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Abstract

Background: The rubber tree, Hevea brasiliensis, is a species native to the Brazilian Amazon region and it supplies

almost all the world’s natural rubber, a strategic raw material for a variety of products. One of the major challenges

for developing rubber tree plantations is adapting the plant to biotic and abiotic stress. Transcriptome analysis is

one of the main approaches for identifying the complete set of active genes in a cell or tissue for a specific

developmental stage or physiological condition.

Results: Here, we report on the sequencing, assembling, annotation and screening for molecular markers from a

pool of H. brasiliensis tissues. A total of 17,166 contigs were successfully annotated. Then, 2,191 Single Nucleotide

Variation (SNV) and 1.397 Simple Sequence Repeat (SSR) loci were discriminated from the sequences. From 306

putative, mainly non-synonymous SNVs located in CDS sequences, 191 were checked for their ability to characterize

23 Hevea genotypes by an allele-specific amplification technology. For 172 (90%), the nucleotide variation at the

predicted genomic location was confirmed, thus validating the different steps from sequencing to the in silico

detection of the SNVs.

Conclusions: This is the first study of the H. brasiliensis transcriptome, covering a wide range of tissues and organs,

leading to the production of the first developed SNP markers. This process could be amplified to a larger set of in

silico detected SNVs in expressed genes in order to increase the marker density in available and future genetic

maps. The results obtained in this study will contribute to the H. brasiliensis genetic breeding program focused on

improving of disease resistance and latex yield.
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Background
Hevea brasiliensis (Wild.) Muell.-Arg. is a tree native to the

Brazilian Amazon region and it is botanically classified in

the Angiospermae division, class Dicotyledoneae, and fam-

ily Euphorbiaceae. Many species from the Euphorbiaceae

produce latex in specialized cells (laticifers). In the case of

H. brasiliensis, the latex is a stable emulsion of isoprenoid

polymers widely employed to produce natural rubber. In

the Amazon, the population of H. brasiliensis is estimated

to be one of the twenty most abundant tree species [1].

Hevea brasiliensis is also the most abundant specie of the

genus, with the largest production capacity, accounting for

about 99% of all natural rubber produced in the world, and

with the greatest genetic variability [2]. Natural rubber is a

strategic natural raw material used in more than 40,000

industrial products, including 400 medical devices [3]. Due

to its structure and high molecular weight (> 1 million
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Dalton), natural rubber presents special features such

as resilience, elasticity, resistance to abrasion and im-

pact, which cannot be achieved by synthetic polymers

[4]. Increased demand for natural rubber on the inter-

national market and, consequently, the strengthening of

the price, has promoted the rubber cultivation, placing

rubber production within the range of highly attractive

options available [5].

One of the major challenges for rubber tree cultivation

is its adaptation to biotic and abiotic stress. In areas with

a notable dry season and low mean temperatures, rubber

cultivation is characterized by a long period of immatur-

ity. In tropical regions of Latin America where the high

level of relative humidity might be more suitable for rub-

ber development, the climatic conditions are also condu-

cive to the infection of rubber tree leaves by the fungus

Microcyclus ulei, the causal agent of the South American

Leaf Blight. Repeated attacks of this disease cause massive

losses of leaves, leading to plant death. The main strategies

proposed for avoiding the M. ulei damage in plantations

involve cultivating genotypes tolerant for dryness and cold

in sub-optimal areas and promoting new SALB-resistant

and productive cultivars in tropical areas [6]. One of the

measures for avoiding M. ulei infection takes advantage of

the strict high temperature and air humidity conditions

for the fungus to reproduce. Based on this requirement,

two infection avoidance strategies can be proposed: cli-

matic escape, where leaf exchanges occur during the dry

season, when weather conditions are not favorable to fun-

gal sporulation or growing rubber trees in sub-optimal

areas (with lower average temperatures and air humidity).

Both approaches inhibit M. ulei infection, but also may

reduce rubber tree yield. The important factor for rubber

cultivation is the vegetative fitness of the tree, which is

directly reflected in the genetic potential of the cultivated

clone [7]. The RRIM600 Oriental clone is classified as

susceptible to SALB, and highly productive over a range

of temperatures and relative humidity.

Breeding between inbreeds with different characteris-

tics targeting tolerance of biotic and abiotic stress has

been identified as an alternative for improving rubber

tree growth and production. Overcoming such chal-

lenges can be assisted through the development of new

strategies and tools in the biotechnology field. Of those

tools, we can highlight sequencing of the expressed gen-

ome of H. brasiliensis (transcriptome), representing the

complete set and quantity of transcripts in a cell or tissue

for a specific developmental stage and/or physiological

condition [8]. In the rubber tree, the identification and

characterization of expressed genes may improve our

understanding of plant tolerance of biotic and abiotic

stress, and the regulation of latex biosynthesis. Thus, the

objectives of our study were to capture the transcriptional

profile of a large variety of Hevea brasiliensis organs and

tissues with a view to completing the available reference

transcriptomes, then to identify in silico SNP and SSR

markers and, lastly, develop the first SNPs markers in the

rubber tree.

Results and discussion
Transcriptome sequencing and assembling

In order to capture the H. brasiliensis mass transcriptional

profile with reduced sequencing costs, cDNA libraries

were prepared from pooled RNA extracts of different

tissues. Total RNA was extracted from 33 organs of the

RRIM600 genotype and open-pollinated seedlings of

RRIM600 (RRIM600 OPS library). Two main cDNA librar-

ies were developed; one from a pool of RRIM600 RNA,

and the other from tissues of RRIM600 OPS (Table 1). To-

gether these runs produced 525,371 Roche /454 reads of

lengths ranging from 40 to 873 bp and a mean of 379 bp

(Figure 1A). After checking and trimming for quality

scores (Figure 1B), adapters, PolyA/T tails and repetitive

elements, 354,949 sequences accounting for 131,895,572

bases were inputted to the NEWBLER 2.7 assembler for

contig generation (Table 2). NEWBLER assembly gene-

rated 19,708 contigs covering 13,328,059 bases; the N50

metric was 837 bp (Figure 1C) and the mean GC content

was 41.50%. On average, each contig received 17.34x

coverage ranging from 1 to 3,856 reads. A large number of

contigs (90%) resulted from the assembly of reads from

the RRIM600 and RIM600 OPS libraries (Figure 1D). To

overcome the problem of multiple contigs assembled from

the same transcript, a scaffolding step by translational

mapping (STM) was attempted. The joint assembly predict

was built containing 18,867 sequences with an average

length of 720 bp ranging from 100 to 10,750 bp. De novo

transcriptome assemblies may be substantially improved

by the addition of a scaffolding step where the contigs be-

longing to a single transcript are ordered, orientated, and

assembled [9]. Approximately 5% of our assembly could

be joined onto scaffolds, indicating a low redundancy

of contigs. Also, our results of 18,867 scaffolds, N50 =

837 bp, a mean length of contigs equal to 676 bp and other

metrics agreed with de novo sequencing from other plants

[10,11].

To verify the consistency of the assembly, a tBLASTx

analysis was performed against the existing 9,860 EST

sequences from H. brasiliensis deposited at the NCBI

database by Chow, 2007 [12] generated by Sanger se-

quencing technology. The results indicated a coverage of

72% of the previously deposited Hevea ESTs available in

NCBI (Figure 2A). Only 7% presented less than 90%

similarity and only 4% had an E-value higher than 1e-40.

The high similarity between the assembly and the depos-

ited Hevea EST sequences suggested a consistent assem-

bly and good coverage of the Hevea transcriptional

landscape from all the tissues.
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Triwitayakorn et al. [13] sequenced the expressed

genome of the H. brasiliensis from the vegetative shoot

apex of the rubber tree using the 454 platform, obtaining

a larger number of reads (2,311,497 reads vs. 525,371

reads obtained here) with a lower average read length

(294 vs. 379 bp) but with a similar number and size of

the assembled sequences in 19,152 isogroups (theoretic-

ally, each one represents a single gene and its variations)

ranging between 500 and 1000 bp, while our assembly

produced 19,708 contigs with 676 bp on average. Apart

from the higher number of reads and the sampling of a

few exclusive rubber tree tissues by Triwitayakorn et al.

[13], the overall assembly process was very similar.

Transcriptome Annotation

Contigs were first annotated against a set of plant

reference proteins (399,458 entries) by BLASTx. A total of

16,797 contigs identified matches with an E-value cut-off

less than 1e-05 (Table 3). In an attempt to obtain a max-

imum of annotated contigs, a tBLASTx was carried out

using the Plant Unique Transcript (PUT) database for

Hevea brasiliensis ESTs with 4,896 entries in order to

cover the transcripts that might lack protein annotation

and could not be found in other databases. Subsequently,

we performed a BLASTx against the Non-Redundant

NCBI protein database with the still unannotated contigs.

In total, 2,911 non-annotated contigs were used as input

and 299 contigs displayed a high score and a low e-value

in the alignment with the Hevea PUT database (Table 3).

The numbers presented by our Score (median 249.0),

Identity (median 85%) and E-Value statistics (median

1-e71) demonstrated a well performed assembly process

since few non-matches (~12%) were observed at the end

of entire BLAST annotation process. Our percentage of

annotated sequences (88%) was quite similar to the tran-

scriptome of Xia et al. [14] who obtained 76% of anno-

tated sequences, of which 65.5% matched with Ricinus

communis (vs. 68% in this transcriptome) (Figure 2B).

Differently, for the Hevea trancriptome of Triwitayakorn

et al. [13], 48% of sequences matched with Manihot

esculenta, followed by R. communis (45%).

To classify contigs correctly, a search for protein signa-

tures was performed by InterPro scan on Open Reading

Frames (ORFs) from each contig for Protein Domains,

PANTHER (Protein Analysis Through Evolutionary

Relationships) evidence, TIGR [Hidden Markov Models

(HMMs) for protein sequence classification, and associ-

ated information] and Fingerprint (group of conserved

motifs used to characterize a protein family) evidence,

resulting in 3,521 IPR signatures; 367 protein family

Table 1 Organs and tissues used in the RRIM600 and RRIM600 OPS RNA extracts

RRIM600 RIN* RRIM600 OPS RIN

Apical meristem 3.0 Cotyledon in the seed (germination stage I) 4.7

Leaflets stage A 3.3 Seedlings (germination stage II) 5.3

Leaflets stage B2 1.8 Stalk (germination stage III) 3.7

Leaflets stage C 2.7 Roots (germination stage III) 3.7

Leaflets stage D 2.5 Seed (germination stage III) 3.3

Petiole (Leaf stage B2) 2.1 Leaves (germination stage IV) 1.6

Petiole (Leaf stage C) 2.7 Stalk (germination stage IV) 3.5

Petiole (Leaflets stage D) 2.7 Roots (germination stage IV) 3.4

Lignified stem 3.0 Seed (germination stage IV) 3.3

Bark (trunk grafted with MDF180 crown) 3.1 Immature seeds with transparent endosperm 2.2

Bark (trunk and crown of RRIM600) 2.8 Immature seeds with white endosperm 1.2

Latex 4.1 Fertilized female flowers 4.5

Raceme 2.9

Male flowers, mature and immature 3.7

Columns and wall of fruit lobes 3.3

Fruit peel 3.4

Peduncle 2.8

Seed stage A endosperm 1.2

Leaf development: Stage A: the preformed leaves in the terminal bud appear; Stage B2: upward leaflets of small size are anthocyanic initially. Then, the lamina

reverses and bends to the ground and the anthocyanic color diminishes; Stage C: Rapid lamina growth. The flabby and pale green lamina maintains a drooping

position; Stage D: leaves straighten into a horizontal position and become stiff; Seed germination. Stage I: appearance of the radicle; Stage II: appearance of the

primary root, side roots and stalk; Stage III: elongation of the primary root, side roots and stalk; Stage IV: elongation of the primary root, side roots and growth of

the first two branches. *The RIN software algorithm allows classification of total RNA, based on a numbering system from 1 to 10, with 1 being the most degraded

profile and 10 being the most intact.
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fingerprints; 2,655 protein domain families; 4,970 PAN-

THER families; 794 different structure families; and 419

TIGR families. These protein domains were associated

with 46 GO terms (taking into consideration only those

up to the second level of the GO hierarchical tree) belong-

ing to the three GO categories (20 ‘biological processes’,

11 ‘molecular functions’ and 15 ‘cellular components’)

(Table 3). The GO terms ‘cell part’, ‘binding activity’, and

‘metabolic processes’ were the most represented classes in

each GO category (Figure 3). Also, five genes (represented

by 7 contigs) implicated in the mevalonate pathway

(MVA) and consequently in natural rubber biosynthesis,

were identified (Figure 4). COG analysis successfully

classified 15,172 out of 19,708 sequences on 2,631

groups (Table 3). The orthology cluster described as

‘unknown function’ and general ‘prediction only’ accounted

for 22% of annotations; another major clustering was

related to translational and post translational functions

Figure 1 Run and assembly summary. (A) Distribution of reads by length, with an average length of 379 bp. (B) Overall read quality, lanes

with consistently good quality reads have strong peaks to the right of the panel. (C) N50 metrics of 837 bp for the assembly. (D) Distribution of

19,708 contigs per library.

Table 2 Summary of Hevea brasiliensis transcriptome sequencing

Sample Number of reads Aligned reads Number of contigs Average contig size N50 Q40 plus*

RRIM600 and RRIM600 OPS 523,371 80.69% 19,708 936 969 94.07%

* indicates the bases with a Phred-like consensus quality score of at least 40 (meaning a 1:10000 chance of the base being wrong).
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(19%) (Figure 5). The search for genes involved in

metabolic pathways resulted in 5,059 contigs annotated

in 134 KEGG orthologies (Table 3), distributed in

‘Metabolic Processes’, ‘Enzyme Families’, ‘Genetic Infor-

mation Processing’, ‘Environmental Information’ ‘Pro-

cessing’, and ‘Cellular Processes’.

Transcriptome sequencing identified the genes (134) of

the main active pathways confirmed by KEGG, covering

the majority of enzymes in key processes such as ‘plant

hormone signal transduction’ (39/41); ‘plant-pathogen

interaction’ (27/50); and ‘photosynthesis’ (46/63) indicat-

ing that the effort to capture a global transcriptome land-

scape was achieved, demonstrated by the diversity of

KEGG and GO annotation. Xia et al. (2011) [14] obtained

125 KEGG pathways, mainly distributed on ’metabolic

pathways’, ‘spliceosome’, and ‘plant-pathogen interaction’,

while our most enriched pathways where ‘Ribosome’,

‘Spliceosome’, and ‘RNA transport’.

Comparisons with Hevea EST resources

To verify the amount of new information provided by

our assay, a tBLASTx was performed against the exist-

ing 39,034 EST sequences deposited in the NCBI public

database related to Hevea brasiliensis (October, 2013).

Of the 19,708 sequences, almost half of them (8,792)

found no hits with an E-value cut-off of 10−5. Of these

1,164 were successfully annotated in the KEGG data-

base, on 647 different KEGG orthologies, of which 356

were annotated as different enzymes belonging to

metabolic pathways. Also, out of the 8,792 sequences,

3,949 were successfully annotated by searches for protein

signatures on 2,095 different Interpro terms and 813 uniq

GO terms (Figure 6). When ranked by uniqueness (1-

average semantic similarity of a term with all other terms;

more uniq terms tended to be less dispensable) [15] the

main biological process was the “mannose metabolic

process”, for cellular components it was the “cis-Golgi

network” and for molecular functions “ammonium trans-

membrane transporter activity”.

To gain an understanding of our transcript sets, com-

paring our contig set (19,708 sequences) with the read

set originated from Triwitayakorn et al. [13], we identi-

fied 2,833 sequences with no correspondence, indicat-

ing new gene contributions from our libraries. Of

those, 367 were exclusive sequences from the RRIM600

library and 564 originated from young tissues (RRIM600

OPS library). The 2,833 novel sequences were anno-

tated on 56 GO terms in three ontologies, being ‘cell

part’ as the most representative on the ‘Cellular Com-

ponent’ term, ‘Metabolic Process’ for the ‘Biological

Process’ term, and ’binding’, for ‘Molecular function’.

Of the 2,833 new sequences identified in this study, 31

sequences were identified as genes related to plant cell

dehydration processes. The most frequent was anno-

tated as a Heat-shock proteins (Hsps)/chaperones with

21 occurrences.

Screening for EST-SSR markers

For many plant species, large numbers of expressed

sequence tags (ESTs) have been generated although low

numbers of validated EST-SSR and SNP markers are

available for plants, especially for non-model plants.

For the rubber tree, most of the available marker

Figure 2 Comparison by BLASTx with 12,365 H brasiliensis sequences deposited in NCBI gene bank. (A) Matches; (B) Distribution for the

top hits species.

Table 3 Summary of Hevea brasiliensis sequential

annotation

Database Annotated sequences

Plant RefSeq protein 16,797

H. brasiliensis PUT 299

NR NCBI protein 70

GO 8,725

COG 15,172

KEGG 5,059

Not annotated 2,542
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resources are isozyme, RFLP, AFLP and SSR markers

[16]. SSR markers are today mainly obtained by a trad-

itional method of SSR marker development, such as

genomic-SSR hybrid screening and selective (or not)

amplified microsatellite enrichment [17-21]. Recently,

new EST-SSR markers were identified and proposed by

several authors from transcriptomic data [13,22-24].

SSRs are typically co-dominant markers, proved to be

useful in assessing population structure, determining

relationships between closely related species and QTL

mapping. Although SSR markers derived from expressed

sequences are considered less informative due to DNA

sequence conservation in the transcribed region [25], such

markers are cost-effective and considered as functional

sequences [19].

In our work, out of the 19,708 contigs examined, a total

of 1,397 SSRs, formed by 187 different motifs, were identi-

fied in 1,148 sequences, with 152 contigs containing more

than one SSR locus. The most frequent SSR type found

was mononucleotide repeats with an average size of

12.56 bp and 75 bp repeats as the longest (Table 4). Feng

et al. [22] searching for EST-SSRs in Hevea brasiliensis

public databases successfully identified 799 loci on 10,829

EST sequences, one in every 2.25 kb of EST from the

rubber tree. Here, we detected a lower SSR/Sequence

frequency (1/5.2 kb), but the total number of identified

SSR loci seemed to tally between the two studies,

whereas the sequence analyzed/SSR discovery ratio was

14.1, similar to the value of 13.5 identified by Yu et al.

[19]. The proportion of mono, di and trinucleotide

repeats (41%, 20% and 37%) was more balanced in our

assay than in the Yu study (45%, 42%, 11%) [19]. Triwi-

tayakorn et al. [13], also found a lower distribution

frequency (1/3.3 kb) than Yu et al. [19], but still higher

than ours. Discrepancies between studies may come

from differences in the methods, and the limitations of

454 technology when dealing with homopolymers.

Screening for SNV markers

Out of the 19,708 sequences obtained in this work, 889

contigs presented single nucleotide variants (SNVs) with

more than 4x coverage, an average Q20 quality score, a

minimum of 2 supporting reads at a position to call

variants, ranging from 1 to 18 substitutions per single

contig. These variations accounted for a total of 2,191

predicted biallelic SNVs on a total length of 13.3 Mb of

consensus sequences, corresponding to an average of

one SNV every 6.0 kb. This density was less than that

reported by Pootakham [26] in the rubber tree (1 SNP/

1.5 kb), probably due to the greater stringency of our

SNV detection parameters. Most of the detected and

validated nucleotide variants were transitions (66.8%),

with transversions only accounting for 33.0% (Figure 7),

which was close to Pootakham’s results [26]. Of those,

260 contigs presented nucleotide variation only on reads

derived from the RRIM600 library totalizing 480 pre-

dicted SNVs for this particular library, while 362 contigs

presented variations from consensus only on reads ori-

ginating from the RRIM600 OPS library in a total of 666

predicted SNVs (Table 5).

Figure 3 Summary of functional analysis by GO terms between the RRIM600 library and the RRIM600 OPS library divided into three

main categories, “biological process”, “cellular component” and “molecular function”.
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Figure 4 (See legend on next page.)
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Out of the 2,191 predicted SNVs there were 1,877 substi-

tutions on CDS regions (predicted protein coding sequence)

for 889 contigs, which resulted in 1,594 non-synonymous

substitutions on 597 contigs. A total of 283 SNVs was

observed on non-coding regions. Of all the detected varia-

tions, 1,594 were potential non-synonymous substitutions,

accounting for 78% of all variations, indicating a high level

of genetic variability.

Using a similar strategy, Barbazuk et al. [27] screened

maize ESTs from shoot apical meristem by 454 searching

for SNPs from two inbred lines and the data were an-

chored onto the sequence of the maize genome. An ini-

tial number of 36,000 putative SNPs was detected after

the alignment of nearly 260,000 and 280,000 transcripts

of both inbred lines. This figure fell to 7,000 putative

SNPs after post-processing. Our strategy was different,

using identification parameters with high stringency,

allowing the prediction of only 2,191 SNVs, but with an

average quality of Q20 and a coverage ≥4x. This strategy

proved effective as demonstrated by the validation of

172 out of 191 putative SNPs (90%) using an allele-

specific amplification strategy. Similarly, Barbazuk et al.

[27] identified variants exclusive to each inbred maize

line and polymorphic sites with a different depth by in-

bred line. The validation of a subset of SNPs by PCR amp-

lification and Sanger sequencing revealed a validation rate

over 85%. These data suggest that the computationally

identified SNVs represented ‘true’ polymorphisms even

for low ESTs-coverage regions, suggesting that 454-based

transcriptome sequencing is an excellent method for the

high-throughput acquisition of gene-associated SNPs. In

the same way, Novaes et al. [28] studying multiple tissues

and genotypes of Eucalyptus grandis, a non-model plant,

on a 454 platform, sequenced and assembled 148 Mbp

ESTs from 1,024,251 reads identifying 23,742 SNPs, of

which 83% were validated by Sanger sequencing in a sam-

ple of 337 SNPs.

From our data, non-synonymous SNVs accounted for

64% (1,211) of overall variations occurring in CDS re-

gions. For non-synonymous changes it is not possible to

directly determine how much the amino acid change will

affect the protein structure, stability or localization. In

Eukaryotes, changes in the protein isoelectric point (iP)

may directly influence the localization and reactions of

proteins, and it is reasonable to assume that alterations

to the global protein iP may interfere in interactions

(See figure on previous page.)

Figure 4 Transcriptome sequencing successfully identified most of the genes of the main active pathways. The terpenoid biosynthesis

pathway where gray boxes indicate the identified genes in our libraries.

Figure 5 Cluster of orthologous classification. 76% of all sequences were successfully annotated under 25 clusters and 2,631 groups. The

orthology cluster described as ‘unknown function’ and general ‘prediction only’ accounted for 22% of annotations; another major clustering was

related to translational and post translational functions (19%).
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between proteins and complexes. Alendé et al. [29],

studying the evolution of iP over mammalian proteins,

showed that insertions/deletions were the main reason

for the shift in iP and suggested that shifts in iP might

be related to the gain in additional activities, such as

new interacting partners or preferences for orthologous

or isoforms.

From the calculated iP and molecular weight (Mw) for

the mutated and non-mutated contigs that displayed

non-synonymous mutation, the variation in iP ranged

from -1.95 to 1.09, and the Mw from -97.11 kDa to

66.08 kDa. A major alteration in iP was observed on a

conserved hypothetical protein from Ricinus communis

(alteration of -1.95 over original iP) annotated as a Rici-

nus communis conserved hypothetical protein, and 1.09

iP variation over the non-consensus sequence annotated

as glycotransferase activity (GO: 0004579), KEEG (K12670)

Glycan Biosynthesis. The characterization of mW and iP

for the protein sequences translated from contigs with

non-synonymous mutation showed that the mW from the

mutated sequences was altered, but 250 sequences did not

demonstrate any changes in iP values. Flegr [30] suggested

that, since cell cytoplasm pH is stratified ranging from 6.4

to 7.2 in Eukaryotes, changes in the protein isoelectric

point may directly influence the localization and reactions

of proteins, and it is reasonable to assume that alterations

to the global protein iP may interfere in interactions

between proteins and complexes.

Substitutions outside coding regions (here 247 SNVs)

are often linked to gene regulatory regions and may

affect events, such as gene splicing, messenger RNA deg-

radation or non-coding RNA sequences, and therefore

usually called eSNP/V (expression single nucleotide

polymorphism/variant), therefore becoming an interest-

ing feature for biotechnological uses. Here, we were able

to identify 2,191 mutations associated with 889 contigs.

Figure 6 GO terms histogram associated with “biological process” and “molecular function” for the 813 unique terms for the 8,792

novel genes.

Table 4 Distribution of identified SSRs according to SSR motif types and repeat numbers

Type of Repeat Number of repeat units

5 6 7 8 9 10 11 12 13 14 15 >15 Total

Mononucleotide repeat 0 0 0 0 0 176 115 62 50 27 26 111 567

Dinucleotide repeat 0 110 38 36 22 16 12 7 13 4 2 18 278

Trinucleotide repeat 271 117 45 29 18 16 5 2 5 0 1 1 510

Tetranucleotide repeat 9 1 2 0 0 0 0 0 0 0 0 0 12

≥ Pentanucleotide repeat 22 5 0 2 1 0 0 0 0 0 0 0 30
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The results obtained by Barbazuk et al. [27] and Novaes

et al. [28] gave sufficient evidence about the reliability of

the 454 sequencing platform for SNV identification in

transcriptomic data, constituting an important feature

for 454 data analysis.

Analysis of genetic diversity

Out of a set of 191 SNVs detected in silico, 172 SNPs

were shown to be polymorphic among the 23 tested

Hevea genotypes belonging to 3 species and resulting

from different breeding programs (Table 6). PIC ranged

between 0.04 and 0.38, and heterozygosity varied from

0.04 to 0.5 (Additional file 1: Table S1). Ten SNPs

displayed the same heterozygous combination for all the

genotypes and were not included in the analysis of

genetic diversity.

The tree (Figure 8), obtained from a dissimilarity

matrix computed from allelic data of the 162 markers

for each variety, gave a representation generally in ac-

cordance with the pedigree analysis (Table 6). The three

genotypes which did not belong to the H. brasiliensis

species (F4542, PUA8, PA31), were grouped together

and were clearly distinct from most other H. brasiliensis

genotypes, as reported by Feng et al. [22] using 87 EST-

SSR markers. IRCA130, PB235 and PB260 genotypes,

presenting a common ancestral parent (PB5/51), were

well located on the same branch. IRCA109 and PB217

genotypes bred from the same ancestral parents were

positioned on close branches. Even more clearly, CMB104

and CMB114, two full-sib genotypes, were localized at a

quite a similar distance from their parents IRCA109 and

PFB5. PR107 and its progeny PR255 were located on the

same branch.

It is the first time that a large number of SNPs have

been developed in Hevea after the publication by Poo-

takham et al [21] of 10 SNPs. The result indicates that

these 172 SNPs would be useful for rubber tree genetics

and breeding studies. Being heterozygous for at least one

of the parents of recently published Hevea genetic maps,

most of these SNPs could easily contribute in the near

future to enhancing the density of these SSR-based gen-

etic maps: 102 SNPs could be mapped in the PB260 x

Fx3899 map [16], 103 SNPs in the PR255 x PB217 map

[31], 100 SNP in the PB260 x Fx2784 map [32] and 78

SNPs in the PB260 x MDF180 map [33].

Conclusions
This is the first Hevea brasiliensis transcriptome release

covering the main tissues extracted from both clonal

plant materials and derived hybrid plant materials ob-

tained by open-pollination, and the first to investigate

and analyze Hevea brasiliensis SNVs. The results of
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Figure 7 Classes of single nucleotide polymorphisms detected

and validated in 454-derived EST contigs of Hevea brasiliensis.

The number of each type of single-base substitutions is indicated

in brackets.

Table 5 Characterization of the 2,191 identified SNVs associated with 889 contigs

Nucleotide variation Number
of SNVs

Nonsense Number of
associated contigs

SNV position

Coding sequence UTR Non coding
sequence

Exclusive to the RRIM600 library Non-synonymous 339 20 161 326 13 0

Synonymous 141 99 98 27 16

Total 480 260 424 40 16

Exclusive to the RRIM600 OPS library Non-synonymous 470 20 225 464 6 0

Synonymous 165 115 90 45 30

Non-determined* 31 22 - - -

Total 666 362 554 51 30

Common for both libraries Non-synonymous 900 39 211 804 96 0

Synonymous 145 56 95 31 19

Total 1.045 267 899 127 19

* No CDS.
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similarity identification, diversity of transcript localization,

and variety of predicted functions from the 19,708 con-

tigs obtained by our study, associated with the variety

of tissues sampled demonstrate a cohesive approach to

capturing the transcriptional landscape of whole rubber

tree physiology.

Moreover, the public availability of the sequences,

functional annotation and the global variant analysis, as

well as the sequencing of raw data to be released from

this study will provide a source of valuable information

for biotechnology assays and genetic improvement of

rubber trees, an addition to be used for a reference

transcriptome for further sequencing projects.

As an allogamous plant with a recent history of selec-

tion, most of Hevea genotypes are highly heterozygous,

opening the way for the development of a huge number

of SNP markers.

Methods
Plant material

Tissues samples of H. brasiliensis from the RRIM600

cultivar, were collected at the E. Michelin Plantation in

Itiquira (Mato Grosso state, Brazil) and at the Michelin

Plantation in Ituberá (Bahia state, Brazil). Samples of

male and female flowers, fruits, bark and latex from

adult RRIM600 trees were collected at the E. Michelin

Plantation and conserved in RNAlater (Life Technolo-

gies Carlsbad, CA, USA) until RNA extraction. Samples

of stalks, petioles and leaves from grafted plants of

RRIM600 and tissues (radicle, hypocotyl, epicotyl, albu-

men, cotyledon, leaves) from germinated seedlings of

open-pollinated RRIM600 seeds were collected from a

greenhouse at the Michelin Plantation in Ituberá. The

tissue samples were stored in liquid nitrogen.

Total RNA isolation and cDNA synthesis

Total RNA was isolated from 1 g of ground conserved

tissue and extracted as described by Morcillo et al.

(2006) [34]. RNA integrity was evaluated using a 2100

Bioanalyzer (Agilent Technologies, Santa Clara, CA,

USA). Before mRNA purification, 18 RNA samples of

RRIM600 tissues and 12 extracts of RRIM600 OPS

(open-pollinated seedlings) were pooled. Poly(A) RNA

was isolated from these two pools with oligo beads (dT)

from the PolyATtract mRNA kit (Promega, Madison,

WI, USA).

Following isolation, the mRNAs were fragmented

using a 0.1 M zinc chloride solution in 0.1 M Tris-HCl

pH7.0. Using these shorter fragments as templates, the

first-strand cDNAs were synthesized using Roche ran-

dom primers and the AMV reverse transcriptase from

the cDNA Synthesis system and the GS Rapid Library

kits (Roche Applied Science, Mannheim, Germany). Se-

quencing was carried out on a Roche/454 GS-FLX

(Titanium) pyrosequencing platform.

454 sequencing and assembly of cDNA libraries

The cDNA libraries were amplified with emulsion PCR

Lib-L (Roche Applied Science) and sequenced using the

XLR70 sequencing kit and a 70 × 75 mm PicoTiterPlate

(Roche Applied Science). Each library was sequenced in

one region of the PicoTiterPlate.

All of the H. brasiliensis cDNA data were first filtered

by quality scores, presence of adapters, PolyA/T tails and

repetitive elements using preprocess.pl Perl script from

est2Assembly [35], and then assembled into contigs using

the Newbler de novo assembler algorithm of the gsassem-

bler (Newbler version 2.7, Roche 454). Reads and assem-

bled contigs were analyzed using R programming version

2.13.2 [36]. Scaffolding assembly was carried out by STM

(Scaffolding using Translation Mapping) [09]. The STM

method relies on the assumption that the gene set of the

Table 6 Genealogy of 23 Hevea spp. genotypes

Genotype Species Genealogy

F4542 H. benthamiana Primary clone

PUA8 H. pauciflora Primary clone

PA31 H. pauciflora Primary clone

MDF180 H. brasiliensis Primary clone

PFB5 H. brasiliensis Primary clone

Fx2784 H. brasiliensis Unknown

PMB1 H.brasiliensis Primary clone

FDR5788 H.brasiliensis Harbel8 x unknown

RRIC100 H.brasiliensis RRIC52 x PB86

CMB104 H.brasiliensis IRCA109 x PFB5

CMB114 H.brasiliensis IRCA109 x PFB5

IRCA109 H.brasiliensis PB5/51 x RRIM600

PB314 H.brasiliensis RRIM600 x PB235

RRIM600 H.brasiliensis Tjir1 x PB86

PR107 H.brasiliensis Primary clone

PR255 H.brasiliensis Tjir1 x PR107

GT1 H.brasiliensis Primary clone

IRCA130 H.brasiliensis PB5/51 x RRIM600

PB235 H.brasiliensis PB5/51 x PBS/78

PB260 H.brasiliensis PB5/51 x PB49

PB217 H.brasiliensis PB5/51 x PB6/9

Fx3899 H. benthamiana x H.brasiliensis F4542 x Avros363

FDR5597 H.brasiliensis Harbel68 x TU42-525

AVROS: Algemene Vereniging Rubberplanters Oostkust Sumatra; CMB: CIRAD

Michelin Brazil; F: Ford; FDR: Firestone Dothidella Resistance; Fx: Ford Cross;

IRCA: Institut de Recherches sur le Caoutchouc, Ivory Coast; MDF: Madre de

Dios Firestone; PA and PUA: H. pauciflora; PB: Prang Besar, Malaysia; PMB1:

Plantação Michelin da Bahia, Brazil; PFB: Pé Franco Brasileiro; RRIC: Rubber

Research Institute Ceylon, Sri Lanka; RRIM: Rubber Research Institute of

Malaysia; Tjir: Tjirandji, Indonesia; TU: Turrialba, Costa Rica.
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reference proteome, which will serve as a template for

joining contigs into scaffolds, is sufficiently similar, and, in

this way, all translated contigs matching a same reference

protein can be assembled into a scaffold [09]. We used the

Ricinus communis Protein sequence (amino acid transla-

tion) release 0.1 [37]

Annotation, classification and comparison of assembled

sequences

Contigs were compared to the set of proteome references

by the BLAST algorithm (at an E-value threshold 10−5)

against NCBI RefSeq, Plant Protein Database [38], H. bra-

siliensis assembled unique transcripts (PUT) of PlantGDB

[39] and the complete NCBI nr database. We preferen-

tially annotated contigs (with best BLAST hits) based first

on similarity to Plant Protein RefSeq, then based on

H. brasiliensis PUT nucleotides, and finally on Non-

Redundant of nucleotides from the NCBI database. Inter-

ProScan version 4.8 was used for Gene Ontology and

InterPro annotation [40] to connect Hevea transcript

contigs with known gene ontology annotations. WEGO

[41] software was used to perform GO annotation analysis

and for plotting GO annotations. Also, attempting to

phylogenetically classify the sequences, a BLAST using the

Cluster of Orthologous Groups database was performed.

To gain an understanding of our set of transcripts

mapping performed by GS Reference Mapper (Newbler

version 2.7, Roche 454) against currently available

H. brasiliensis sequences was carried out using the

2,311,497 reads generated by the Triwitayakorn et al.

[13], obtained by sequencing H. brasiliensis shoot apex

of the RRIM600 genotype, 30,094 Hevea brasiliensis EST

sequences available in the NCBI database, including

9,860 ESTs (accession No EC600050–EC609910) from

RRIM600 latex deposited in NCBI by Chow et al. [12].

For putative genes involved in the metabolic pathway,

a KEGG annotation was performed using KAAS (KEGG

Automatic Annotation Server) [42].

Identification of Single Nucleotide Variants (SNVs) and

Simple Sequence Repeat (SSR) loci

To detect nucleotide variants over the contigs, an align-

ment between reads and the contigs generated by Newbler

as a reference was performed using the Burrows-Wheeler

Aligner for long reads (BWA-SW) [43]. The results

were used as input for the Bioconductor [44] Rsamtools
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Figure 8 Neighbor Joining tree illustrating relashionships between 23 Hevea spp. genotypes analyzed with 162 SNP loci. Boostrap

values (1000 replicates) are shown next to the branches.
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version 1.6.0 package to obtain the possible nucleotide

variants with a cut-off coverage of 4x, a threshold of 2

variants in the position and a base call quality cut-off of

the PHRED score Q20 on average, where Q = -10

log10P, and the score stands for the probability of a

wrong base being called.

To check wether or not SNV was responsible for a

non-synonym alteration in the amino acid composition

from the contig, a gene prediction analysis was carried

out by the GlimmerHMM Eukaryotic Gene-Finding Sys-

tem [45] using the Arabidopsis thaliana training model

in an attempt to identify the Protein Coding Sequence,

for correct verification of the SNV substitution type

made by the R/Bioconductor script.

Searches for SSRs from the contig data set were per-

formed by Microsatellite Identification Tool (MISA) ver-

sion 1.0 [46]. The definition of microsatellites (unit size/

minimum number of repeats) was set as mononucleotides

repeats if the same nucleotide was repeated at least 10

times (1/10), di (2/6), tri (3/5), tetra (4/5), penta (5/5),

or hexanucleotides (6/5), and 100 as the maximum

number of bases interrupting two SSRs in a compound

microsatellite (microsatellites consisted of more than a

single repeat type).

Protein characterization

The molecular weight and the isoelectric point analyses

for proteins were performed by EMBOSS version 6.4.0

[47] and the generated output analyzed by R program-

ming language.

Development of SNP markers

The 191 detected SNPs were validated using KASP

genotyping chemistry (KBioscience Ltd., Hoddesdon,

UK) on 23 Hevea genotypes including different species

(H. brasiliensis, benthamiana and pauciflora) and related

genotypes (Table 6). Rubber tree total genomic DNA

was extracted from fresh leaves following a previously

described method [48]. For each SNV position, three

primers were designed in a region of +50 and -50 pb

around the nucleotide variation by KBioscience with Pri-

merPicker [49]. The 191 Assay Mixes contained two

allele-specific forward primers (12 μM) able to anchor

specifically to the 3’ position in the nucleotide variant,

and a reverse primer (30 μM). Genotyping was per-

formed using the traditional KASP genotyping chemistry

on a LightCycler 480 II (Roche) using a 384-well plate.

The PCR reactions were carried out in 4 μL containing

2 ng of genomic DNA, 2 μL Master MIX 2x, 2.2 mM

MgCl2 and 0.055 μL Assay Mix. One denaturation cycle

was performed at 95°C for 15 min, prior to 10 denatur-

ation cycles at 94°C for 20 s, annealing at 65°C for 1 min

(- 0.8°C/cycle), followed by 40 denaturation cycles for

20 s, annealing at 57°C for 1 min. The end point

fluorescence signal was measured and plotted on two

axes. All genotype calls were manually checked and am-

biguous data points that failed to cluster were scored as

missing data. Each nucleotide variant was scored as al-

lelic data (A = 1, C = 2, G = 3, T = 4, not determined data

=0). These data were used to calculate a genetic dissimi-

larity matrix using the simple matching dissimilarity

index (dij) between pairs of accessions (units) [50].

dij ¼ 1−
1

L

XL

l¼1

ml

2

where dij represents the dissimilarity between units i and

j, L represents the number of loci, and ml represents the

number of matching alleles between i and j for locus l.

From the dissimilarity matrix, a Neighbor-Joining tree

[51] was computed using the DARwin software version

5.0.158 (Dissimilarity Analysis and Representation for

Windows, http://darwin.cirad.fr/darwin [50]. Branch ro-

bustness was tested using 1000 bootstraps.

Additional file

Additional file 1: Table S1. Characteristics of SNP loci developed in

Hevea. The 454-data generated can be accessed and downloaded at

http://scarecrow.fmrp.usp.br/heveabr/.
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