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Abstract

The swimming crab Portunus trituberculatus is a commercially important crab species in

East Asia countries. Gonadal development is a physiological process of great significance

to the reproduction as well as commercial seed production for P. trituberculatus. However,

little is currently known about the molecular mechanisms governing the developmental pro-

cesses of gonads in this species. To open avenues of molecular research on P. tritubercu-

latus gonadal development, Illumina paired-end sequencing technology was employed to

develop deep-coverage transcriptome sequencing data for its gonads. Illumina sequencing

generated 58,429,148 and 70,474,978 high-quality reads from the ovary and testis cDNA li-

brary, respectively. All these reads were assembled into 54,960 unigenes with an average

sequence length of 879 bp, of which 12,340 unigenes (22.45% of the total) matched se-

quences in GenBank non-redundant database. Based on our transcriptome analysis as

well as published literature, a number of candidate genes potentially involved in the regula-

tion of gonadal development of P. trituberculatus were identified, such as FAOMeT,mPRγ,

PGMRC1, PGDS, PGER4, 3β-HSD and 17β-HSDs. Differential expression analysis gener-

ated 5,919 differentially expressed genes between ovary and testis, among which many

genes related to gametogenesis and several genes previously reported to be critical in dif-

ferentiation and development of gonads were found, including Foxl2,Wnt4, Fst, Fem-1 and

Sox9. Furthermore, 28,534 SSRs and 111,646 high-quality SNPs were identified in this

transcriptome dataset. This work represents the first transcriptome analysis of P. tritubercu-

latus gonads using the next generation sequencing technology and provides a valuable

dataset for understanding molecular mechanisms controlling development of gonads and

facilitating future investigation of reproductive biology in this species. The molecular mark-

ers obtained in this study will provide a fundamental basis for population genetics and func-

tional genomics in P. trituberculatus and other closely related species.
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Introduction

The swimming crab Portunus trituberculatus (Crustacea: Decapoda: Brachyura) is a commer-

cially important crab species widely distributed in the estuary and coastal areas of Korea,

Japan, China, and Southeast Asia [1]. This species is predominant in portunid crabs fisheries

around the world and supports a large aquaculture industry in China. In 2010, P. tritubercula-

tus production in China reached up to 91,050 tons and valued more than AUS$ 2.5 billion [2].

Owing to rapid development of the swimming crab culture industry, the demand for high-

quality seeds has exceeded the supply. To improve the means of artificial seed production, it is

very important to understand the regulatory mechanisms underlying reproductive develop-

ment in this species.

The regulatory mechanisms implicated in crustacean reproductive development have long

been of interest to biologists and aquaculture industry. Over the past few decades, extensive

studies have been carried out and a variety of regulatory factors, such as methyl farnesoate,

ecdysteroids, crustacean hyperglycemic hormones, biogenic amines and vertebrate-type ste-

roids, have been identified and investigated in numerous crustacean species [3–13]. These

studies have revealed a good picture of endocrine regulation for reproductive processes in crus-

tacean species, however, the molecular mechanisms controlling gonadal development still re-

mains poorly understood. The major obstacle in defining the molecular mechanisms is the lack

of genetic and genomic information available for crustacean species. Transcriptome sequenc-

ing can yield a subset of genes from the genome that are functionally active in selected tissues

[14], and is an effective way to discover genes participating in specific biological processes

when genome sequence is not available [15,16]. Recently, the advent of massively parallel DNA

sequencing technology (RNA-Seq), including ABI SOLiD, Roche 454 and Illumina Solexa

platforms, have opened up the opportunities for exploring the transcriptome of non-model

species at unprecedented sensitivity and depth. Using RNA-seq technology, transcriptome se-

quencing of reproductive tissues has been performed in several commercial crustacean species

during the past three years [17–24], and many reproduction-related genes and pathways have

been identified. However, no data is currently available on the gonad transcriptome of P.

trituberculatus.

In the present study, we employed Illumina sequencing technology and de novo assembly to

obtain the transcriptome of ovary and testis tissues in P. trituberculatus and discover genes po-

tentially involved in ovarian and testicular development and maturation. To our knowledge,

this work is the first report for transcriptome profile analysis of gonads in P. trituberculatus.

This transcriptome dataset will provide valuable resources for unraveling the molecular mecha-

nisms governing reproductive development in this species, and reference information for close-

ly related crustacean species. Furthermore, a large number of markers potentially useful for the

investigation of population genetics and molecular breeding strategies, including simple se-

quence repeats (SSRs) and single nucleotide polymorphisms (SNPs), were also reported.

Materials and Methods

Ethics statement

All the experimental procedures involving the handling and treatment of the crabs used in this

study were approved by the Yellow Sea Fisheries Research Institute's Animal Care and Use

Committee prior to initiation of experiments.
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Tissue collection

The female and male crabs used in this experiment were obtained from Haifeng Company,

Weifang, China. Five crabs for each sex at 3- to 12-month age were collected every month,

which covered individuals at different gonadal developmental stages from immature to spent.

After transferred to the laboratory, the crabs were reared at the temperature of 23~26°C and

the salinity of 30~32 for ten days. Then the crabs were placed in an ice bath until anesthetized,

and about 50 mg (wet weight) of ovary or testis were dissected, snap-frozen in liquid nitrogen

and stored at -80°C. The rest portion were fixed in Bouin’s solution for histological examina-

tion. Based on the external features (size, morphology and color) and histological configura-

tion, ovarian development was classified into six stages [25]: Stage I (ovary is ribbonlike and

transparent, main cell types are oogonia and pre-vitellogenic oocyte), Stage II (ovary is milk

white, main cell types are endogenous vitellogenic and pre-vitellogenic oocyte), Stage III (ovary

is buff and orange, main cell type is exogenous vitellogenic oocyte), Stage IV (ovary is deep or-

ange, main cell types are exogenous vitellogenic and nearly mature oocyte), Stage V (ovary is

deep orange, main cell type is mature oocyte), Stage VI (ovary is spent). Testicular develop-

ment was classified into five stages [26]: Stage I (main cell type is spermatogonium), Stage II

(main cell type is spermatocyte), Stage III (main cell type is spermatid), Stage IV (main cell

type is sperm), Stage V (sperms have been expelled out). According to the staging results, ovary

or testis tissues from three individuals at each developmental stages were subjected to RNA

extraction.

RNA extraction, cDNA library construction and sequencing

In order to obtain as many genes related to gonadal development as possible, samples of all the

ovarian and testicular stages were used for RNA extraction. Total RNA was isolated from each

sample using Trizol reagent (Invitrogen, Carlsbad, USA) and treated with RNase free DNase I

(Promega, Madison, USA) following manufacturer’s protocol. RNA degradation and contami-

nation were assessed using agarose gels (1%). Quantity and integrity of the RNA samples were

determined using Nano Photometer spectrophotometer (Implen, Westlake Village, USA) and

Bioanalyzer 2100 system (Agilent Technologies, Santa Clara, USA).

A total of 3 μg RNA was used for ovary or testis cDNA library construction. For ovary,

166.7 ng RNA from each crab at six ovarian stages (3 individuals per stage) were pooled togeth-

er, and for testis, 200.0 ng RNA from each crab at five testicular stages (3 individuals per stage)

were used to make a pool. The transcriptome libraries were generated with TruSeq RNA Sam-

ple Preparation Kit (Illumina, San Deigo, USA) according to the manufacturer’s instructions

and two index codes were added in order to attribute sequences to ovary or testis samples.

Then the clustering of the index-coded samples was conducted with TruSeq PE Cluster Kit

(Illumina, San Francisco, USA) on a cBot Cluster Generation System following the manufac-

turer’s recommendations. After cluster generation, the ovary and testis libraries were se-

quenced on Illumina Hiseq 2000 platform using paired-end technology.

Data processing, assembly and functional annotation

Raw image data file from Illumina HiSeq 2000 was transformed to raw reads by CASAVA base

recognition and stored in fq format files. To obtain high-quality clean data, in-house perl

scripts were used to filter the raw reads which trimmed the adapter sequences, removed the

reads containing poly-N and the reads with low quality (quality value of over 50% bases of the

read was less than 5).

De novo transcriptome assembly was accomplished with Trinity software [27], by which

transcripts and unigenes (the longest transcript of a set of transcripts that appear to stem from
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the same transcription locus) were obtained. Gene functions of all the assembled unigenes

were annotated based on the following databases with a cut-off E value of 1.0×10–5: Nr (NCBI

non-redundant protein sequences); Pfam (Protein family); Swiss-Prot (A manually annotated

and reviewed protein sequence database). Blast2go (http://www.BLAST2go.org/) and WEGO

software (http://wego.genomics.org.cn/cgi-bin/wego/index.pl) were used to get the Gene ontol-

ogy (GO) (http://www.geneontology.org/) annotation and GO functional classification for the

unigenes. Mapping of the unigenes to KEGG (Kyoto Encyclopedia of Genes and Genomes)

pathways were performed with KEGG Automatic Annotation Server (KAAS) (http://www.

genome.jp/kegg/kaas/) [28].

Sequence mapping and differential expression analysis

The assembled transcriptome was used as reference database, and gene expression levels were

determined for each sample. Briefly, clean reads were mapped back to the reference transcrip-

tome by Bowtie v0.12.9 and read count for each gene was obtained from the mapping results

by RSEM [29]. And then the data was normalized for variation in sequencing depth with

RPKM (Reads Per Kilobase of exon model per Million mapped reads) method [30] and input

into DEGseq (2010) R package [31] for differential expression analysis. P value was adjusted

using q value [32]. Q value<0.005 and |log2 (fold change) |>1was defined as the threshold for

significant differential expression.

Molecular markers detection

The MIcroSAtellite (MISA, http://pgrc.ipk-gatersleben.de/misa/misa.html) tool was used to

identify the SSR markers in the unigenes. The minimum number of repeat units for di-, tri-,

tetra-, penta- and hexa-nucelotide motifs were set as 6, 5, 5, 5 and 5, respectively. For putative

SNP identification, clean reads were aligned to the reference transcriptome with SOAP2 soft-

ware [33]. Based on the alignment results, SOAPsnp package [34] was employed to call SNPs.

The SOAPsnp results were filtered using the following standards: base quality score is not less

than 20 and distance between two SNPs is greater than 5.

Quantitative real-time PCR confirmation of Illumina sequencing data

In order to validate the Illumina sequencing data, twelve differentially expressed genes between

ovary and testis were chosen for quantitative real-time PCR analysis with the same RNA sam-

ples for transcriptome analysis. The PCR reactions were run in ABI 7500 real-time PCR system

(Applied Biosystems, Foster City, USA) using QuantiFast SYBR Green PCR Kit (Qiagen, Hil-

den, Germany) in 25 μl reaction mixture with 20 ng cDNA as template. The β-actin was used

as the reference gene to normalize expression levels of the tested genes [35], and relative gene

expression was analyzed using the 2-44CT method [36]. All the primers used were manufac-

tured by Invitrogen (Shanghai, China) (S2 Table). All measurements were performed

in triplicates.

SNP validation

To verify the predicted SNPs identified in the assembled transcripts, 12 transcripts containing

35 potential SNPs were selected for validation using the same cDNA samples as for transcrip-

tome analysis. Primers were designed within the flanking regions of the SNPs using primer 3

[37] and were listed in S3 Table. After examining the specificity and molecular weight with aga-

rose gel electrophoresis, PCR products were directly sequenced using both forward and reverse
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primers at Invitrogen Company (Shanghai, China). Sequencing chromatograms were analyzed

using BioEdit software (http://www.mbio.ncsu.edu/bioedit/bioedit.html).

Results and Discussion

Illumina sequencing and de novo assembly

In order to obtain an overview of gonad transcriptome of P. trituberculatus and identify genes

involved in gonadal development, two cDNA libraries were prepared from pooled RNA ex-

tracts of ovary and testis at different development stages and sequenced using the Illumina

Solexa platform. The transcriptome sequencing generated 135,337,108 raw reads in total

(61,114,664 and 74,222,444 reads from ovary and testis, respectively). After trimming adapters

and removing low-quality reads, the two sequence datasets were reduced to 5.84 and 7.04 GB

for ovary and testis, respectively. Detailed results of the sequencing and assembly are shown in

Table 1. All the reads were deposited in the Short Read Archive (SRA) of the National Center

for Biotechnology Information (NCBI) with the accession number SRR1920180 (testis) and

SRR1920182 (ovary).

The de novo transcriptome assembly performed with Trinity using both ovary and testis

reads (128,904,126 reads in all) generated a total of 80,527 transcripts. The length distribution

of the assembled transcripts is as shown in S1 Fig. The average length of the transcripts ob-

tained, ranging from 201 to 36,343 bp, was 1,053 bp. The assembly program produced a sub-

stantial number of long sequences, i.e. 21,134 transcripts were longer than 1,000 bp,

accounting for 26.24% of total transcripts, and 11,468 transcripts (14.24%) were longer than

2,000 bp. Long sequences with high quality enable us to gain more information on genes.

Therefore this transcriptome dataset will provide a valuable resource for future analysis of

genes associated with reproduction and other economic traits.

Annotation and functional classification

After eliminating low-quality and short-length sequences, 54,960 unigenes were subjected to

annotation analysis by matching sequences against Nr, Pfam and Swiss-prot databases. 12,340

unigenes (22.45% of the total) can be matched in Nr database, 14,770 unigenes (26.87% of the

total) matched Pfam, and 10,236 unigenes (18.62% of the total) matched in Swiss-prot. These

annotated unigenes made a substantial contribution to P. trituberculatus sequence database

and established the basis for future investigations on specific molecular processes and functions

Table 1. Summary statistics of P. trituberculatus gonad transcriptome sequencing and assembly.

Raw results

Number of ovary raw reads 61,114,664

Number of testis raw reads 74,222,444

Numer of total raw reads 135,337,108

Number of ovary clean reads 58,429,148

Number of testis clean reads 70,474,978

Numer of total clean reads 128,904,126

Assembly results

Number of transcripts 80,527

Average length of transcripts (bp) 1,053

Minimum transcripts (bp) 201

Maximum transcripts (bp) 36,343

N50 2,439

doi:10.1371/journal.pone.0128659.t001
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in this species. It was noted that a large proportion of the unigenes (77.55%) did not give any

BLASTx hit, which could be partly due to the overall short length of these unigenes or due to

the limited genomic information available for decapod crustaceans. The high proportion of un-

annotated sequences was also observed in previous transcriptome analysis of other crustaceans

[19,22].The BLASTx top-hit species distribution of the 12,340 annotated unigenes showed

highest homology to the microcrustacean Daphnia pulex, followed by Tribolium castaneum,

Pediculosis corporis, Branchiostoma floridae, Rhipicephalus pulchellus and Strongylocentrotus

purpuratus (Fig 1). Not surprisingly, the largest number of the unigenes was matched with the

model species D. pulex, since it was the only crustacean species whose whole-genome sequenc-

ing had been completed [38].

Gene ontology (GO) assignment programs were utilized for functional categorization of the

assembled unigenes. A total of 14,994 unigenes were grouped into 55 subcategories under three

main ontologies (molecular functions, cellular components and biological processes) by BLAS-

T2GO suite (Fig 2). Of these unigenes, 12,514 (83.46%) were assigned to molecular function,

followed by 11,234 (74.92%) to biological processes and 9,388 (62.61%) to cellular components.

Within the molecular function, binding (52.82%) and catalytic activity (39.30%) constituted

the majority of the category. In cellular components category, cell (49.79%), cell part (49.76%)

and organelle (33.25%) comprised the largest proportion. Under biological processes category,

the predominant GO terms were grouped in cellular process (52.82%) and metabolic process

(54.69%). This GO assignment result was similar to the previously sequenced Eriocheir sinensis

testis transcriptome in which cell, cell part, binding, catalytic activity cellular process and meta-

bolic process represented the most abundant classifications [22].

To identify the biological pathways active in P. trituberculatus gonads, all unigenes were

mapped to the reference canonical pathways in KEGG database. This database contains func-

tional information on metabolic pathways or regulatory networks of genes and interacting

molecules in cells, which helps to study the complex biological behaviors of genes. Totally,

3,424 unigenes were mapped to 244 KEGG pathways within 32 categories, and among these

pathways, several signaling pathways well-documented to be essential in gonadal development

and maturation were found, including progesterone-mediated oocyte maturation pathway,

GnRH signaling pathway, insulin signaling pathway, transforming growth factor β (TGF-β)

pathway, the wingless-type MMTV integration site family (Wnt) pathway and phosphatidyli-

nositol 3 kinase (PI3K)/Akt pathway [23,39–41]. These pathways were assigned to the KEGG

categories of “signal transduction” and “endocrine system”, both of which were among the

most represented categories (Fig 3), indicating the significance of signal transduction systems

and endocrine regulation in gonad development and function in P. trituberculatus. The GO

and KEGG annotations were helpful for identifying potential genes with specific function

from a large-scale transcriptome database, and meanwhile provided a substantial resource for

studying significant processes, functions and pathways during gonadal development in P.

trituberculatus.

Candidate genes involved in the regulation of gonadal development

The developmental processes of gonad in crustaceans is exquisitely orchestrated by a variety of

regulatory factors, such as hormones and neurotransmitters [42–45]. Although the effects of

these factors on gonadal development have been extensively investigated [46–49], the molecu-

lar mechanisms controlling the biosynthesis of the factors and mediating their physiological

functions, are still largely unknown. In this gonad transcriptome of P. trituberculatus, we

found a number of genes participating in the synthesis and metabolism of hormones, and

genes encoding the receptors for hormones and biogenic amines important for gonadal
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development and maturation (Table 2). The identification and characterization of these genes

will facilitate researches on reproductive endocrinology at the molecular level in this species.

Methyl farnesoate (MF), a crustacean juvenile hormone (JH) analogue, is crucial for the reg-

ulation of reproductive processes, such as sex determination, ovarian maturation and testicular

development [4,50–53]. Previous studies showed that MF level was correlated with

Fig 1. Species distribution of the BLASTxmatches of the gonad transcriptome unigenes. Each bar of the histogram indicates the number of top-
BLASTmatches (the matches with the lowest E-value for each unigene) against the Genbank non-redundant (Nr) protein database to various species.

doi:10.1371/journal.pone.0128659.g001
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reproductive development [54], and its level was modulated by changes in the rates of both bio-

synthesis and degradation. The pathway for MF biosynthesis is similar to the mevalonate path-

way for acyclic isoprenoids [55,56]. During the initial steps of this pathway, mevalonate is

synthesized from acetate by 3-hydroxy-3-methylglutaryl-coenzyme A synthase (HMGS) and

3-hydroxy-3-methylglutaryl-coenzyme A reductase (HMGR), and converted to isopentyl pyro-

phosphate. Then isopentyl pyrophosphate are condensed by farnesyl pyrophosphate (FPP)

synthase to form FPP, and subsequently FPP is hydrolyzed to farnesol and oxidized to form

farnesoic acid. Finally, FA is converted to MF via farnesoic acid O-methyl transferase (FAO-

MeT). Four genes encoding the enzymes mentioned above, including HMGS, HMGR, FPP

synthase and FAOMeT, were found in this transcriptome. Compared with the synthetic path-

way of MF, much less is known about its degradation. The degradation of MF is considered to

be similar to that of JH, which requires carboxylesterase-catalyzed ester hydrolysis. Recently,

two JH esterase-like carboxylesterases were cloned in the shrimp Pandalopsis japonica [57].

Here we found orthologues of these two genes in our transcriptome, and the expression of

them were abundant in both ovary and testis. This result indicated that gonad was a major site

for MF catabolism in P. trituberculatus, which was consistent with previous findings in other

crustancean species, such as Libinia emarginata and Procambarus clarkii [58,59]. In addition,

an orthologue of Methoprene-tolerant (Met) which functions as a receptor for MF, mediating

the physiological effects of MF in crustaceans [60], was also identified in this transcriptome.

Ecdysteroids, synthesized in Y-organ, were primarily considered to be molting hormones,

however, recent studies have demonstrated that they also played a major role in regulating vi-

tellogenesis, ovarian maturation and spermatogenesis in decapod crustaceans [42,61,62].

Ecdysteroid signaling is mediated through its nuclear receptors which act as ligand-dependent

transcription factors [63]. Ecdysteroids bind to the heterodimer formed by ecdysteroid recep-

tor (EcR) and retinoid X receptor (RXR), which in turn activates transcription of responsive

genes and initiates an ecdysteroid cascade reaction [64]. In this transcriptome, the nuclear re-

ceptors, EcR and RXR were identified. In addition, homologs of two ecdysteroid-response

transcription factors, HR3 and E75, were also found, both of which have been reported to be

Fig 2. Gene ontology (GO) assignment of assembled unigenes of P. trituberculatus.GO terms were processed by Blast2Go and categorized at 2nd

level under three main categories (biological process, cellular component, and molecular function).

doi:10.1371/journal.pone.0128659.g002
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critical in vitellogenesis and oogenesis in insects [65]. Recent studies showed that HR3 and E75

in macrocrustacean Daphnia magna have high similarity in structure and function with their

orthologues in insects [66], therefore these two genes may participate in the regulation of go-

nadal development in crustaceans.

Vertebrate-type steroid hormones, such as 17β-estradiol, progesterone and testosterone,

have been reported to be present in crustaceans [13,67,68] and implicated in the regulation of

ovarian growth, vitellogenesis and spermatogenesis [69–72]. Previous studies have shown that

crustacean gonad tissue is a major site for the biosynthesis of these steroid hormones, in which

activities of several key steroidogenic enzymes, such as 3β-hydroxysteroid dehydrogenase (3β-

HSD) and 17β-HSDs, were detected. In this gonad transcriptome, we identified genes encoding

3β-HSD and two types of 17β-HSD (type 3 and 8). In vertebrates, 3β-HSD the conversion of

Δ
5
–3β-hydroxysteroids into Δ4-3-ketosteroids which is necessary for the formation of all clas-

ses of steroid hormones [73]. 17β-HSD type 3 is responsible for testosterone biosynthesis,

which catalyzes the conversion of androstenedione into testosterone, while 17β-HSD type 8

catalyzes the oxidation of 17β-estradiol, testosterone and dehydroepiandrosterone, and the re-

duction of estrone to 17β-estradiol [74,75]. Apart from the genes involved in the steroid hor-

mone synthesis, genes encoding their receptors were also found here, includingmembrane

Fig 3. KEGG classification of the unigenes. 3,424 unigenes were assigned to 32 KEGG categories.

doi:10.1371/journal.pone.0128659.g003
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progestin receptor γ (mPRγ) and progestin membrane receptor component 1 (PGMRC1), both of

which play important roles in mediating the rapid nongenomic signaling of progestin in verte-

brates [76]. In this study, the expression of these two genes in ovary was significantly higher

than that in testis, which indicated their potential implication in ovarian development in P.

trituberculatus.

Prostaglandins (PGs) comprise a family of lipid-derived autacoids, and some of them,

namely PGD2, PGE2 and PGF2α, have been proven to be involved in vitellogenesis, oocyte

maturation and ovulation in crustacean species [77,78]. In the present study, we identified

three genes related to the biosynthesis of these PGs, including cyclooxygenase (COX), PGD

synthase (PGDS) and PGE synthase (PGES), and one gene encoding prostaglandin E2 receptor

EP4 (PTER4) (Table 3). COX catalyzes the conversion of arachidonic acid (AA) into PGH2

which is the rate-limiting step for PGs biosynthesis. PGDS and PGES can convert PGH2 to

PGD2 and PGE2, respectively. PGER4 is reported to mediate actions of PGE2 in oocyte matu-

ration in mammals [79]. Previous studies in crustaceans mainly focused on regulatory roles of

PGs in ovarian development [80], however, in this study all these PGs-related genes showed

testis-biased expression, suggesting the possible involvement of PGs in regulatory events asso-

ciated with testicular development in P. trituberculatus.

Biogenic amine neurotransmitters, including 5-hydroxytryptamine (5-HT), dopamine

(DA) and octopamine (OA), have been found to serve diverse roles in reproduction of decapod

crustaceans [81–83]. 5-HT can induce oocytes and ovarian growth in females and testicular

maturation in males [84–86], while DA and OA were reported to delay gonadal development

Table 2. Candidate genes involved in the regulation of gonadal development in P. trituberculatus.

Gene Sequence ID

3-hydroxy-3-methylglutaryl-coenzyme A synthase comp125439_c0

3-hydroxy-3-methylglutaryl-coenzyme A reductase comp120111_c1

Farnesyl pyrophosphate synthase comp129671_c0

Farnesoic acid O-methyl transferase comp47818_c0; comp115960_c0

JHE-like carboxylesterase 1 comp103194_c0

JHE-like carboxylesterase 2 comp129436_c0

Methoprene-tolerant comp129328_c0

Ecdysteroid receptor comp110985_c0; comp124507_c1; comp124507_c3

Retinoid X receptor comp123143_c1

E75 nuclear receptor comp110276_c0

HR3 nuclear receptor comp117779_c2

3β-hydroxysteroid dehydrogenase comp121116_c0

17β-hydroxysteroid dehydrogenase type 3 comp117285_c0; comp126737_c1

17β-hydroxysteroid dehydrogenase type 8 comp116427_c0; comp130223_c1; comp105537_c0

Membrane progestin receptor γ comp115789_c0

Progestin membrane receptor component 1 comp105610_c2

Cyclooxygenase comp123466_c0; comp127940_c0

Prostaglandin D synthase comp73990_c0; comp87538_c0

Prostaglandin E synthase comp123337_c0

Prostaglandin E2 receptor comp121411_c0

5-hydroxytryptamine receptor comp116348_c0; comp1021305_c0; comp112658_c1

Dopamine receptor comp124753_c0

Octopamine receptor comp118564_c1; comp127071_c0; comp81773_c0;

comp51865_c0; comp123122_c0

doi:10.1371/journal.pone.0128659.t002
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[52,71]. The biogenic amines exert the regulatory effects via specific cell-surface receptors, the

majority of which belong to the superfamily of G-protein-coupled receptors. [87]. In this

study, the receptors for 5-HT, DA and OA were identified, which will enable us to investigate

the signal transduction cascades through which the biogenic amines regulate reproductive

processes.

In this transcriptome, we identified a number of genes potentially involved in the regulation

of gonadal development and maturation in P. trituberculatus, some of which were discovered

in crustaceans for the first time, such as 17β-HSDs andmPRγ. More detailed studies are re-

quired to elucidate their roles in gonadal development and maturation in this species.

Differentially expressed genes between ovary and testis

The identification and characterization of differentially expressed genes (DEGs) between

the ovary and testis is of vital importance for the understanding of the regulatory mechanisms

controlling differentiation and development of gonads. In the present study, statistical

analysis produced 5,919 genes exhibiting differential expression between ovary and testis

(q value<0.005 & |log2 (fold change)|>1), of which 1,000 were up-regulated in the ovary and

4,919 were down-regulated. Due to the lack of genomic information for crustacean species, a

large fraction of DEGs (64.52%) cannot be annotated, which may contain novel genes impor-

tant for gonadal differentiation and development. Further studies are necessary to functionally

characterize these genes. Among those annotated DEGs, many genes related to oogenesis or

spermatogenesis were identified (S1 Table), such as genes associated with vitellogenesis (Vitel-

logenin, Vitellogenin receptor, Vigilin and Vitelline membrane outer layer 1-like protein), oocyte

maturation (Cyclin B and Cell division cycle protein 2), spermatocytogenesis and spermatido-

genesis (Dmc 1 and Synaptonemal complex protein 1 and 2), ubiquitin proteolytic system (E3

ubiquitin-protein ligase Ubr2, SUMO-1, E3 SUMO-protein ligase RanBP2 and NSE2, SUMO-ac-

tivating enzyme subunit 1 and subunit 2, and Ubiquitin-conjugating enzyme E2), and so on. In

addition to the gametogenesis-related genes, we also found several genes which were previously

reported to play key roles in regulating gonadal differentiation and development in inverte-

brates and nematodes, including Forkhead protein l2 (Foxl2),Wnt4 and Follistatin (Fst), Femi-

nization-1 (Fem-1),Mothers against decapentaplegic homolog 3 (Smad3) and SRY-related

HMG-box gene 9 (Sox9).

Table 3. Real-time PCR confirmation of DEGs between ovary and testis.

Sequence ID Gene Illumina sequencing Testis/Ovary Real-time PCR Testis/Ovary

comp115789_c0 Membrane progestin receptor γ 0.23 0.20

comp105610_c2 Progestin membrane receptor component 1 0.22 0.26

comp127940_c0 Cyclooxygenase 5.97 6.71

comp73990_c0 Prostaglandin D synthase 2.58 2.99

comp123337_c0 Prostaglandin E synthase 7.22 8.19

comp121411_c0 Prostaglandin E2 receptor 8.31 2.69

comp123711_c0 Follistatin 0.16 0.12

comp128371_c0 Forkhead box L2 0.08 0.10

comp105761_c0 Mothers against decapentaplegic homolog 3 0.22 0.58

comp111219_c0 Feminization-1 8.05 7.18

comp127112_c0 SRY-related HMG-box gene 9 93.63 9.06

comp89760_c0 Wingless-type MMTV integration site family, member 4 0.13 0.11

doi:10.1371/journal.pone.0128659.t003
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Foxl2, encoding a forkhead transcription factors, is one of the most conserved genes control-

ling the differentiation and development of the ovary in vertebrates [88,89]. In this study, Foxl2

was predominantly expressed in ovary, indicating its potential implication in ovarian differen-

tiation and development of P. trituberculatus. As a member of the Wnt family, Wnt4 has been

well documented to play a crucial role in female reproductive development in mammals by reg-

ulating Müllerian duct formation, controlling steroidogenesis in the gonad and supporting oo-

cyte development [90]. Deficiency ofWnt4 in mice resulted in a dramatic reduction in the

number of developing oocytes, and gives rise to masculinization of the female gonad [91]. Fst,

a secreted glycoprotein, is known to be critical in regulating folliculogenesis and the develop-

ment of ovary by neutralizing the autocrine-paracrine action of Activin in promoting the dif-

ferentiation and proliferation of granulosa cells [92]. Smad3, an important mediator of the

TGF-β signaling pathway, is essential in regulating the response of ovary to follicle-stimulating

hormone during folliculogenesis [93,94]. The higher expression ofWnt4, Fst and Smad3 in this

transcriptome suggested that they may participate in the regulation of ovarian development in

the swimming crab.

In nematodes, Fem-1 functions in a signaling pathway that controls sex determination,

whose expression is essential for achieving all aspects of the male phenotype [95]. In this study,

orthologues of Fem-1 were found and exhibited testis-biased expression, implying their impli-

cation in testicular development and spermatogenesis. Sox9, a HMG-box transcription factor,

has been reported to be critical in testis differentiation and development in vertebrates [96].

The higher expression of Sox9 in testis compared with that in ovary was observed in this study,

which indicated that it may be involved in the differentiation and development of testis tissue

in this species.

In order to validate expression profiles obtained from Illumina sequencing analysis, twelve

DEGs were chosen for qRT-PCR analysis using the same RNA samples. Of these, nine genes

closely matched the results detected by Illumina sequencing (Table 3). Although the other

three did not perfectly match to the sequencing data, the up- or down-regulated trends were

similar. In general, the qRT-PCR results were in good agreement with the Illumina sequencing

analysis, which indicated that the Illunima data was credible.

Putative molecular markers

Transcriptome sequencing is a rapid and cost-efficient approach for development of genetic

markers. Among the various molecular markers, SSRs have a wide range of applications such

as parentage analysis, marker assisted selection (MAS), quantitative trait loci (QTL) association

and population genetics, by virtue of their highly polymorphic and codominant nature [97,98].

To identify SSRs, all the unigenes in this transcriptome dataset were searched with perl script

MISA. A total of 28,534 SSRs were identified in 22,627 unigenes with the frequency of one SSR

per 5.09 kb of the unigenes. The density was higher than those previously reported for Scylla

paramamosain (1/12.08 kb) andMacrobrachium nipponense (1/5.70 kb) [19,20]. As shown in

Fig 4, of all the SSRs, the most abundant type of repeat motif was di-nucleotide repeats

(19,101), accounting for 66.94%, followed by tri- (8,634), tetra- (768), hexa-nucleotide (18) and

penta- (13) repeat units. Among the di-nucleotide repeats motifs, (AG/GA)n, (TG/GT)n, and

(AC/CA)n were the dominant types with the frequencies of 32.12%, 31.21% and 20.99%, re-

spectively. The most common tri-nucleotide repeats motifs was (GTG/GGT/ TGG)n (15.58%),

followed by (GAG/GGA/ AGG)n (15.01%) and (CAC/ ACC / CCA)n (11.43%). These results

were different from those reported in S. paramamosain andM. nipponense [19,20], indicating

that SSR repeat types may be species-specific in decapod crustaceans. In addition to SSRs, by

mapping against 54,960 reference unigenes we also obtained a total of 111,646 putative SNPs,
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wherein 76,857 were transitions (Ts) and 46,099 were transversions (Tv), yielding a Ts: Tv

ratio of 1.67: 1 across the P. trituberculatus gonad transcriptome. The GA/AG, TC/CT and TA/

AT SNP types were the most common, while CG/GC types were the least SNP types (Fig 5). In

order to assess the reliability of the putative SNPs, thirty-five of these SNPs were selected ran-

domly for validation with PCR amplification and Sanger sequencing, and twenty-five of them

(71.42%) were validated (S3 Table). Generally, the successful validation for the majority of pu-

tative SNPs confirmed the utility of mining Illumina transcriptome sequence for SNPs. In the

present study, a large number of SSRs and SNPs were identified from Illumina sequencing

data. It is envisaged that the markers will provide an invaluable resource for population genet-

ics, genetic mapping, QTL association and evolutionary studies in P. trituberculatus.

Conclusion

This study represents the first utilization of Illumina sequencing technology to conduct a com-

prehensive transcriptome analysis of P. trituberculatus gonad. Our transcriptome sequencing

generated a total of 54,960 unigenes, among which many genes potentially involved in gonadal

Fig 4. Distribution of identified SSRs according to motif types.

doi:10.1371/journal.pone.0128659.g004
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development and maturation were identified. This transcriptome dataset will enrich the geno-

mic information for P. trituberculatus, and provide a fundamental support for future research

on the molecular mechanisms governing gonadal development of this species. In addition, a

large number of putative SSRs and SNPs were obtained, which should be useful as molecular

markers for functional genomics and breeding research in this species and other closely related

species.
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