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Abstract 

Cornelia de Lange syndrome (CdLS) is characterized by facial dysmorphism, growth failure, 

intellectual disability, limb malformations and multiple organ involvement.  Mutations in five 

genes, encoding subunits of the cohesin complex (SMC1A, SMC3, RAD21) and its regulators 

(NIPBL, HDAC8), account for at least 70% of patients with CdLS or CdLS-like phenotypes.  

To date, only the clinical features from a single CdLS patient with SMC3 mutation has been 

published.  Here, we report the efforts of an international research and clinical collaboration 

to provide clinical comparison of sixteen patients with CdLS-like features caused by 

mutations in SMC3.  Modelling of the mutation effects on protein structure suggests a 

dominant-negative effect on the multimeric cohesin complex.  When compared to typical 

CdLS, many SMC3-associated phenotypes are also characterized by postnatal microcephaly 

but with a less distinctive craniofacial appearance, a milder prenatal growth retardation that 

worsens in childhood, few congenital heart defects and an absence of limb deficiencies.  

While most mutations are unique, two unrelated affected individuals shared the same 

mutation but presented with different phenotypes.  This work confirms that de novo SMC3 

mutations account for ~1-2% of CdLS-like phenotypes.  

 

Key Words:  Cornelia de Lange Syndrome, CdLS, SMC3, cohesin complex, CdLS-

overlapping phenotypes, CdLS-like 
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INTRODUCTION 

Cornelia de Lange syndrome (CdLS; MIM#s 122470, 300590, 610759, 614701, 

300882) is a multisystem developmental diagnosis characterized by distinctive facial 

dysmorphism, pre- and postnatal growth failure, intellectual disability, limb malformations, 

hypertrichosis and variable involvement of other organ systems (Kline, et al., 2007).  The 

prevalence is estimated to be up to 1 in 15,000 births (Kline, et al., 2007).  Almost all cases 

are sporadic with de novo heterozygous loss-of-function (LOF) mutations in NIPBL (MIM# 

608667) being the most common genetic finding in typical CdLS (Gillis, et al., 2004; Krantz, 

et al., 2004; Pie, et al., 2010; Selicorni, et al., 2007; Tonkin, et al., 2004; Wierzba, et al., 

2012).  A proportion of the “NIPBL-negative” cases with typical CdLS have recently been 

shown to have mosaic NIPBL mutations, often undetected in the blood by Sanger based 

screening (Ansari, et al., 2014; Baquero-Montoya, et al., 2014; Braunholz, et al., 2014; 

Huisman, et al., 2013).  Mutations in four other genes have been reported to account for a 

smaller proportion of mostly atypical cases; SMC1A (MIM# 300040) on chromosome Xp11 

(~4-6%), SMC3 (MIM# 606062) on chromosome 10q25 (<1%), RAD21 (MIM# 606462) on 

chromosome 8q24 (<1%), and HDAC8 (MIM# 300269) on chromosome Xq13 (4%) 

(Deardorff, et al., 2012a; Deardorff, et al., 2007; Deardorff, et al., 2012b; Kaiser, et al., 2014; 

Minor, et al., 2014; Musio, et al., 2006). 

These five genes encode regulatory or structural components of the evolutionary 

conserved cohesin complex, which has been implicated in a wide range of functions 

including sister chromatid cohesion, DNA repair mechanisms, gene regulation and 

maintenance of genome stability (Revenkova, et al., 2009).  Cohesin is a multimeric complex 

consisting of an SMC1A - SMC3 heterodimer and the two non-SMC subunits, RAD21 and a 

STAG protein.  Each SMC protein folds upon itself so that the N- and C-termini meet to form 

a globular ATP-binding “head” domain separated from a globular “hinge” domain by 
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antiparallel coiled-coil segments.  SMC3 and SMC1A interact via their respective hinge 

regions to form a bracelet-shaped heterodimer (Figure 1A).  The two ATPase head domains 

further interact with the N- and C-termini of RAD21, creating a ring structure that is 

proposed to encircle sister chromatids (Nasmyth and Haering, 2009).  NIPBL has been shown 

to facilitate loading of cohesin onto chromatin, and HDAC8 is involved in recycling of 

cohesin after its removal from chromatin (Deardorff, et al., 2012a).  

To date, only the clinical features of the unique mildly affected CdLS male with 

SMC3 mutation has been published (c.1464_1466del, p.(Glu488del)) (Deardorff, et al., 2007; 

Pie, et al., 2010).  Subsequently, a missense SMC3 mutation has been reported without 

clinical correlation in one patient within a large cohort of individuals with autism spectrum 

disorder (c.2413C>T; p.(Arg805Cys)) (Sanders, et al., 2012) and five additional mutations in 

a cohort of typical and atypical CdLS patients (Ansari, et al., 2014) with the detailed clinical 

descriptions of these cases documented for the first time in this manuscript. 

Here, we report the clinical features of 16 unrelated SMC3 individuals identified via a 

large international collaboration and assess the degree of overlap with typical CdLS 

associated with this gene.  Of these, ten are unreported patients with novel or reported 

mutations in the SMC3 gene and six individuals have only had molecular information 

previously published.  Furthermore, we mapped all mutations to the known structure of the 

SMC complex to predict molecular/functional consequences. Our results clearly indicate that 

SMC3 mutations result in a CdLS-like phenotype and account for a higher percentage of 

CdLS and CdLS-like cases than previously appreciated.  
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MATERIALS AND METHODS 

Patient Recruitment 

We screened for mutations in SMC3 an internationally assembled cohort of 674 

patients with typical CdLS and overlapping clinical presentations who had no known 

molecular etiology.  All patients were enrolled in this study under institutionally-approved 

protocols of informed consent at the Odense University Hospital, University Hospital 

“Lozano Blesa” of Zaragoza, The Children’s Hospital of Philadelphia, the UK (Scotland A) 

MREC Committee, the MET Committee at the Academic Medical Centre of the University of 

Amsterdam and University of Lübeck.  Most individuals in this study were diagnosed by 

clinical geneticists due to clinical features consistent or overlapping with a CdLS phenotype. 

Additional cases of mutations in SMC3 were referred from clinical colleagues who 

identified mutations by the use of different molecular analyses such as gene panel or exome-

sequencing approaches.  Most probands ascertained as CdLS were prescreened and found to 

be negative for mutations in NIPBL and SMC1A.  

Mutation screening by Sanger sequencing 

Genomic DNA was isolated from peripheral blood leukocytes using standard 

protocols.  PCR primers flanking the entire coding region (exons 1-29) and flanking intron 

sequences of SMC3 gene were used as previously described (Deardorff, et al., 2007; Pie, et 

al., 2010).  The resulting PCR products were sequenced using the BigDye Terminator 3.1 

reagents on an ABI 3730 analyzer.  The SMC3 reference sequence used was NM_005445.3, 

in which the A of the ATG translation initiation codon was nucleotide 1.  Parental genotypes 

were screened to assess whether the variant was de novo or inherited when parental DNA was 

available.  
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Ion Torrent Semiconductor gene panel sequencing 

Mutation analyses by Ion AmpliSeq-Ion PGM were performed as described 

previously (Ansari, et al., 2014; Baquero-Montoya, et al., 2014; Braunholz, et al., 2014).  

Briefly, 10-20 ng of genomic DNA was amplified using custom-designed gene panels (Ion 

AmpliSeq™, Life Technologies) to cover the coding exons of the known CdLS genes, 

including approximately 90% of the coding sequence of SMC3 (NC_000010) and its splice 

junctions in particular.  The DNA library was sequenced on an Ion PGM™ instrument (Life 

Technologies).  Sequence alignment and variant calling were performed as described 

previously (Ansari, et al., 2014; Baquero-Montoya, et al., 2014; Braunholz, et al., 2014).  

Possible pathological variants found were assessed by Sanger sequencing. 

Exome sequencing 

 For P7, exomes were captured with the Agilent SureSelect Human All Exon V4+UTR 

kit (Agilent Technologies, Santa Clara, CA, USA) and sequencing was performed on 

Illumina HiSeq 2000 machines using standard pair-end read sequencing protocol (Illumina, 

San Diego, CA, USA).  Analysis was as per (Falk, et al., 2014; Li, et al., 2014).  Possible 

pathological variants found were confirmed by Sanger sequencing. 

 Exome sequencing for P13 was performed clinically at the Baylor Whole Genome Lab.  

Briefly, exomes were captured using VCRome 2.1 in-solution capture, and sequenced on 

Illumina HiSeq using 100bp paired end reads.  Data analysis and interpretation was as per 

(Yang, et al., 2013).  Possible pathological variants found were confirmed by Sanger 

sequencing. 

 Exome sequencing was performed in the affected individual P14 as well as in the non-

affected parents.  Exomes were enriched in solution with SureSelect
XT

 Target Enrichment 

System (Agilent Technologies) or SeqCap EZ VCRome 2.0 (Roche NimbleGen) and 

sequenced as 100 bp paired-end runs on a HISeq2000 or HISeq 2500 system (Illumina). 
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Mutation modelling 

Three dimensional models of the HEAD and HINGE domains of the human 

SMC1A/SMC3 dimer, for wild-type (wt) and mutant proteins, were generated using 

homology modelling procedures and the coordinates of the mouse HINGE domain ((Kurze, 

et al., 2011); PDB code: 2WD5) and yeast HEAD domain -SMC1 homodimer-((Haering, et 

al., 2004); PDB code: 1W1W) as templates.  Model coordinates were built using the SWISS-

MODEL server (Guex, et al., 1999; Peitsch, 1996; Schwede, et al., 2003) available at 

http://swissmodel.expasy.org/, and their structural quality was checked using the analysis 

programs provided by the same server (Anolea/Gromos/QMEAN4; (Benkert, et al., 2011)) 

being within the range of those accepted for homology-based structure models.  To optimize 

geometries, models were energy minimized using the GROMOS 43B1 force field 

implemented in DeepView (http://spdbv.vital-it.ch/), using 500 steps of steepest descent 

minimization followed by 500 steps of conjugate-gradient minimization.  Coiled-coil 

predictions were calculated using COILS server with a window of 28 residues 

(http://www.ch.embnet.org; (Lupas, et al., 1991)).  Multiple sequence alignment of proteins 

from the SMC3 family was generated using TCOFFEE (http://www.tcoffee.org/) 

(Notredame, et al., 2000).  Functional prediction for nonsynonymous or indel variants were 

obtained using PolyPhen-2 (http://genetics.bwh.harvard.edu/pph/) (Adzhubei, et al., 2010), 

SIFT (http://sift.jcvi.org/) (Ng and Henikoff, 2001), PROVEAN 

(http://provean.jcvi.org/index.php) (Choi, et al., 2012), Mutation Taster 

(http://www.mutationtaster.org/) (Schwarz, et al., 2010) and the Biomol-Informatics exome 

analysis system (http://results.genoma4u.com/). 
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Reference sequences  

SMC3 accession numbers used include NM_005445.3 (mRNA) and NP_005436.1 (RefSeq 

protein).  SMC3 protein sequences (UniProt) for human (Q9UQE7), Pongo abelii (Q5R4K5), 

Rattus norvegicus (P97690), Mus musculus (Q9CW03), Bos taurus (O97594), Xenopus laevis 

(O93309), Saccharomyces cerevisiae (P47037) and Plasmodium falciparum (Q8I1U7). 

RESULTS 

Intragenic mutations in SMC3 in a large cohort of patients 

Sequence analysis of patients with CdLS and CdLS-like phenotypes for mutations in 

SMC3 identified 15 different intragenic mutations in 16 unrelated individuals.  Six of 15 

mutations have been previously described (Ansari, et al., 2014; Deardorff, et al., 2007), 

therefore here we report ten individuals with nine new mutations (Table 1).  Seven of the ten 

individuals had both parents available for testing and in each case these mutations occurred 

de novo.  One in-frame de novo deletion of three nucleotides (c.1464_1466del; 

p.(Glu488del)) was also identified in the first reported individual (Deardorff, et al., 2007).  

Three of these are caused by in-frame mutations that retain the open reading frame (one 

duplication and two deletions of one or two residues) and seven mutations were missense 

(Table 1, Figure 1, Supp. Figure S1).  All variants have been added to a publicly accessible 

LOVD database (http://www.LOVD.nl/SMC3).  None of these mutations were seen in 100 

control alleles or publicly available repositories of sequence variation.  

In silico Analyses of Missense and In-frame Mutations  

The predicted functional effect of each mutation is summarized in Table 1 and the 

cross-species alignment showing the degree of evolutionary conservation of the residues 

involved in the missense and in-frame variants is shown in Figure 1B.  Figure 1A indicates 

the location of each variant with regard to the known functional domains of SMC3. 
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Gly655 localizes to the SMC3 hinge domain and the substitution with aspartic acid is 

predicted to structurally destabilize the domain core.  Thr235, Arg236, Arg839 and His917 

localize to the N- and the C-terminal coiled-coil structures respectively and their deletion or 

substitution is predicted to displace the two antiparallel helices (Supp. Figure S2). 

In the globular ATP-binding head domain Phe47 is located in the alpha helices.  

Gln1147 is within the functional motif D-loop, close to both the gamma-phosphate of ATP 

and the interface between the head domains of SMC3 and SMC1A.  Substitution of this polar 

residue Gln1147 by a negatively charged glutamate residue could alter the ATPase activity of 

the active site of the heterodimer as well as alter the essential interaction between SMC1A 

and SMC3 at the head interface (Figure 1C).  Thr1215 is located in an apparently non-

structured region close to the C-terminus and the effect of the isoleucine substitution at this 

residue is not clear, although it cannot be excluded a putative role in the SMC3-RAD21 

interaction. 

Clinical features of individuals with SMC3 mutations 

The clinical features in the 16 individuals with mutations involving SMC3 are 

summarized in Table 2 and Supp. Table S1.  Figure 2 shows facial and limb findings.  Many  

patients have CdLS-like craniofacial features including brachycephaly (73%, (11/15)), low 

anterior hairline (50%, (7/14)), arched eyebrows (93%, (14/15)), synophrys (73%, (11/15)), 

long eyelashes (94%, (15/16)), ptosis (27%, (4/15)), depressed nasal bridge (47%, (7/15)), 

anteverted nostrils (57%, (8/14)), long philtrum (67%, (10/15)), thin upper lip vermilion 

(81%, (13/16)), downturned corners of the mouth (60%, (9/15)), high palate (45%, (5/11)), 

dental anomalies (38%, (5/13)) and micrognathia (40%, (6/15)) (Table 2).  Although often 

long, the philtrum is typically not smooth in these individuals and only one patient had a cleft 

palate.  Major limb malformations were not observed. Intellectual disability was a prominent 
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feature, although behavioral problems were not frequently reported and many were described 

as having friendly personalities. 

DISCUSSION 

To further characterize the nature of SMC3 gene mutations and the range of resulting 

clinical features, we utilized an international cooperative research and clinical effort coupled 

with standard sequencing and Next Generation Sequencing (NGS) strategies.  This enabled 

us to identify 16 probands with 15 different intragenic mutations in SMC3, including the 

previously reported individuals (Ansari, et al., 2014; Deardorff, et al., 2007).  Based on these 

numbers, we could estimate that individuals with SMC3 mutations comprise approximately 

~1-2% of patients with features suggestive of CdLS or overlapping phenotypes.   

Typically, SMC3 mutations identified in these CdLS-like patients are missense or in-

frame insertions or deletions, similar to CdLS-causing mutations found in the SMC1A 

protein (Deardorff, et al., 2007; Gimigliano, et al., 2012; Liu, et al., 2009; Mannini, et al., 

2010; Musio, et al., 2006; Revenkova, et al., 2009).  Nine of fifteen SMC3 mutations 

identified predict amino acid alterations in the coiled-coil domain (Figure 1A, Supp. Figure 

S2).  In the SMC1A-associated CdLS-like disorder, 69% of the disease causing mutations (all 

missense/in-frame) are also identified in the cognate coiled-coil domain (Gervasini, et al., 

2013).  The similarity of structure and function of the two SMC proteins, as well as the 

mutation spectrum, suggests that SMC3 missense/in-frame mutations may act via a dominant 

negative effect as has been previously suggested for other mutations in the SMC1A protein 

(Deardorff, et al., 2007; Mannini, et al., 2013).   

Several craniofacial features commonly seen in typical CdLS (>80% of the CdLS 

patients, reviewed in Kline et al., (2007)) are absent or infrequent in this SMC3 cohort.  For 

example, while the eyebrows may be highly arched and the eyelashes long, synophrys is 

often absent or subtle.  The nasal bridge is less frequently depressed, and the nasal tip is often 
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broad or bulbous, unlike the small triangular shaped nose in typical CdLS.  Furthermore, the 

nostrils are not typically anteverted in this cohort, as is seen in CdLS caused by mutations in 

NIPBL (Rohatgi, et al., 2010).  The philtrum may be long but is often well formed in this 

cohort and infrequently flat, as in typical CdLS.  Thin upper lips vermilion are observed but 

the downturned mouth often seen in typical CdLS is uncommon. 

Congenital heart defects (CHD) are common in CdLS (13-70%) with isolated defects 

seen in 86% (PS, VSD and ASD) and multiple defects in 14% (Selicorni, et al., 2009).  

Consistent with this, SMC3 probands appear to have cardiac malformations (56%).  For 

example a number of individuals presented with some degree of pulmonic stenosis, one of the 

most frequent findings in CdLS (Chatfield, et al., 2012; Selicorni, et al., 2009).  In addition, 

two individuals showed with aortic stenosis with bicuspid aortic valve and one with 

Tetralogy of Fallot.  While this frequency and severity of cardiac anomalies can be seen in 

CdLS caused by mutations in NIPBL, they are infrequent in  patients with SMC1A mutations 

(Chatfield, et al., 2012), suggesting that SMC3 is important for the normal development of 

the heart. 

Clinical comparison between two individuals (P6 and P7) which carried the same 

deletion of three nucleotides, c.1464_1466del (Deardorff, et al., 2007), showed a similar 

craniofacial appearance during their newborn period, even though this evolved with time 

differently (Figure 2).  In addition, these patients had markedly different cognitive and 

developmental impairment and musculoskeletal involvement, with one working as an adult 

and the other nonverbal and nonambulatory (Figure 2, Supp. Table S1).  This emphasizes 

that, phenotypes associated with the identical mutations are likely variable, which indicates 

the influence of other factors in the manifestation of CdLS, as it has been reported for other 

CdLS genes (Gillis, et al., 2004; Pie, et al., 2010).  
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In general, SMC3 probands present with a mild to severe phenotype that differs from 

typical CdLS that is frequently caused by NIPBL mutations.  Clinical features of patients with 

SMC3-mutations are more similar to those of patients with mutations in SMC1A (Borck, et 

al., 2007; Deardorff, et al., 2007; Gervasini, et al., 2013; Liu, et al., 2009; Mannini, et al., 

2010; Musio, et al., 2006).  Thus the craniofacial phenotype of patients with mutations in 

SMC1A and SMC3 genes do show overlapping features such as broader, fuller less arched 

eyebrows and a more prominent nasal bridge (Deardorff, et al., 2007; Rohatgi, et al., 2010).  

In addition, both groups of patients seem to have less growth restriction than typically seen in 

patients with mutations in NIPBL.  However, this is fairly difficult to generalize, given the 

variability in the range of severity and the small number of patients with SMC3 mutations. 

Interestingly, several individuals from this cohort were ascertained independently of a 

diagnosis of CdLS (e.g. P7 and P13).  Although they have some CdLS-overlapping features, 

they were felt to be divergent enough from CdLS to pursue exome-based testing rather than 

CdLS gene panel testing.  In addition, an SMC3 mutation has been reported in a patient with 

autism spectrum disorder, but to our knowledge has no obvious CdLS phenotype (Sanders, et 

al., 2012).  These findings are consistent with an emerging range of clinical phenotypes 

caused by mutations in the cohesin complex, as is supported by the finding of an HDAC8 

mutation in a family with Wilson-Turner syndrome (intellectual disability, truncal obesity, 

hypogonadism and distinctive facial features) (Harakalova, et al., 2012) and an SGOL1 

mutation in 17 patients with CAID syndrome (Chronic Atrial and Intestinal Dysrhythmia) 

(Chetaille, et al., 2014).  These findings indicate that the range of clinical phenotypes caused 

by alterations in cohesin may be significantly broader than previously appreciated. 
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In conclusion, we report a series of SMC3 mutations that provide a significant 

advance in our understanding of the clinical and molecular basis of human disorders of 

cohesin.  Although this cohort represents ~1-2% of individuals with CdLS-like phenotypes, 

they provide us novel insight into the understanding of cohesin in health and disease.   
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Figure 1:  

(A) Schematic representation of the SMC1A-SMC3 heterodimer of the cohesin complex and 

the locations of SMC3 mutations in coiled-coil, hinge and head domains.  Position of mutated 

residues in CdLS patients, described in the text, are indicated by red dots. 

(B) Multiple sequence alignment of several proteins homologous to SMC3 in the areas 

surrounding mutated residues Phe47, Thr235, Arg236, Glu287, Lys400_Ser401, Glu488, 

Gly655, Gly666, Leu832_Asn833, Arg 839, His917, Gln1147 and Thr1215.  Represented 

sequences are: Homo sapiens (SMC3_HUMAN), Pongo abelii (SMC3_PONGO), Rattus 

norvegicus (SMC3_RAT), Mus musculus (SMC3_MOUSE), Bos taurus (SMC3_BOVIN), 

Xenopus laevis (SMC3_XENOPUS), Saccharomyces cerevisiae (SMC3_YEAST) and 

Plasmodium falciparum (SMC3_PLASMOD).  Residues are colored according to 

conservation. 

(C) Left: Predicted structure of SMC3 head domain in the neighborhood of the ATPase active 

centre.  Interaction surface of SMC3 to SMC1A has been colored according to electrostatic 

characteristics (red: negative; blue: positive; white: neutral).  Positions of ATP, Mg
++

 atom 

and Residue Q1147 are indicated. Right: Predicted surface for Q1147E mutant.  The 

negatively charged patch that appeared close to gamma phosphate of ATP and in the 

interaction surface to SMC1A is highlighted. 
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Figure 2: Clinical Photographs of individuals with SMC3 mutations. 

Photos for individual patients are grouped ((i-iv) frontal view at different ages, hands and 

feet, when they are available) and labelled with corresponding identifier, mutation and sex; 

♂=male, ♀=female.  
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Table 1. SMC3 mutations identified 

 

The on-line predicted functional effect of nonsynonymous or indel variants have been determined by SIFT or Provean programs 
respectively. The SMC3 reference sequence used was NM_005445.3, in which the A of the ATG translation initiation codon was 
nucleotide 1.   
 

ID MUTATION 
De 

novo 
EXON 

PREDICTED PROTEIN 
CHANGE 

PROTEIN 
DOMAIN 

IN SILICO FUNCTIONAL PREDICTION 
Reference 

SIFT/Provean
 

PolyPhen-2 

1 c.139T>C  n/a 4 p.(Phe47Leu) Head Damaging: 0.01 Probably damaging: 1 (Ansari, et al., 2014) 

2 c.[=/703_705del] 
mosaic 

+ 9 
p.[=/Thr235del] Coiled coil Deleterious: -10.683  

n/a (Ansari, et al., 2014) 

3 c.707G>C + 9 p.(Arg236Pro) Coiled coil Damaging: 0.04 Probably damaging: 0.998 This study 

4 c.859_861dup n/a 11 p.(Glu287dup) Coiled coil Deleterious: -9.076  n/a This study 

5 c.1200_1202delGTC n/a 13 p.(Lys400_Ser401delinsAsn) Coiled coil Deleterious: -13.196  n/a (Ansari, et al., 2014) 

6 c.1464_1466delAGA + 15 p.(Glu488del) Coiled coil Deleterious: -8.108  n/a (Deardorff, et al., 2007) 

7 c.1464_1466delAGA + 15 p.(Glu488del) Coiled coil Deleterious: -8.108  n/a This study 

8 c.1462G>A + 15 p.(Glu488Lys) Coiled coil Tolerated: 0.2 Possibly damaging: 0.851 This study 

9 c.1561C>T n/a 16 p.(Arg521*) Hinge n/a n/a (Ansari, et al., 2014) 

10 c.1964G>A + 19 p.(Gly655Asp) Hinge Damaging: 0 Probably damaging: 1 This study 

11 c.1997G>C + 19 p.(Gly666Ala) Hinge Damaging: 0.01 Probably damaging: 1 This study 

12 c.2494_2499del + 22 p.(Leu832_Asn833del) Coiled coil Deleterious: -11.538  n/a This study 

13 c.2515C>T n/a 22 p.(Arg839Cys) Coiled coil Damaging: 0.01 Probably damaging: 1 This study 

14 c.2750A>C + 24 p.(His917Pro) Coiled coil Tolerated: 0.08  Possibly damaging: 0.820 This study 

15 c.3439C>G + 27 p.(Gln1147Glu) Head Damaging: 0 Probably damaging: 0.998 (Ansari, et al., 2014) 

16 c.3644C>T n/a 29 p.(Thr1215Ile) Head Damaging: 0 Probably damaging: 1 This study 
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Table 2. Frequency of clinical features in individuals with SMC3 mutations compared with classical CdLS 
 

Category Feature Frequency in 
Classical 
CdLS * 

SMC3 
Percent  
(# observed/ 
# assessed) 

SMC3 Details 

(number of patients with finding) 

C
ra

n
io

fa
c
ia

l 
fi
n

d
in

g
s
 

Head Brachycephaly  73% (11/15)  

Low anterior hairline 92% 50% (7/14)  

Skull   Congenital (5) and/or postnatal (12) 
microcephaly, plagiocephaly (1), flat facies 
(1), facial asymmetry (1), frontal bossing (1), 
posterior hair whorl on left side (1), sparse 
temporal hair (1), delayed closure of 
anterior fontanelle (1). 

Eyes Arched eyebrows  93% (14/15)  

Synophrys 99% 73% (11/15)  

Thick eyebrows  69% (9/13)  

Long eyelashes 99% 94% (15/16)  

Hooding of lids  15% (2/13)  

Nose Depressed nasal bridge 83% 47% (7/15)  

Anteverted nostrils 88% 57% (8/14)  

Long and/or featureless 
philtrum 

94% 67% (10/15)  

Broad/bulbous nasal tip  86% (12/14)  

Mouth Thin upper lip vermilion 94% 81% (13/16)  

Downturned corners of 
mouth 

94% 60% (9/15)  

Palate - high 86% 45% (5/11)  

Palate - cleft 20% 7% (1/14)  

Small/Widely spaced teeth 86% 22% (2/9)  

Dental anomalies  38% (5/13) Delayed with irregular eruption (1), not 
secondary (1), dysmorphic teeth (1), 
pegged incisors (1). 

Micrognathia/retrognathia 84% 40% (6/15)  

Neck Short neck  46% (6/13)  

Other facial    Lateral extension eyebrows (1), almond 
shaped (1), deep-set eyes (1). Prominent 
supraorbital ridges (1). Low-set ears (6), 
posteriorly rotated ears (3), large ears (2). 
Small mouth (1), prognathism (2). Low 
posterior hairline (2), webbed neck (1). 

M
u

s
c
u
lo

s

k
e
le

ta
l 

s
y
s
te

m
 

Hands Small hands 93% 79% (11/14)  

Proximally set thumbs 72% 75% (12/16)  

Short first metacarpal  79% (11/14)  

Clinodactyly 5
th
 finger 74% 64% (9/14)  

Short 5
th
 finger  69% (9/13)  
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Single palmar crease 51% 36% (5/14)  

Feet Small feet 93% 85% (11/13)  

Syndactyly of toes 86% 29% (4/14)  

Arms Restriction of elbow 
movements 

64% 45% (5/11)  

Other 
skeletal 

   Tapered fingers (2), syndactyly 2
nd

-3
rd 

(1) 
and 3

rd
-4

th
 (1) fingers, hyoplastic distal 

phalanges (1). Joint laxity with flexible 
fingers (1). Madelung deformity (1). Tapered 
1

st
 toes, short 4

th
 metatarsal (1), gap 

between 1
st
-2

nd
 toes (1), pes cavus (2) and 

metatarsus adductus (1). Pectus excavatum 
(1), short sternum (1), scoliosis (1), cleft and 
butterfly vertebrae (1), Klippel-Feil (1). 
Dysplastic hip (1). Sacral dimple (1). Leg 
length discrepancy (1). Delayed skeletal 
maturity (1) and decreased muscle bulk (1). 
Extension defect of Achilles tendon (1). 
Bunions (1). 

Cardiac system Cardiac defects 13-70% 56% (9/16) PDA+ASD (1), PS+VSD (1), ASD+ AS+BAV 
(1), ASD (PFO) (1), pulmonary artery 
dysplasia (1), PS+AS+BAV (1), PPS (1), 
ASD+VSD (1), TOF+PS+main pulmonary 
artery hypoplasia (1). 

Gastrointestinal 
system 

GERD 65% 67% (10/15)  

Feeding problems in 
infancy  

 79% (11/14)  

other gastrointestinal   Hiatal hernia (1), pyloric stenosis (1), 
malrotation (1). 

Genitourinary 
system 

Genitourinary defects 40%  - 57% 40% (6/15) Amenorrhea (1), cryptorchidism (2), 
hypoplastic genitalia (1), inguinal hernia (2). 
Bilateral megaureter (1), VUR (2), small 
kidneys (1). 

ENT Hearing loss 60% 54% (7/13)  

Ophthalmic 
system 

Ptosis 44 - 46% 27% (4/15)  

Myopia 57 - 58% 45% (5/11)  

Lacrimal duct obstruction  33% (4/12)  

Other   Upward deviation of gaze + amblyopia (1), 
astigmatism (1), exotropia (1), esotropia + 
cortical visual impairment + sensitivity to 
light (photophobic) (1), exotropia + 
astigmatism (1), microphthalmia, Peter's 
anomaly, congenital cataracts, and 
glaucoma (1). 

Skin Cutis marmorata 60% 31% (4/13)  

Hirsutism 78% 93% (14/15)   

Nevus flameus  8% (1/12)  
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Clinical features are summarized by category.  For the classical CdLS feature frequencies, percent frequencies are noted.  For SMC3 features, percents are 

noted and in parentheses, fractional data.  In the comments column, single numbers in parentheses indicate the number of subjects noted with the feature.  

Abbreviations: Ear-Nose-Throat (ENT); gastroesophageal reflux disease (GERD); central nervous system (CNS); patent ductus arteriosus (PDA), atrial septal 

defect (ASD), pulmonary stenosis (PS), ventricular septal defect (VSD), patent foramen ovale (PFO), aortic stenosis (AS), bicuspid aortic valve (BAV), 

peripheral pulmonic stenosis (PPS); tetralogy of Fallot (TOF), vesicoureteral reflux (VUR).  *These frequencies in classical CdLS of these clinical features are 

compiled from different sources (Chatfield, et al., 2012; Jackson, et al., 1993; Kaga, et al., 1995; Kline, et al., 2007; Luzzani, et al., 2003; Nallasamy, et al., 

2006; Selicorni, et al., 2009; Wygnanski-Jaffe, et al., 2005). 

 

Other skin   Hemangioma (1), abnormal 
dermatoglyphics (1). 

Neurologic 
findings and  
Cognitive profile 

CNS anomalies   36% (4/11) Porencephalic cyst (1). Absence of the 
splenium of the corpus callosum, a large 
septum cavum pellucidum and cavum verge 
(1). Mildly coarse gyral pattern (1). Very 
small corpus callosum, cysts of right frontal 
region (1). 

Seizures  23% 25% (3/12)  

Other   Hypertonia (1), hypotonia (3), autonomic 
dysfunction: apnea, bradycardia, 
temperature instability. 

Intellectual Disability  100% (13/13)  

Behavior, personality   Friendly (6), Sociable (3), Extremely active 
(1), Affectionate (1), Fussy (1), Interactive 
(2), Decreased eye contact (1), Attention 
Deficit Disorder (1), Autistic-like features (1), 
Autism (1), Aggression (2) and Self-injurious 
behavior (2), Shy (1). 


