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Novel high-throughput DNA sequencing technologies allow researchers to characterize a bacterial genome during a
single experiment and at a moderate cost. However, the increase in sequencing throughput that is allowed by using
such platforms is obtained at the expense of individual sequence read length, which must be assembled into longer
contigs to be exploitable. This study focuses on the Illumina sequencing platform that produces millions of very
short sequences that are 35 bases in length. We propose a de novo assembler software that is dedicated to process
such data. Based on a classical overlap graph representation and on the detection of potentially spurious reads, our
software generates a set of accurate contigs of several kilobases that cover most of the bacterial genome. The
assembly results were validated by comparing data sets that were obtained experimentally for Staphylococcus aureus
strain MW2 and Helicobacter acinonychis strain Sheeba with that of their published genomes acquired by conventional
sequencing of 1.5- to 3.0-kb fragments. We also provide indications that the broad coverage achieved by
high-throughput sequencing might allow for the detection of clonal polymorphisms in the set of DNA molecules
being sequenced.

[Supplemental material is available online at www.genome.org. Edena is freely available for academic users at
http://www.genomic.ch/edena.]

High-throughput sequencing technologies have the potential to
decipher a bacterial genome during a single experiment and at a
moderate cost (Mitra and Church 1999; Brenner et al. 2000; Mar-
gulies et al. 2005; Bentley 2006). However, such broad coverage is
typically obtained at the expense of the read length. This article
addresses the assembly of the sequences produced by the Illu-
mina Genome Analyzer that generates millions of very short
reads of the same length. The technology currently provides
reads of 35 bases, although future technological improvements
promise to increase the sequence length to 50 bases. The ability
to efficiently sequence and assemble whole bacterial genomes
has significant implications for evolutionary (Smith et al. 2006;
Mwangi et al. 2007), metagenomic (Handelsman et al. 1998; Ei-
sen 2007), and even diagnostic purposes (Fournier et al. 2006;
Audic et al. 2007). However, the fact that only short overlaps can
be considered represents a challenge for the assembly process. It
was previously shown that de novo sequencing of a bacterial
genome is possible using error-free reads that range from 20–50
bases in length (Whiteford et al. 2005). Recently, software appli-
cations that are dedicated to the assembly of very short reads
were published. SSAKE was originally described by Warren et al.
(2007), but its current version (3.0) has been recently described in
a poster in the Pacific Symposium on Biocomputing (Hawaii
2008). Rather than claiming the production of accurate contigs,
the investigators demonstrated that their approach identified
bacteria from a complex soil metagenomic sample. Velvet was

presented at the Cold Spring Harbor Biology of Genomes meet-
ing in 2007. This application is based on a k-mer graph represen-
tation (Idury and Waterman 1995; Pevzner et al. 2001) that struc-
tures all k-mers observed in the reads. Finally, SHARCGS (Dohm
et al. 2007) is an assembler that prefilters the reads according to
their quality values and to their redundancy in the data set. In
this study, we present Edena (Exact DE Novo Assembler), a novel
software for de novo assembly of accurate contigs from data sets
containing very short reads of the same length. The application
is based on the classical assembly approach where all overlaps are
computed and structured in a graph. Accurate contigs of several
kilobases are produced that cover most of the genome being se-
quenced. A comparison with previously described assembly pro-
grams was performed by analyzing two different bacterial ge-
nomes sequenced on an Illumina Genome Analyzer. Finally, the
broad coverage depth achieved by the new generation sequenc-
ing device suggests the presence of clonal polymorphisms in the
set of DNA molecules being sequenced, but this statement needs
to be formally proven.

Results

Assembly of the Staphylococcus aureus strain MW2 genome

The Staphylococcus aureus strain MW2 data set is made up of 3.86
million of 35-bp reads among which 3.83 million are unambigu-
ous (i.e., they do not contain any nondetermined nucleotide).
The redundancy filter applied by Edena keeps 2.66 million
unique reads. The raw coverage depth is therefore 48�. All pro-
grams were tested with several parameterizations, and only the
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best one was considered. Due to the higher computational re-
sources required by SSAKE and particularly by SHARCGS, these
two programs were not extensively tested. However, efforts were
made to optimize their results. Edena was parameterized to con-
sider overlaps displaying a minimum length of 21 bases for the
strict and nonstrict mode. Velvet was used with a k-mer value of
23. The best result for SHARCGS was achieved by setting the
“max gap span” parameter to 14. Also, this program was pro-
vided with sequencing quality values. The best result for SSAKE
was achieved with its default parameters. Since S. aureus strain
MW2 was already sequenced and assembled by using conven-
tional methods (Baba et al. 2002), we used the published se-
quence as the reference to evaluate the accuracy of the assem-
blies. The reference genomic and plasmid sequences measure
2.82 Mbp and 20.7 kbp, respectively (accession nos. NC_003923
and NC_005011, respectively). Contigs were aligned to their ref-
erence genomic and plasmid sequences using the Exonerate se-
quence alignment package (Slater and Birney 2005). To be con-
sidered valid, a contig must be aligned along its whole length
with a base similarity of at least 98%. Only contigs larger than, or
equal to, 100 bases were considered in this study. A graphical
view of the contig map is shown in Figure 1, and the assembly
results are summarized in Table 1. The contigs produced by
Edena running in strict mode covered 98% of the reference se-
quences, and the N50 value is 6.0 kb. The nonstrict mode of
Edena produced a few misassembled contigs. These misassem-
blies included 14 contigs totalizing 45.1 kb. In terms of contig
length, the performance of Velvet was similar to that of the strict
mode of Edena, but two contigs did not properly map the refer-

ence sequence. In addition, the correct contigs presented a total
of 260 mismatches. All mismatches were located almost exclu-
sively at the ends of the contigs. SHARCGS was not able to as-
semble significant contigs. This is probably due to the fact that
this program relies mainly on its prefiltering step, which requires
a very broad coverage depth to retain a sufficient number of
correct reads. SSAKE generated numerous errors that were mainly
located at the ends of the contigs. As Figure 1 revealed signifi-
cant overlaps between contigs produced by Edena and Velvet,
we constituted two additional data sets by merging the contigs
generated by the two programs. The first data set was constituted
from the results of Velvet and Edena when operated in the
strict mode, while the second one combined the results of Edena
in the nonstrict mode with those of Velvet. These two new
data sets were then assembled with the Minimus assembler
(Sommer et al. 2007), as shown in Table 2. By assembling the
contigs produced by Velvet and Edena in the strict mode, N50
value and mean contigs size increased to 8.1 kbp and 3.6 kbp,
respectively. By assembling the contigs produced by Velvet and
Edena in the nonstrict mode, longer contigs were obtained but at
the expense of 16 misassembled contigs representing a total of
78.7 kbp.

Assembly of the Helicobacter acinonychis strain Sheeba genome

This assembly comparison was performed on the set of reads
obtained with Helicobacter acinonychis strain Sheeba and origi-
nally presented in the publication describing SHARCGS. This
information is freely available at http://sharcgs.molgen.mpg.de/
download.shtml. This data set is made up of 12.3 million of

36-bp reads, among which 11.6 million
are unambiguous. The raw coverage
depth is therefore 284�. The redun-
dancy filter applied by Edena keeps 7.3
million unique reads. Edena was param-
eterized to consider overlaps displaying
a minimum length of 27 bp for the strict
mode and 26 bp for the nonstrict mode.
Velvet has been used with a k-mer value
of 27. The best result for SHARCGS was
achieved by setting the “max gap span”
parameter to 10 and by removing the
last four bases of each reads. Also, this
program was provided with sequencing
quality values, as mentioned above. For
SSAKE, the best result was achieved
with its default parameters. Following
the same procedure as described for the
S. aureus assembly, contigs were evalu-
ated against the published whole-
genome sequence (Eppinger et al. 2006),
which measures 1.55 Mbp and 3.66 kbp
for the genome and plasmid, respec-
tively (accession nos. NC_008229 and
NC_008230, respectively). Assembly re-
sults are shown in Table 3. Once again,
Edena and Velvet showed the best per-
formance by reaching a N50 value of
10.4 kbp and 9.8 kbp, respectively. The
nonstrict mode of Edena reached a N50
value of 14.2 kbp for the correctly as-
sembled contigs. However, one contig of
24.1 kbp was misassembled.

Figure 1. Mapping of the contigs on the reference Staphylococcus aureus MW2 genome. (A) From
external to internal, the circles correspond to the contigs produced by (1) Edena strict, (2) Velvet, (3)
Edena nonstrict, (4) SSAKE, and (5) SHARCGS. The contigs are colored by alternating two different
colors, which allows distinguishing contig boundaries. The last inner circle shows the coding se-
quences. The gaps in the Edena nonstrict assembly correspond to large misassembled contigs that did
not properly map the reference genome. (B) The magnification of the region around the origin of
replication provides a better view to compare the contigs length and layout between the different
assembly methods. It can be seen that the contigs assembled by Edena and Velvet are long enough to
reveal entire genes. More importantly, significant overlaps exist between the contigs assembled by the
two programs, which also means that even larger contigs could be assembled by merging both
approaches. The position of the SSCmec cassette of type IV.1 (Chongtrakool et al. 2006) is indicated by
the red line.
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Erroneous reads and putative clonal polymorphisms
in the DNA samples being sequenced

Edena relies on two cleaning operations to remove ambiguous
paths from the overlap graph: the short dead-end (DE) path re-
moval and the p-bubble fixing (see Methods). By using the over-
lap graph obtained from the S. aureus data set with a minimum
overlap length of 21, we investigated the efficiency of these
cleaning operations. By considering the nonredundant data set,
it appears that 39.3% of the reads do not have an exact occur-
rence on either the genomic or the plasmid reference sequences
(which correspond to 28% of the complete redundant data set).
We will refer to these reads as the negative read, while the posi-
tive read will refer to the remaining reads that have at least one
exact occurrence in the reference sequences. We generated a
simulated ideal data set by sampling a 35-bp read at every posi-
tion in the genomic and plasmid reference sequence for S. aureus
strain MW2. Thus, this ideal data set does not contain any error
or polymorphism. It allowed us to compute the number of
branching nodes and p-bubbles that are exclusively caused by
exact and nonexact repetitions in the genomic sequence and to
compare these values with those obtained from the real data set.
Results are presented in Table 4. The difference between the two
overlap graphs is significant. First, the proportions of branching
nodes in the real and ideal data set are 32% and 0.2%, respec-
tively; the later being exclusively due to genomic repetitions that
cannot be resolved by the overlapping procedure. This indicates
that almost all branching nodes in the real data set result from
negative reads. The number of p-bubbles is 12 in the ideal overlap
graph, which indicates the presence of nonexact repetitions in
the genomic and/or plasmid sequences. This number however
rises to 526 in the real overlap graph. For each bubble, we ex-
tracted the corresponding sequences. It appears that for 521 of
the 526 bubbles, one of the two sequences does not show any
exact occurrence in the reference sequences, this sequence being
assembled from the negative reads. Moreover, the coverage depth
ratio of the two possible paths showed an average of 0.1, the
lower path corresponding to the one being made of negative
reads. Such bubbles involving negative reads cannot be ex-
plained by base calling errors. A possible explanation is that these
negative reads are issued from underrepresented subsets of DNA

molecules in the sample; each of these subsets containing one or
more mutations as compared to the majority sequence. The
broad coverage achieved by the Illumina Genome Analyzer
might thus allow for the detection of clonal polymorphisms.

The percentage of nodes that were removed by the DE path
cleaning is 33% for the real data set versus 0% for the ideal set.
Table 5 gives the number of positive and negative nodes that are
removed by the DE procedure according to the md value (see
Methods). As expected, almost all removed nodes belong to the
set of negative reads. The value of md = 10 is a relevant choice to
remove most of the negative nodes, yet this value limited the loss
of the positive nodes. Most of the DE paths have a depth of 1,
which corresponds to what is expected from random base calling
errors. However, a significant number of longer DE paths that
cannot be explained by random errors also exist in the overlap
graph. The overwhelming majority of these unexpected long DE
paths only involve negative nodes. This observation suggests that
they might be caused by clonal polymorphisms on DNA mol-
ecule for which the abundance is insufficient to constitute a com-
plete p-bubble.

Lander-Waterman statistics and genome coverage depth

As discussed above, the raw coverage depth of the S. aureus Illu-
mina sequencing is 48�. However, since the required overlap-
ping length represents a significant part of the read length, the
effective coverage depth (Lander and Waterman 1988; Wendl
and Waterston 2002) provides a more informative value. Effec-
tive coverage can be estimated by E = N(L � T)/G, and the ex-
pected number of gaps (i.e., region not properly represented by
the reads) can be estimated by Ne�E where N is the number of
usable reads, L is the length of the reads, T is the required overlap
length, and G is the target size. For this purpose, usable reads are
defined as those having at least one overlap on each end. The
number of usable reads is 2,900,674. By considering a required
overlap length of 21 bases, the effective coverage depth is 14�

and the expected number of gaps is two. Similarly, the number of
usable reads is 6,258,923 for the H. acinonychis Illumina sequenc-
ing. By considering a required overlap length of 27 bases, the
effective coverage depth is 36� and no gap is expected. Thus, by
assuming that the genomes are uniformly sampled by

Table 1. Comparison of assembly results of Staphylococcus aureus strain MW2 as obtained by Edena, Velvet, SHARCGS, and SSAKE

Assembly
software

No. of correct contigs
(total size)

No. of misassembled
contigs (total size)

Correct contigs

N50
Average
length

Max
length

Total no. of
mismatches

Genome
coverage

Edena strict 1122 (2762 kbp) 0 (0 bp) 6.0 kbp 2.5 kbp 25.7 kbp 1 98%
Edena nonstrict 733 (2737 kbp) 14 (45.1 kbp) 9.4 kbp 3.7 kbp 51.8 kbp 90 97%
Velvet 1093 (2768 kbp) 2 (362 bp) 5.4 kbp 2.5 kbp 22.9 kbp 260 98%
SSAKE 2334 (2782 kbp) 99 (85.1 kbp) 2.0 kbp 1.2 kbp 12.6 kbp 2427 97%
SHARCGS 3632 (2760 kbp) 3 (1.5 kbp) 1.2 kbp 760 bp 8.6 kbp 44 97%

Table 2. Merging the results of Velvet and Edena using the Minimus assembler

Assembly software
No. of correct contigs

(total size)
No. of misassembled
contigs (total size)

Correct contigs

N50
Average
length

Max
length

Total no. of
mismatches

Genome
coverage

Velvet + Edena strict 779 (2771 kbp) 1 (154 bp) 8.1 kbp 3.6 kbp 40.4 kbp 176 98%
Velvet + Edena nonstrict 469 (2701 kbp) 16 (78.7 kbp) 12.6 kbp 5.8 kbp 69.2 kbp 278 96%
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the Illumina reads, this statistic predicts that no contig should
end in a gap for the H. acinonychis assembly and only a few ones
for the S. aureus assembly. However, we observed that among the
1122 contigs produced by Edena for the S. aureus genome assem-
bly, 879 contig ends ended in a gap (i.e., could not be elongated
due to the lack of an overlapping read). Also, among the 336
contigs produced for the H. acinonychis assembly, 192 contig ends
ended in a gap. These values are significantly higher than what is
expected given the coverage depth of both projects. Although the
overall assembly results indicated that the genomes are roughly
uniformly represented in the Illumina reads, some particular re-
gions of the genomes are clearly weakly represented. Therefore,
we mapped the reads of both projects against their respective
reference sequence. Only exact matches were considered. Then,
we extracted the parts of genome that were not sufficiently cov-
ered to be assembled. A simple visual inspection reveals that
these extracted sequences contain large complexity moieties as
well as long stretches of single base repeats that are likely to form
secondary structures or that are not efficiently replicated during
enzymatic steps.

Discussion

High-throughput sequencing technologies characterize bacterial
genome sequences containing millions of nucleotides during a
single experiment and within a few hours of “machine working
time.” If prices of genome sequencing are still higher than the
target price of $1000 (Service 2006), the time required to se-
quence a bacterial genome has dramatically reduced in a few
years. Previous technologies required several years of sequencing
and assembly effort (Fleischmann et al. 1995). However, recent
improvements in sequencing technology have decreased this re-
quirement to only days or weeks of work. This revolution in
sequencing contributes to the current situation: Today, more
than 400 bacterial genomes are publicly available in databases,
and ∼600 projects are ongoing (http://cmr.tigr.org/tigr-scripts/
CMR/CmrHomePage.cgi and http://www.ncbi.nlm.nih.gov/
genomes/lproks.cgi).

Two major high-throughput sequencing strategies are cur-
rently available: the 454 from Roche Diagnostics and Illumina’s
Solexa Sequencing Technology, which was used in this work. The
Illumina platform relies on millions of small reads, ensuring that

each nucleotide of a genome is sequenced by dozens of small
reads, whereas the 454 generates larger fragments that average
230 nucleotides. Based on these characteristics, the 454 is prob-
ably more adapted to genomes containing abundant repeated
regions. High-quality sequencing data are, of course, mandatory
for such projects, and the frequency of errors arising from high-
throughput sequencers appears reasonable (Sundquist et al.
2007). However, the limited length of sequenced elements re-
quires elaborate assembly strategies that often require sophisti-
cated hardware resources. Recently, Keane and Ning (2007) pre-
sented some assembly experiments using the Phusion assembler
(Mullikin and Ning 2003). They reported a valuable result for the
assembly of the genome of Streptococcus suis strain SC84 from 2
million of 41-bp reads. Eighty-one percent of the S. suis genome,
which contains 2,007,491 bp, was assembled in 515 contigs. This
result is remarkable considering that the Phusion assembler is not
specifically dedicated to such short reads sequencing technology.
However, a specific approach is required for assembling millions
of very short sequences. Both Edena and Velvet showed that
accurate contigs that nearly cover the entire bacterial genome
being sequenced can be produced on simple desktop computers.
These two programs outperform the others, both in terms of
assembly quality and required computer resources. The length of
the assembled contigs averages several kilobases, which makes
them usable for numerous analyses, such as database search,
gene detection, or the study of promoter sequences. The Velvet
assembler that is based on a k-mer graph representation shows
similar performances as Edena, which implements the classical
overlap layout approach. However, it is interesting to notice that
the two programs do not always have similar problems within
regions of sequences that are difficult to assemble. Some regions
that are not assembled by one of the approaches are successfully
assembled by the other. Thus, the two programs are partially
complementary, and their combined usage can even lead to
longer contigs, as illustrated here (Table 2). The announced avail-
ability of the paired reads data in the near future will certainly
allow for the production of even larger contigs. This precious
information can be used to safely clean up some ambiguities in
the overlap graph, thereby increasing the overall assembly per-
formance.

An important alternative to the de novo assembly is the
so-called comparative assembly (Pop et al. 2004). The latter relies

Table 3. Comparison of assembly results of Helicobacter acininychis strain Sheeba as obtained by Edena, Velvet, SHARCGS, and SSAKE

Assembly
software

No. of correct contigs
(total size)

No. of misassembled
contigs (total size)

Correct contigs

N50
Average
length

Max
length

Total no. of
mismatches

Genome
coverage

Edena strict 336 (1525 kbp) 0 (0 bp) 10.4 kbp 4.5 kbp 37.0 kbp 0 99%
Edena nonstrict 302 (1504 kbp) 1 (24.1 kbp) 14.2 kbp 5.0 kbp 35.0 kbp 6 98%
Velvet 340 (1525 kbp) 0 (0 bp) 9.8 kbp 4.5 kbp 36.4 kbp 90 99%
SSAKE 1368 (1551 kbp) 78 (44.9 kbp) 1.9 kbp 1.1 kbp 8.6 kbp 1626 97%
SHARCGS 628 (1523 kbp) 0 (0 bp) 4.6 kbp 2.4 kbp 19.2 kbp 4 99%

Table 4. Overlap graph properties of the S. aureus real data set and simulated ideal data set

No. of nodes
Percentage of
positive node No. of branching nodes

No. of
p-bubbles No. of nodes removed by DE

Real data set 2,662,170 61% 842,756 (32%) 526 872,298 (33%)
Ideal data set 2,800,594 100% 4623 (0.2%) 12 0

De novo bacterial genome sequencing

Genome Research 805
www.genome.org



on a reference sequence that must be closely related to the target
being assembled. But even though the number of complete ge-
nome sequences is growing rapidly, the paucity of sequence in-
formation for some bacterial species will likely remain a problem
for years to come. The development of efficient de novo assem-
blers thus remains an important endeavor for the efficient assem-
bly and analysis of newly sequenced genomes. Furthermore, de
novo sequence assembly permits the study of regions where com-
parison with the reference is not possible due to rearrangements
or, in the case of transcriptomes, due to splicing.

Methods

Edena is based on the classical overlap layout assembly frame-
work (Pop et al. 2002). In addition, it includes two features to
improve the assembly of very short sequences: exact matching
and detection of spurious reads. The exact matching choice was
included for two reasons. First, the inherent sequencing errors
result in a significant number of spurious overlaps, impairing the
correct sequence determination. Allowing approximate match-
ing would significantly increase the number of such nonspecific
spurious overlaps. Second, exact matching is drastically faster
than approximate matching. By using an appropriate index,
overlaps between millions of short reads can be computed in a
few minutes.

The key steps of Edena can be summarized as follows. First,
the short reads data set is processed to remove redundant infor-
mation. Second, all overlaps of a minimum size are computed,
and an overlap graph is constructed. Third, the graph is cleaned
by removing transitive and spurious edges and by resolving
bubbles. Finally, all contigs of a minimum size that are unam-
biguously represented in the graph are provided as an output.
The program assumes that all reads have the same length.

Reducing reads redundancy
Due to the high level of oversampling achieved by the Illumina
Genome Analyzer, a significant number of reads are represented
several times in the data set. We first process the data set in order
to keep a single copy of each read. This step reduces the size of
the data set without losing information. It is achieved by index-
ing all reads in a prefix tree. A given read and its reverse comple-
ment are considered to be the same read and are merged in the
same tree key. Reads that contain ambiguous base symbols are
discarded since they cannot be handled in the exact matching
procedure. Since identical reads are merged in the same tree key,
a nonredundant set of reads can be produced from the tree struc-
ture. The occurrence frequency of each read as observed in the
initial data set is kept in order to compute the coverage depth in
the contigs for quality control purposes.

Overlapping phase
The overlapping phase is performed by indexing the nonredun-
dant read data set by a suffix array (Manber and Myers 1993).
This structure reveals exact matches, i.e., exact overlaps, at a low
memory cost. The set of revealed overlaps is loaded in a bidi-

rected graph structure (Kececioglu and Myers 1995; Myers 2005)
where each read ri corresponds to a vertex vi. Two vertices vi and
vj are connected by a bidirected edge if ri and rj overlap. Bidirected
edges have an arrowhead at each end and can independently be
directed in or out of the vertex at each end of the edge. Subse-
quently, there are four different ways to connect two nodes, de-
pending on the relative orientation of vi and vj, and the sides of
the reads that are involved in the overlap. The arrowhead is di-
rected in vi or vj if the overlap implies the left end of ri or rj, and
out of vi or vj if it implies the right end of ri or rj. Edges are labeled
with the overlap size. In order to build a valid read assembly,
vertices must be traversed using two opposed arrowhead orien-
tations. Entering vi from an in-arrowhead and leaving it to an
out-arrowhead indicates that the corresponding read is spelled in
its direct strand, while traversing vi from an out-arrowhead to an
in-arrowhead indicates that it is spelled in the reverse direction.

The minimum overlap size is a determinant parameter for
the assembly success. A small value will increase the frequency of
overlaps that exist by chance, which creates significant branch-
ing in the graph. On the other hand, a large value will increase
the number of reads that do not overlap on one of their sides,
which leads to DE paths in the graph.

Removing transitive edges
Due to the high oversampling achieved by the Illumina sequenc-
ing technology, the great majority of edges in the overlaps graph
correspond to transitive edges. These edges are not essential to
represent every possible sequence in the graph. For example, con-
sider two paths v1 → v2 → v3 and v1 → v3. The path v1 → v3 is
transitive because it bypasses v2 and represents the same se-
quence as the first path. This is illustrated from the point of view
of a multiple alignment in Figure 2. Transitive edge removal is an

Figure 2. Removing transitive edges. A read r1 with 13 other reads
(r2 . . . r14) that overlap on its right end side are shown in the form of a
multiple alignment. The overlaps that do not correspond to transitive
edges are indicated with a black dot. The transitive edges removal pro-
cedure consists in discarding the overlaps that are already overlapped by
another read involved in a larger overlap with r1. For example, the reads
r4, r6, r7, r10, r11, r13, and r14 are overlapped by r2; they are therefore
removed from the set of overlapping reads of r1. Same principle is applied
to the reads r3, r5, and r8. This example is issued from a real data set of
reads of 26 bases.

Table 5. Number of positive and negative nodes that are removed by the DE procedure according to the md value

md value

1 2 3 4 5 6 7 8 9 10 11 12

Positive nodes 57 240 460 746 1044 1452 1825 2307 2761 3462 4129 4891
Negative nodes 674,106 816,374 852,786 863,225 866,523 867,831 868,318 868,557 868,709 868,765 868,795 868,815
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essential procedure that reduces the graph complexity by a factor
of the oversampling rate c calculated as NL/G, where N is the
number of reads, G is the size of the genome being sequenced,
and L the length of the reads (Myers 2005).

Cleaning up the graph
The transitively reduced overlap graph contains a significant
amount of branching paths that compromise the production of
long contigs. These branching paths are caused by genomic rep-
etitions, sequencing errors, and clonal polymorphisms (see Re-
sults). Without additional information, branching paths caused
by genomic repetitions cannot be fixed. However, we propose a
simple and efficient method to fix the latter two problems.
This step is the key to the success of the Edena approach. Base
calling errors in reads cause short DE paths, while clonal
polymorphisms create small bubbles in the overlap graph. The
cleaning operations identify such features by a local graph ex-
ploration starting at each branching node. The first cleaning op-
eration removes the nodes that are involved in short DE paths
(Fig. 3). The underlying idea is that edge leading to a read that
contains a sequencing error should rapidly reach a DE. Each
branching node is thus explored for all possible path elongations
up to a depth of md nodes. If no path of depth of md exists, the
nodes are marked for removal. Once all DE paths have been de-
tected, marked nodes are removed. The md value is the cutoff
above which a branching path is considered to be valid. We de-
termined that a value of md = 10 was a good compromise (see
Results). The second cleaning operation identifies short bubbles
in the graph (Fig. 4). Such bubbles can be caused by nonexact

repetitions in the genomic sequence. However, most of these
bubbles could be caused by single base substitutions carried by a
subset of DNA molecules contained in the analyzed sample (see
Results). We use the term of p-bubble to refer to bubbles that are
caused by a single base substitution. In other words, a p-bubble
represents a base alternative in the assembly. The length of a
p-bubble is at most ms = 4 � L � 2 � T � 1, with L and T being
the read length and the minimum required overlap size, re-
spectively. Each branching path is explored up to a length ms.
Detected p-bubbles are resolved by removing the nodes in its
less covered side. The p-bubble is therefore resolved in a simple
non-intersecting path corresponding to the most covered path.
Despite the fact that the polymorphisms are not represented in
the final assembly, this information can be kept in a separated
file.

Strict and nonstrict assembly modes
An additional cleaning operation significantly increased the size
of the contigs but also generated a few misassemblies. This clean-
ing operation corresponds to the “nonstrict” mode that is imple-
mented in Edena. It is based on the fact that longer overlaps are
more reliable than shorter ones. Each branching node is exam-
ined, and only the edge (or edges) maximizing the overlap value
is (are) kept. This operation allows cleaning ambiguities when
the edge corresponding to the maximum length overlap is
unique. Once all graph cleaning operations are finished, the set
of contigs is produced by spelling the sequences modeled by the
non-intersecting simple paths, for which only nodes having in-
and out-degree of exactly one are traversed.

Figure 3. Removing short dead-end paths. (A) Possible path elongations from the right end of the read r1 are represented by a tree. Nodes that are
removed are dashed. Each path leaving a branching node (shown in gray) is tested for the minimum depth it can initiate. If the required depth of md
cannot be reached, then the nodes forming the dead-end path are removed. (B) Multiple sequence alignment of the reads belonging to the possible
right end elongation of the read r1 is shown. The residues that do not agree with the consensus sequence are shaded. On the right side is indicated the
depth value that can be reached by continuing the elongation from the corresponding read. The reads containing one or more mismatched residues
have a low or a null depth value, indicating that no exact overlap exists for their right end in the entire reads data set. These reads are likely to contain
sequencing errors.
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Strain and culture conditions
S. aureus strain MW2 was obtained from NARSA (http://
www.narsa.net/) and grown in Mueller Hinton Broth (10 mL)
for 5 h. Bacterial cells were rinsed twice in 10 mL TE (Tris-
EDTA, 10 mM and 1 mM, respectively), suspended in 2 mL
of TE containing 100 µg/mL lysostaphin (Ambicin, Applied Mi-
crobiology Inc.), and incubated for 10 min at 37°C. DNA was
then extracted and purified according to the DNeasy kit (Qia-
gen). DNA purity and quantity were assessed using NanoDrop-
1000.

Whole-genome sequencing with the Illumina Genome
Analyzer technology
The genomic DNA of S. aureus strain MW2 was sequenced using
the Solexa technology (P. Mayer, L. Farinelli, and E. Kawashima,
1997. Patent application WO98/44151) according to the manu-
facturer’s protocol (Illumina). Briefly, 5 mg of genomic DNA was
physically fragmented by nebulization into 50- to 100-bp frag-
ments. After end-repair and ligation of the adaptors, the products
were purified on agarose gel to recover 150- to 250-bp products.
Quality control was performed by cloning the library into a
TOPO plasmid and capillary sequencing of a few clones. The
samples were then used to generate DNA colonies (or DNA clus-
ters) using two channels of a flow-cell at dilutions of 4 or 6 pM,
respectively. The flow-cell was then submitted to 36 cycles of
sequencing reaction on the Illumina Genome Analyzer (Illu-
mina). Data were analyzed using the Solexa Data Analysis Pipe-
line v0.2.2.5 software, and after quality filtration using standard
parameters, we obtained a total of 3.86 million reads that were 35
bases in length.

Computer resources and software versions
The programs used in the assembly comparisons are Velvet 0.4
(http://www.ebi.ac.uk/∼zerbino/velvet/), SSAKE 3.0 (http://
www.bcgsc.ca/bioinfo/software/ssake), SHARCGS 1.2.11 (http://
sharcgs.molgen.mpg.de/download.shtml), and Edena 2.0 (www.
genomic.ch/edena). Edena, Velvet, and SSAKE were run on an
Intel Pentium D CPU 2.8-GHz computer supplied with 4.0 Gb of
RAM. SHARCGS was run on an AMD Opteron CPU 2.4 GHz sup-
plied with 64 Gb of RAM. Edena performed the H. acinonychis
assembly in less than 20 min and required 1.5 Gb of RAM. It
performed the assembly of S. aureus in 10 min and required 850
Mb of RAM. Velvet performed the H. acinonychis assembly in 11
min and required 1.2 Gb of RAM. It performed the S. aureus
assembly in 5 min and required 400 Mb of RAM. SSAKE required
2.5 Go of memory and 16 h for the H. acinonychis assembly and
1.1 Go of memory during 90 min for the S. aureus genome as-
sembly. SHARCGS required 50 Gb of memory and 8 h to compute
the H. acinonychis assembly and 20 Go of memory during 17 h to
complete the S. aureus genome assembly.
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Figure 4. Fixing bubbles. This illustration shows a bubble caused by a polymorphism. This example is one of the many that can be found in the overlap
graph constructed from the Staphylococcus aureus strain MW2 reads data set. (A) The 24 reads implicated in the bubble are shown. r1 and r24 are the
ends of the bubble, which is 35 � 2 + 1 bp in length. Reads showing the polymorphism are r11 to r15. None of these reads have exact occurrence in
the published genome of S. aureus strain MW2 sequence. (B) The corresponding transitively reduced overlap graph is shown. By considering the read
redundancy, the total number of reads in the low and highly covered side is five and 27, respectively. Fixing of bubbles consists in removing nodes
forming the less covered side of the bubble.
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