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De novo Nanopore read quality
improvement using deep learning
Nathan LaPierre1, Rob Egan2, Wei Wang1* and Zhong Wang2,3,4*

Abstract

Background: Long read sequencing technologies such as Oxford Nanopore can greatly decrease the complexity of
de novo genome assembly and large structural variation identification. Currently Nanopore reads have high error
rates, and the errors often cluster into low-quality segments within the reads. The limited sensitivity of existing
read-based error correction methods can cause large-scale mis-assemblies in the assembled genomes, motivating
further innovation in this area.

Results: Here we developed a Convolutional Neural Network (CNN) based method, called MiniScrub, for
identification and subsequent “scrubbing” (removal) of low-quality Nanopore read segments to minimize their
interference in downstream assembly process. MiniScrub first generates read-to-read overlaps via MiniMap2, then
encodes the overlaps into images, and finally builds CNNmodels to predict low-quality segments. Applying MiniScrub
to real world control datasets under several different parameters, we show that it robustly improves read quality, and
improves read error correction in the metagenome setting. Compared to raw reads, de novo genome assembly with
scrubbed reads produces many fewer mis-assemblies and large indel errors.

Conclusions: MiniScrub is able to robustly improve read quality of Oxford Nanopore reads, especially in the
metagenome setting, making it useful for downstream applications such as de novo assembly. We propose MiniScrub
as a tool for preprocessing Nanopore reads for downstream analyses. MiniScrub is open-source software and is
available at https://bitbucket.org/berkeleylab/jgi-miniscrub.

Keywords: Deep learning, Long sequence reads, Oxford Nanopore, de novo assembly

Background
Long read sequencing has become increasingly impor-

tant in recent years, with sequencing technologies from

companies such as Pacific Biosciences [1] and Oxford

Nanopore [2] seeing wide use in a variety of applications

including genome assembly [1, 3], detection of antimi-

crobial resistance genes [4], sequencing personal tran-

scriptomes [5], and improving draft genomes [6]. Genome

assembly is one of the most promising and widely-

explored of these applications, as long repeat sections

have been shown to be among the most important factors

that affect assembly quality [7, 8], and long sequencing
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reads are much more capable of resolving these long

repeats. Theoretical analysis has indicated that increasing

read length from 100bp to 1000bp significantly simplifies

the de Bruijn graphs used in assembly algorithms and can

increase N50 size by six folds [7].

However, current single molecule, long sequencing

reads also have very high error rates, ranging from 5

to 40% [3] per read and often average about 10 to 20%

[1, 9], depending on variables such as the type and ver-

sion of the sequencing technology and the experiment

being performed. These high error rates can confound

assembly and other analysis and introduce significant

computational burdens [2, 3, 9, 10]. It is thus critical that

methods be developed towards addressing this issue so

that the potential of long read sequencing can be fully

realized. Many current solutions involve “hybrid error

correction” [3, 9, 11] by performing an additional sequenc-

ing run using low-error short reads and aligning them

to the long reads, followed by a consensus approach to
© The Author(s). 2019 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
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produce the correct sequence. Despite their success [3,

9, 11], the requirement for extra sequencing runs, often

with different technologies, imposes additional monetary

and temporal burdens [12]. Another approach involves

re-analyzing the raw signal output by the sequencing

machines to call the correct bases in the reads [13, 14], but

researchers may want not always have this raw signal data

available [15].

Thus, it is desirable to have a de novo method for

improving long sequencing reads that does not rely on any

information other than the reads themselves and is gen-

erally applicable across many technologies. Gene Myers

[16] and others [3] observed that long read errors tend

to locally cluster into certain low-quality “junk” segments,

raising the possibility of “scrubbing” [16] (removing) these

low-quality segments to significantly improve read qual-

ity. We use this term to avoid confusion with the similar

term “trimming”, which is usually used to refer to remov-

ing adapters and low quality bases primarily off of the

ends of short reads [17, 18]. Recent work has addressed a

related problem of de novo read error correction [19, 20].

However, even the best methods still produce quite a few

mis-assemblies, suggesting that independent and com-

plementary methods are necessary for further improving

assembly results. Additionally, most of these methods are

developed for the single genome setting, and may not

perform well in the metagenome setting.

Here we describe MiniScrub, a method for long

Nanopore read scrubbing. MiniScrub performs read-

to-read overlapping and converts this information into

images, followed by machine learning to identify the

low-quality read segments to be scrubbed. We overcame

several challenges inherent in this process. First, read-

to-read alignment is a quadratic problem that traditional

alignment tools such as BWA and Bowtie are not built

to handle efficiently [21]. Second, because the dominant

type of error in some long read sequencers is (potentially

large) indels [2], exact alignments can be difficult to

achieve. A recent method called MiniMap2 [22] addresses

both of these problems by performing read-to-read over-

lapping by identifying read pairs that share a number of

co-linear k-mers called “minimizers” [22, 23]. This avoids

the difficult problem of exact alignment and runs over 50

times faster than BWA, making read-to-read comparisons

tractable [22]. Finally, because these read overlaps only

provide information on a subset of k-mers shared between

reads, we are faced with a challenging pattern recognition

problem. Namely, how many k-mers in a region of a given

query read need to be supported by other reads, and by

how many other reads, for that region of the query read to

be considered high-quality?

We addressed this challenge by using deep learning, a

powerful and popular machine learning paradigm [24].

Deep learning has been increasingly applied in recent

years to problems within the biological sciences. A recent

notable example is DeepVariant, which achieved supe-

rior results in variant calling competitions and bench-

marks using a deep learning method called Convolutional

Neural Networks [25]. In MiniScrub, we developed a

novel method for encoding read-to-read overlaps into

“pileup” images, with information such as minimizers

matched, quality scores, and distance betweenminimizers

encoded in the color pixels of the images. These images

were used as input into a Convolutional Neural Network

(CNN), which is optimized to detect local patterns such

as those present in images [24], to predict which read seg-

ments are of low-quality. See the Methods section below

for an explanation of these terms. We show in the Results

section that scrubbing with MiniScrub is able to robustly

improve read quality and downstream assembly quality,

especially in the metagenome setting, even though assem-

blers already implement a read error correction step.

Implementation
Method overview

The three steps involved in MiniScrub are illustrated in

Fig. 1 and explained in further detail in the subsections

below. The first step is training a CNN model, a step only

needs to be done once, in order to learn the error pro-

file of a certain sequencing technology and base caller.

The learned model can then be applied to any dataset

of the same sequencing technology and basecaller that

it was trained on. The model training step starts with

building a training set with reads from a known reference

genome. These reads are mapped using GraphMap [26] to

the reference genomes.We then divide amapped read into

short segments, defined by a number of minimizers (see

following section). For each read segment we calculate its

percent identity, e.g. the percentage of bases in the read

that match the reference, as labels. Note that matching to

the reference is only used here because this is the train-

ing stage; reference genomes are not needed in the de

novo application stage. We then use a modified version of

MiniMap2 [22] to obtain read-to-read overlaps between

all reads in the training set (see below for details), and

embed relevant information (minimizers matched, dis-

tance between minimizers, and base quality scores) into

Red-Green-Blue (RGB) pixels to form “pileup” images.

One image is generated for each read, and is then broken

into the same short segments as above.

A CNNmodel is then trained with the above data, learn-

ing a mapping from a pileup image of a read segment to

the percent identity of that read segment. This process is

explained more in the subsections below. After the train-

ing phase, users can useMiniScrub to generate images and

segments of reads from the same sequencing technology,

and predict the percent identity of each read segment.

Reference genomes are only needed for generating the
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Fig. 1 Overview of MiniScrub. The Convolutional Neural Network (CNN) must be trained to predict sequence segment percent identity (percent
match to reference) from the read-to-read overlaps. To generate ground-truth percent identity for read segments, reads are generated from known
genomes in a reference database, then GraphMap [26] is used to map those reads to the reference, from which we calculate the percentage of
bases from each read segment that match the reference genome. We also use MiniMap2 to generate read-to-read mapping, then encode the
information into an RGB “pileup” image for each read, which is then split up into shorter segments. We then train the CNN to learn the segment
percent identity from the pileup images and save the model. On the user side, users run MiniMap2 on their set of reads and specify a cutoff
threshold for read segments to scrub. The learned CNN model then predicts read segment percent identity and scrubs the segments below the
quality threshold, outputting a new FASTQ file with the scrubbed reads

labels (percent identify of a segment) in the training phase

so that the CNN can learn the relationship between how

much a read is supported by other reads (represented in

pileup image form) and the accuracy of that read. When

subsequently presented with pileup images from a dataset

that may have novel sequences or for which a reference

database is unavailable, MiniScrub’s pre-trained CNNwill

be able to de novo predict the accuracy of reads based on

the relationship between pileup image and accuracy that

it learned in the training stage.

Finally, users can scrub out the segments below a user-

set percent identity threshold (e.g. 0.8). Taking a FASTQ

file as input, reads are split after low quality segments are

removed, and they are written into a new FASTQ file.

Read overlapping using MiniMap2 andminimizers

We use MiniMap2 to rapidly obtain all-to-all read over-

laps [22] as it is efficient and robust to indels. MiniMap2

is based on identifying reads that share many co-linear

“minimizers” [23]. Briefly, minimizers are the k-mers out

of a set of w consecutive k-mers that minimize a certain

function (such as alphabetical order). If two reads share

the same w consecutive k-mers, they are guaranteed to

share the same minimizer at that position; thus the mini-

mizers shared between reads are an effective compressed

representation of how closely reads match each other. We

modified the MiniMap2 program to output the positions

of all minimizers of all pairs of reads. Intuitively, if a min-

imizer in a given read is supported by many other reads,

then there is a high likelihood that those k bases covered

by the minimizer are error-free, while if no other reads

covering the same sequence share that minimizer, it is

likely to contain an error. For more details on minimizers,

see the original paper by Roberts et. al [23].

Pileup image generation and deep learning with CNNs

Since CNNs are best adapted for image input, we devel-

oped a method for generating images from the read

overlaps, which we refer to as “pileup” images [16]. One

“pileup” image was generated for each sequencing read,

since MiniMap2 uses each read as a “reference read” once

and gathers a set of “matching reads” for each reference

read (forming a read “pile”). We randomly choose 24 of

the matching reads (including the reference read itself )

to generate the pileup image; we observed little gain in

performance with more reads.
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An example pileup image is shown in Fig. 1. Pileup

images are generated by embedding the overlaps between

a reference read and its matching reads into Red-Green-

Blue (RGB) pixels, forming an image. In the image, each

column of pixels represents a minimizer in the reference

read. The top row in each image represents the reference

read, while subsequent pixel rows represent matching

reads, thus each image has 24 rows. For each pixel, the red

channel indicates whether or not a read contains this min-

imizer (yes: value 255, no: value 70). The green channel is

the average base quality score doubled such that it ranges

from 66-254. The blue channel represents the distance to

the next minimizer; intuitively, if the blue pixel value is

highly different between the reference read and a match-

ing read, one of them likely has an indel. Finally, a (0,0,0)

(black) pixel was entered for a section of a matching read

that MiniMap2 did not identify as being part of the match.

After the pileup image is generated for a read, it is divided

into 48-minimizer-wide segments (segments of the refer-

ence read spanning 48 minimizers), meaning each image

is 48 pixels long. This value was chosen for a strong bal-

ance between resolution and accuracy of predictions, but

can be modified by the user.

For training CNN models, we use a modified version

of VGG16, named after the Visual Geometry Group at

Oxford and the number of layers in the network [27].

We chose VGG16 because it is among the most success-

ful CNN architectures available [28], its architecture is

open source [27] and widely implemented, and we view it

as general-purpose and not overly-adapted to its original

image classification task. The original architecture con-

sists of 13 convolutional layers and three fully-connected

layers. Each convolutional layer uses 3×3 pixel filters.

VGG16 was originally developed to classify an image as

belonging to one of 1000 categories, but since we are seek-

ing to predict a real number from 0 to 1 (percent identity),

we modified the VGG16 architecture to output a single

real value. Even though we adapted the VGG16 architec-

ture, we trained our own model weights from scratch, as

we found the open-source VGGweights to be too adapted

to their original image classification task to work well for

our purposes.

We experimented with several optimizers, learning

rates, and other hyperparameters. Empirically, we found

that the Adam optimizer [29] with a learning rate of

0.0001 and mean squared error loss worked well. Weights

were initialized using the Glorot uniform initialization

[30] and the network was trained for five epochs. The code

in the linked BitBucket repository has further details.

Datasets, hardware, and software

We evaluated the performance of MiniScrub on two

Oxford Nanopore datasets, which we refer to as the “Low

Complexity” or “LC” dataset and the “High Complexity”

or “HC” dataset. The LC dataset is used in most of our

analyses, while the HC dataset is used in this section to

evaluate cross-dataset performance. The LC dataset con-

sists of two species sampled at high coverage, Escherichia

coli (204× coverage) and Sphingomonas koreensis (140×

coverage). In total, the LC dataset contained 747,598 reads

averaging 2.6kb in length, out of which 724,140 were

successfully mapped to the reference genomes. The HC

dataset consists of 260,930 reads sampled from 26 differ-

ent species, at a much lower coverage (0.005× to 64×).

The composition of the HC dataset is explained further

in [31] and both datasets are available via the National

Energy Research Scientific Computing Center (NERSC)

cloud (see the BitBucket repository linked in the abstract).

Both datasets were sequenced with Oxford Nanopore

MinION flowcell FLO-MIN107 and were basecalled with

Albacore version 1.2.1. We recommend users to train new

models for new flowcell and base caller versions.

The hardware used in the study was an NVIDIA

DGX-1 deep learning system, which has 8 Tesla V100

GPUs, 128GB GPU Memory, 512GB System memory,

40,960 CUDA cores, 5,120 NVIDIA Tensor Cores, and a

Dual 20-Core Intel Xeon E5-2698 v4 2.2 GHz Processor.

However, only a small fraction of these resources were

ultimately needed by our experiments, and GPUs are

not required to run MiniScrub, though MiniScrub will

be much slower without them. All experiments were

performed with MECAT version 1.3, Canu version 1.7,

TensorFlow version 1.8, and Keras version 2.2, with the

exception of one Canu run with version 1.6, noted in the

results section. Because MiniScrub has many dependen-

cies, we also created two docker images, one GPU-based

and one CPU-based, for users who do not wish to build

from source.

Results

MiniScrub robustly predicts low-quality segments within

Nanopore reads

MiniScrub predicts the “percent identity” (percent of cor-

rect bases) of each segment of a read (defined by a number

of bases or minimizers) and scrubs out segments below

a user-set threshold, splitting the reads at the low-quality

regions. To evaluate its performance, we use the Mean

Squared Error and Pearson and Spearman correlations

between the predicted percent identity by MiniScrub and

the actual percent identity recovered from mapping the

reads to the reference. Given our suggested user cutoff of

80% identity (or 0.8), we also calculated the sensitivity and

specificity ofMiniScrub’s ability to retain high-quality seg-

ments. In this case, high sensitivity translates into a low

false negative rate, which is desirable as we should retain

the high-quality segments as much as possible.

First, we evaluated MiniScrub’s performance by train-

ing its model on 25,000 reads, for 5 epochs, from



LaPierre et al. BMC Bioinformatics          (2019) 20:552 Page 5 of 9

the LC dataset (Methods) and tested its performance

on the remaining reads. The results indicated that

MiniScrub accurately predicted percent identity of read

segments, with a Mean Squared Error of 0.003 and

Pearson/Spearman correlation of 0.827/0.805 between

the predicted and actual percent identities. Furthermore,

given a user-specified cutoff of 0.8, MiniScrub had 95%

sensitivity and 68.1% specificity, meaning that it retained

95% of read segments that were actually above the 0.8

threshold and successfully removed 68.1% of those below.

This is a conservative setting, and more cutoff parameters

can be tuned to scrub more aggressively.

We next assessed the performance of MiniScrub using

two datasets generated from the same sequencing tech-

nology and base caller using the above metrics, to ensure

that MiniScrub does not overfit to a single dataset. In

contrast to the highly-covered, low-complexity commu-

nity of E. Coli and S. Koreensis in the LC dataset, the HC

mock community consists of 26 species at much lower

average coverage, representing a very different application

setting (Methods). We tested four different settings: train-

ing MiniScrub on the LC data and testing on the LC data,

training on LC and testing on HC, training on HC and

testing on LC, and training on HC and testing on HC. We

ran MiniScrub for each setting by training the CNN on

25,000 reads from the training dataset for 5 epochs, and

calculated the mean squared error, Pearson correlation,

Spearman rank correlation, and sensitivity/specificity at

a 0.8 cutoff threshold on 5,000 images randomly drawn

from the testing dataset. These results are shown in

Table 1; note that the first column corresponds to the

experiment described in the previous paragraph.

We observed comparable Spearman correlation across

all settings, while models tested on the HC data trade off

some sensitivity for higher specificity and have slightly

worse Mean Squared Error and Pearson correlation. The

small difference is likely due to the presence some low-

coverage genomes in the HC data, as low-coverage reads

Table 1 Results from training and testing on different datasets

LC train,
LC test

LC train,
HC test

HC train,
LC test

HC train,
HC test

Mean Sq. Error 0.00300 0.00447 0.00312 0.00391

Pearson 0.827 0.747 0.809 0.772

Spearman 0.805 0.795 0.778 0.802

Sensitivity 0.950 0.891 0.938 0.889

Specificity 0.681 0.734 0.681 0.751

“LC” is a low complexity, high coverage (140× to 204×) community derived from
747,598 reads from only two species, Escherichia coli (204× coverage) and
Sphingomonas koreensis (140× coverage). “HC” is a high complexity, low coverage
(0.005× to 64×) community derived from 260,930 reads from 26 species, described
in [31]. The cutoff point for the sensitivity/specificity results was set at 0.8. We use
the notation “LC train, HC test” to mean training the model on the LC data and
testing it on the HC data

will be less discriminatively scrubbed because they have

less support from other reads. The prediction accuracy is

comparable regardless which dataset is used for training,

suggesting that MiniScrub recognizes the error patterns

shared by these two different datasets.

Scrubbing enriches the high-quality read population

To test whether or not scrubbing improves read qual-

ity, we compared the reads from the LC dataset

(Methods) before and after scrubbing by aligning them

to the reference genome to obtain percent identity. As

shown in Fig. 2, after scrubbing we observed signifi-

cant improvements in the read quality. First of all, the

majority of the reads with a percent identity between

60-80 have been scrubbed, resulting in more, shorter

reads between 85-95 percent identity. Even though

MiniScrub does not perform error-correction, scrub-

bing out a small percentage of low-quality regions

(presumably chimera junctions or large indels) neverthe-

less raises average read percent identity by over 3% (from

83.1 to 86.2%). As shown in Table 1, MiniScrub retains

95% of high-quality read segments (sensitivity); this is

reflected in Fig. 2, as most of the reads with high percent

identity remain similar in length. Overall, average read

length after scrubbing was reduced from 2673 to 1594

bases, while the median was reduced from 1973 to 1161

bases.

MiniScrub improves read error correction in the

metagenome setting

MiniScrub is intended to be used as a preprocessing tool

that can improve downstream analysis. Due to the high

error rate of long reads, error correction is often per-

formed before other tasks such as assembly or structural

variation detection. We tested whether MiniScrub could

be applied before read error correction to improve its

performance. In particular, popular read error correction

methods, such as the error correction step in Canu [19],

are developed with the single-genome setting in mind and

may not work well when multiple genomes are present

in the sample. To investigate this setting, we applied

Canu’s error correction step to the high complexity (HC)

dataset [31] both with and without scrubbing the reads

beforehand, and then aligned the corrected reads to the

source genomes with GraphMap [26]. Results are shown

in Table 2.

Applying read scrubbing before read error correction

led to improvements in average coverage percentage and

coverage depth for the genomes in the HC dataset. The

average coverage percent of the source genomes increased

from 47.04 to 52.71%, the average mean coverage depth

across source genomes increased from 3.08 to 3.34, and

the percentage of genomes with a mean coverage depth of

at least 1.0 increased from 46.67 to 60%.
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Fig. 2 Density scatter plot showing average read quality improvement by MiniScrub versus raw reads. The X-axis shows read percent identity to the
reference while the Y-axis shows read length. Raw reads are in blue while scrubbed reads are in red. The darkness of the color indicates increased
“density” – more reads fall into a darker region of the graph than the lighter areas. MiniScrub scrubs out most of the low-quality segments in low
quality reads while leaving high quality reads intact, increasing average read percent identity by over 3%, from 83.1 to 86.2%. Average read length
decreased from 2673 bases to 1594 bases due to splitting reads where low-quality segments were removed. Reads > 25kbp have low density, and
are not shown in order to keep the substantive portion of the graph relatively large

MiniScrub leads to improvements in speed and/or

accuracy of de novo assembly

We tested whether or not MiniScrub can be used as a

preprocessing step to improve de novo assembly. Several

recent long read assembly methods for Nanopore have

been developed, including Canu [19], MECAT [32],

DALIGNER [21], and more. We chose Canu (version 1.6)

and MECAT (version 1.3) for this experiment, as Canu is

a popular and well-established method, while MECAT is

a newer method that is similar to Canu except with one of

the slowest steps of Canu optimized to be faster [32].

We assembled the LC dataset with MECAT and Canu

using either raw reads or scrubbed reads. MECAT seems

to have problems with very long reads, so we split raw

reads longer than 100kb into 100kb segments for it to run

Table 2 MiniScrub improves read error correction in the
metagenome setting

No scrubbing With scrubbing

Avg. coverage pct. 47.04% 52.71%

Avg. mean coverage depth 3.08 3.34

Pct. of genomes above 1.0
coverage depth

46.67% 60.00%

Reads from the high complexity (HC) dataset [31], both with and without scrubbing
beforehand, were corrected using Canu’s [19] error correction module and then
aligned to their reference genomes with GraphMap [26]. The statistics in the table
are averages across all source genomes that had non-zero coverage. Applying
scrubbing before read error correction improves average coverage percentage and
the average mean coverage depth across the source genomes, and leads to a larger
number of source genomes having a mean coverage depth of at least 1.0
Best performance numbers are shown in bold

without errors. Twenty six reads were split into 67 seg-

ments in this manner. MiniScrub by default removes reads

shorter than 500 bases, but Canu had problems with reads

below 1kb, so for the Canu test, we instead excluded reads

shorter than 1kb. Results were evaluated using Quast [33]

and are shown in Table 3.

Table 3 MiniScrub reduces downstream assembly errors

MECAT
Raw

MiniScrub
+
MECAT

Canu
Raw

MiniScrub +
Canu

% genome
assembled

79.39% 99.86% 99.69% 99.71%

NGA50 242478 1053459 1055037 696460

LGA50 12 3 2 5

# of contigs 38 11 7 19

# mis-assembled
contigs

28 5 2 2

# local
mis-assemblies

209 4 5 3

# indels > 5 bp 1099 394 84 46

Runtime (hours) 2.5 9 80 9

MiniScrub significantly improves assembly, tested with MECAT [32], increasing
genome coverage and NGA50 while limiting LGA50, mis-assemblies, mismatches,
and indels. Canu’s assembly had slightly reduced errors and misassemblies when
reads were preprocessed with MiniScrub, but the assembly was more fractured,
likely due in part to resolving large misassemblies and indels. Notably, Canu
assembly of raw reads took about 3.5 days, while the MiniScrub+Canu pipeline took
about 9 hours, likely due to a reduction in the amount of error correction needed in
the latter situation. Results were evaluated using QUAST [33]
Best performance numbers are shown in bold
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After scrubbing the reads,MECAT assembly quality was

dramatically improved, with genome coverage increas-

ing from about 79.39 to 99.86%, mis-assembled contigs

decreasing from 28 to 5, local mis-assemblies decreas-

ing from 209 to 4, and the number of indels longer than

5bp reduced from 1099 to 394. NGA50 and LGA50 mea-

sure the size and number of correctly-assembled contigs

required to cover half of the reference genome, with

contigs taken in descending order by length. Concretely,

MECAT assembly with raw reads required 12 contigs

with size 242,478bp or longer to cover half of the ref-

erence genome, while assembly with the scrubbed reads

only required 3 contigs, which were all 1,053,459bp or

longer. Thus, the scrubbed reads produce an improved

assembly with fewer, longer contigs that have fewer mis-

assemblies and cover muchmore of the reference genome.

Notably, MECAT applies an error correction step [32],

so MiniScrub significantly improves performance as a

preprocessing step even when subsequent read error cor-

rection is performed. This illustrates the potential of using

read scrubbing, read error correction, and assembly in

tandem.

The difference between Canu assemblies with raw reads

and scrubbed reads is much smaller compared with

MECAT assemblies. Scrubbing reduces local misassem-

blies from 5 to 3, and from 84 large indels to 46, while the

assembly becomes slightly more fragmented. Scrubbing

still improves the percentage of the genomes assembled,

indicating that the removed sequences that caused frag-

mentation were low-quality or redundant. Notably, Canu

runtime was dramatically reduced on scrubbed reads,

decreasing from over 3.5 days on raw reads to 9 hours on

scrubbed reads, including the read scrubbing step. This is

probably due to a large amount of low-quality data being

removed, simplifying the error correction step. In con-

trast, MECAT was much faster, taking about 2.5 hours

with raw reads, but about 9 hours to scrub the reads

and run assembly. This suggests that the dataset could

be assembled quickly and accurately using either MiniS-

crub+MECAT or MiniScrub+Canu, but without scrub-

bing the assembly could be inaccurate or time-consuming.

MiniScrub’s performance across different parameter

settings

By default, MiniScrub has a default pileup image size of

(Length, Depth) = (48, 24), meaning 48 minimizer-wide

segments, and up to 23 matching reads for each query

read. Additionally, MiniScrub uses minimizers with set-

tings (w,k) = (5,15), meaning that a minimizer k-mer of

length 15 is selected out of each 5 consecutive 15-mers.

We sought to evaluate whether MiniScrub was effec-

tive under these default parameter settings, and whether

it would be robust to reasonable adjustments to these

parameters. Starting from the default settings of (Length,

Depth)=(48, 24) and (w,k)=(5,15), we varied each pair of

parameters in turn while holding the other pair constant.

Namely, we evaluated the settings of (Length, Depth) =

(36, 36) and (w,k)=(7,17). We ran MiniScrub for each set-

ting by training the CNN on 25,000 images from the LC

dataset for three epochs and calculating the mean squared

error, Pearson correlation, Spearman rank correlation,

and sensitivity/specificity at a 0.8 cutoff threshold. These

results are shown in Table 4, along with results from the

default parameters for comparison. As the table shows,

MiniScrub performs robustly under all tested parame-

ter settings, giving similar performance. The results also

demonstrate how a user can adjust sensitivity and speci-

ficity performance to their needs by modifying parameter

settings. For example, see the increased performance in

specificity for the “(w,k)=(7,17)” column, at the cost of

some sensitivity.

Discussion
We developed a method called MiniScrub that per-

forms de novo long read scrubbing using the combined

power of fast approximate read-to-read overlapping, deep

Convolutional Neural Networks, and a novel method for

pileup image generation. We demonstrated that it accu-

rately scrubs out low-quality segments within Nanopore

raw reads to improve overall read quality, and that

the scrubbing improves read error correction in the

metagenome setting. We also highlighted one particu-

lar application area, de novo assembly, where results can

be improved by applying MiniScrub as a preprocessing

method.

We show that scrubbing facilitates downstream read-

correction process, improving both overall read quality

and genome coverage in the metagenome setting. This

may be primarily due to improved coverage of several low-

coverage genomes. The genomes in the HC dataset vary

significantly in coverage. In this dataset, Canu may over-

correct error-prone reads from low-coverage genomes

in favor of high-coverage genomes, since Canu expects

Table 4 Performance with different parameter settings

Default (Length, Depth)= (36, 36) (w,k)= (7,17)

Mean Sq. Error 0.00300 0.00329 0.00305

Pearson 0.827 0.821 0.830

Spearman 0.805 0.786 0.810

Sensitivity 0.950 0.934 0.914

Specificity 0.681 0.693 0.780

Performance with different parameter settings. w and k refer to the minimizer
parameters, while Length and Depth refer to the length and depth of each pileup
image segment, which correspond to the number of minimizers in that read
segment and the number of matching reads used. The default settings are
(w,k)=(5,15) and (Length, Depth) = (48, 24). The columns show the performance
when varying one of these settings and with cutoff 0.8
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only one source genome. By scrubbing the reads before-

hand, the remaining read segments for the low-coverage

genomes are higher-quality andmore consistent with each

other, and are thus less likely to be over-corrected by

Canu.

Besides de novo genome assembly, we expect read

scrubbing may also improve other downstream analyses,

such as large structural variation detection. As MiniScrub

uses a generic framework, it is possible that MiniScrub

can learn technology-specific error profiles. Even though

we focused on Oxford Nanopore reads in this study, read

scrubbingmay work on other long read technologies, such

as PacBio SMRT. One would have to train a new CNN

model for each different sequencing technology.

As MiniScrub splits reads at the point of scrubbing

(chimera junctions or indels), splitting at indels will lead

to lower assembly contiguity, especially affecting the low-

coverage regions. Even though this may be a trade-off

between contiguity and fewer errors, this leaves room for

future improvements. One of the potential improvements

would be to train the model to discriminate the chimera

junctions and indels, and only split the chimeric reads

while leaving those with large indels for read correction

modules to fix.

In our current CNN model, both convolution and

pooling are locally performed for small patches of the

pileup images separately, without considering contextual

dependencies between different patches. An interesting

methodological direction would be to change our model

to a Convolutional Recurrent Neural Network (CRNN) by

adding Recurrent Neural Network (RNN) layers to learn

contextual dependencies among sequential data through

the recurrent (feedback) connections. This CRNN model

may further enhance the predictive performance, espe-

cially the ability to detect low-quality regions.

Conclusions
MiniScrub is a novel deep learning method for improv-

ing Nanopore read quality. MiniScrub uses minimizers

to quickly overlap long reads, encodes these overlaps

into pileup images, and uses a convolutional neural net-

work to predict parts of reads below a certain quality

threshold that should be removed. We show that applying

MiniScrub robustly improves read quality and error cor-

rection and that this improvement leads to a reduction

in long indels and local mis-assemblies in downstream

assembly. MiniScrub was tested on Nanopore data, but

should in principle be generalizable to any long read

data, if trained properly. We propose MiniScrub as a

novel de novo long read preprocessing tool with partic-

ular usefulness in the metagenome setting that can ben-

efit downstream analysis such as assembly. MiniScrub is

open-source and available on BitBucket at https://

bitbucket.org/berkeleylab/jgi-miniscrub.

Availability and requirements
Project name: MiniScrub

Project home page: https://bitbucket.org/berkeleylab/

jgi-miniscrub

Operating system(s): Platform independent

Programming language: Python 3

Other requirements: TensorFlow, Keras, numpy, scipy,

matplotlib, pandas, pillow, h5py, scitkit-learn, MiniMap2.

Alternately, use one of the docker images as documented

on the BitBucket page.

License: BSD 3-clause

Any restrictions to use by non-academics: None

Abbreviations

CNN: Convolutional neural network
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