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Abstract

Identification of proteins by tandem mass spectrometry requires a database of the proteins that

could be in the sample. This is available for model species (e.g. humans) but not for non-model

species. Ideally, for a non-model species the sequencing of expressed mRNA would generate a

protein database for mass spectrometry based identification, allowing detection of genes and

proteins using high throughput sequencing and protein identification technologies. Here we use

human cells infected with human adenovirus as a complex and dynamic model to demonstrate this

approach is robust. Our Proteomics Informed by Transcriptomics technique identifies >99% of

over 3700 distinct proteins identified using traditional analysis reliant on comprehensive human

and adenovirus protein lists. This facilitates high throughput acquisition of direct evidence for

transcripts and proteins in non-model species. Critically, we show this approach can also be used

to highlight genes and proteins undergoing dynamic changes in post transcriptional protein

stability.

Introduction

Modern deep sequencing techniques capture the transcriptome of any organism in

unprecedented detail and there have been substantial breakthroughs in the de novo assembly

of transcriptomes. Indeed, de novo assembly from raw sequence data has clear benefits for

gene identification and the functional annotation of genomes– especially of non-model

species1, 2. In parallel, improvements in high-throughput Liquid Chromatography coupled

tandem mass spectrometry (LC-MS/MS) allows identification of several thousand distinct
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proteins from a total cell extract in a single experiment3, 4. Combined with quantitative

techniques such as Stable Isotope Labelling of Amino acids in Cell culture (SILAC),

changes in relative protein levels over time can also be monitored. However, MS/MS data

analysis software normally requires an accurate list of proteins that could be present in the

sample5. This is reasonably straightforward for model organisms (e.g. humans) but not for

poorly annotated species, for species where the genome is not yet fully assembled or

samples containing proteins from multiple species. Moreover, this approach is not optimised

for individual variation caused by SNPs.

A small number of recent publications combine deep sequencing with LC-MS/MS6, 7. One

study characterised different human cell lines using deep sequencing based transcriptomics

(RNAseq) and quantitative proteomics, showing a high correlation between changes in

transcript and protein abundance6. Another combined sequence analysis of the genome,

transcriptome and proteome of human B cells, principally looking for SNP changes7. Using

a transcriptome to tailor a proteomic analysis would be highly desirable in a range of

situations, especially in non-model systems. Research in non-model species is hampered

because their transcriptomes and proteomes are, by necessity, annotated predominantly by

computationally driven searches for genes and proteins rather than by experimentally

derived observations. This clearly has limitations - confidently identifying highly novel

proteins in non-model species is particularly challenging with this approach. To alleviate

this, proteogenomics is often used to try to improve the identification of proteins in non-

model species8. This typically relies on the translation of predicted gene models and an all-

frames translation of the target genome to generate databases of predicted proteins. These

databases are used by ms/ms spectra search engines to positively identify peptides. Whilst

these approaches are highly informative they require a good quality copy of the genome in

question. Moreover, as the target genome increases in size, the size of the database of

possible proteins in all frames becomes increasingly unwieldy. One of the largest

proteogenomics analysis attempted to date is on Medicago truncatula9 with a genome of

~0.6 Gbp in size, substantially smaller than the human genome (~3 Gbp) or the wheat

genome (~16 Gbp).

We used a highly annotated two genome system (human adenovirus infected human cells) as

a robust bench mark to show that RNAseq data can directly inform proteomic analyses

allowing the acquisition of transcriptomic plus proteomic data for any given species (and, if

present, associated pathogens). Our method is called Proteomics Informed by

Transcriptomics (PIT analysis) and it produced extensive, experimentally derived data on

transcription and protein content in a complex and dynamic system. PIT analysis provided a

high throughput method to derive transcripts, infer proteins from them and show that the

proteins are detected by MS/MS - enabling a seamless visualisation of data about the

genome, the transcriptome and proteome. We compared the outputs of this technique to

what could be generated using standard methods in this well understood and highly

annotated system. We recovered the vast majority of information possible from both the

virus and human samples in a manner that is independent of pre-existing datasets and, in

principle, independent of a copy of the target genome. We also showed that our approach is

robust, coping with the transcriptomic plus proteomic data from the virus and the human cell

as they evolved over time. Moreover, this integrated approach enabled us to examine the

post transcriptional stability of proteins. Adenovirus induces a viral ubiquitin ligase complex

that specifically degrades many cellular targets and is key to several aspects of efficient viral

replication including underpinning the cancer killing phenotype of the oncolytic adenovirus,

ONYX-01510-12. Our combined approach identifies both previously described viral

ubiquitin ligase targets and high value novel candidates by highlighting proteins that

substantially decline in abundance without any corresponding transcriptional downturn.
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RESULTS

Sample collection

To collect a matched set of samples we infected human cells with adenovirus and collected

samples 8 and 24 hours after infection alongside an uninfected control. The cells were

metabolically labelled by SILAC, enabling protein quantitation over time, and at each time

point the samples were split in two allowing collection of protein and RNA from the same

sample for proteomic and RNAseq analysis. Thus, three flasks of HeLa cells were grown in

SILAC culture media saturating all cellular proteins with the appropriate label. One flask

was labelled with 15N and 13C labelled arginine and lysine (heavy HeLa), one with 13C

labelled arginine and lysine (medium HeLa) and one with normal isotopes (light HeLa). The

medium and light HeLa cells were infected with adenovirus and the heavy HeLa cells were

mock infected. At 8 hours post infection the light HeLa cells were harvested for protein and

RNA. At 24 hours post infection the medium (adenovirus infected) and heavy (mock

infected) cells were similarly harvested.

SILAC based quantitative proteomics

The three protein samples were combined on a 1:1:1 ratio before separation by SDS-PAGE

and processing for LC-MS/MS analysis. The MS/MS spectra was analysed by MaxQuant

software13 to identify proteins and quantitate abundance changes. Hela cells are cervical

carcinoma derived, containing genes from Human papillomavirus type 18 (HPV18)

integrated into the cell genome. We searched for HPV18 proteins without success, but we

did detect adenovirus proteins. Of 3,818 proteins identified, 3,411 were identified and

quantitated by two or more distinct peptides (Supplementary Table 1). Of those, only about

1% showed a twofold or greater increase or decrease in abundance over the first 8 hours of

the experiment and just under 8% had altered their abundance by twofold at 24 hours. We

were able to detect a threefold increase in HSPA1A in the first 8 hours post infection

(Hsp70), a gene and protein known to be induced early on by adenovirus infection14. We

were also able to detect a greater than twofold decrease in MRE11, ITGA3 and RAD50, all

known to be degraded during infection15, 16. We previously reported that levels of Upstream

Binding Transcription Factor (UBTF) remain unchanged during adenovirus infection,

something reflected in this dataset17.

RNAseq analysis of adenovirus infected cells

Cytoplasmic mRNA was harvested from the same three samples of Hela cells because

adenovirus inhibits nuclear export of cellular mRNA during infection without inhibiting its

production. Each sample was sequenced (56bp paired end read) on an Illumina GAIIx

generating a total of ~82 million reads from the three samples.

We imported our data into a locally installed Galaxy NGS software suite18 and mapped our

data using TopHat19 to the human genome (hg19). Uniquely mapped reads were used for

gene expression analysis with Cufflinks20 using the Ensembl human gene annotation as a

guide (v64). Separately we mapped the reads to human adenovirus type 5 (GI:56160529)

and HPV18 (GI:30172004) genomes. During the experiment the number of reads mapped to

the adenovirus genome raises to about 80% of the total (Table 1) illustrating how the virus

transcriptome eventually dominates. We detected HPV18 transcripts at all timepoints noting

that adenovirus infection inhibits HPV18 transcription as previously reported21. The pattern

of reads mapped to the adenovirus genome matches expectations. Thus, at 8 hours post

infection most reads map to adenovirus early genes (E1, E2, E3 and E4) whereas by 24

hours most reads map to the late genes derived from the virus major late promoter

(Supplementary Figure 1). Turning to human gene expression analysis, comparison of our

analysis to a previous experiment using microarrays provides confidence that this approach
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is robust. For example, in that experiment22 one of the few genes upregulated by adenovirus

infection at early times is CDC25A and our data reflects this as well as expected rises in

HSPA1A expression noted previously. Recently an RNAseq based transcriptomic analysis

of human cells infected with adenovirus was published23. There are experimental

differences, notably a different cell type and using total mRNA extract in that paper instead

of cytoplasmic mRNA in this report. However, their conclusions are broadly similar. For

example, in the IkappaB family of NFkappaB inhibitors, NFKBIE declines whilst NFKBIB

increases in both data sets.

Proteomics Informed by Transcriptomics (PIT)

We utilised Trinity2 and a combined set of sequence reads from all three time points for the

de novo assembly of the transcriptome (Supplementary Dataset 1). We then generated open

reading frames (>200 nucleotides) from all six frames of each Trinity generated transcript

(Supplementary Dataset 2). This “PIT proteins” list was used as our search database for the

MaxQuant package. Comparing the peptides generated by a search of standard human

proteomes revealed that a search using the PIT protein list generates almost as many

identified peptides (~95%) as that from a canonical list of human proteins from Ensembl or

from a non-redundant Swissprot-Uniprot list (Table 2 and Supplementary Table 2). In

addition, in the list of peptides identified by searching the PIT proteins dataset we found 360

peptides that belonged to the adenovirus proteome compared to 367 peptides found by

searching a standard adenovirus proteome derived from GenBank.

Next we mapped the Trinity transcripts to the human genome using GMAP24 to generate a

Sequence Alignment Map file (Supplementary Dataset 3) and added the identified peptide

data from MaxQuant to the Trinity transcripts with in-house software. Finally we used in

house software to create a GFF3 format file (Supplementary Dataset 4) combining the data

in the SAM file with exon structure information. These SAM and GFF3 files allow us to see

which peptides are associated with a transcript, which exon it was derived from, and the

transcript’s location on the human genome (Figure 1).

Our software also generates a list containing the longest open reading frame associated with

each peptide positively identified by MS/MS (Supplementary Dataset 5). Thus, our approach

starts with a list of possible proteins derived from the Trinity assembled transcripts and ends

up with a list of full length proteins derived from the Trinity transcripts for which there is at

least one peptide identified (workflow and software used summarised in Supplementary

Figure 2). We derived a list of 7,319 unique proteins in this way, although there will be far

fewer truly distinct proteins because any difference will be reported as multiple entries. For

example, Trinity may assemble multiple transcripts for the same gene, some longer than

others, some may appear to be distinct when in fact it is the same gene and protein. When

we searched this list of positively identified proteins using BLAST we determined that all

were either human or adenovirus derived proteins (Supplementary Table 3). In fact, our

approach confirms the expression of more distinct genes than a traditional approach. We

found 3,792 distinct human genes using the PIT proteins dataset vs 3,773 distinct human

genes using the Ensembl dataset as the search space with 99.45% overlap in the two lists.

There are some small differences in the proteins identified reflecting slight differences in

how proteins are included in the canonical Ensembl database compared to Swissprot-

Uniprot. Turning to the virus data, although the PIT analysis missed one adenovirus protein

(U-exon protein), the PIT approach identified adenovirus proteins not identified by a

traditional search of the adenovirus proteome. One example, the “i leader” adenovirus

protein is a bona fide adenovirus protein25-27 but is not present in the GenBank list of

adenovirus serotype 5 proteins. This illustrates a key advantage of our approach to detecting

transcripts and proteins.
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PIT analysis of Chinese Hamster Ovary (CHO) cells

To illustrate the potential of the gene and protein identification aspect of PIT we examined

CHO cells, which are widely used for protein expression purposes. We obtained a publically

available RNAseq data set (European Nucleotide Archive SRP001851) and assembled the

transcriptome using Trinity as before (Supplementary Dataset 6). From this we generated a

list of proteins (Supplementary Dataset 7) and used this list to search spectra from a total

protein extract of CHO cells separated by 1D gel electrophoresis prior to LC-MS/MS. Our

PIT analysis shows that a search of the Trinity CHO proteins list compared to the standard

UNIPROT list of CHO proteins leads to almost a doubling of the numbers of identified

peptides (Supplementary Table 4). Moreover, we were able to infer a list of the largest open

reading frames associated with each identified peptide and search these identified ORFS

using BLAST to define the nearest homologues in the CHO, mouse and human UNIPROT

lists (Supplementary Table 5). This list has 7,333 non-identical transcripts/proteins listed

and many are likely to be minor variants of the same protein (indeed, BLAST searching

indicates this list maps to approximately 5,672 different homologous mouse proteins).

Finally, as with the human data we were able to map Trinity derived transcripts to the CHO

genome28 alongside the locations of identified peptides giving a seamless view of genome,

transcript and identified peptides (Supplementary Figure 3 and Supplementary Datasets 8

and 9).

Detecting SNPS in the proteome

We analysed our TopHat alignments using snpEFF (Cingolani, P. “snpEff: Variant effect

prediction”, http://snpeff.sourceforge.net, 2012.) to generate a list of non-synonymous SNPs

from our RNAseq data. Using this and in house software we derived a list of canonical and

variant proteins (Supplementary datasets 10, 11 and 12) to search our MS/MS spectra and to

compare to our PIT protein and canonical lists. We were indeed able to correlate 170 SNP

changes with detected peptides, 14 peptides where only the canonical sequence (and not the

SNP variant) was detected as well as 14 heterologous transcripts where both a canonical and

variant peptide were detected by MS/MS analysis (Supplementary Table 6). The majority

(149 of 170) SNPs detected by this analysis were also detected by the PIT analysis.

Detecting post transcriptional degradation targets

Adenoviruses boost their replication by inducing the destruction of cellular proteins through

modulation of ubiquitin ligase complexes. We wanted to see if known adenovirus induced

ubiquitin ligase targets could be identified in our data by looking for proteins that declined

in abundance two fold without a corresponding decline in mRNA abundance. Three proteins

known to be degraded during adenovirus infection (Mre11, RAD50 and ITGA3) were

identified as meeting this criteria. From this we developed a short list of proteins (Table 3)

whose abundance had fallen proteomically (i.e. ratio of 0.5 or less by 24 hours) without

transcriptomic explanation (i.e. mRNA levels at 24 hours at least 0.8 of that in uninfected

cells). In addition we checked the half life of these proteins was above 24 hours by

consulting the publically available lists of protein half life’s as measured in HeLa cells29. Of

these, POLDIP3 (widely known as SKAR) was selected for further research since it is

proposed to play a role in cellular mRNA export and translation30 – both known to be

affected by adenovirus in a manner dependent on the induction of a novel ubiquitin ligase

complex. Indeed, POLDIP3 is degraded in adenovirus infected cells and the degradation is

sensitive to the proteasome inhibitor, MG132 (Figure 2a). In addition, during adenovirus

infection, POLDIP3 is sequestered from a speckled distribution in uninfected cells into track

like structures (Figures 2b and 2c) similar to that reported for MRE11, a known target of

adenovirus induced ubiquitin mediated degradation(31 figure 4 in that paper). Moreover,

cells infected with adenovirus mutant dl36632 which lacks the E4 region required for the
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formation of a virally induced ubiquitin ligase complex, do not show any reorganisation of

POLDIP3 (Figure 2d).

Discussion

Here we demonstrated the potential of simultaneous capture of quantitative data on the

transcriptome and proteome to study changes in a cell population under dynamic conditions.

We show how to use RNAseq data to inform the protein identification process, which, in

turn, validates the transcriptomic assembly. PIT analysis has broad utility in the study of a

wide range of species where annotation of the genome is suboptimal, but particularly in the

field of infections involving zoonosis or arthropod borne infections. This approach may also

help to focus research efforts onto post transcriptional events as we have shown by

examining proteins that degrade over time without a corresponding decline in mRNA

expression.

More importantly, our work shows for the first time that de novo transcriptome assembly

does generate a practical protein dataset that recovers essentially all of the detectable

proteins derived from both the host and virus. By doing this research in a complex but well

annotated system we provide confidence that PIT analysis is robust, valid, practical and

could be usefully applied to non-model systems where direct experimental evidence of

genes and proteins is often lacking. Indeed, in principle a genome is not required for gene

and protein identification by PIT analysis.

We also performed a preliminary PIT analysis of proteomic and transcripts data from CHO

cells using a Trinity generated list of based on a previously published RNAseq experiment

also done in CHO cells33. Searching our Trinity derived ORFs list identifies around 70%

more peptides compared to searching the current CHO (Cricetulus griseus) proteome

downloaded from Uniprot (Supplementary Table 4). Moreover, we linked this list of

proteins using BLAST to nearest homologues in the Uniprot hamster, mouse and human

proteomes (Supplementary Table 5). This preliminary analysis illustrates that our approach

does work in non-model systems and that PIT can be used with historical datasets. This

analysis provides direct evidence for the transcription and expression of a wide range of

genes and proteins in this important cell line (for example see Supplementary Figure 3).

A key primary limitation is the depth of sequencing done at the time and increases in data

return from transcriptomic experiments will improve the proportion of proteins captured.

We have repeated PIT analysis with declining quantities of raw transcriptomic data

(Supplementary Table 7) showing how depth of transcriptome coverage influences data

return. Even a reduced dataset of less than 10% of the coverage used here still yields over

70% of the peptides identified by our largest analysis. The importance of this is illustrated

by the observation of cases where a peptide was identified by searching a canonical list but

not the Trinity list because part of the transcript was missing in the Trinity assembly. PIT

analysis may also help refine algorithms for de novo transcriptomic assembly – i.e. the best

algorithms should yield the largest list of distinct peptides in a subsequent proteomic

analysis.

Our PIT analysis also relates each identified peptide to the exon on each transcript and we

are currently exploring ways of effectively interrogating the proteomic and transcriptomic

data to identify and correlate changes in isoform expression.

As the sensitivity of MS/MS based sequencing increases the proportion of the possible

available peptides that can be detected will increase4. Our ability to identify SNPs, although

currently limited, will improve with improvements in MS/MS based proteomics implying

that it will be increasingly attractive to base MS/MS searches on proteins derived from the
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transcriptome rather than on canonical lists. We propose that such data is added to the well-

established SAM and GFF3 file formats as the most flexible way forward to integrate these

data sets since these file formats are widely supported.

Another attractive aspect of PIT is that by interrogating the two data sets in a different way,

we identified components of the Double Stranded DNA Break Repair (DSBR) system,

RAD50 and MRE11, as being targets for virally mediated degradation. These effects are

well established and are functionally important for the virus during replication. We next

focussed on POLDIP3 which is involved in mRNA export and translation30. The oncolytic

phenotype of the adenovirus derived ONYX-015 virus is linked to the mRNA export

pathway - adenovirus interferes with cellular mRNA export and translation in an unknown

manner dependent on forming a unique ubiquitin ligase complex12. Our data implies that

POLDIP3 is linked to the ONYX-015 phenotype, something we are currently investigating.

Critically, our analysis identifies previously known specific viral degradation targets as well

as new cellular degradation targets.

This paper shows how to integrate the analysis of transcriptome and proteome offering

important new insights, maximising return on the data and providing new tools for the study

of both well-established and non-model species and their pathogens. Moreover, being able

to rapidly annotate newly sequenced genomes with experimentally derived transcriptomic

and proteomic data is highly desirable given the number of genome sequencing projects

worldwide. We believe this approach will, alongside current approaches such as

proteogenomics, improve gene and protein identification in non-model species as well as

refining the application of high throughput technologies to the study of dynamic and/or

multi genome systems. Finally, this technique should aid the development of systems

approaches to biological research.

Methods

Cell culture, sample harvesting and viruses

HeLa cells were obtained from ECACC and grown in SILAC labelled DMEM with 10% v/v

SILAC dialysed Foetal Calf Serum (Dundee Cell Products) for at least 5 population

doublings. Approximately 3×107 cells were either mock infected or infected with wild type

adenovirus serotype 5 at a multiplicity of infection of 30. After 1 hour exposure to the virus,

the medium was replaced with fresh SILAC labelled medium and the infection allowed to

continue for either 8 or 24 hours.

The cells were washed twice with PBS then treated with trypsin to release the adherent cells,

washed a further two times in PBS before splitting the sample in half. One half of the

sample was suspended in 0.5 ml of PBS, and 0.1 ml aliquots were stored at −70°C until

needed for protein analysis. The other half was immediately processed for extraction of

cytoplasmc RNA. Briefly, the cells were re-suspended in 0.5ml 0.1% Triton X-100 to lyse

the cytoplasm. The nuclei were spun down and the cytoplasmic fraction was extracted with

Trizol to obtain a total cytoplasmic RNA sample.

RNA seq

Prior to further processing for RNAseq, the three samples were used as substrates for PCR

based test to confirm the presence of virus transcripts (adenovirus DBP gene) present in both

the virus infected samples and not in the uninfected samples (Primer list in Supplementary

Table 10). The three samples were labelled UN (uninfected control), T8 (8 hours post

infection) and T24 (24 hours post infection). Next, the Trizol extracted RNA was extracted

again using RNAeasy (Qiagen) prior to quantitation and processing for poly A+ selection

and 56bp paired end sequencing on the University of Bristol Illumina GAIIx using the
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manufacturers reagents and protocols. The sequencing data was then uploaded to the Galaxy

suite of software for analysis, hosted on a local Galaxy instance at the University of Bristol

High Performance Computing resource, BlueCrystal.

The raw sequence reads have been deposited with ArrayExpress at the European

Bioinformatics Institute with the accession number E-MTAB-1277.

The paired end sequence data for each time point was initially mapped to a female hg19 (i.e.

less the Y chromosome) using TopHat. The following parameters were set: Mean inner

distance=80; standard deviation = 15; maximum mismatches in anchor region = 0; minimum

intron length = 70; maximum intron length = 500000; allow indel search = yes; maximum

insertion length = 3; maximum deletion length = 3; maximum alignments allowed = 40;

minimum intron length that may be found during split-segment search = 50; maximum

intron length that may be found during split-segment search: = 500000; number of

mismatches allowed in the initial read mapping = 2; number of mismatches allowed in each

segment alignment for reads mapped independently = 2; minimum length of read segments

= 2; own Junctions = no; closure search = yes; exonic hops in splice graph minimum = 50;

maximum intron length found by closure search = 5000; minimum intron length found by

closure search = 50; coverage search = yes; minimum intron by coverage search = 50;

maximum intron by coverage search = 20000.

Mapped reads were then filtered to retain only those reads that map in a proper pair before

separating reads that mapped to one location from those that map to more than one location.

Gene expression quantitation on uniquely mapping reads was performed using Cufflinks

supplied with the Ensembl gtf (v64) as a reference throughout the analysis. The following

parameters were set for Cufflinks:

Maximum intron length = 500000; minimum isoform fraction = 0.05; premRNA fraction =

0.05; quartile normalisation = yes; use reference annotation = yes; perform bias correction =

yes; set parameters for paired end reads = no.

In addition to mapping to the human genome, Tophat was used to map to the adenovirus

type 5 genome (AC_000008.1) and to the human papillomavirus serotype 18

(NC_001357.1) with the same parameters listed above but with the following changes:

Minimum intron length = 30; maximum intron length = 34000 (7000 for papillomavirus);

minimum intron length that may be found during split-segment search = 10; maximum

intron length that may be found during split-segment search: = 34000 (7000 for

papillomavirus).

We also used the Trinity de novo assembly software installed on our local copy of the

Galaxy suite with default parameters. For this analysis we combined all three time points of

data into one large data set comprising ~82 million paired end reads. The output of

assembled transcripts (~102,000 entries) was then translated (forward and reverse) into

proteins using the EMBOSS tool “getorf” with a minimum nucleotide length of 200 bp

between the start and stop codons. Duplicate protein sequences were amalgamated to

produce ~80,000 different protein sequences (PIT proteins list) which was then used for the

MS/MS analysis. We analysed this list to obtain data on size distribution (Supplementary

Table 8) and used BLAST on this file to analyse its relationship to the human proteome

(Supplementary Table 9).
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Quantitative proteomics

Based on the RNA quantitation, the volume of the three protein samples (T0, T8 and T24)

was adjusted to give equal amounts of protein between them. The protein samples were

checked by western blotting for the presence of viral proteins (anti DBP) and equal amounts

of cellular protein UBTF (see Western Blotting protocol). The three samples were then

combined on a 1:1:1 ratio, separated by SDS-PAGE and analysed by LC-MS/MS. The gel

lane was cut into 10 slices and each slice subjected to in-gel tryptic digestion using a

ProGest automated digestion unit (Digilab UK). A second identical gel lane was run and a

series of 4 new slices was taken from a region in the centre of the gel from between 30KDa

and 70KDa making a total of 14 slices in all. The resulting peptides were fractionated using

a Dionex Ultimate 3000 nanoHPLC system in line with an LTQ-Orbitrap Velos mass

spectrometer (Thermo Scientific). In brief, peptides in 1% (vol/vol) formic acid were

injected onto an Acclaim PepMap C18 nano-trap column (Dionex). After washing with

0.5% (vol/vol) acetonitrile 0.1% (vol/vol) formic acid peptides were resolved on a 250 mm

× 75 μm Acclaim PepMap C18 reverse phase analytical column (Dionex) over a 150 min

organic gradient, using 7 gradient segments (1-6% solvent B over 1min., 6-15% B over

58min., 15-32%B over 58min., 32-40%B over 3min., 40-90%B over 1min., held at 90%B

for 6min and then reduced to 1%B over 1min.) with a flow rate of 300 nl min−1. Solvent A

was 0.1% formic acid and Solvent B was aqueous 80% acetonitrile in 0.1% formic acid.

Peptides were ionized by nano-electrospray ionization at 2.3 kV using a stainless steel

emitter with an internal diameter of 30 μm (Thermo Scientific) and a capillary temperature

of 250°C. Tandem mass spectra were acquired using an LTQ-Orbitrap Velos mass

spectrometer controlled by Xcalibur 2.0 software (Thermo Scientific) and operated in data-

dependent acquisition mode. The Orbitrap was set to analyze the survey scans at 60,000

resolution (at m/z 400) in the mass range m/z 300 to 2000 and the top six multiply charged

ions in each duty cycle selected for MS/MS in the LTQ linear ion trap. Charge state

filtering, where unassigned precursor ions were not selected for fragmentation, and dynamic

exclusion (repeat count, 1; repeat duration, 30s; exclusion list size, 500) were used.

Fragmentation conditions in the LTQ were as follows: normalized collision energy, 40%;

activation q, 0.25; activation time 10ms; and minimum ion selection intensity, 500 counts.

The raw data files were processed and quantified using MaxQuant and searched against the

databases detailed in the results section. Peptide precursor mass tolerance was set at 10ppm,

and MS/MS tolerance was set at 0.8Da. Search criteria included carbamidomethylation of

cysteine (+57.0214) as a fixed modification and oxidation of methionine (+15.9949) and

appropriate SILAC labels 13C6-Lys, 13C6-Arg for duplex and 13C6 15N2-Lys

and 13C6 15N4-Arg for triplex  as variable modifications. Searches were performed with full

tryptic digestion and a maximum of two missed cleavages was allowed. The reverse

database search option was enabled and all peptide data was filtered to satisfy false

discovery rate (FDR) of 1%.

The unprocessed spectra files (in .RAW format) for the human and CHO experiments can be

accessed from Canfield University, IP address: 138.250.31.74(port 22), Login: anonymous,

Password: anonymous.

Integration of proteomic and RNAseq data

A schematic workflow for our data analysis is given in supplementary figure 2. Briefly there

are two aspects, the PIT analysis and the gene expression and protein abundance integration.

In the first step, the list of Trinity derived transcripts is initially mapped to the host cell

genome (in this case human) using GMAP to generate a SAM file which reports the Trinity

derived identifier of the transcript, the location of the sequence on the genome (or no
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location if it is not on the human genome) and how the sequence maps to the target genome

(i.e. the exon structure is described). However, GMAP loses the gene expression data at this

stage so this information is added back to the SAM file using in house software

(put_fpkm_values_back.pl) that also adds a new data field to the SAM file ready for later

stages. Next the Trinity transcripts are translated by “getorf” in the EMBOSS package in the

Galaxy suite to report all ORFs longer than 200 nt to generate the PIT proteins list. This PIT

proteins list is used to search the MS/MS data for positive hits with MaxQuant. Bespoke in-

house software (pep_to_sam.pl) is then used to modify the SAM file to add the MaxQuant

identified peptides back to the Trinity identified transcripts by adding a series of new data

fields (allowed within the SAM format) which contain information on the peptide concerned

(e.g. ratio changes and a quality score for the match). In the second step a second in house

software tool (sam_to_GFF3_and_orfs.pl) uses the modified SAM format file to generate

the GFF3 file. This is done for each transcript which has an identified peptide associated

with it irrespective of whether the transcript mapped to the target genome or not. This tool

uses the intron exon structure of the transcript reported in the SAM file to determine which

exon the first amino acid of the identified peptide is from. In addition, the reading frame and

strand that contains the peptide is determined and the longest possible open reading frame

(i.e. 5′ most in-frame start codon to the next stop codon after the identified peptide) for that

individual peptide is recorded in a FASTA format file together with the name of the Trinity

transcript the ORF is derived from. This list of the longest MS/MS identified ORFs is then

searched and all identical proteins are amalgamated since, for many transcripts there is more

than one identified peptide and each one will generate a separate FASTA entry. This list of

longest ORFs is then used later for the BLAST analysis. The GFF3 file this process

generates reports the following:

1. The precise location of the start of each identified peptide.

2. A solid region representing the size of the peptide that is colour coded depending

on the ratio changes between 0 and 24 hours.

3. The confidence score reported by MaxQuant.

4. All the quantitation ratios derived by MaxQuant.

For the gene expression/protein quantitation integration, the two datasets are integrated

using a combination of text file manipulation tools found within Galaxy and manual

annotation within Excel. The Cufflinks gene estimation data and the MaxQuant proteomics

data was integrated within Galaxy using the common ENSG identifiers present in the gene

expression and proteomics data outputs. Thus, we are only able to combine our gene

expression data with the protein expression data using the common identifiers provided by

Ensembl.

BLAST analysis

The list of longest unique ORFs detected by MS/MS from the Trinity derived dataset was

used to BLAST search against two separate databases. First we searched against the

Ensembl list of human proteins in order to determine how many distinct human proteins

were identified. Secondly the list was searched against the non-redundant protein databases

to demonstrate that this approach will identify proteins from multiple species correctly. The

BLAST searches were performed using in house software (batchBlastAndParse.pl) and the

results manually collated within excel.

PIT analysis of the Chinese Hamster Ovary cells

In essence the analysis pipeline is the same as outlined in supplementary figure 2 using the

publically available RNAseq data for CHO cells (European Nucleotide Archive
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SRP001851). The main changes are that the Trinity derived transcripts were mapped using

GMAP to the CHO genome (RefSeq Assembly ID: GCF_000223135.1). A sample of CHO

cells (approximately 200,000 cells) were boiled in SDS-PAGE loading buffer and the

proteins separated by SDS-PAGE. The sample was divided into twelve slices which were

independently digested with trypsin in-gel and analysed by LC-MS/MS as described above

except that the top twenty multiply charged ions in each duty cycle were selected for MS/

MS in the LTQ linear ion trap.

The analysis of MS/MS spectra by MaxQuant is as described except that two scripts for

connecting the transcriptomic and proteomic data were re-written to take account of the lack

of quantitative information in the MaxQuant peptides list. These are

pep_to_sam_no_quant.pl and sam_to_GFF3_and_orfs_noquant.pl and directly replace their

equivalents used in the human PIT analysis. These form the pipeline that generates the sam

and GFF files to allow a seamless view of transcripts and peptides on the CHO genome.

Finally we modified our collation and BLAST analysis of the identified peptides using two

new scripts. The first is called Connect_maxQ_peptides_to_trinity_fasta_files.pl which

takes the Trinity transcripts list and the Trinity derived list of possible ORFS and the

peptides.txt list from MaxQuant. This script generates a collated list comprising only those

ORFS that have supporting peptides identified by MaxQuant along with the transcript from

which it was generated. This collated list (called longest_ORFS_Collated.txt) is then

searched sequentially with the script UNIXbatchBlastAndParse_CHO_analysis.pl. This

script is designed to take the longest ORF in each line and find the best possible match in the

specified protein database using BLAST. We generated specific databases for Chinese

Hamster, Mouse and Human by downloading the complete proteome for each species from

UNIPROT. We first used the Chinese Hamster database, then the mouse one and finally the

human one. After each analysis the results are appended to the beginning of each line of

data. The final output is shown in Supplementary Table 5 and allows a researcher to see for

every ORF, the transcript it came from, the Trinity name (which can be used to find the

location on the CHO genome of the transcript and peptides), the peptides found and the

nearest match in the Chinese Hamster, mouse and human proteomes reported by BLAST (or

indeed any other proteome).

Searching the data for SNPs and Indels

We used the SNPeff software for our analysis of SNPs in the human data. Initially, we used

the identified ENSP amino acid sequence (obtained from BioMart) and derived a list of

canonical proteins (supplementary dataset 12). We then corrected the amino acid sequences

using our own software (implement_snp_eff_changes.pl) to generate a list of SNP corrected

proteins. The two files (supplementary datasets 10 and 11) were combined and used as the

search space for MaxQuant along with the PIT proteins list. There were 11,458 unique

mutant proteins considered (approximately 10 million amino acids in total) alongside 7,868

uncorrected sequences (approximately 6 million amino acids). The data is then mined

manually to find peptides that are only found in the corrected sequences and to find

heterogeneous identifications (i.e. where both alleles are apparently expressed). In addition,

by searching for SNPs alongside the PIT proteins list we are utilising a database of

comparable size to the other searches reported in this manuscript improving the confidence

that our identifications are not artefacts (i.e. resulting from a reduced complexity dataset).

The outputs are collated manually within excel for ease of viewing.

Transfection, infection and immunofluorescence

HeLa cells were transfected with a plasmid expressing HA tagged POLDIP3 (also known as

SKAR and a generous gift of J. Blenis, Harvard Medical School) using lipofectamine 2000.

At the same time the cells were infected at a multiplicity of infection of 1 with either wild
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type adenovirus (serotype 5) or dl366 (a generous gift from K. Leppard). After 24 hours the

cells were fixed with formaldehyde, permeablised with Triton X-100 and processed for

immunofluorescence using either anti HA tag (anti HA serum F-7 from Santa Cruz

catalogue number sc-7397) or anti DBP serum together with appropriate Alexa-fluor

secondary antibodies (used at 1/200 dilution, alexa fluor 488 and alexa fluor 594).

Western blotting and antibodies

Antibodies used in western blots were anti DBP (used at 1/200 dilution), anti UBTF (anti

UBTF serum H-300 from Santa Cruz catalogue number sc-9131 used at 1/100 dilution), anti

GAPDH (anti GAPDH serum FL335 from Santa Cruz catalogue number sc-25778 used at

1/100 dilution), anti POLDIP3 (used at 1/50 dilution). In each case new samples of cells

infected with adenovirus for 24 hours was obtained and the new samples tested for protein

expression alongside the original samples processed for quantitative proteomics. In addition,

we treated cells with either DMSO or DMSO containing 10ng/ml MG132 for 8 hours prior

to harvesting infected or uninfected HeLa cells to determine the effect of proteasome

inhibition on protein abundance.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Illustration of data integration between the transcriptome and the proteome
Image taken from the IGV viewer showing a SAM alignment file generated by GMAP using

Trinity derived sequences. In addition we show the data from the custom GFF3 file that

allows us to see what peptides were identified by MS/MS, their location on the transcript

and genome. For each peptide identified the yellow box (arrowed) appears once the mouse

pointer is over the peptide and in each case lists the peptide sequence, the confidence score,

and the ratios at different time points. In the middle of the screenshot there are the refseq

annotated isoforms of NPM1. Note that the same peptide is flagged multiple times as it

belongs to one of several Trinity assembled transcripts.
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Figure 2. Adenovirus induces degradation of POLDIP3 in a manner sensitive to MG132 and
redistribution of POLDIP3 in infected cells
a) Samples of adenovirus infected or uninfected HeLa cells were tested by western blot for

expression of POLDIP3. These samples are biological repeats in the presence of either

DMSO or MG132 in DMSO. Equivalence of loading is shown by the GAPDH control.

The top row of panels (part b) shows the normal distribution of HA tagged POLDIP3

(green) in uninfected HeLa cells. The middle row (c) shows the distribution of HA-

POLDIP3 (green) in wild type adenovirus infected cells. The adenovirus DNA binding

protein, DBP (in red), is clearly visible in the nuclei of cells. The final row of cells (d) shows

the distribution of HA-POLDIP3 (red) in cells infected with adenovirus mutant dl306 which

lacks the E4 region of the virus but still expresses DBP (in green). In all cases the infected

cells were fixed at 24 hours post infection, the white bar represents 10um and the cell nuclei

are stained with DAPI in blue.
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Table 1

Reads generated and mapped to the human, adenovirus and papilloma virus genomes.

Total number of paired end reads at each time point is listed along with how many of those reads mapped to a

unique site in either a female human genome (hg19 less chromosome Y), the adenovirus type 5 genome or

papilloma virus type 18 genome – part of which is integrated into the HeLa cell genome. In all cases we only

consider reads where both ends in a pair map to the target genome in the correct orientation and to opposite

strands as expected for a correctly mapped pair of sequence reads.

Uninfected HeLa cells 8 hours post infection 24 hours post infection

Total reads generated 29,552,473 26,220,901 26,251,561

Reads uniquely mapped
in a proper pair to

female hg19
18,097,929 16,325,343 3,183,200

Reads uniquely mapped
in a proper pair to
adenovirus type 5

187 521,731 15,134,568

Reads uniquely mapped
in a proper pair to

papilloma virus type 18
45,088 18,755 634
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Table 2

Identification of peptides and proteins using different protein datasets.

Five different lists of proteins were used as the reference list to search the MS/MS spectra using MaxQuant. In

all cases the search list included a standard list of known contaminants and a list of reversed proteins to act as

a decoy that allowed the false discovery rate to be set at 1%. For the canonical protein lists (Ensembl or

Swissprot) we added a list of human adenovirus proteins as well so that we can compare the Trinity list (which

will contain adenovirus sequences) on a like for like basis. The adenovirus proteins were derived from the

GenBank entry for adenovirus type 5 (AC_000008.1). In each case, the percentage quoted refers to the

number of peptides present in both lists as a proportion of the total number of peptides detected in the

canonical ENSGs list.

Canonical
ENSGs

ENSGs detected
at T0

ENSTs
detected at T0 Trinity derived ORFS SwissProt-Uniprot

Total number of
distinct peptides detected

29,371 28,862 28,862 28,827 29,512

As a
percentage of
detected
canonical
ENSGs

100% 98.2% 98.2% 95.6% 99.6%

Distinct protein
groups reported
with at least two
peptides
detected

3,415 3,373 3,373 3,595 3,443

Peptides
detected not in
canonical list

0 454 454 754 257

Number of
distinct proteins
in database

21,173 14,537 29,287 80,648 72,049

Total number of
amino acids in
dataset

11,633,994 8,828,371 15,690,432 11,305,091 32,897,704

Total number of
amino acids
found

420,069 418,430 418,430 414,616 421,031
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