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ABSTRACT

Peptide sequencing via tandem mass spectrometry (MS/MS) is one of the most powerful tools
in proteomics for identifying proteins. Because complete genome sequences are accumulat-
ing rapidly, the recent trend in interpretation of MS/MS spectra has been database search.
However, de novo MS/MS spectral interpretation remains an open problem typically involving
manual interpretation by expert mass spectrometrists. We have developed a new algorithm,
SHERENGA, for de novo interpretation that automatically learns fragment ion types and
intensity thresholds from a collection of test spectra generated from any type of mass spec-
trometer. The test data are used to construct optimal path scoring in the graph representations
of MS/MS spectra. A ranked list of high scoring paths corresponds to potential peptide se-
quences. SHERENGA is most useful for interpreting sequences of peptides resulting from
unknown proteins and for validating the results of database search algorithms in fully auto-
mated, high-throughput peptide sequencing.
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1. INTRODUCTION

IN A FEW SECONDS, a tandem mass spectrometer is capable of ionizing a mixture of peptides with different
sequences and measuring their respective parent mass/charge ratios, selectively fragmenting each peptide
into pieces and measuring the mass/charge ratios of the fragment ions (MS/MS spectra of peptides). The
peptide sequencing problem is then to derive the sequence of the peptides given their MS/MS spectra. For
an ideal fragmentation process and an ideal mass spectrometer the sequence of a peptide could be simply
determined by converting the mass differences of consecutive ions in a spectrum to the corresponding amino
acids. This ideal situation would occur if the fragmentation process could be controlled so that each peptide was
cleaved between every two consecutive amino acids and a single charge was retained on only the N-terminal
piece. In practice, the fragmentation processes in mass spectrometers are far from ideal. As a result, de novo
peptide sequencing remains an open problem and even a simple spectrum may require tens of minutes for a
trained expert to interpret.
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Previous attempts to develop automated de novo peptide sequencing algorithms have followed either global
or local search paradigms. The former approach (Sakurai et al., 1984) involves the generation of all amino
acid sequences and corresponding theoretical spectra, i.e., calculation of all theoretically possible fragment
masses for each sequence. The goal is to find a sequence with the best match between the experimental and
theoretical spectrum. Since the number of sequences grows exponentially with the length of peptide, different
pruning techniques were designed to limit the combinatorial explosion in global methods. Prefix pruning
(Hamm et al., 1986; Ishikawa and Niva, 1986; Johnson and Biemann, 1989; Siegel and Bauman, 1988; Yates
et al., 1991; Zidarov et al., 1990) restricts the computational space to sequences whose prefixes match the
experimental spectrum well. The difficulty with the prefix approach is that pruning frequently discards the
correct sequence if its prefixes are poorly represented in the spectrum. Another problem is that the spectrum
information is used only after the potential peptide sequences are generated.

Local approaches tend to be more efficient for de novo peptide sequencing because they use the spectral
information before any candidate sequence is evaluated. In different modifications of the local approach the
peaks in a spectrum are transformed to a spectrum graph representation (Bartels, 1990; Ferndndez de Cossio
et al., 1995; Hines et al., 1992; Taylor and Johnson, 1997). The peaks in the spectrum serve as vertices in
the spectrum graph while the edges of the graph correspond to linking vertices differing by the mass of an
amino acid. Each peak in an experimental spectrum is transformed into several vertices in a spectrum graph,
and each vertex represents a possible fragment ion type assignment for the peak. Since a spectral peak could
be derived from either the N- or C-terminus of the peptide, allowing both is accommodated by converting all
vertices to N-terminal equivalents. The de novo peptide sequencing problem is thus cast as finding the longest
path in the resulting directed acyclic graph. Since efficient algorithms for finding the longest paths are known
(Cormen et al., 1991), such approaches have the potential to efficiently prune the set of all peptides to the set
of high-scoring paths in the spectrum graph.

Though some groups developed de novo sequencing programs beginning in the late 1980s, none is in
widespread use today. The more widely used database search programs (Clauser et al., 1996; Eng et al., 1994,
Fenyo, 1997; Fenyo et al., 1998; Mann and Wilm, 1994) rely on the ability “to look the answer up in the
back of the book” when studying genomes of extensively sequenced organisms. Although database matching
is very useful, a biologist who attempts to clone a new gene based on MS/MS data (Lingner et al., 1997)
needs de novo rather than database matching algorithms. However, the development of de novo algorithms
falls behind the experimental practice due to the following unsolved computational problems:

® Parameter Learning. Existing algorithms tend to be instrument dependent, i.e., they are designed for
the kind of fragment ions that are most likely for the authors’ particular type of mass spectrometer. No
rigorous approach to defining ion types and intensity thresholds in an instrument-independent fashion has
yet been described.

® Spectrum Graph. When the peptide fragmentation is incomplete the spectrum graph may break into
disconnected components. Random noise in the spectrum may generate many false vertices and edges in
the spectrum graph that promote false-positive interpretations in the absence of a good scoring schema.
Errors in the parent mass/charge assignment lead to misalignment between N-terminal and C-terminal
vertices in the spectrum graph. No computational approach to adjust inappropriate parent mass/charge
assignment has yet been described.

® Scoring Schema. No rigorous approach to scoring paths in the spectrum graph has yet been described
such that it is difficult to recognize the correct answer among the possible solutions.

® Sequencing Algorithm. The best scoring path in the spectrum graph may correspond to unrealistic
solutions because it uses multiple vertices associated with the same spectral peak. No approach to analyze
ions of unknown charge state has yet been described.

We have developed an algorithm and software SHERENGA that addresses the above problems.

2. PEPTIDE SEQUENCING PROBLEM AND SPECTRUM GRAPH

Let A be the set of amino acids with molecular masses m(a),a € A. A peptide P = pq,..., p, is a
sequence of amino acids, and the (parent) mass of peptide P is m(P) = >_ m(p;). A partial peptide P’ C P
is a substring p; -+ p; of P of mass Yy, _,_, m(p,).
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Peptide fragmentation in a tandem mass spectrometer can be characterized by a set of numbers A =
{6, ..., &} representing ion types. A S-ion of a partial peptide P’ C P is such a modification of P’ that has
mass m(P") — 8. For tandem mass spectrometry, the theoretical spectrum of peptide P can be calculated by
subtracting all possible ion types &, ..., & from the masses of all partial peptides of P (i.e., every partial
peptide generates k masses in the theoretical spectrum). An (experimental) spectrum S = {sy, ..., s,} is a
set of masses of (fragment) ions. A match between spectrum S and peptide P is the number of masses that
experimental and theoretical spectra have in common.

Tandem mass spectrometry peptide sequencing problem. Given spectrum S, the set of ion types A, and the
mass m find a peptide of mass m with the maximal match to spectrum S.

Denote the partial N-terminal peptide py, ..., pias P;,i = 1,...,n—1 and the partial C-terminal peptide
DPjs---»Pn as Pj_, Jj=2,...,n.In practice MS/MS spectrum S consists mainly of some of §ions of partial
N-terminal and C-terminal peptides. For example, the most frequent N-terminal ions (in Biemann, 1990
notation) are b, a, b-H,O, b-NH3 (A = {1, —27, —17, 16}) for an ion-trap mass spectrometer (Fig. 1).

Assume, for the sake of simplicity, that a spectrum from a tandem mass spectrometer consists mainly of

N -terminal ions. We capture the relationship between peptide P and ion types A ={J, ..., &} by transform-
ing spectrum S to a spectrum graph G A (S) (Bartels, 1990). Vertices of the graph are integers representing po-
tential masses of partial peptides. Every peak of spectrum s € S generates k vertices V(s) ={s+3J, ..., s+ &}.

The set of vertices of spectrum graph then is {Siiga} U V(s1) U -+ U V(sy) U {Sna}, where siniiar =0 and
Sinal =m (P). Two vertices u and v are connected by a directed edge from u to v if v — u is the mass of some
amino acid and the edge is labeled by this amino acid. If we look on vertices as potential N-terminal peptides,
the edge from u to v implies that the sequence at v may be obtained by extending the sequence at u by one
amino acid (Fig. 2).

A spectrum § of a peptide P is called complete if S contains at least one ion type corresponding to P; for
every 1 <i <n. The use of a spectrum graph is based on the observation that for a complete spectrum there
exists a path of length n from Sjpiar t0 Sanar in G4 (S) that is labeled by P. This observation casts the tandem
mass spectrometry peptide sequencing problem as one of the finding the correct path in the set of all paths
(Fig. 3).

Unfortunately, experimental spectra frequently contain noise and are not complete. Another problem is that
MS/MS experiments performed with the same peptide but a different type of mass spectrometer will produce
significantly different spectra. Different ionization methods (electroscopy, MALDI, fast-atom bombardment)
combined with different mass analyzers (ion trap, quadrupole, time of flight, magnetic sector) have dramatic
impact on the propensities for producing particular fragment ion types. Therefore every algorithm for de novo
peptide sequencing should be adjusted for a particular type of a mass spectrometer. To address this problem
we first describe an algorithm for an automatic learning of ion types and intensity thresholds from a sample of
experimental spectra of known sequence and a new approach to finding the correct path in a spectrum graph
that addresses incomplete and noisy spectra. We introduce the offset frequency function that represents an
important new tool for defining the ion-type tendencies for particular mass spectrometers. The offset frequency
function allows different types of mass spectrometers to be evaluated based on their propensity to generate
different ion types, thus making our algorithm instrument independent.
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FIG.1. Typical fragmentation patterns in tandem mass spectrometry.
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FIG. 2. Noise in spectrum generates many “false” edges in the spectrum graph and disguises edges corresponding to
real peptide sequences. Sequence reconstructions correspond to finding an optimal path in the spectrum graph.

FIG. 3. Sequence reconstructions correspond to paths in the spectrum graph.

3. LEARNING ION TYPES AND INTENSITY THRESHOLDS

If the ion types A = {4y, ..., &} produced by a given mass spectrometer are not known the spectrum cannot
be interpreted. Below we show how to learn the set A and ion propensities from a sample of experimental
spectra of known sequences without any prior knowledge of the fragmentation patterns.

Let S={sy,...,s,} be a spectrum corresponding to the peptide P. A partial peptide P; and a peak s;
have an offset x;; =m(P;) — s;; we can treat x;; as a discrete random variable. Since the probability of offsets
corresponding to “real” fragment ions is much larger than the probability of random offsets, the peaks in the
empirical distribution of the offsets reveal fragment ions. The statistics of offsets over all ions and all partial
peptides provides a reliable learning algorithm for ion types.

Given spectrum S, offset x, and precision ¢ let H (x, S) be the number of pairs (P;,s;),i=1,...,n—1,
Jj=1,...,m that have offset m(P;) — s; within distance ¢ from x. The offset frequency function is defined
as H(x)= Zs H(x, S), where the sum is taken over all spectra from the learning sample (Fig. 4). To learn
about C-terminal ions we do the same for pairs (P, , s;). Offsets A = {5, ..., &} corresponding to peaks
of H(x) represent the ion types produced by a given mass spectrometer. All the significant offsets we found
correspond to known ion types (Table 1).

A peak in an MS/MS spectrum actually represents a mass/charge (m/ z) ratio of the corresponding fragment
ion. Mass spectrometers are capable of producing ions with charge 2 or even more; in such a case the observed
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TABLE 1. INFORMATION ABOUT TERMINAL ION TYPES LEARNED FROM EXPERIMENTAL SPECTRA
Offset Integer offset Count Filtered count Probability Average intensity Term Ion
18.85 19 604 604 0.6895 4.5457 C y
0.85 1 568 565 0.6484 2.2788 N b
—17.05 —-17 338 338 0.3858 1.1966 N b-H,0
0.90 1 248 231 0.2831 0.5716 C y-H,0
—27.15 =27 204 200 0.2329 0.7537 N a
20.05 20 183 180 0.2089 3.4699 C y2
—16.15 —16 159 152 0.1815 1.2766 N b-NHj3
1.90 2 131 114 0.1495 0.6680 C y—-NH3
—35.20 -35 151 141 0.1724 0.5253 N b-H,O-H,O
—34.20 —34 134 131 0.1530 0.4736 N b-H,O-NHj3
—44.25 —44 129 126 0.1473 0.5516 N a-NHj3
—45.15 —45 107 98 0.1221 0.4820 N a-H,0
2.30 2 102 95 0.1164 1.7460 C yszZO
—16.10 —16 97 84 0.1107 0.4913 C y—-H2O-NH3
—17.15 —-17 91 71 0.1039 0.4935 C y-H,0-H,O

The remaining offsets have average count 45 and average intensity 0.431024.
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FIG. 4. Plots of the offset frequency functions. Horizontal axes represent offsets between peaks in spectra and masses
of partial peptide molecules. Vertical axes represent normalized offset counts with 1 being the average count. The only
significant offsets for doubly charged ions correspond to y and y—H,O ions.

m/ z is half (third, ...) of the ion’s actual mass. We analyze doubly charged ions by investigating an offset
frequency function H?(x, S) where offsets are given by m(P;) — 2s;.

Peaks in a spectrum differ in intensity and it is necessary to address the question of setting a threshold for
distinguishing the signal from noise in a spectrum prior to transforming it to a spectrum graph. Low thresholds
lead to excessive growth of the spectrum graph while high thresholds lead to fragmentation of the spectrum
graph. Earlier de novo sequencing algorithms set up the intensity thresholds for experimental spectra in a
largely heuristic manner and have not addressed the fact that the intensity thresholds are ion type dependent.
The offset frequency function allows intensity thresholds to be set up in a rigorous way.

Given a spectrum, we group intensities into bins of size K and rank K peaks with largest intensity by 1,
next K peaks are ranked by 2 and so on. Figure 5 illustrates that the offset frequency function falls rapidly
with rank increasing. The change of H(x) depending on the intensity rank (Fig. 6) guides us in selecting



332

DANCIK ET AL.

14
12+
@ .
S 04"
3 10
(3]
g 8+
B R S
o
g6 o o
g ‘ ‘“ i“' ‘ .......................
5 47 “ |¢ A ndde Hﬂf o .,.tt.
o ‘ u 1 ‘i 4 ‘t il
b4 : ‘ “, ‘ ‘t ,o; J ‘ ;/o,“ i o/,‘u,w,; 0a
y .‘" /' it f'o ’0
21 .' . i w:" “”'" ':i“" M il ""ao‘ i ,,.om , &
- A L AN\ 2 1,4 i : A 7 o
. "””: '4'%‘""”5’10 m’ :‘I:‘/“/"g/'fl‘;:/’:" /‘ 0' o:’:‘:';" ‘A/‘I" //'c'/«,“/" «"%":‘Z“ @
0 _J " AL AI & it (\c){\%
-80 40 g
~ -20 0 20 40 60 108
Offset
FIG.5. Offset frequency function depending on intensity and rank.
rank>1/rank < 1 rank>2/rank < 2
15 15
10 10
2
3 5 5 ‘
[¢]
2 0 T
g °
-10 -10
-15 -15
-60 -40 -20 0 20 40 60 -60 -40 -20 0 20 40 60
rank > 3/rank < 3 rank>4/rank < 4
15 15
10 10
a
§ 5 5
o
O O Y0 N W, D
o O 0
2z
§ -5 -5
-10 -10
-15 -15
-60 -40 -20 0 20 40 60 -60 -40 -20 0 20 40 60
rank25/rank <5 rank>6/rank < 6
15 15
10 10
2
5 s 5
[=
o [ Y N U
o O 0
2
g °
-10 -10
-15 ~15
-60 -40 -20 0 20 40 60 -60 -40 -20 0 20 40 60
rank2>7 /rank <7 rank>8/rank < 8
15 15
10 10
a
S 5 5
Q
(&)
o ¢} ey
2 R Y Y \
io" -5 -5
-10 -10
-15 -15
-60 -40 -20 0 20 40 60 -60 -40 -20 0 20 40 60
Offset Offset

FIG. 6. Offset frequency function H (x) for N-terminal ion types depending on rank [the size of the bins for computing
ranks is (parent mass)/100]. Plots show offset frequency function for ions with rank at least i (upper parts) and with rank
less than i (lower parts).
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intensity thresholds. Instead of applying uniform intensity threshold for the whole input we apply thresholds
selectively depending on ion types and a parent mass. Figure 6 convincingly demonstrates that the intensities
ranked below 5 represent nothing but random noise since the offset frequency function has no pronounced
peaks in this region. This conclusion suggests a limit for the number of peaks that should be used in MS/MS
database search programs. Moreover, Fig. 6 demonstrates that intensity thresholds are ion type dependent.
For example, the analysis of b-ions can be limited to intensity ranks 1, 2, and 3, while the analysis of b-H,O
ions can be limited to intensity ranks 3, 4, and 5. A similar analysis implies that only intensities ranked 1
and 2 (i.e., 20-30 high-intensity peaks) should be considered for y-ions while intensities ranked 2, 3, and 4
represent potential y-H,O ions.

4. REDEFINING SPECTRUM GRAPH

A naive approach to construction of the spectrum graph described above does not take into account inac-
curacies in experimental mass measurements. Above we assumed that if a partial peptide P; produces peaks
S1, ..., S8k corresponding to the ion types O, ..., 0 then s+ =5+ &= -+ =s; + & =m(P;) and all
k-ion types generate the same vertex in the spectrum graph. Of course, this is not the case for real spectra. Due
to inaccuracies of mass measurements the peaks sy, .. ., s; correspond to different vertices s; +9;, 1 < j <k
within mass tolerance.

The merging algorithm decides what vertices in the spectrum graph are to be merged into one vertex. It
is important to merge appropriate vertices; if we do not merge vertices that correspond to the same partial
peptide, we will interpret meaningful peaks of spectra as noise. On the other hand, if we merge vertices that
do not correspond to the same peptide, we may interpret noise as meaningful peaks.

We use a greedy algorithm to merge vertices. At every step we find the closest vertices, u (generated from
peak s) and v (generated from ) and merge them. The weight of new vertex will be the weighted average
[i(s)u +i(t)v)/ [i(s)+i(t)] of weights of u and v. We repeat merging until all vertices are at least & apart for
a given precision &. The greedy algorithm for merging provides satisfying results for most spectra. Analysis
of histograms of offsets between most frequent ion types can be used to select appropriate € (0.5 in our case).

We connect vertices # and v by an edge (labeled a) if the mass of an amino acid a is approximately equal to
the distance between the two vertices,i.e., —& < v —u —m(a) < ¢for error range &. Analysis of the histograms
of offsets for all pairs of peak implies that £=0.5 is an appropriate choice for error range in defining edges
of spectrum graph (data are not shown).

If a peptide undergoes incomplete fragmentation, the spectrum graph does not contain a vertex correspond-
ing to an underrepresented position in that peptide. This can lead to a fragmented graph or, more frequently,
a graph with paths that do not correspond to feasible solutions. To overcome this problem we modify the
spectrum graph by introducing gap edges that model di- and tripeptides spanning underrepresented positions.

Sometimes in the course of merging, the weights of appropriate vertices become off more than £ = 0.5 even
when there are corresponding peaks with difference within 0.5 of the amino acid mass. Since such vertices
are not connected by an edge, we are at risk of losing important edges in the spectrum graph. To avoid it we
introduce bridge edges in the spectrum graph. We connect two vertices u and v either by a (regular) edge with
label a if —e < |v —u| —m(a) < ¢ or by a bridge edge if there are peaks s, € S and ion type d € A such that
—&<|s —t| —m(a) < g and vertex s + 6 was merged into u and vertex ¢ 4+ 6 was merged into v.

S. PARENT MASS

Accurate determination of the parent mass/charge is extremely important in de novo peptide sequencing.
An error in parent mass measurement leads to systematic errors in the masses of vertices for C-terminal ions
thus making peptide reconstruction difficult. In practice, the difference between the real parent mass (given by
the sum of amino acids of a peptide) and the experimentally observed parent mass is frequently so large that
the errors in sequence interpretation become almost unavoidable. To address this problem we have designed
a combinatorial algorithm for parent mass correction (driven by the relationship between corresponding b-
and y-ions and the parent mass) that can provide a more accurate determination of the parent mass than the
experiments.

We use simple alignment of spectra to compute parent masses. If S={s;,...,s,} is the spectrum of

a peptide P then the reflection of S is a spectrum S ={5;,...,3,} such that §; =m(P)—s; —d, where



334 DANCIK ET AL.

+ data
1k * compute
k]
] ok Mk ek He Koy k E
£ 0k, W e R Kk 93 Wi +%f W
© ++++++ +++++++++ | g ¥ ﬁ et
1k + + . . + ++ 4
+ + +
_2| 4
_3 1 1 1 1 1 L 1
0 10 20 30 40 50 60 70 80

Peptide

FIG.7. The offsets between experimentally observed parent masses and m(P) are marked by +. The offset between
combinatorially computed parent masses and m(P) are marked by *. The average error for parent mass computed by our
algorithm is 0.0766 (standard deviation 0.1844) while for observed parent mass it is 0.4743 (standard deviation 0.3732).

d =m(y-ion) — m(b-ion) is the difference of offsets of y-ions and b-ions. Note that if a spectrum S contains
a peak s that corresponds to a b-ion of a partial peptide P; and peak ¢ that corresponds to a y-ion of P,” then
5 =1 and therefore spectra S and § have a common element. For correct m(P) we should see good alignment
between peaks corresponding to b-ions in S and peaks corresponding to y-ions in S.

We use this observation to devise an algorithm for computing the parent mass. For a spectrum S = {sy, .. .,
sm} and a number x we define S(x)={5,,...,5,} where 5, =x —s; —d. Spectra S and § may have some
peaks in common just by chance, for a “random” mass x the number of peaks in common is approximately
[m(P) d*(S)] ~0.5. However, for x =m(P) spectra S and S tend to have more peaks in common due to the
alignment between b-ions and y-ions. Since the condition that both P; and P, ions are present in the spectra
is satisfied in 45% of cases (average number of aligned peaks is 6.4) we are able to devise the following
combinatorial approach to estimate m(P).

Let ¢[S, S(x)] be the number of peaks s; € S and 5;€ S(x) such that |s; — 5;| < &, where gis given precision.
The value of x that maximizes c[S, §(x)] then would be an appropriate choice for parent mass. Should there
be many choices for x, we can select one that minimizes the sum of distances |s; — 3;| of the aligned peaks
si€Sands; € §. Figure 7 demonstrates that this approach significantly improves the accuracy of the parent
mass determination. This approach can similarly be used to correct a misassignment of the parent mass/charge
value resulting from an incorrect charge assignment (data not shown).

6. SCORING PATHS IN SPECTRUM GRAPH

The goal of scoring is to quantify how well a candidate peptide “explains” a spectrum and to choose the
peptide that explains the spectrum the best. If p(P, §) is the probability that a peptide P produces spectrum
S then the goal is to find a peptide P maximizing p(P, S) for a given spectrum S. Below we describe a
probabilistic model, evaluate p(P, S), and derive a rigorous scoring schema for paths in the spectrum graph
(versus largely heuristic previous approaches). The longest path in the weighted spectrum graph corresponds
to the peptide P that “explains” spectrum S the best.

In a probabilistic approach tandem mass spectrometry is characterized by a set of ion types A = {6, .. ., &}
and their probabilities {p(&;), ..., p(&)} such that &-ions of a partial peptide are produced independently
with probabilities p(&). A mass spectrometer also produces a “random noise” that in any position may
generate a peak with probability gg. Therefore, a peak at position corresponding to a &-ion is generated
with probability ¢; = p(5)+ [1 — p(8)lgr that can be estimated from the observed empirical distributions
(Table 1). A partial peptide may theoretically have up to k corresponding peaks in the spectra. It has all k
peaks with probability Hle q; and it has no peaks with probability Hle(l —¢g;). The probabilistic model
defines the probability p(P, S) that a peptide P produces spectrum S. Below we describe how to compute
p(P, S) and derive scoring that leads to finding a peptide maximizing p(P, S) for a given spectrum P.

Suppose that a candidate partial peptide P; produces ions &, ..., & (“present” ions) and does not produce
the ions §41, ..., & (“missing” ions) in the spectrum S. These ! “present” ions will result in a vertex in
the spectrum graph corresponding to P;. How should we score this vertex? The existing database search
algorithms use “a premium for explained ions” and/or “penalty for unexplained ions” approach suggesting
that the score for this vertex should be proportional to g -- - g; or maybe g,/ qg - - qi/ gr to normalize the
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probabilities against the chemical and electronic noise. (The ratios g;/ g can be taken from the offset frequency
function.) Below we show that significant improvement results from penalizing for the nonpresence of ions in
the experimental spectrum, which is possible from fragmentation of a candidate sequence. The (probability)
score of the vertex is then given by

q1 ﬂ(l_ql-&-l)“'(]_qk)
qr  qr (1 —gg) (I —gr)

(“premium for present ions, penalty for missing ions”). This important observation was overlooked in scoring
the MS/MS database hits. Although the “premium for present ions, penalty for missing ions” approach may
sound counterintuitive, it is confirmed both by our theoretical analysis and improvements in SHERENGA
performance as compared to not penalizing for missing ions.

We explain the role of this principle for a resolution of a simple alternative between dipeptide GG and
amino acid N of the same mass. In the absence of “penalty for missing ions” GG is selected over N in the
presence of any (even very weak random noise) peak supporting the position of the first G. Our results imply
that such a rule leads to many wrong GG-abundant interpretations and indicate that a better rule is to vote
for GG if it is supported by a b- or y-type ion with sufficient intensities, which is automatically enforced by
our “premium for present ions, penalty for missing ions” scoring. The same concepts extend to ambiguities
between AG/GA vs. K or Q.

For the sake of simplicity we assume that all partial peptides are equally likely and ignore the intensities
of peaks for now. We discretize the space of all masses in the interval from O to the parent mass m(P)=M,
denote T ={0, ..., M}, and represent the spectrum as an M-mer vector S = {sy, ..., sy} such that s; is the
indicator of presence/absence of peaks at position ¢ (s, =1 if there is a peak at position ¢ and s; =0 otherwise).
For a given peptide P and position ¢, s, is a 0—1 random variable with probability distribution p(P, s;).

LetT; ={t;1, ..., t;x} be the setof positions that represents A -ions of a partial peptide P; where A ={J, ...,
&}. Let R=T\ U; T; be the set of positions that is not associated with any partial peptides. The probability
distribution p(P, s;) depends on whether ¢ € T; or ¢ € R. For a position t =1¢;; € T; the probability p(P, s;) is
given by

q;, if s, =1 (i.e., a peak is generated at position t)
p(P,s;) = . (D
q;, otherwise.
Similarly for ¢ € R the probability p(P, s,) is given by
qRr, if s; =1 (i.e., there is a random noise at position ),
Pr(P,s1) = . (2)
1 —qg, otherwise.

and the overall probability of “noisy” peaks in the spectrum can be estimated as HreR Pr(P,sp).

Let p(P;, S)= HreT,- p(P, s;) be the probability that a peptide P; produces a given spectrum at positions
from the set 7; (all other positions ignored). For the sake of simplicity, assume that each peak of the spectrum
belongs only to one set 7; and that all positions are independent. Then

M n
pP. sy =[] rp.s) = lH p(P;. S)] [ pecp. s
t=1 i=1

teR

For a given spectrum S the value HreT pr(P, s,) does not depend on P and the maximization of p(P, S)
is the same as the maximization of

n k
L2 (P.s) ] prcP.so

p(P,S) =1 j=l 1€R
Pr(S) [ pecp.so

teT

where pr(S)= [[,c; Pr(P, 51).
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In logarithmic scale the above formula together with (1) and (2) implies the additive “premium for present
ions, penalty for missing ions” scoring of vertices in the spectrum graph. Itis worth mentioning that this scoring
and “premium for present ions” scoring can be converted into each other by a parametric transformation. To
incorporate the intensities into scoring we assume that intensity for ion type 6; is distributed according to
empirical distribution /5 (x) and modify formulas (1) and (2) accordingly.

7. SEQUENCING ALGORITHM: ANTISYMMETRIC PATHS

After the weighted spectrum graph is constructed we cast the peptide sequencing problem as the longest
path problem in directed acyclic graph. This problem is solved by a fast linear time dynamic programming
algorithm, thus giving the spectrum graph approach an advantage over the global approaches.

Unfortunately, this simple algorithm does not quite work in practice. The problem is that every peak in
the spectrum may be interpreted either as an N-terminal ion or C-terminal ion. Therefore, every “real” vertex
(corresponding to a mass m ) has a “fake” twin vertex [corresponding to a mass m(P) — m — offset]. Moreover,
if the real vertex has a high score then its fake twin also has a high score. The longest path in the spectrum
graph then tends to include both real vertex and its fake twin since they both have high scores. Such paths
do not correspond to feasible sequence interpretations and should be avoided. However, the known longest
path algorithms do not allow for avoiding such paths. This problem was overlooked in the previous work on
de novo peptide sequencing.

Therefore, the reduction of the tandem mass spectrometry peptide sequencing to the longest path problem
described earlier is inadequate. Below we formulate the antisymmetric longest path problem in a way that
adequately models the peptide sequence interpretation.

Let G be a graph and let T be a set of forbidden pairs of vertices of G (twins). A path in G is called
antisymmetric if it contains at most one vertex from every forbidden pair. The antisymmetric longest path
problem is to find a longest antisymmetric path in G with a set of forbidden pairs 7.

Unfortunately, the antisymmetric longest path problem is NP-hard (Garey and Johnson, 1979), thus indi-
cating that efficient algorithms for solving this problem are unlikely. However, this negative result does not
imply that it is hopeless to find an efficient algorithm for tandem mass spectrometry peptide sequencing since
the problem has a special structure of forbidden pairs.

Vertices in the spectrum graph are numbers that correspond to masses of potential partial peptides. Two
forbidden pairs of vertices (x1, y1) and (x,, y,) are noninterleaving if the intervals (xy, y;) and (x;, y») do not
interleave. A graph G with a set of forbidden pairs is called proper if every two forbidden pairs of vertices
are noninterleaving.

Thus the tandem mass spectrometry peptide sequencing problem corresponds to an antisymmetric longest
path problem in a proper graph. We prove that there exists an efficient algorithm for the antisymmetric longest
path problem in a proper graph (to be described elsewhere).

8. RESULTS

Figure 8 shows the SHERENGA performance depending on the quality of spectra. A dot inside a rectangle
in column i indicates that SHERENGA correctly computes the mass of partial peptide P; in the corresponding
row. Two consecutive dots in columns i and i + 1 usually indicate that SHERENGA correctly interprets the
ith amino acid in the corresponding row. The major conclusion is that SHERENGA almost always correctly
interprets the representative positions of the spectra and misinterprets mainly nonrepresentative positions
(corresponding to white and some light gray rectangles). Since any de novo algorithm would likely misinterpret
nonrepresentative positions we feel that SHERENGA is close to the best possible performance of de novo
algorithms. Moreover, SHERENGA misinterpretations are usually local, i.e., they are limited to substitutions
of short pieces with the same mass. Figure 9 illustrates the first 20 predictions in more detail.

Figure 10 shows examples of interpretations with different quality. In the case of perfect interpretations
SHERENGA annotates all the peaks correctly resulting in the correct peptide sequence. In the case of good
interpretations SHERENGA annotates all or most of the peaks correctly and interprets the middle portion
of the sequence. Good interpretations usually contain ambiguities at initial and/or terminal 1-3 amino acids.
The perfect and good interpretations account for 75% of cases. Figure 10 also presents an example of a bad
interpretation with misinterpreted peaks in the spectra and usually only a short piece of the peptide sequence
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FIG. 8. The presence of ion types depending on position for spectra from our learning sample. Every rectangle corre-
sponds to a partial peptide and the color of the rectangles indicates the presence/absence of different fragment ions. The
intensity thresholds are defined based on the offset frequency function. The dark gray rectangle shows the presence of
both b- and y-ions where at least one of them exceeds the intensity threshold. The medium dark gray rectangle shows the
presence of a b- or y-ion (but not both) exceeding the intensity threshold. The light gray rectangle shows the presence of
a low-intensity b and/or y-ion or the presence of another ion type. The white rectangle shows the absence of any peak in
the spectra that may be associated with that position. The dots in the middle of rectangles indicate that the mass of the
actual partial peptide is correctly assigned with the top scoring sequence interpreted by SHERENGA for the correspond-
ing MS/MS spectrum. Dots in two consecutive columns indicate that SHERENGA correctly interprets the amino acid
between the two positions.

interpreted correctly. In most such examples the correct answer contains a secondary (minor) fragment ion
type with atypically strong intensity. Other causes of bad interpretation are spectra with very limited peptide
fragmentation. Of course, in such cases any scoring cannot help since many sequence permutations are
consistent with the spectral peaks. It is in such cases that database matching approaches are highly effective,
as only one of the sequence permutations will be present in the database.

To evaluate the performance of de novo algorithms we introduce the ladder difference between the predicted
and real peptide. Every peptide P = p; -- - p, is associated with the ladder L(P) of n — 1 masses of partial
peptides m(P;), i =1, n — 1. The ladder difference between peptides is a set difference between their ladders.
For example, for (real) peptide TPVSEHVTK and (predicted) peptide TPVSCYVTK (Fig. 9) there are seven
coinciding masses in the ladders (after T, P, V, S and before V, T, K) and two noncoinciding ones (before
H and Y). The ladder difference D(TPVSEHVTK, TPVSCYVTK) =2. More precisely, given the predicted
peptide Ppeq and real peptide Prey we define |L(Pprea) © L(Prear)| as the false-positive error (equals 1 for our
example) and |L (Prea) © L(Ppeq)| as the false-negative error (equals 1 for our example). The ladder distance
between peptides is the sum of their false-positive and false-negative errors.

The initial/final positions of the peptides frequently contain sequence ambiguities. To eliminate the influence
of these positions we adjust the definition of the ladder distance by excluding the initial/final positions that
do not match. More precisely, we find the first and last matching elements in the ladders of real and predicted
peptides and compare the ladders between these positions. If more than three initial/final elements of these
ladders do not match, we compare the ladders starting/ending from/at three initial/final positions. Table 2
presents the cumulative results of SHERENGA predictions in the ladder distance measure.
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TABLE 2. THE PERFORMANCE OF SHERENGA ALGORITHM IN THE LADDER DISTANCE
0 1 2 3 4 >5

0 42.8 7.8 0.0 0.0 0.0 0.0

1 11.7 10.4 3.9 0.0 0.0 0.0

2 0.0 5.2 2.6 0.0 1.3 0.0

3 0.0 1.3 0.0 1.3 1.3 0.0

4 0.0 0.0 0.0 0.0 0.0 3.9
>5 0.0 0.0 0.0 0.0 1.3 5.2

The number in row i and column j shows the percentage of predictions with i false-positive errors
and j false-negatives errors.

Peptide

5
T

207|T AP vis|s|TiAlGlP, O ) TIAI8S T8 K
[F171.6] +2143[STA[ VIA[G] *2766 |S[ D[ <3223

|

I

Al Y [ K]
AT Y | K|

N
[
o
=<[=<

17}
0|

oiluw TO|v

- z|z -

o«
[

———— e

G, S

s

ST E

ok T A via[ L |via
[2426 [S]A G VG L |V |AlG[*1853

Al L D E|N

L ) E[N

s| F |alals 1 A R
S| F |AJA|S[+2120] K |

N
m
<

1
11902] , I 1 1 1 L |
0 200 400 600 800 1000 1200 1400 1600 1800 2000 2200

FIG.9. Thereal (upper ladder) and predicted (lower ladder) peptides for the first 20 spectra in the sample. The peptides
are shown by the ladders of bands reflecting the masses of partial peptides. Ambiguities are reflected by symbols * (less
than 5 variants), # (5-10 variants) and * (more than 10 variants) followed by the mass of the corresponding dipeptide or
tripeptide. The height of the band in the upper ladder reflects the ion types supporting this band. A tall band indicates a
support by a b- or y-ion, a medium band indicates a support by any other ion, a and short band indicates no support by
ions. Ambiguities usually correspond to nonrepresentative positions (medium and short bands).

9. EXPERIMENTAL CONDITIONS AND SPECTRAL PREPROCESSING

Peptides were obtained from in-gel or in-solution tryptic digestion of proteins isolated from yeast lysates,
mouse plasma, and urine. All MS/MS spectra were acquired using electrospray ionization on an LCQ ion
trap mass spectrometer Finnigan-MAT (San Jose, CA) operated in automated LC/MS/MS mode. Reversed-
phase high-performance liquid chromatography separation was performed with a 75- um-id capillary columns
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FIG. 10. Examples of SHERENGA predictions.

flowing at a rate of 0.5 ul/min with typical injection of 100 fmol-1 pmol peptide. Centroided MS/MS spectra
were acquired in normal scan mode yielding unit resolution with 30 V relative collision energy, 3 Da isolation
width, 5 microscans, and 60 msec maximum inject time. Prior to interpretation with SHERENGA, spectra
were preprocessed to remove peaks in a 20-Da window below the precursor ion to eliminate the precursor
ion and ions representing neutral losses of H,O and NHj if present. Fragment ion peaks were deisotoped to
retain only monoisotopic peaks.

10. DISCUSSION

Tandem mass spectrometry is very successful in identification of proteins present in genome databases
(Patterson and Aebersold, 1995). Several database search algorithms use either partially interpreted (Mann
and Wilm, 1994) or uninterpreted (Clauser et al., 1996; Eng et al., 1994; Fenyo et al., 1998) data. These
techniques require, of course, that the database contains the identical sequence or one very similar to the
peptide studied. Furthermore, database search strategies tend to succeed in spite of sequence ambiguities
arising from incomplete fragmentation where the MS/MS experiment does not fragment the peptide between
each amino acid. Because they need discriminate only among the limited subset of sequences encoded in
the genome of a living organism, database search strategies enable assignment of a sequence to a spectrum
containing only partial fragmentation, while a de novo interpretation might yield only a few consecutive amino
acids of sequence (Clauser et al., 1999b).

Meanwhile, de novo peptide sequencing by MS/MS has not been widely practiced because of the tendency
toward incomplete fragmentation with the most common instrumentation and the expertise required for spectral
interpretation. As a result, MS/MS has had a very limited practical impact on discovery of new proteins. There
are precious few examples describing cloning of a gene on the basis of MS/MS-derived sequence information
alone (Wen et al., 1992; Lingner et al., 1997; Jimémez et al., 1998). Subsequent design of degenerate PCR
primers for gene amplification is typically hindered by the ambiguities and the short lengths of the de novo
sequenced peptides. In both the cloning of GalB1,3(4)G1lcNAca?2,3-sialyltransferase (Wen et al., 1992) and the
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catalytic subunit of telomerase (Lingner et al., 1997) 14 peptides were sequenced de novo following isolation
of the protein. By contrast the small cardioactive peptide preprohormone (Jimémez et al., 1998) was cloned
using the single sequence derived de novo following isolation of the mature neuropeptide. In each case both
data acquisition and interpretation were performed manually by expert mass spectrometrists.

The primary hindrance to generation of a complete peptide sequence has been the extent of fragmentation
a peptide undergoes during an MS/MS experiment. Low-energy collision-induced dissociation (CID) instru-
ments, such as triple quadrupole (Hunt et al., 1986), hybrid sector quadrupole (Bean et al., 1991), hybrid
quadrupole time of flight (Shevchenko et al., 1997), and ion traps (Jonscher and Yates, 1997), typically produce
MS/MS spectra yielding a partial sequence of varying levels of completeness, and a complete sequence with
peptides fortuitously amenable to fragmentation. In contrast near-complete peptide sequences typically result
from MS/MS with instruments employing high-energy CID. Distinguishing between the amino acids leucine
and isoleucine, which have identical mass, is also possible only with high-energy CID instruments. However,
four-sector, (Medzihradszky and Burlingame, 1994) and hybrid sector/time of flight (Medzihradszky et al.,
1996) are available only in a few laboratories since they are expensive and need highly skilled operators.
Fortunately for cloning purposes, after proteolytic digestion of a protein and sequencing its peptides, there are
many chances to generate a peptide sequence while only two PCR primers of suitable degeneracy are needed
for gene amplification.

The first discoveries of new proteins based on de novo MS/MS data and recent development in fully auto-
mated data acquisition for LC/MS/MS experiments confirm the need for development of a reliable de novo
peptide sequencing algorithm. Furthermore, itis foreseeable that the development of an automated LC/MS/MS
system integrated with a de novo interpretation algorithm could open a door toward “proteome sequencing.”
Long stretches of a polypeptide sequence could be assembled following generation and sequencing of over-
lapping sets of peptides from separate treatment of complex protein mixtures with proteolytic enzymes of
differing specificity. Complete protein sequence determination has already been demonstrated with such a
strategy on a single protein (Hopper et al., 1989).

Mainstream gene discovery projects frequently start in model organisms with partially sequenced genomes
where MS/MS-based database searches are susceptible to failure when the protein under study is not in
the database. Frequent errors and uncertainties in ESTs provide another motivation for de novo MS/MS
interpretation. To consistently succeed in such an environment, database search strategies employed with
MS/MS spectral interpretation must therefore be mismatch tolerant. Consequently, recent efforts in algorithm
development have focused on sensitive database searches to achieve that goal (Clauser et al., 1999b; Taylor and
Johnson, 1997). SHERENGA as a prelude to sequence similarity search programs such as BLAST provides
a remedy in such a situation that can accommodate multiple substitutions/insertions/deletions in the target
sequence as well as errors in ESTs. In the case of perfect or good SHERENGA interpretations (accounting for
75% of cases) PCR primer design is enabled. Moreover, ambiguities in peptide sequence interpretation can be
accommodated by repeated similarity searches using the set of highest scoring sequences in the SHERENGA
ranked list of candidate sequences.

Another application of SHERENGA exists in validation of conventional MS/MS database search. In fully
automated sequencing efforts driven by database searching, minimizing the need for human data review
depends on the ability to recognize cases when the peptide in question is not in a database or the database
search is yielding a false-positive match. Correlation of the database search result with de novo interpretation
can thus significantly improve the overall reliability of the process.
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