
978-1-4673-0878-6/12/$31.00 ©2012 IEEE
April 19-22, 2012
Cappadocia, Turkey31

DE NOVO MARKUP LANGUAGE, A STANDARD TO REPRESENT DE NOVO SE-
QUENCING RESULTS FROM MS/MS DATA

Savas Takan1 and Jens Allmer2

1Computer Engineering, 2Molecular Biology and Genetics
Izmir Institute of Technology, Gulbahce Campus, Urla, Izmir, Turkey

phone: + (90) 232 750 7517, email: jens@allmer.de
web: http://bioinformatics.iyte.edu.tr

ABSTRACT

Proteomics is the study of the proteins that can be derived
from a genome. For the identification and sequencing of
proteins, mass spectrometry has become the tool of choice.
Within mass spectrometry-based proteomics, proteins can be
identified or sequenced by either database search or de novo
sequencing. Both methods have certain advantages and
drawbacks but in the long run we envision de novo sequenc-
ing to become the predominant tool. Currently, de novo se-
quencing results are stored in arbitrary file formats, depend-
ing on the developers of the algorithms. We identified this as
a large and unnecessary obstacle while integrating results
from multiple de novo sequencing algorithms. Therefore, we
designed a standard file format for the representation of de
novo sequencing results. We further developed an applica-
tion programming interface since we identified the lack of
proper APIs as another obstacle, introducing a needlessly
high learning curve for developers.

1. INTRODUCTION

Mass spectrometry (MS) has been widely used to investigate
proteins and it is defining the field of proteomics today .
Mass spectrometers can produce large amounts of measure-
ments which need to be analysed computationally to infer
meaning. Typically database search methods are employed
to identify proteins from complex mixtures . However, often
databases are not available or despite their availability some
sequences are not readily found therein . To overcome this
problem de novo sequencing can be used to directly produce
a peptide sequence from a MS/MS spectrum for which many
algorithms have been developed .
Currently, de novo prediction algorithms store all the infor-
mation in their particular, if not peculiar, formats. Algo-
rithm-specific solutions are abundantly available, but there is
no a general solution to store and share de novo sequencing
results which decreases their usefulness. Since they need to
be integrated and further analysed and cannot be used di-
rectly as evidence for protein identification or sequencing at
present standardization of de novo sequencing outputs is
vitally important.
Several areas of mass spectrometry-based proteomics have
seen standardization such as for collections of mass spectra
and MS/MS spectra in files like mzXML , mzData and most
recently in mzML . The Human Proteome Organization
(HUPO) oversees many standard initiatives and is adopting
community standards or actively develops new ones. An

example for community standards are protXML and pepXml
which store database search algorithms’ results. HUPO is
currently working on the mzIdentML standard to supersede
pepXML and protXML but has not published it yet.
As there is currently no standard to represent de novo se-
quencing results, different, and in our opinion, unsuitable
formats are used to store de novo predictions. PEAKS, a
commercial de novo sequencing tool , for instance, stores
results in pepXML format. Other de novo sequencing algo-
rithms, for instance the two most popular freeware solutions,
PepNovo and Lutefisk , use custom formats which unfortu-
nately do not provide adequate information for further
downstream analyses and knowledge mining. We believe it
is necessary to develop a standard representation for de novo
sequencing results since none of the current programs repre-
sent the minimum information needed and standards from
related fields are either flawed or not fully applicable.
In de novo sequencing making a prediction based on multiple
spectra is becoming more important . In the light of this
knowledge, a serious design limitation of the proposed
pepXML format is that each result can only be linked to one
spectrum source. PepXML and mzXML files can become
enormous (sometimes several gigabytes). This does ease the
exchange of data but moves the problem of standardization to
a technical difficulty. Since as many as 90% of spectra may
remain unassigned, two options are viable to overcome the
problem; one to link to specific spectra in an mzML or
mzXML file and the other to include the spectrum in the ex-
change format. This leads to the possibility of exchanging
only one file containing only relevant information. Automatic
merging of documents, although not a vital feature, is cur-
rently not supported for any of the standards. PepXML was
designed with the representation of the best result in mind.
For de novo prediction this is a limitation since the search
space is much larger than for database search algorithms so
that multiple, equally probable results are frequent and need
to be represented alongside each other to enable further
analyses. Although around 100 post translational modifica-
tions are represented in current standards the user is expected
to provide possible modifications. We believe that a format to
represent search results in a database like pepXML should
model only those results but instead information is inflated
by many results of in-house tools provided by the developers
of the standard like XPRess , ASAPRatio and Peptide-
Prophet . Interestingly, it would be possible to store the re-
sults of PeptideProphet, for example, in pepXML, without it

32

being explicitly modelled, as it is now. Another issue along
these lines is that a data model may never include visualiza-
tion instructions, but the pepXML format includes such in-
formation as well as information which could easily be calcu-
lated from data modelled in the format and hence need not be
stored.
In an attempt to overcome all these limitations, we set forth
to develop the de novo markup language (DNML). The for-
mat that we propose here is meant as a standard for the repre-
sentation of de novo sequencing results. First and foremost,
we ensured that all necessary and as little unnecessary data as
possible are represented in the format. Another issue that we
identified which is crucial to the acceptance of a standard
initiative is the availability of application programming inter-
faces (API) to read and write the standard. Many standards
fail to offer an API and if they do only for reading of the
standard. To increase the acceptance of DNML we went well
beyond this and offer reading, writing, and conversion facili-
ties. But most importantly, our API allows for the creation of
files and can thus be used directly in any software that per-
forms de novo sequencing. This removes the need to develop
reading and writing functionality for all developers of de
novo sequencing algorithms, a mundane task which is often
neglected and therefore often produces peculiar outcomes.
Finally, we also include reading of mzXML and mzML in-
formation in the API so that any developer of de novo se-
quencing software can completely focus on their algorithm.
In the following, we will first introduce the schema and then
the API. Finally, we represent our future direction.

2. METHODS

For programming, the Java™ language was selected because
it seamlessly allows interoperability, has many libraries and
has a huge support community. The Eclipse IDE was se-
lected on the basis of available plug-ins and extensive user
support. SVN, as provided on Origo , was used during devel-
opment as a version control system. Maven in order to facili-
tate project integration, eUML was utilized to support UML
visualisation during the developing process. Visual Paradigm
was used to create some UML diagrams and to enable round-
trip engineering.
Oxygen was used for extensible markup language (XML)
editing because of the availability of an academic version.
SAX and JAXB libraries for JAVA were used for parsing
XML data. JAXB is a fast XML parser and since it provides
SAX parsing also large files could be parsed. The XJB tool
was used to provide class transformation from XML. Regular
expressions were used in order to parse some textual infor-
mation.

3. XML SCHEMA

The W3C developed document type definitions (DTDs) and
XML schema languages to allow the validation of XML
formatted documents. Since today DTDs seem to be depre-
cated, we developed a pure XML schema without any refer-
ence to DTDs. During the creation of our XML schema,
object orient programming techniques were used for solving
repeated, non-extendable data problems.

Figure 1: Depicts the DNML root element and the con-
tained Spectra, Predictions, and Modifications elements.
The XML tree can be further expanded to reveal that
Predictions, for example, contain Prediction elements and
a Software element.

The root of the DNML schema and its directly contained
elements are shown in Figure 1. Spectra represent the under-
lying data source for de novo predictions and are modelled
in two different ways, one to minimalize file size, and one
directly linking to spectra contained in files of the appropri-
ate standard. Because files in mzXML and mzML format
quickly become huge, it is difficult to share them and there-
fore spectra can be contained within the DNML standard
optionally. Different data encodings are provided to addi-
tionally reduce the size of the DNML file.

Figure 2: Shows how the raw data source, the spectrum,
is modelled. Each spectrum has attributes such as id, pre-
cursor m/z, precursor intensity (not shown). The peaks in
the MS/MS spectrum can either be provided as a link to a
file containing spectra in mzML or mzXML standard, or
as contained data.

DNML offers the opportunity to store spectrum data in sev-
eral formats, such as Base64, comma separated values
(CSV) and as links to already existing file formats. Our API
further allows the future incorporation of additional data
formats such as compressed formats due to extensible design
(Figure 2).
When a spectrum is provided as a link to mzXML or mzML
formatted files, the DNML file remains lean and the API
allows retrieving the linked data.
While developing DNML the problem of merging multiple
files has been taken into consideration. In the library, com-

33

mands are available that enable merging and splitting of
DNML formatted files.

Figure 3: The Prediction element contains two elements,
Sources and Sequence. Sources element defines which
spectra led to the prediction. Sequence element has se-
quence and confidence attributes. A sequence can consist
of amino acids, modified amino acids and gaps which
allows object oriented modelling of a sequence. It also
allows positional confidence and proofs for the sequence.

Our DNML format is the first one which allows a many-to-
many mapping between predictions and spectra. This has
become important since many de novo sequencing algo-
rithms now use multiple spectra from different sources to
produce a better prediction (Figure 3). Since a prediction can
contain stretches where no amino acids can be assigned, it is
necessary to model gaps. Our DNML standard is the first
which enables this, but we take this a step further by ena-
bling object oriented creation of sequences which are com-
posed of three different types of elements, amino acids,
modified amino acids and gaps. An additional novelty is that
each sequence element can be amended with peaks proving
the existence and with a positional confidence.

Figure 4: Software represents the tool that made one or
multiple de novo predictions. Publication element is used
to add publications of that software since we sometimes
experienced trouble when searching for the first publica-
tion of an algorithm.

The user's software settings need to be provided since differ-
ent settings can lead to significantly different predictions.
Our model allows different Predicitions to have different
settings so that the information is not repeated for each Pre-
diction (Figure 4).

Figure 5: A post translational modification (PTM) is
modelled as a change to an amino acid and a file with all
currently known PTMs is provided to simplify handling
of PTMs. Terminal modifications for peptides are also
possible.

The proper modelling of post translational modifications
(PTMs) is important today but will increase in importance in
the near future when more algorithms will become able to
predict unexpected PTMs. We allow user specified PTMs
but also provide a list of about 100 known modifications.
Another important innovation of DNML is that predictions
can be complemented with the underlying proof for the se-
quence, something that is usually modelled as a simple
score, is much better reflected in our format (Figure 3). The
proof which is not completely expanded in Figure 3 links to
the peaks in the MS/MS spectrum which define a particular
sequence element. A sequence element can be an amino acid
(normal), a modified amino acid, or a gap which means an
unknown range in the MS/MS spectrum which was not as-
signed an amino acid (Figure 5).
The DNML schema is located at
(https://svn.origo.ethz.ch/dnml/data/) and can be used for
validating files in the format. The API we provide also comes
packaged with the DNML schema for faster validation. In the
following we will briefly introduce the API and our design
choices for the underlying code.

4. PARSER SELECTION

We paid particular attention to using standard JAVA™ li-
braries for XML parsing for compatibility reasons.
Firstly, existing parsers were examined and two parsing
method emerged as possibilities. One of these, uses the
document object model (DOM) was found unsuitable since
many result files are large and since DOM requires the entire
file to be in memory after parsing. The simple API for XML
(SAX) allows sequential access to XML elements and has a
lower memory footprint and was therefore selected for this
project. Specifically, the JAXB technology has been selected
for XML parsing in our DNML API. XML mapping with the

34

XJB tool allowed for easy conversions between XML and
Java classes and sped up the design process by reducing the
duplication of code.
Two different libraries are used for parsing mzXML files.
The first is the Jrap library which caused many problems for
us but which enables us to retrieve spectra modelled as links
in DNML format from the mzXML format. The other is the
Jmzreader library which uses the JAXB JAVA™ technology
which integrated seamlessly and provides the link between
DNML and mzML.
Regular expression, part of the standard JAVA™ library,
were mostly needed for conversion facilities for example to
parse LutefiskXP and PepNovo de novo predictions. All
parsers, for DNML, mzXML, mzML, existing files are de-
signed such that the API can easily be extended with further
parsers, not even requiring re-building of the code but allow-
ing run-time binding of functional additions. The overall
API design is completely built with this type of modularity
in mind and will be briefly introduced in the following.

5. SOFTWARE MODEL

The DNML library provides an application programming
interface to files written in the standard. Adding, deleting,
merging, transferring data, and converting between selected
standards are supported by the API. In addition to this, ser-
vice, command classes can be added at runtime by using the
Java resource bundle which creates great flexibility and
makes the library easily extendible and modular (Figure 6).

Figure 6: The DNML library has four packages. The fa-
çade package handles input and sends it to the controller.
The controller finds, creates, and executes commands.
The service package handles domain tasks.

The model view controller (MVC) approach was used to
develop the DNML library because it helped us to achieve a
modular and extensible architecture. The structure of the
API has several layers, Façade, Controller, Services, and
Model (Figure 6). Some of the topics that we deem impor-
tant for modularity are explained briefly in the following,
but additional information can be found in our online docu-
mentation at http://bioinformatics.iyte.edu.tr/dnml.

Figure 7: The façade package is the main interface. The
factory singleton can only be accessed by the instance
function. The façade factory uses getFacade to create a
new façade which is implemented by FacadeImpl class.
The handle function sends input to the control package
whıch returns the library results.

The façade factory, a static singleton, is the main interface to
the façade layer and provides the only means to communi-
cate with the layer. Inputs are taken as a string array. In this
way, the program can run from the console. When data is
entered, the façade layer forwards inputs to the control fac-
tory which creates a command. The façade’s output is a
DNML domain object, created using the command layer
(Figure 7).

Figure 8: The command factory, a static singleton, is ac-
cessed using the instance function. The createCommand
method in the CommandFactory creates a new command
which is executed via the execute function.

Communication with the controller layer is established
through the static factory singelton. The factory creates the
appropriate command based on the input and executes it.
Each command must implement the command interface in
order to be compatible. This interface has two functions;

35

execute and setArgs. The execute function executes the
command and returns a DNML domain object. The setArgs
method allows the customization of a command. The factory
includes a property file to find command location by com-
mand name at runtime. This structure is very important for
extensibility and modularity. Hence, when a new command
needs to be added, there is no need to rebuild the library. The
control layer submits the task to the service layer after the
process is started by command (Figure 8).

Figure 9: The service package is accessed via the instance
method in the ServiceFactory. A new service is created by
the getService method which is then executed by the run
method.

In order to ensure modularity of the service layer, all ser-
vices are created independently. As with the previously men-
tioned layers, the service layer factory is a static singleton.
The factory creates suitable service depending on the given
input and in collaboration with the service layer ensures
their execution. Each service must implement the services
interface which has an object container for handling input as
a string array. The first operation is parsing the input using
regular expressions and to check whether the input is suit-
able in respect to security and conformity to the service fac-
tory’s expectations. When successful, the requested service
is run employing the given input. The output is again mod-
elled as an object container which is important for the con-
cept of modularity. Thus, it helps us to provide great flexibil-
ity for future extensions (Figure 9).
This flexibility is also implemented on the mapping between
XML and parsing classes. The domain layer (not shown)
contains classes which, depending on XJB for JAXB, seam-
lessly propagate changes between the DNML schema and the
parser. This technology creates flexibility allowing us to
quickly respond to new developments in the field which may
entail changes to the DNML schema.

6. RESULTS

For the researcher it is of utmost importance to have access
to data contained in any file format. Often we detected cor-
ruption while parsing files or found files that did not exactly
adhere to their target standards. This is clearly undesirable
and most likely due to the redundant development of APIs
by different vendors. The API we provide removes this prob-

lem since all functionality, reading, creating, and writing are
available thus removing the possibility of creating files that
do not validate or are corrupted. This also enhances the con-
fidence of developers of downstream tools, building on data
provided in DNML format. The link we provide to spectra in
mzXML and mzML format which can be accessed by id or
can be extracted as text further enhances the ease with which
our API can be used. Our API thus allows access to all nec-
essary input for de novo sequencing and all output thus
completely removing file handling from the developers of de
novo algorithms. Since many spectra have been processed
by existing de novo prediction tools and since those results
are not available in DNML format we provide conversion
facilities to the currently most prominent free tools, Lute-
fiskXP and PepNovo but further conversion facilities for
PEAKS and other tools are under way.
The DNML schema and the fully fledged API it comes with
are the main outcomes of this study. We paid especial atten-
tion to extensibility of the API and most parts of the code
allow for runtime binding of additional functionality thus
making it possible for developers to easily extend our API.
The API, which includes conversion functionality, can be
downloaded from http://bioinformatics.iyte.edu.tr/dnml. The
conversion functionality can also be directly accessed at
http://bioinformatics.iyte.edu.tr/dnml/convert2DNML.php.

7. CONCLUSION

Currently, de novo sequencing, although not highly accurate,
is gaining importance and interest . Unfortunately, much
attention is diverted to unnecessary file handling which
could be used to improve algorithms. We removed the input
file handling problem by providing an API which allows
developers to read spectra from the two most important
standards, mzXML and mzML. We removed the output file
handling problem by developing a standard file format,
DNML, and providing an API to read, write, and create files
in that standard. This will speed up development of future de
novo sequencing algorithms and will also spawn the devel-
opment of tools that build on de novo prediction like for
instance the GenomicPeptideFinder .

8. OUTLOOK

With the development of the first version of DNML, fin-
ished, we now aim to enhance the API by including further
ontologies in addition to the PTM ontology that we are cur-
rently using. We also aim to restrict possible values for most
fields in the DNML standard by using a custom ontology.
Independently from this we will provide further conversion
functionality for more de novo sequencing tools. Our secon-
dary aim is to develop an analysis and knowledge mining
pipeline build on the DNML standard. But the immediate
goal is a visualization module which allows the visual explo-
ration of the data stored in DNML format.

36

9. ACKNOWLEGEMENTS

We would like to thank Prof. Dr. Anne Frary for proof read-
ing. This study was in part supported by the Turkish Acade-
my of Sciences.

10. REFERENCES

[1] R. Aebersold and M. Mann, “Mass spectrometry-
based proteomics,” Nature, vol. 422, no. 6928, pp.
198-207, Mar. 2003.

[2] E. A. Kapp et al., “An evaluation, comparison, and
accurate benchmarking of several publicly available
MS/MS search algorithms: sensitivity and specificity
analysis,” Proteomics, vol. 5, no. 13, pp. 3475-90,
Aug. 2005.

[3] J. Allmer, C. H. Markert, E. J. Stauber, and M.
Hippler, “A new approach that allows identification
of intron-split peptides from mass spectrometric data
in genomic databases.,” FEBS Letters, vol. 562, no.
1-3, pp. 202-6, Mar. 2004.

[4] J. Allmer, “Algorithms for the de novo sequencing of
peptides from tandem mass spectra.,” Expert review
of proteomics, vol. 8, no. 5, pp. 645-57, Oct. 2011.

[5] P. G. A. Pedrioli et al., “A common open representa-
tion of mass spectrometry data and its application to
proteomics research.,” Nature biotechnology, vol. 22,
no. 11, pp. 1459-66, Nov. 2004.

[6] S. Orchard, C. Taylor, H. Hermjakob, W. Zhu, R.
Julian, and R. Apweiler, “Current status of proteomic
standards development.,” Expert review of pro-
teomics, vol. 1, no. 2, pp. 179-83, Aug. 2004.

[7] L. Martens et al., “mzML--a community standard for
mass spectrometry data.,” Molecular & cellular pro-
teomics•: MCP, vol. 10, no. 1, p. R110.000133, Jan.
2011.

[8] A. Keller, J. Eng, N. Zhang, X.-jun Li, and R. Aeber-
sold, “A uniform proteomics MS/MS analysis plat-
form utilizing open XML file formats.,” Molecular
systems biology, vol. 1, p. 2005.0017, Jan. 2005.

[9] B. Ma et al., “PEAKS: powerful software for peptide
de novo sequencing by tandem mass spectrometry.,”
Rapid communications in mass spectrometry•: RCM,
vol. 17, no. 20, pp. 2337-42, Jan. 2003.

[10] A. Frank and P. Pevzner, “PepNovo: de novo peptide
sequencing via probabilistic network modeling,”
Anal Chem, vol. 77, no. 4, pp. 964-73, Feb. 2005.

[11] J. A. Taylor and R. S. Johnson, “Implementation and
Uses of Automated de Novo Peptide Sequencing by
Tandem Mass Spectrometry,” Analytical Chemistry,
vol. 73, no. 11, pp. 2594-2604, Jun. 2001.

[12] D. K. Han, J. Eng, H. Zhou, and R. Aebersold,
“Quantitative profiling of differentiation-induced mi-
crosomal proteins using isotope-coded affinity tags
and mass spectrometry,” Nature Biotechnology, vol.
19, no. 10, pp. 946-51, Oct. 2001.

[13] A. Keller, A. I. Nesvizhskii, E. Kolker, and R. Aeber-
sold, “Empirical statistical model to estimate the ac-
curacy of peptide identifications made by MS/MS

and database search,” Anal Chem, vol. 74, no. 20, pp.
5383-92, Oct. 2002.

[14] “Eclipse.” [Online]. Available:
http://www.eclipse.org/. [Accessed: 12-Jan-2012].

[15] “Origo | Origo.” [Online]. Available:
http://www.origo.ethz.ch/. [Accessed: 12-Jan-2012].

[16] “Soyatec - Open Solution Company: XAML for
Java, UML for Eclipse and BPMN designer.”
[Online]. Available: http://www.soyatec.com/euml2/.
[Accessed: 12-Jan-2012].

[17] “UML, BPMN and Database Tool for Software De-
velopment.” [Online]. Available: http://www.visual-
paradigm.com/. [Accessed: 12-Jan-2012].

[18] “sax parser.” [Online]. Available:
http://www.saxproject.org/. [Accessed: 12-Jan-2012].

[19] “JAXB Reference Implementation — Java.net.”
[Online]. Available: http://jaxb.java.net/. [Accessed:
12-Jan-2012].

[20] “Software:JRAP - SPCTools.” [Online]. Available:
http://tools.proteomecenter.org/wiki/index.php?title=
Software:JRAP. [Accessed: 12-Jan-2012].

[21] “jmzreader.” [Online]. Available:
http://code.google.com/p/jmzreader/. [Accessed: 12-
Jan-2012].

