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Autism Spectrum Disorder (ASD) is a neurodevelopmental disorder (NDD) defined by
impairments in social communication and social interactions, accompanied by repetitive
behavior and restricted interests. ASD is characterized by its clinical and etiological
heterogeneity, which makes it difficult to elucidate the neurobiological mechanisms
underlying its pathogenesis. Recently, de novo mutations (DNMs) have been recognized
as strong source of genetic causality. Here, we review different aspects of the DNMs
associated with ASD, including their functional annotation and classification. In addition,
we also focus on the most recent advances in this area, such as the detection of
PZMs (post-zygotic mutations), and we outline the main bioinformatics tools commonly
employed to study these. Some of these approaches available allow DNMs to be
analyzed in the context of gene networks and pathways, helping to shed light on the
biological processes underlying ASD. To end this review, a brief insight into the future
perspectives for genetic studies into ASD will be provided.

Keywords: Autism Spectrum Disorder, genetics, post-zygotic mutations, neurodevelopmental disorders, de novo
mutations, gene networks, pathway analysis, whole exome sequencing

INTRODUCTION

Autism Spectrum Disorder (ASD) includes a range of NDDs that are characterized by deficits
in social communication and interactions, as well as by repetitive behaviors and restrictive
interests, with onset in early development (American Psychiatric Association, 2013). The estimated
prevalence of ASD in the general population stands at approximately 1%, with males being about
three times more likely than females to be affected (Fombonne, 2009; Loomes et al., 2017).

Abbreviations: AAF, alternate allele frequency; ASC, Autism Sequencing Consortium; ASD, Autism Spectrum Disorder; BF,
Bayes factor; CADD, combined annotation dependent depletion; CHD, chromodomain helicase DNA-binding family; CNV,
copy number variation; DAPPLE, Disease Association Protein–Protein Link Evaluator; DAVID, Database for Annotation,
Visualization and Integrated Discovery; DAWN, Detecting Association with Networks; DNM, de novo mutation; DZ,
dizygotic; FDR, false discovery rate; GCNs, gene co-expression networks; GERP, genomic evolutionary rate profiling;
GO, gene ontology; GSEA, gene set enrichment analysis; GWAS, genome-wide association study; ID, intellectual disability;
LoF, loss of function; MAF, minor allele frequency; MAGI, merging affected genes into integrated networks; MPC, Missense
badness, Polyphen-2 and constraint; MsigDB, molecular signatures database; MZ, monozygotic; NDD, neurodevelopmental
disorder; NETBAG, NETwork-based analysis of genomic variation; NGS, next generation sequencing; PCA, principal
component analysis; PGC, Psychiatric Genomic Consortium; pLI, prob of being LoF intolerant; PPI, protein–protein
interaction; PZM, post-zygotic mutation; RR, relative risk; RVIS, Residual Variation Intolerance Score; SFARI, Simons
Foundation Autism Research Initiative; SNP, single nucleotide polymorphism; SNV, single nucleotide variations; SSC, Simons
Simplex Collection; SV, structural variant; TADA, transmission and de novo association test; WES, whole exome sequencing;
WGCNA, weighted correlation network analysis; WGS, whole genome sequencing.
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Twin and family studies have demonstrated a genetic
contribution to ASD etiology. Indeed, early reports showed
a concordance in ASD diagnosis in monozygotic (MZ, 70–
90%) and DZ twins (10%), which indicates a heritability of
about 90% (Steffeneburg, 1989; Bailey et al., 1995). A recent
analysis more precisely estimated heritability to be 83%, which
is slightly lower than that reported in the earlier twin studies
(Sandin et al., 2017). Moreover, the risk of ASD increases for
a child when he has an older affected sibling and as such,
the overall risk of recurrence in siblings has been estimated
to be around 6.9–18% depending on the study design. This
range is also influenced by whether half or full siblings are
considered (Ozonoff et al., 2011; Gronborg et al., 2013; Risch
et al., 2014).

A substantial fraction of this heritability can be explained
by SNPs. The contribution of these common variants to ASD
etiology stands at around 50% when it is additively considered
(Gaugler et al., 2014). However, early GWAS failed to detect
strong signals, in part due to the need for larger samples (Weiss
et al., 2009; Anney et al., 2010; Ma et al., 2010). However,
subsequent large-scale GWAS identified 12 novel ASD loci,
some of them identified as plausible common risk variants in
earlier studies (Autism Spectrum Disorders Working Group of
The Psychiatric Genomics Consortium, 2017). Moreover, the
latest GWAS meta-analysis conducted by the PGC not only
represented an incredible effort to increase sample size up to
tens of thousands of cases and controls but also, it developed
a well-defined quality control and imputation pipeline. For the
first time, the results of this ASD GWAS meta-analysis led to
the identification of 93 significant genome-wide markers, of
which 53 were replicated in independent cohorts (Grove et al.,
2017).

Despite the evidence of a significant role for common variants
in ASD risk, rare genetic variation (MAF<1%) confers higher
individual risk (Table 1). Rare variation can be found as small
insertions and deletions (indels), CNVs or SNVs. Moreover, these
can be inherited from a paternal and/or maternal origin or they
may appear de novo in the affected subject (De Rubeis et al., 2014).
Such DNMs, are mutations identified in the proband that are not
found in the genomes of the biological parents. The importance
of DNMs in ASD genetics is strongly related to the role of natural
selection and allele frequency. Therefore, rare risk alleles tend to
be eliminated by purifying selection while common ones show
signs of positive selection (Polimanti and Gelernter, 2017). These
facts mean that DNMs are most likely to have a strong effect
and thus, the discovery of DNMs allows ASD risk genes to be
identified. Indeed, exons expressed in the brain that are subject
to purifying selection were enriched for DNMs in ASD (Uddin
et al., 2014).

The different types of genetic variants, combined with their
distinct pattern of inheritance or their de novo origin, define the
potential genetic risk for ASD. For example, carrying a de novo
SNV and a specific non-sense mutation in the coding sequence
confers around five times more individual risk than carrying a
transmitted CNV (Stein et al., 2013). Moreover, children with
severe ASD symptoms along with ID are thought to carry
more harmful DNMs (Robinson et al., 2014). Hence, there is

TABLE 1 | Genetic architecture of ASD.

% Liability due to different
classes of mutations

% Of different classes of mutations
harbored by ASD probands

Common variation 49.4%

De novo variation 3% De novo CNVs 4–7%

De novo SNVs 7%

Rare inherited variation 3% Rare variants AR 3%

X-linked variants 2%

Total 55% Total 16–19%

The liability in ASD according to the different classes of mutation and the different
types of mutations harbored by ASD individuals. Data taken from Gaugler et al.
(2014).

now considerable interest in identifying novel DNMs associated
with ASD.

DNMs IN ASD GENETICS

Identification of DNMs
Trio genetic association studies (parents and affected proband)
have been used since 2007 to study DNMs and to find mutations
in the proband that were not present in either parent. By
performing such studies on large cohorts of patients and controls,
and by analyzing the characteristics of the DNMs identified, it
is possible to characterize previously unrecognized ASD genes,
the main goal of such studies. In the first studies to detect CNVs
using high-resolution microarrays, de novo CNVs were more
frequent in cases than controls (Marshall et al., 2008; Pinto et al.,
2010; Sebat et al., 2010; Levy et al., 2011; Sanders et al., 2011)
and also more frequent in simplex rather than multiplex families
(Marshall et al., 2008; Sebat et al., 2010).

However, the large size of CNVs presents a problem when
attempting to detect ASD candidate genes. Indeed, genes
disrupted by CNVs may contribute to a moderate risk of ASD,
whereas SNVs are more likely to directly indicate genes associated
with a high susceptibility for ASD (Sanders et al., 2015).
Accordingly, large scale parallel sequencing and specifically, WES
has been employed widely to unravel the genetic architecture of
ASD (Betancur, 2011; Buxbaum et al., 2013; Sener et al., 2016).
Indeed, the vast majority of DNM studies have employed this
technology, in conjunction with large sample sizes (thousands
of samples) collected from many families (normally trios but
also quads) (Neale et al., 2012; De Rubeis et al., 2014; Merico
et al., 2017). By comparing DNA sequences obtained from
affected children to those from their parents, it is possible to
identify DNMs after filtering out sequencing artifacts (Iossifov
et al., 2014). This variant calling process requires a detailed
bioinformatics pipeline that involves the application of different
thresholds to filter for each quality parameter (Patel et al.,
2014). This process could be performed following different
approaches and accordingly, we can find a more or less restrictive
filtering depending on the study. Nevertheless, each single DNM
will finally be re-sequenced by other methods, usually Sanger
sequencing, to check the accuracy of the findings. We should take
into account, that the average rate of DNMs in a set of whole
exome data is estimated to be in 1.2 × 10−8 per nucleotide per
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generation, and normally ASD studies have observed a similar or
slightly higher rate (Conrad et al., 2011).

After this first step, all DNMs located in the coding sequence
should be functionally annotated according to the impact that
the predicted amino acid substitution has on protein structure
and function. Thus, we can find missense DNMs and non-sense
DNMs, also referred to as LoF mutations, which can in turn be
classified into different subtypes: frameshift, splice site, and stop-
gain. It is important to note that although LoF DNMs might
be the object of greater attention, the importance of missense
DNMs in ASD was recently highlighted. Therefore, such variants
may produce a gain of function effect and genes carrying two
or more mutations of this type were seen to be more likely to
be pathogenic in ASD (Geisheker et al., 2017). Moreover, some
studies have reported an overall enrichment of LoF mutations
in individuals with ASD compared to their healthy relatives. In
particular, heterozygous LoF mutations are present in 20% of
probands but in only 10% of unaffected siblings (O’Roak et al.,
2011; Neale et al., 2012; Sanders et al., 2012; Ronemus et al., 2014).
Missense mutations were also more common in probands than in
their siblings when larger cohorts were considered and therefore,
it was calculated that missense mutations contribute to at least
10% of ASD diagnosis (Iossifov et al., 2014).

Methods to Assess DNM Pathogenicity
Several tools can be used as functional predictors to assess
DNM pathogenicity, such as Polyphen2, SIFT, CADD, and GERP
(Cooper et al., 2005; Kumar et al., 2009; Adzhubei et al., 2010;
Kircher, 2014). Polyphen2 is without doubt the most widely
employed of these, although more recent trends prefer not
to focus on just a single method but rather, to consider a
combination of several in silico scores in order to establish criteria
to classify benign and deleterious mutations (Lim et al., 2017).
Indeed, an integrative approach was described not long ago
that relied on a new functional genome annotation tool called
Eigen. This tool provides a meta-score calculated by unifying
the information obtained through several annotation methods.
Therefore, Eigen provides a better discriminatory ability than
other scores like CADD, SIFT, or GERP. As such, Eigen is
a powerful and novel annotation tool that was successfully
employed on a set of DNMs previously described in ASD and
also in other psychiatric disorders like schizophrenia (Ionita-Laza
et al., 2016). More recently, other measures of the deleterious
nature of mutations have been developed to redefine the impact
of DNMs. One of these novel scores is called, MPC (for Missense
badness, Polyphen-2 and Constraint), which specifically enables
the deleterious effect of missense variants to be predicted.
Through the use of MPC, some missense DNMs were shown
to have a similar effect as LoF mutations in NDDs, information
that will be extremely useful for future ASD sequencing studies
(Samocha et al., 2017).

DNMs: Relative Risk, Tolerant, and
Intolerant Genes
The contribution of DNMs to the risk of ASD depends on the
impact that the amino acid change in the protein coding sequence

has on the protein’s behavior. Thus, the RR entailed by LoF
DNMs will always be larger than that associated with missense
DNMs. Moreover, both variants will provide a greater RR when
they are considered jointly rather than an inherited LoF mutation
alone, for example. This allows a RR to be established for each
gene as a function of the class of DNM (De Rubeis et al., 2014).
Moreover, some studies also consider the location of the DNM
and it was shown that DNMs are more likely to occur in genome
locations with a higher rate of mutation that are located close to
CNVs (Merico et al., 2017). Another factor that must be taken
into account when DNMs are analyzed is that there are genes that
are mutation tolerant and intolerant. This means that over the
entire human genome some genes are more likely to carry more
functional mutations than those expected by chance (tolerant
genes), while other (intolerant) genes carry fewer such mutations.
Thus, DNMs found in tolerant genes are less likely to influence
the development of ASD. A gene-based score RVIS has been
developed that allows genes to be ranked depending on their
tolerance or intolerance score (Petrovski et al., 2013; Ronemus
et al., 2014). Similarly, additional information can be provided
by the pLI score (prob of being LoF intolerant). Therefore, a gene
with pLI > 0.9 is considered to be extremely LoF intolerant,
and this is particularly useful when there is more than one LoF
mutation in an exome and there is a need to prioritize these
causal DNMs (Lek et al., 2016). The interest in this score was
successfully confirmed using genetic data from NDDs, including
ASD cases (Kosmicki et al., 2017).

As we can see, the discovery, identification and prioritization
of DNMs and their respective ASD risk genes, requires a complex
workflow. It involves several technical variables that need to be
considered in order to identify the DNMs that truly influence
ASD risk and to distinguish them from those that are artifacts
or that are not pathogenic DNMs.

BIOINFORMATICS APPROACHES
EMPLOYED IN THE STUDY OF DNMs

The main aim of the bioinformatics approaches discussed in
this section is to start from the genetic information obtained
from the genes carrying DNMs, achieving a global vision of the
related biological processes that underlie the pathogenesis of ASD
(Table 2). As detailed below, these tools aim to integrate different
sources of genetic and biological information in order to identify
the biological processes underlying ASD, as well as new target
genes.

Prioritizing Novel ASD Risk Genes
Carrying DNMs
The analysis of DNMs has without doubt been a step forward in
the discovery of new ASD risk genes. Technically speaking, this
type of analysis can only be performed on DNMs. However, it
was recently shown that a more robust way to interpret WES
data is to analyze DNMs together with inherited variants, given
the high heritability of ASD. Therefore, other genetic variants
can be added, such as SNPs from case-control studies. This
approach came into use when it was seen that the proportion of
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TABLE 2 | Bioinformatics approaches that allow WES data (genes carrying DNMs and other genetic information) to be integrated in different pathway and network
analyses categorized by the input data necessary, the type of algorithm and the output results.

Input information Algorithm Analysis result Publications

TADA DNMs (LoF > missense) +
transmitted + case-control variants

Bayesian gene-based likelihood model Prioritized list of genes depending on the
impact of the mutations

De Rubeis et al., 2014
Sanders et al., 2015
Ji et al., 2016

NETBAG Input data Likelihood approach including a
Bayesian integration of PPIs.

Identifies functional gene networks and
phenotype networks

Gilman et al., 2011
Chang et al., 2014

DAWN List of ASD genes obtained from
WES studies scored by TADA

Algorithm based on the “screen and
clean” principle (hidden Markov random
field + FDR procedure)

Identifies gene networks that are “hot spots”
within a co-expression network (RNA-seq data)

Liu et al., 2014

DAPPLE List of ASD candidate genes Algorithm based on permutations Test PPIs across the genes hit by a functional
DNM. Allow to redefine a huge list of putative
ASD genes in a reduced but most relevant list

Neale et al., 2012
Poultney et al., 2013
Sanders et al., 2015
Parikshak et al., 2013

MAGI List of ASD genes obtained in WES
and case-control studies

Combinatorial optimization algorithm.
Maximizes mutations in modules
considering gene length and where
DNMs are located (LoF and missense)

Creates gene clusters considering the
information from PPIs and co-expression
networks together

Hormozdiari et al., 2015

Moreover, the most relevant publications employing each of them to study ASD genetics are indicated.

ASD cases that could be explained by considering only DNMs
and not other types of genetic variation was really quite small.
Moreover, despite analyzing thousands of ASD cases, only tens
of LoF DNMs were detected. Therefore, this combined analysis,
called TADA, opened the door to expanding the list of ASD
candidate genes and it made the analysis of WES data more
robust (He et al., 2013; Sanders et al., 2015). This approach has
been successfully employed on genetic data from the SSC and the
ASC (De Rubeis et al., 2014). TADA uses a Bayesian gene-based
likelihood model that weights mutations by type and mode of
inheritance in this order: de novo LoF > de novo Mis3 (missense
variants predicted to be damaging by Polyphen) >transmitted
LoF. In this way, each DNM is given a predicted impact on the
protein function. Moreover, the corresponding gene mutation
rate is also considered and these categories can be extended as
required for the desired analysis (He et al., 2013). Furthermore,
it is possible to obtain expanded or restricted gene lists that
consider the load of DNMs by gene and their predicted functional
impact. This is possible because TADA generates a gene-level
BF that quantifies association and its correspondence to a given
FDR or q-value. Thus, TADA allows a prioritized list of genes
to be obtained, which is perfect to use as an input for other
bioinformatics tools that are optimized to create gene-networks
and to unravel new related biological pathways in ASD. Recently,
the TADA algorithm was modified (TADAext) allowing data
from multiple populations to be employed and related NDDs to
be considered together in order to discover common risk genes.
As such, TADA helps define and prioritize a list of genes that can
be employed as an input for additional analyses, as will be seen
below (Nguyen et al., 2017).

Gene-Network and Pathway Analysis
Tools
Once gene lists are established and prioritized, several tools can
be used to generate gene networks and pathways. NETBAG is

one of the latest algorithms that can be successfully employed
to create risk gene networks starting from information about
DNMs (Gilman et al., 2011). This computational approach was
also used in ASD sequencing studies to not only consider data
from DNMs (SNVs and CNVs) but also, to combine this with
information from other associated genomic regions identified
in GWAS studies. As such, NETBAG has been successfully
employed with ASD and schizophrenia data (Gilman et al., 2012).
Specifically, this tool serves to establish gene clusters that identify
distinct biological networks of genes, for example networks that
are related to synapse development and/or neuron motility but
relying on a previously described phenotype network (Gilman
et al., 2011; Pinto et al., 2014). This phenotype network is
based on the integration of various protein-function descriptors
using Bayesian methods. The network edges will be constructed
considering the likelihood that two genes participate in the
same genetic phenotype (for example, ASD and/or ID). Among
a list of provided genes (from each genetic study), NETBAG
will create clusters of strongly connected genes by phenotype
depending on the calculated likelihood (Chang et al., 2014).
Therefore, the most important characteristic of NETBAG is that
the underlying network is created by sets of genes previously
associated with ASD and/or ID phenotypes. Once these clusters
are formed, specific biological processes related to each one can
be added integrating GO, KEGG, and PPI descriptors. Another
algorithm that could be very helpful in the search for ASD
risk genes and that helps to integrate DNM information, is
DAWN. DAWN works in conjunction with a network analysis
tool like TADA that sets a score for each gene, and it can
identify hotspots (clusters of strong scores) among the complex
gene networks that can be established when the whole set
of TADA genes is considered. This algorithm works through
a hidden Markov random field, a generalization of a hidden
Markov model that is widely employed when modeling biological
processes. The particular strength of DAWN is that it relies
on another type of information to build these new clusters,

Frontiers in Genetics | www.frontiersin.org 4 September 2018 | Volume 9 | Article 406

https://www.frontiersin.org/journals/genetics/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-09-00406 September 19, 2018 Time: 19:33 # 5

Alonso-Gonzalez et al. DNMs in Autism: Pathways and Gene-Networks

integrating transcriptomic data (RNA-seq) analyzed using a
WGCNA approach (a method that will be discussed later in
more detail). Once the large co-expression network is created,
DAWN will help to identify clusters of strongly correlated genes.
Therefore, using the TADA scores obtained previously, DAWN
will identify ASD risk genes, always performing a multiple testing
correction (FDR). DAWN can also incorporate any additional
variables as transcription targets if one or more key transcription
factor were meaningful to the analysis (Liu et al., 2014, 2015).
Therefore, DAWN works in conjunction with TADA but while
it is TADA that prioritizes genes carrying DNMs, DAWN moves
a step forward by creating gene networks and subnetworks that
help to detect novel genes that would not be revealed by using
TADA alone. Indeed, DAWN uses TADA scores for different
sets of previously published genes. For example, GRIN2B is an
ASD risk gene reported to be a carrier of multiple LoF mutations
(TADA q-value 0–0.0025). Consequently, DAWN can establish
ACTN2, DLG1, CBL, AP2A1, and DLG4 among others as novel
GRIN2B connectors, assigning them to a cluster of receptor
signaling and protein scaffolding genes (O’Roak et al., 2011; Liu
et al., 2014).

Another two complementary strategies that are commonly
used in these types of studies are enrichment analysis and PPI
networks. GSEA serves to classify genes that are over-represented
in a large dataset, identifying those groups significantly enriched
or depleted according to another source of external information
(e.g., GO terms, KEGG terms, expression data...) and thereby
helping to identify a variety of biological signatures among
them (Wen et al., 2016). There are several tools and databases
that allow GSEA analysis to be run, and one of the most
commonly employed is that provided by the Broad Institute
website in cooperation with MSigDB. This specific GSEA tool
was successfully run in large gene sets like those reported
by SFARI, an evolving online database which contains up-to-
date information of genes associated to ASD1. In addition,
hypergeometric distribution can be employed to examine how
SFARI genes and other gene sets (GO terms, KEGG) overlap.
This tool has led to the characterization of several pathways
functionally associated in ASD, such as calcium and MAPK
signaling pathways (Wen et al., 2016).

Another GSEA tool is DAVID, an enrichment analysis tool
that was employed in ASD genetic studies (Dennis et al., 2003).
DAVID is commonly used to consider how informative a gene
list obtained from genetic studies is about ASD etiology (Pinto
et al., 2014). Thus, DAVID can discover groups of functional-
related genes by using different libraries (GO terms for example)
to help identify the enrichment of different biological processes
from an extended gene list (Huang et al., 2008, 2009; Sanders
et al., 2015). Therefore, DAVID and GSEA both allow enriched
functionally related gene groups to be discovered and thus, both
tools are applied indistinctly for the purpose of ascribing general
biological functions to genes. However, DAVID also features
some additional options, and it is able to highlight functional
protein domains and motifs in those relevant genes.

1https://gene.sfari.org/

Another GSEA tool is Enrichr, currently one of the most
comprehensive tools that not only includes GO ontologies but
also, new gene libraries like target microRNAs, LINCS libraries
and even epigenetic data from the RoadMap Epigenomics
Project. Moreover, Enrichr also allows the GSEA results to be
exported, whether networks, tables or bar graphs, which can be
sorted by p-values, q-values or z-scores for the different terms
analyzed (Wen et al., 2016).

The use of PPIs is another strategy that helps to integrate
additional information from a different biological hierarchy.
PPI data are crucial to define how proteins interact in cellular
processes and also, to identify others that could be connected in
order to construct an interaction map (McDowall et al., 2009).
There are several PPI databases available like BioGRID, STRING,
MINT, KEGG, DIP, HPRD, or IntACt (Lehne and Schlitt, 2009).
Therefore, ASD genes of interest can be mapped against these
PPI networks, identifying connected genes that have not been
found previously, or highlighting previously weakly associated
ASD genes. Moreover, this approach allows gene sub-networks
to be redefined whose involvement in ASD has previously been
reported (Corominas et al., 2014). The ultimate aim would be to
organize this information to create gene clusters, each of them
characterized by cellular processes (Liu et al., 2014). DAPPLE
is an algorithm frequently employed in genetic studies of ASD
that works using PPI networks. Specifically, DAPPLE searches
significant physical interactions between proteins encoded by
genes associated with ASD. Moreover, it allows additional genes
that have been reported in other independent studies to be
introduced in order to expand the interaction network. The
perfect strategy is to seed together the interaction network
built by DAPPLE with data obtained from several available PPI
databases, expanding the known information with new nodes and
connectors (Rossin et al., 2011; Neale et al., 2012; Poultney et al.,
2013).

Therefore, GSEA allows gene sets to be functionally annotated
with their corresponding biological terms and significantly
enriched or depleted groups of genes to be identified. However,
PPIs represent another source of biological information that can
be integrated into bioinformatics tools like DAPPLE, expanding
the interaction network to include novel genes.

Characterization of the Biological
Processes Underlying ASD Pathogenesis
As explained before, ASD is an extremely heterogeneous disorder,
characterized by its genetic variability. It is expected that around
1,000 genes are involved in ASD, meaning that no one gene
is likely to explain more than 1% of cases (De Rubeis et al.,
2014), which makes functional studies difficult and complicates
the identification of high value targets for treatments. One
possible solution to help resolve this problem is to look for the
common biological mechanisms that could be disrupted in a
recurrent manner through the use of integrative systems biology
approaches, such as those described in the previous section
(Parikshak et al., 2015).

Initial studies focused on testing if the genes disrupted by
truncating mutations converge and are related to previously
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reported ASD genes. Therefore, it is expected that those genes
that interact significantly also share common functions and
are probably involved in the same biological pathways (Uetz
et al., 2000). A PPI network was constructed based on the data
collected by GeneMANIA, considering a list of genes carrying
severe mutations (Mostafavi et al., 2008; O’Roak et al., 2012). As
such, it was demonstrated that 39% of genes carrying truncating
mutations directly interact in this network. This physical
interaction between genes is an indicator of their implication
in some common biological mechanisms that could underlie
ASD pathogenesis. Therefore, those genes carrying truncating
mutations are ranked higher. This study is a perfect example
of how information about DNMs can be used to identify other
potential ASD risk genes using the correct tools and methods,
helping to map those interconnected genes in the corresponding
biological processes. In this case, the main biological network
revealed was a β-catenin/chromatin remodeling protein network
(O’Roak et al., 2012).

We performed a similar analysis but choosing only those ASD
risk genes carrying DNMs from previous studies and collected in
the SFARI database with scores of 1 and 2 (high-confidence and
strong candidate genes) (Supplementary Table 1). Therefore,
54 genes were used as input in GeneMANIA, revealing 20
related genes and 681 links between them (Figure 1). In order
to create this network, GeneMANIA employs data from co-
expression experiments but also physical interactions, shared
protein domains, co-localization and previously reported genetic
interactions. Each gene–gene interaction is given a weight and
assigned to a corresponding network group (Supplementary
Table 2). The biological functions of these genes and their
corresponding FDRs are also obtained (Supplementary Table 3),
revealing them to be: neuron cell–cell adhesion, vocalization
behavior, glutamate receptor signaling pathway, cognition, and
neuron projection.

It should be noted that methodological improvements have
allowed genes affected by DNMs and de novo CNVs to be
included in the same study, leading to the consideration of a
higher percentage of ASD heritability. Therefore, these genes
cluster together in networks enriched in different biological
functions, such as synaptic function, neuronal signaling, channel
activity, and chromatin modification (Gilman et al., 2012;
Pinto et al., 2014). The same pathways were also identified
in subsequent studies, confirming the important role of these
processes in ASD neurobiology (De Rubeis et al., 2014; Krishnan
et al., 2016).

Accordingly, many of the ASD genes characterized are
synaptic genes, including NLGN3 and NLGN4X (Jamain et al.,
2003), SHANK3 (Durand et al., 2006), NRXN1 (Autism Genome
Project Consortium et al., 2007) and CNTNAP2 (Arking et al.,
2008). Therefore, both the development and maintenance
of synaptic contacts appear to be a key factor in ASD
pathogenesis. Conversely, chromatin regulation also influences
neural development and during this process, many events
must be precisely orchestrated and mis-regulation can result
in cognitive deficits. The modification of chromatin structure
controls cell fate and function (van Bokhoven, 2011; Jakovcevski
and Akbarian, 2013; Ronan et al., 2013) and dozens of chromatin

remodelers have been implicated in ASD and other neurological
diseases, including Coffin-Siris syndrome (Tsurusaki et al.,
2012), Nicolaides-Baraitser syndrome (Van Houdt et al., 2012),
CHARGE syndrome (Vissers et al., 2004), or Rubinstein-Taybi
syndrome (Roelfsema et al., 2005). Some of the best studied
genes belongs to the CHD. Indeed, functional studies in
mice have shown that CHD5 and CHD8 haploinsufficiency
causes morphological changes in the brain and behavioral
symptoms consistent with ASD (Pisansky et al., 2017; Platt et al.,
2017).

A representation of this vast list of ASD genes discovered
through the identification of DNMs and those biological
processes in which they are involved (see Supplementary
Table 1) provides a representative gene-list taken from the SFARI
database as well as useful additional information.

Another important group of genes overrepresented in ASD
networks are FMRP targets, which are defined as gene encoding
transcripts that bind to FMRP (Iossifov et al., 2012). This set of
genes includes NLGN1, NRNK1, SHANK 3, PTEN, TSC2, and
NF1, and it overlaps with the list of candidate ASD genes from the
SFARI database (Darnell et al., 2011) that mainly encode synaptic
proteins, transcription factors and chromatin modifiers (Korb
et al., 2017).

CORRELATION OF DNMs WITH GENE
EXPRESSION IN CO-EXPRESSION
NETWORKS

Gene co-expression networks (GCNs) represent another tool
commonly used in ASD studies. The key point of this approach is
to construct gene networks considering not only the genetic data
obtained in WES studies but also, to correlate this information
with expression data from RNA-seq experiments. Thus, these
gene networks allow different temporal-spatial modules to be
identified based on expression at different developmental stages
and in different brain areas (van Dam et al., 2017). As such,
it is possible to achieve the ultimate goal of understanding the
genetic causes of ASD and to relate this to gene regulation at
different levels. Such information permits the role of DNMs
in the pathogenesis of ASD to be better understood, helping
to define the molecular pathways and the neural circuits
that affect cognition and behavior. Therefore, this complex
analytical approach will ultimately construct a spatiotemporal
co-expression network of ASD genes.

The generation of co-expression networks involves the
application of different statistical approaches, although two main
steps are critical and always considered by the corresponding
algorithms: calculation of a measure of co-expression (for
which different mathematical methods could be used); and the
establishment of a significance threshold (Song et al., 2012).

WGCNA constructs networks by using the default Pearson
correlation. WGCNA find modules of expression of highly
correlated genes and it identifies eigengenes for each module. For
this, WGCNA employs a PCA to extract the most representative
part of the expression data. Therefore, each module (given by
an expression value) corresponds to an eigengene and these
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FIGURE 1 | GeneMANIA network created from 54 SFARI genes with scores 1 or 2. The following genes were used as the input: SPAST, CUL3, KMT2C, NCKAP1,
RIMS1, SRCAP, TCF20, TNRC6B, INTS6, BCKDK, MET, MED13, KMT5B, ERBIN, KAT2B, ASH1L, SRSF11, KDM5B, PHF3, IRF2BPL, MED13L, SCN2A, TBR1,
SMARCC2, ILF2, CNTN4, ANK2, KDM6A, DIP2C, GRIA1, GRIP1, SLC6A1, CACNA1D, CACNA2D3, UBN2, SHANK2, WDFY3, NAA15, PTCHD1, GABRB3,
KATNAL2, SCN9A, CTNND2, DSCAM, TBL1XR1, NRXN1, MYT1L, USP7, RELN, NLGN3, CACNA1H, GIGYF2, RANBP17, and GRIN2B. These genes are indicated
with stripes. Moreover, another 20 strongly connected genes that were detected by GeneMANIA are also represented.

eigengenes can be employed to construct the related biological
networks.

In addition to WGCNA, other methods were recently
employed to analyze ASD genomic data, such as MAGI, which
represents a further step-forward in the use of this type of tool
(Table 2). MAGI not only allows expression data (RNA-seq)
to be integrated with genetic information (from missense or
LoF mutations to case-control studies) but also, representative
biological information from PPIs can also be added (Leiserson
et al., 2015). This data integration was successfully employed with
WES data from ASD and ID, facilitating the identification of
two differentiated modules of genes during brain development,
one expressed from 8–14 weeks post-conception, which includes
genes related to the Wnt pathway, and another that contains
genes related to synaptic function and that is more strongly
expressed in postnatal stages (Hormozdiari et al., 2015). The

vast majority of ASD co-expression networks have employed the
data available at BrainSpan2, which includes RNA-seq data from
sixteen targeted cortical and subcortical structures at different
stages of human brain development (prenatal and postnatal
development) (Kang et al., 2011).

Expression in brain tissues has been analyzed in different
studies, integrating this data with that obtained in genetic studies
to identify at which developmental stages and in which brain
areas both sources of information overlap. Post-mortem brain
tissue samples (cases and controls) were analyzed to identify
which ASD genes are altered in specific regions. WGCNA was
applied to these data to integrate the differences in expression
between cases and controls in a systems biology context. Two
network modules were enriched in genes highly correlated with

2http://www.brainspan.org
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ASD: one for genes down-regulated in ASD patients, showing
functional enrichment for some GO terms like synaptic function,
vesicular transport and neuronal projection; the other containing
up-regulated genes with an enrichment of the immune and
inflammatory GO categories. The integration of genetics data
with co-expression modules has shown that the former may
identify potential causes of ASD, while the latter suggests the
biological response (Voineagu et al., 2011). Subsequently, a RNA-
seq study was performed on a larger ASD cohort, demonstrating
similar results. Therefore, altered neural activity and an enhanced
microglial response was proposed in ASD brains, highlighting the
role of the immune system and synapses in ASD (Gupta et al.,
2014). However, the largest cohort of brain samples analyzed to
date identified 24 co-expression modules after WGCNA analysis
with RNA-seq data. Six modules were associated with ASD, three
down-regulated and three up-regulated. Synaptic and neuronal
genes were found among the down-regulated modules, while
glial function and biological pathways related to inflammatory
processes were enriched in the up-regulated modules. Moreover,
one of the 24 modules was enriched in DNMs previously
associated with ID, while another module was enriched for
lncRNAs (Parikshak et al., 2016).

Co-expression networks constructed from publicly available
datasets have revealed how ASD genes are differentially expressed
during early, mid and late fetal development, indicating that
they are directly involved in the development of the prefrontal,
temporal, and cerebellar cortex (Willsey et al., 2013; Chang et al.,
2014; Krishnan et al., 2016). In particular, strongly associated
ASD genes converge in glutamatergic projection neurons located
in layers 5 and 6 of human mid-fetal prefrontal and primary
motor somatosensory cortex (Willsey et al., 2013). A WGCNA
analysis employing an enrichment strategy produced a list
of genes from SFARI that mapped into different expression
modules (Parikshak et al., 2013). This allowed these genes to
be traced to specific neurodevelopmental stages and neuronal
cell types. Therefore, the integration of expression data allows
ASD risk genes carrying DNMs (and/or other genetic variants)
to be correlated with a superior hierarchical level of biological
information, expanding our understanding of ASD pathogenesis.
Through such studies at the circuit level, ASD genes have been
seen to be enriched in glutamatergic neurons in upper cortical
layers. It is worth noting that this result is different from the
findings obtained in the previous study in which ASD genes
converged in layer 5/6 cortical projection neurons. Therefore,
these genes converged in modules associated with biological
functions like early synaptic development and transcriptional
regulation. Interestingly, both modules were enriched in targets
of the FMRP gene, indicating that translational regulation
could be a link between molecular pathways that are co-
expressed during fetal cortical development (Parikshak et al.,
2013). Alternatively, a spatial analysis revealed that the activity
of ASD genes is widely distributed throughout the brain, which
is consistent with the broad spectrum of symptoms associated
with ASD. However, some specific areas were apparently more
strongly linked to ASD, such as the cerebellum, striatum,
amygdala, and thalamus (Chang et al., 2014; Krishnan et al.,
2016).

A recent study using co-expression networks and enrichment
approaches allowed different types of DNMs to be studied
(Shohat et al., 2017). Moreover, different patterns of expression
were described in the brain for genes associated with different
neuropsychiatric disorders. Enrichment analysis of protein
coding genes mapped to those previously described WGCNA
modules (Parikshak et al., 2013) in different brain areas and at
distinct neurodevelopmental stages. In addition to ASD genes,
genes carrying mutations associated with schizophrenia and ID
were also tested. Accordingly, genes carrying LoF DNMs in ASD
and ID were found to be preferentially expressed in the fetal
brain (cortex) and they were related to chromatin organization.
However, genes carrying missense DNMs were associated with
schizophrenia and they were active in the young adult cortex
during adolescence (Parikshak et al., 2013). Therefore, these
approaches appear to be able differentiate distinct biological
pathways that are associated with ASD, schizophrenia and ID
(Shohat et al., 2017).

PATERNAL AGE AND DNMs

A relationship between advanced paternal age and increased ASD
risk has been established in different studies (de Kluiver et al.,
2016; Janecka et al., 2017). Multiple biological mechanisms can
explain this relationship, not only DNMs but also epigenetic
changes associated with aging (Atsem et al., 2016). DNMs are
typically present in the sperm or egg of one parent and they
are then transmitted to the embryo. Thus, these mutations
are present in all cells within the offspring. Interestingly, WES
data enables the paternal or maternal origin of DNMs to be
determined, identifying which parental haplotype carries the
same mutation as that found in the proband. Interestingly, it was
noted that most of DNMs originate in the father (Iossifov et al.,
2012; O’Roak et al., 2012), which may perhaps not be surprising
given the ratio in the number of spermatozoa to eggs produced.
In addition, the number of DNMs is positively correlated with
paternal age and it has been calculated that each additional
year of paternal age at the moment of conception results in
two extra DNMs in the proband. Conversely, the number of
mutations transmitted maternally remains relatively constant
over the years (Kong et al., 2012). The number of cell divisions
that male germ cells continuously suffer could possibly explain
these findings, while female eggs do not actively divide during the
female’s reproductive years (Crow, 2000). Together, these results
are consistent with a hypothesis in which a higher paternal age
entails an increased ASD risk in probands due to the higher rate
of mutations.

Nevertheless, although the biological hypothesis plausibly
explains the relationship between paternal age and ASD risk, it
is unlikely to reveal more than a modest genetic risk fraction
(10–20%; Gratten et al., 2016). Therefore, there are additional
mechanisms to be considered, especially taking into account that
offspring of younger parents are also at risk of some mental
disorders (McGrath et al., 2014). One alternative hypothesis
suggests that delayed fatherhood is correlated with a tendency
toward neuropsychiatric illnesses. Therefore, genetic risk factors
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for psychiatric disorders that are highly heritable may be shared
by older fathers and their offspring (Gratten et al., 2016). Both
hypotheses are not mutually exclusive and they reflect how the
relationship between risk and paternal age is probably due to
a complex interrelated matrix of epidemiological and genetic
factors.

POST-ZYGOTIC MUTATIONS (PZMs)
AND MOSAICISM IN ASD

PZMs are another type of DNMs that are beginning to generate
much interest in ASD genetic studies. PZMs occur during the
mitotic cell divisions that generate the embryo after fertilization
and as a result, a mosaic individual is created in which a variable
number of cells carry the mutation (Figure 2; Biesecker and
Spinner, 2013). As such, the developmental timing and cell
lineages affected will probably determine the severity of the
symptoms in these disorders. PZMs are implicated in several
brain disorders, including epilepsy, cortical malformations, or
RASopathies (Kurek et al., 2012; Lee et al., 2012; Poduri et al.,
2013; Jamuar et al., 2014). Indeed, it was shown that some PZMs
carried by the X-Linked methyl CpG binding protein 2 (MECP2)
gene cause Rett’s Syndrome. Rett’s syndrome is usually lethal
in males and dominant in females but in some cases, mosaic
mutations have been reported that are compatible with male
viability (Pieras et al., 2012).

The detection of PZMs has been a challenge because they are
tissue-specific and ASD brain tissue is almost never available.
In order to solve this problem, sensitive genotyping techniques
are necessary, such as SNP microarrays, NGS and WES studies.
The success of these technologies relies on the ability to analyze
a large number of cells at once, which helps to increase the
probability of detecting mutations in a mosaic state. SNP
arrays can detect mosaics when at least 5% of the cells of an
individual are carrying the mutation (Conlin et al., 2010), while
NGS can also detect mosaic mutations based on the fraction
of unusual alleles calculated through the AAF. NGS provides
deep sequencing coverage that allows for the observation of a
sufficient number of reads with reference and alternate alleles
to accurately calculate AAF. In this context, PZMs have been
reported when the AAF ≤ 40%, shifting from the 50:50 ratio
expected for heterozygous germline mutations. Therefore, the
deep sequencing coverage of panels of candidate genes allow
mutations to be detected that are present in at least 5% of the
reads, meaning that 10% of the cells in the individual carry the
variant (Jamuar et al., 2014). WES is also sensitive enough to
detect PZMs when the AAF is at least 15%, which means that
mutations are present in about 25–30% of the cells (Pagnamenta
et al., 2012; Genovese et al., 2014).

Despite the potential role of PZMs in the etiology of ASD,
the common variant calling pipelines employed in WES lose
this valuable source of information due to the application of
strict filters to avoid artifacts. Reanalysis of the SSC using novel
calling approaches to specifically characterize SNVs that are likely
to be PZMs led to a higher proportion of mosaic SNVs (22%)
than those reported previously (Krupp et al., 2017). Elsewhere,

when WES data was recalled from the same cohort, about 80%
of the PZMs detected had not been published before (Lim
et al., 2017). Indeed, those variants were validated using three
different techniques, proving that PZMs can be better detected
by modifying the current pipelines (Table 3). In addition, these
studies identified PZMs in high-confidence NDD risk genes, such
as SCN2A, CTNNB1, SYNGAP1, and HNRNPU, evidence that at
least a proportion of PZMs predispose to ASD. Moreover, new
candidate genes were significantly enriched in PZMs, such as
KLF16 and MSANTD2 (Figure 2).

Detailed analysis of these variants, especially the truncating
mutations, revealed novel and uncharacterized pathways and
cellular processes that may possibly be involved in ASD
pathogenesis (Lim et al., 2017). Surprisingly, an increased
burden of synonymous PZMs in probands has been reported,
with synonymous mutations enriched in splice sites, indicating
that splicing regulation could contribute to ASD pathogenesis.
Moreover, around 2.3% of ASD simplex cases harbor a
synonymous PZM related to ASD risk. However, missense and
LoF PZMs were also associated with ASD, most of them affecting
genes expressed in the brain and other high confidence ASD
risk genes. Thus, it was estimated that PZMs contribute about
4% to the overall architecture of ASD (Krupp et al., 2017; Lim
et al., 2017). The spatiotemporal distribution of these mutations
has also been reported, pointing to the amygdala as a brain
area of interest that merits further attention in terms of ASD
pathogenesis.

In conclusion, preliminary studies have produced strong
evidence of the importance of considering PZMs in ASD
genetic studies. Therefore, it is necessary to elucidate how PZMs
contribute to ASD (and other NDDs), determining the genetic
risk that could be explained by them. Thus, different analytical
approaches and study designs need to be developed, involving
larger cohorts than those analyzed previously and developing
improved variant detection pipelines for PZMs.

CAVEATS AND FUTURE PERSPECTIVES
IN THE STUDY OF DNMs AND ASD
GENETICS

Despite the important advances made in the study of ASD
genetics over recent years, some caveats still exist regarding
the detection of DNMs, which will hopefully be resolved by
future studies. The study of PZMs carried out by the ASC

TABLE 3 | Results of the two main studies analyzing PZMs in ASD cohorts.

Study Krupp et al., 2017 Lim et al., 2017

Number of families analyzed 2264 5947

% Of PZMs detected applying
new bioinformatics pipelines

22% 9.7%

% Of mutations not previously
published

70.64% 83.3%

Both of them reanalyzed previously published data but applying different
bioinformatics pipelines in order to detect PZMs involved in ASD.
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FIGURE 2 | Post-zygotic mutation (PZMs) are acquired after the zygote forms, as opposed to germline mutations that are inherited from the parents. Therefore,
PZMs are not present in every cell of the organism, which is therefore a mosaic individual. It was recently demonstrated that PZMs contribute significantly to ASD
risk. The most relevant studies focusing on the detection of PZMs are represented along with the genes seen to carry different PZMs.

has helped establish an emergent type of genetic variation that
had been dismissed until now (Lim et al., 2017). Subsequently,
other studies have focused on this interesting and informative
type of DNM (Krupp et al., 2017), although the filtering and
variant calling processes used in these studies are quite different,
highlighting the need for a single, optimized and unified pipeline.
This is without doubt one of the future areas that will benefit
from further research. In relation to this, a proportion of de novo
CNVs are also expected to be postzygotic, yet the repercussion
of this type of post-zygotic structural variation in ASD genetic
architecture has still to be studied in detail. This will require the
implementation of suitable and valid bioinformatics pipelines.
Likewise, huge public repositories should be reanalyzed following
different pipelines in order to detect PZMs that may have been
missed until now, for example the SSC that currently contains
8975 whole genomes. Such efforts will help to highlight new
genetic factors involved in ASD pathogenesis.

Another relevant area of study involves the proportion
of DNMs in children that are parental mosaic mutations,
asymptomatic in the parents yet transmitted to the offspring. The
existence of this biological phenomenon was well documented in
other genetic diseases and in fact, a genetic test to detect parental
mosaicism is included in some routine diagnostic tests (Campbell
et al., 2014; Frederiksen et al., 2015). In terms of ASD genetics,

the overall incidence of parental somatic mosaicism reported to
date is extremely low (6.8% of all DNMs), yet not inexistent
(Dou et al., 2017; Krupp et al., 2017). Therefore, future studies
on the largest possible number of families, employing different
variant detection methods, will be decisive to elucidate the exact
role of parental mosaic DNMs in ASD. The identification of
genes carrying PZMs and the development of a genetic diagnosis
through a simple blood test in parents will also require further
research.

There is another type of genetic variation that will require the
development of new detection methods for indels (De Rubeis
et al., 2014; Brandler et al., 2016). De novo indels were previously
associated with ASD (KMT2E and RIMS1) but the systematic
analysis of disrupting indels will require the development of
robust and more accurate methods (Dong et al., 2014). Therefore,
it was demonstrated that the detection of indels could be
enhanced by using new algorithms that allow the assembly of
DNA sequences to be redefined in order to detect them more
accurately. Indeed, through the analysis of samples from the SSC
it was demonstrated that disrupting de novo indels plays a major
role in ASD genetics (Narzisi et al., 2014).

De novo mutations in non-coding regions have become of
interest in recent years. Previous WES studies were unable
to detect these variants due to the lack of coverage and
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sequencing depth across non-coding regions (promoter and
regulatory regions). However, there is evidence that ASD genes
harbor hotspots of hypermutability in non-coding regions and
besides, deleterious mutations across them are subjected to
strong negative selection just like the LoF mutations located
in the coding region (Michaelson et al., 2012; Warr et al.,
2015). Studying non-coding regions demonstrated that promoter
regions with in vivo enhancer activity in the central nervous
system are enriched in DNMs (Turner et al., 2017). The
important role of DNMs in NDDs was also demonstrated by
targeted sequencing of some selected types of promoter regions,
showing that around 1–3% of patients with no genetic diagnosis
carry pathogenic DNMs in some of these regions (Short et al.,
2018). Another recent study reported rare SVs located in cis-
regulatory elements of intolerant genes and their inheritance
from parents may contribute to ASD in about 0.77% of cases
(Brandler et al., 2018). Moreover, when the role of de novo
SVs (∼5.1%) was assessed, the importance of these variants for
future studies was evident. Recently, novel analytic pipelines
were developed to integrate DNM information from non-coding
and coding regions to characterize the broad spectrum of ASD
genetic variability, with non-coding de novo indels giving more
significant results than those expected by chance (Werling et al.,
2018).

These data highlight the current need to perform ASD genetic
studies using WGS instead of traditional exome studies. As such,
the effort of the SSC in bringing together almost 8975 whole
genomes for genetic analysis, including fathers, mothers, affected
and unaffected siblings, is noteworthy (Ku et al., 2012; Lelieveld
et al., 2015).

Regarding the integration of DNM information into higher
biological hierarchies using gene and protein networks, it
is also expected that new bioinformatics approaches will
shortly allow the implementation of integrative analysis
frameworks adapted to ASD biology. These integrative analyses
will not only take into account high-throughput data from
gene expression and PPI networks but also epigenetic data,
information on microRNA regulation, splicing events and

even quantitative trait loci when gene information from SNPs
is considered together with DNM data. This huge amount
of biological information will help define a more detailed
and valid map of the neurobiological pathways involved in
ASD.

CONCLUSION

Studies into ASD genetics and specifically, DNMs have come a
long way in the last few years. However, there are still some gaps
to be filled that will require further analysis and the development
of novel bioinformatics approaches to tackle them in sufficient
detail. The ultimate goal will be to obtain the most complete
and detailed biological map of ASD described to date, a map
integrating genetic information with other complementary omics
data, in order to unravel the complex gene networks and cellular
pathways involved in ASD.
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