors. Nature 2005;437:376–80.

15. Flicek P, Birney E. Sense from sequence reads: methods for
alignment and assembly. NatMethods 2009;6:S6–12.

16. Horner DS, Pavesi G, Castrignanò T, et al. Bioinformatics
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