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Long-read sequencing technologies such as Pacific Biosciences and Oxford Nanopore MinION are 
capable of producing long sequencing reads with average fragment lengths of over 10,000 base-pairs 
and maximum lengths reaching 100,000 base- pairs. Compared with short reads, the assemblies 
obtained from long-read sequencing platforms have much higher contig continuity and genome 

completeness as long fragments are able to extend paths into problematic or repetitive regions. Many 
successful assembly applications of the Pacific Biosciences technology have been reported ranging 
from small bacterial genomes to large plant and animal genomes. Recently, genome assemblies using 
Oxford Nanopore MinION data have attracted much attention due to the portability and low cost of 
this novel sequencing instrument. In this paper, we re-sequenced a well characterized genome, the 
Saccharomyces cerevisiae S288C strain using three different platforms: MinION, PacBio and MiSeq. We 
present a comprehensive metric comparison of assemblies generated by various pipelines and discuss 

how the platform associated data characteristics affect the assembly quality. With a given read depth 
of 31X, the assemblies from both Pacific Biosciences and Oxford Nanopore MinION show excellent 
continuity and completeness for the 16 nuclear chromosomes, but not for the mitochondrial genome, 
whose reconstruction still represents a significant challenge.

The advent of next generation sequencing technologies (NGS) has marked the start of a new era in genomics 
research. Compared to the previous Sanger technology1, NGS has significantly lowered the cost of sequencing 
using massively parallel sequencing methods2, 3. In a typical NGS run, DNA molecules are sheared into small frag-
ments and then clonally amplified before being sequenced. After DNA amplification, multiple fragments of the 
sequences obtained may cover the same genome region, so that computational algorithms can be used to concat-
enate and assemble such reads like a jigsaw puzzle and generate a consensus to correct for the occasional sequenc-
ing errors. The typical length of the DNA fragments sequenced is between 50 and 400 bases long2, and as a result, 
the assembly obtained from such short reads is fragmented in contigs much smaller than the actual chromosome 
sizes. In particular, short reads are not able to solve complex genome features like repeated regions (repeats) 
longer than the fragment length or copy number variations, with the typical outcome that (almost-) identical 
repeats are collapsed into a single element in the assembly. To overcome the high fragmentation of NGS-based 
assemblies and to help resolve long repeats, long-read sequencing technologies have been developed and recently 
adopted by the genomics community. The main characteristic of these new platforms is to work with long DNA 
molecules and provide reads with lengths up to hundreds of kilobases (kb). Reads of such length can be exploited 
in various ways. Particularly in the genome assembly field they can be used for de novo assembly with long-read 
data only, or for scaffolding of NGS-based assemblies by bridging gaps between contigs or spanning long repeats 
thus resolving them. A major drawback of long-read technologies is the higher rate of sequencing errors (5–20%) 
compared to NGS data (<1%)2. Such an error profile could negatively affect the assembly accuracy, but because 
the errors are mostly randomly distributed the majority of long-read assemblers adopt the strategy of correcting 
base errors algorithmically before attempting to assemble the reads.
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The most established long-read technology is from Pacific Biosciences (PacBio), which uses a sequencing by 
synthesis approach where phospholinked nucleotides are used to synthesize the complement strand of a single 
stranded DNA template. For the PacBio RS II machine, commercialized since 2011, the reads are characterized by 
lengths in the 5–60 kb range, with an average length around 12 kb4. The error rate for raw reads is about 13%4 with 
errors, mostly indels, randomly distributed. After a base error correction step the reads can reach an accuracy of 
99.9% and higher across the read length. Throughput can reach up to about 1 Gigabases (Gb) per run4. Presently, 
the cost of sequencing a large genome with the PacBio technology is still quite high, as it involves a high initial 
cost for the platform (about $700k) and about $300 per Gigabases4. But PacBio has recently released a new plat-
form, Sequel, that promises to increase the throughput to up to 10 Gb per run, maintaining a long average read 
length and decreasing the cost per Gb sequenced.

More recently, since 2014, the Oxford Nanopore Technology company (ONT) started distributing a new inno-
vative sequencer, the MinION. The MinION is the first handheld sequencer and measures only 2 cm × 4 cm × 9 cm 
and weighs about 100 g. Within a MinION flowcell, single-stranded DNA molecules are guided across a mem-
brane through protein-based nanopores. The membrane is immersed in a saline solution with a fixed voltage 
across it, so that an ionic current constantly passes through the pores. The DNA-strand motion through a pore 
causes a variation of the current, which is constantly monitored. A basecaller then determines the sequence of 
bases through the pore according to the observed variation in ionic current. To date, various basecallers are avail-
able: from an older Hidden-Markov-Model based (HMM) one to more recent ones based on Recurrent Neural 
Networks (f.i. Nanonet https://github.com/nanoporetech/nanonet). For the data analysed in this study, we used 
the HMM-based basecaller, which was the first made available by Oxford Nanopore. This basecalling package 
infers the sequence of successive k-mer words (5-mer or 6-mer) that passed through a particular pore by analyz-
ing the current variations in time. According to their estimated qualities, the reads are collected into a ‘Fail’ or 
a ‘Pass’ directory, the latter only including the highest quality bi-directional (2D) reads, for which both strands 
(template and complement) of a DNA molecule have been sequenced and then merged in a single read. Like 
PacBio, the MinION sequencing errors are mostly randomly distributed. They can be corrected given enough 
read depth, with the exception of long sequences of the same base (homomers), that are often collapsed into 
shorter sequences by the basecaller. Nanopore sequencing is still in its rapid development stage, and since the data 
produced in this study many progresses have been made regarding error rate and throughput stability. Because of 
its portable size, low price ($1000 initial investment for the MinION, and <$300/Gb for flowcells bought in bun-
dles), low computing requirements and relatively low wet-lab work load, the MinION has the potential to revolu-
tionize the genomic discipline, in particular with regard to field and clinical sequencing. A number of preliminary 
attempts have already been reported, ranging from in situ outbreak analysis and control strategy5–7, field DNA 
collection and sequencing8, exploration of metagenomics for clinical use9–11, and many more (see https://nanop-
oretech.com/publications). Moreover, higher-throughput machines that incorporate 5 (GridION, https://nanop-
oretech.com/products/gridion) or 48 (PromethION, https://nanoporetech.com/products/promethion) flowcells 
are in early access stage, and they are foreseen to deliver throughput similar to that of Illumina HiSeq per run.

In this paper, we report a comparative study on the yeast genome assemblies from three different sequencing 
platforms: MiSeq from Illumina (NGS), and the long-read platforms PacBio RS II and ONT MinION. Apart 
from the reference yeast strain, Saccharomyces cerevisiae S288C, we also sequenced and assembled three other 
yeast strains, SK1, and the two Saccharomyces paradoxus N44 and CBS432. We explored the results in terms of 
accuracy, time and memory consumption of a variety of existing pipelines for long-reads-only de novo assembly, 
and for scaffolding of MiSeq-based assemblies using long reads. For the reference strain S288C, a comparison 
between the results from an ONT and a PacBio dataset with same read depth and similar read length distribution 
and accuracy is presented to assess the performance of the various pipelines in correcting the error types typical 
of the two technologies.

Results
Data Sequencing and Production. We have sequenced the genome of the four yeast strains, N44, SK1, 
CBS432 and S288C, with three different sequencing platforms: Illumina MiSeq, PacBio RS II, and MinION mk1. 
For each strain, we obtained about 80X depth of 2 × 150 bp MiSeq paired reads and between 120X and 250X 
depth from various PacBio runs. For the ONT runs, we obtained a total (‘Fail’ + ‘Pass’) 2D throughput (2D-All) 
between 12X and 61X depth depending on the strain, but only a throughput between 4X and 31X was achieved for 
the 2D-Pass data. Most Nanopore runs were performed using the R7.3 flowcells, available at the time of sequenc-
ing. For the reference strain S288C, the sequencing reads included two testing runs using the newly released R9 
flowcell, in addition to the data of four runs from R7.3. The R9 flowcells generated data with higher accuracy than 
that of the R7.3 ones (91% against a R7.3 average of 88%). The R9 total 2D-All and 2D-Pass throughputs, 700 Mb 
and 60 Mb respectively, were too low for an independent study, so we merged the R7.3 and R9 reads to get a data-
set of 61X depth 2D-All and a dataset of 31X depth 2D-Pass, upon which our assembly comparisons are based.

To compare the capabilities of the assembly pipelines we used the S288C strain data, so that assembly quality 
and accuracy could be easily and directly determined by mapping against its well known reference. Our S288C 
ONT and PacBio datasets have very different read depths: ONT only 31X (2D-Pass), while PacBio about 120X. By 
assembling the whole PacBio dataset we obtained contiguous assemblies with accuracy up to 99.95%, as shown 
in the Supplementary Note. For our pipeline comparison though, we decided to subset the PacBio dataset to the 
same depth of the ONT dataset, so that differences between platform results are driven by platform differences 
and not different sample sizes. If we selected the PacBio reads randomly until reaching the desired depth, the sub-
set would follow a similar read length distribution of the original dataset, which has a smaller average read length 
than ONT. This would make it more difficult to interpret the assembly continuity as due to platform read intrin-
sic features like error rate and distribution, or different read lengths. Because of this, we decided to reduce the 
number of variables for assembly assessment by selecting a PacBio subsample of the S288C reads with the same 
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depth (31X) but also similar read length distribution as the S288C 2D-Pass ONT reads: the PacBio ONT-Emu 
sample (Figure 1-(c)). More information on how we extracted the subset can be found in the Supplementary 
Note. To study the dependence of the assembly pipelines on read depth, we also selected two subsets with 10X 
and 20X depth for the S288C ONT and PacBio data, again with similar read length distributions. For the total 
PacBio S288C dataset, which consists of 120X read-depth, we performed a more detailed depth study shown in 
the Supplementary Note for subsets of 10X, 20X, 31X, 61X, 80X and the whole sample at 120X depth. Details 
about the sequenced datasets presented in this paper are summarized in Table 1 for ONT, and in Table 2 for 
PacBio samples which ‘emulate’ the ONT read length profiles (ONT-Emu). The read length distributions for the 
S288C, N44, CBS432 and SK1 strains of the 2D-Pass ONT datasets are shown in Fig. 1-(a) and those of the PacBio 
datasets in Fig. 1-(b).

De novo Assembly and Scaffolding Pipelines. It has been shown already12 that contiguous and accurate 
yeast assemblies can be generated de novo solely using ONT data. Here, we focus on assessing the various exist-
ing pipelines and on comparing the results obtained from ONT and PacBio data with particular attention to the 

Figure 1. Read length distributions for the ONT and PacBio datasets. Read length distributions for the four 
yeast strains, S288C, N44, CBS432 and SK1 of the 2D-Pass ONT datasets in (a) and the PacBio datasets in (b). 
Comparison of read length distributions for the S288C strain of the 31X datasets ONT 2D-Pass and PacBio 
ONT-emulating 31X-subset in (c).

Oxford Nanopore Datasets

Strain Dataset Bases (Mb) Reads Average (b) Longest (b) N50 (b) Identity

S288C

2D-Pass: 31X 383 42,325 9,040 56,477 11,693 93.3%

2D-Pass: 20X 121 13,366 9,054 56,028 11,716 92.0%

2D-Pass: 10X 242 26,721 9,057 56,477 11,659 92.8%

N44 2D-Pass: 11X 130 15,654 8,292 37,837 9,861 NA

CBS432 2D-Pass: 9X 110 12,211 8,952 46,481 11,201 NA

SK1 2D-Pass: 4X 51 5,938 8,589 36,791 10,971 NA

Table 1. Statistic information for the 2D-Pass ONT datasets for the S288C, N44, CBS432 and SK1 strains. For 
the S288C strain, also shown are a 20X and a 10X subsets of randomly selected reads from the immediately 
larger 2D-Pass dataset.

Pacfic Biosciences Datasets

Strain Dataset Bases (Mb) Reads Average (b) Longest (b) N50 (b) Identity

S288C

120X 1,463 239,408 6,109 35,196 8,656 92.5%

ONT-Emu: 31X 375 42,180 8,893 35,196 11,196 91.9%

ONT-Emu: 20X 242 26,786 9,035 35,196 11,615 91.7%

ONT-Emu: 10X 121 13,456 8,993 31,627 11,582 91.2%

N44 148X 1,794 371,025 4,834 33,906 6,800 NA

CBS432 135X 1,639 324,414 5,053 34,173 7,212 NA

SK1 248X 3,019 697,989 4,325 34,080 6,184 NA

Table 2. Statistic information for the PacBio datasets for the S288C, N44, CBS432 and SK1 strains. For the 
S288C strain also the ONT-emulating subsets are shown: ‘ONT-Emu’ 31X, 20X and 10X subsets, selected to 
match the 31X, 20X and 10X ONT S288C datasets for depth and read length distribution.
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similarities and differences between the two platforms. The long reads provided by PacBio and ONT can be used 
to generate a de novo assembly either by themselves or in conjunction with Illumina (NGS) data. In this paper, we 
show examples of assemblies from long reads only, and from’hybrid’ pipelines that use the Illumina reads either 
to correct the long reads or to generate a short-read assembly that is later scaffolded with long reads.

We selected eight assembly pipelines for long reads. PBcR13 (with Self- or MiSeq-based error correction: 
PBcR-Self, PBcR-MiSeq), Canu14 and Falcon15 are based on an Overlap-Layout-Consensus (OLC) algorithm; 
ABruijn16 is based on a generalized De-Bruijn graph algorithm. All of them include a base-error correction step 
on the reads before assembling them. SMARTdenovo (available from https://github.com/ruanjue/smartdenovo) 
is also based on a OLC algorithm, but does not include a base-error correction step. Miniasm17 chooses the best 
path from a string graph created from the overlap of uncorrected reads: it is the only pipeline here that includes 
neither a base-error correction nor a consensus step. Racon18 aligns the raw long reads to a Miniasm assembly and 
generates a consensus, significantly increasing the initial accuracy. We selected and assessed also three scaffolding 
pipelines: npScarf19, HybridSPAdes20 and SMIS (available from https://github.com/fg6/smis.git), to scaffold an 
NGS-based assembly from SPAdes21. Details about these pipelines and the parameters used for running them can 
be found in the Supplementary Note.

Assemblies from different pipelines and platforms. The de novo assemblies of the whole PacBio data-
sets for S288C and the other strains are shown and discussed in the Supplementary Note, while here we compare 
the performances of long-read assemblers when run on a 31X depth ONT or PacBio datasets with similar read 
length distributions. For this purpose we selected a subsample from the PacBio S288C dataset with the same 
depth as the ONT 2D-Pass sample (31X) and with similar read length distribution, as described above and shown 
in Fig. 1-(c). The statistic information for the two S288C samples can be compared if looking at the sample S288C 
‘2D-Pass: 31X’ in Table 1 for the ONT case, and at the S288C ‘ONT-Emu 31X’ in Table 2 for the PacBio case 
emulating the ONT sample. As shown in these tables, the two samples also have similar average error rates (92% 
average identity for PacBio and 93% for ONT datasets). Using these two similar samples, except for normal fluc-
tuations, differences in assembler’s performances can be attributed to the peculiar features of the reads from the 
two platforms, for instance to error types and distributions.

The assembly information for the ONT dataset ‘2D-Pass 31X’ and for the PacBio ‘ONT-Emu 31X’ can be 
found in Tables 3 and 4, respectively. With 31X depth the pipelines generated assemblies with similar features 
when running on PacBio or ONT data.

The fastest pipeline is Miniasm, which does not include a base error correction nor a consensus step. For 
both PacBio and ONT datasets it only took 4–5 minutes to run but only achieved 89% accuracy. Because of the 
high number of indels in the ONT and PacBio data, Miniasm reconstructed only about 95–96% of the genome, 
significantly less than the other pipelines. Globally, the assembly structure from the Miniasm pipeline is correct, 
indicating that the missing regions are due to local base errors. Part of these base errors are recovered by the other 
pipelines either by building a consensus from the raw reads (Racon, SMARTdenovo) or during their base-error 
correction steps (PBcR-MiSeq, PBcR-Self, Canu, Falcon and ABruijn). The assemblies with the highest accuracy, 
99.94–99.97% are the ones from the only hybrid assembler, PBcR-MiSeq, that uses MiSeq reads to correct the 
ONT or PacBio reads. But PBcR-MiSeq also provided the most fragmented assemblies, with Na50s only 270 kb 
long, where Na50s are the N50s after breaking the contigs at the misassembly points found by Quast22. None of 
the other assemblers uses Illumina reads, and we refer to them as the non-hybrid pipelines. The non-hybrid pipe-
lines reconstructed 98–99% of the genome, with Na50s in the 400–500 kb range long, and accuracy up to 98.76% 
for ONT reads and up to 99.93% for the PacBio reads. The highest accuracy between the non-hybrid assemblies 
for the ONT data is from Racon, with 98.76%, immediately followed by SMARTdenovo and ABruijn with about 
98.50%. For the PacBio datasets the Celera-based assemblers (Canu, PBcR-Self) provided the highest accuracy, 
99.92–99.93%, followed by ABruijn at 99.87% and Falcon at 99.78%.

To assess the completeness of the newly generated assemblies, we checked for the reconstruction of a list of 
known S288C genes. From the list of ORF coding sequences reported in the Saccharomyces Genome Database 
(http://www.yeastgenome.org), we selected 6,615 coding sequences that mapped to the S288C reference for at 
least 90% of their length with at least 90% mapping identity. We used BWA23 to align each gene against the new 
assembly under study, and declared a gene ‘reconstructed’ if at least 90% of it was assembled with at least 90% 
accuracy. Tables 3 and 4 for ONT and PacBio data respectively, show a correlation between the assembly conti-
nuity and the number of mapped genes, i.e. an assembly from a particular pipeline with longer contigs is likely to 
have reconstructed more genes. For example, the SMARTdenovo assemblies consist of 20 contigs when using 31X 
PacBio reads and 38 contigs when using 20X PacBio data, and the numbers of reconstructed genes are 6,596 and 
6,534 respectively. For the ONT data at 31X, the contig number is 28, and it is associated with 6,556 genes; at read 
coverage of 20X, the contig number is increased to 29, while mapped genes dropped to 6,528.

Even though there is no single pipeline that outperforms at every statistic gathered, SMARTdenovo and Canu 
assemblies have the longest reference coverage, best or near-best average identity, highest number of genes found 
and long Na50s for both PacBio and ONT data. Apart from Miniasm, SMARTdenovo is also the pipeline using the 
least resources, with CPU running time ≤2 h and ≤5 GB of memory. Racon, Falcon and ABruijn are the next fast-
est pipelines. PBcR is the pipeline typically requiring the longest running times especially when using ONT data.

Missing homomers. Ignoring Miniasm which has no error correction nor a consensus step, and the hybrid 
pipeline PBcR-MiSeq, which corrects the reads using Illumina data, it is clear that the PacBio assemblies have 
higher accuracies, from 99.50% to 99.93%, while the ONT assemblies reach a maximum accuracy of 98.76%. 
Because the average read accuracy, the depth and the read length distribution of the ONT and PacBio datasets 
used here are very similar, the final higher accuracies for the PacBio assemblies are likely due to platform-intrinsic 
features of the data. When no base-error correction nor consensus step is performed, like in the Miniasm pipeline, 
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the resulting assemblies are about 89% accurate for both the ONT and PacBio datasets, and present lots of mis-
matches and indels, with prevalence of indels. Adding a correction or a consensus step like the other non-hybrid 
pipelines significantly reduces the number of mismatches and indel errors for both ONT and PacBio data. While 
the number of mismatches is reduced to a similar level for ONT and PacBio, the number of indels in ONT assem-
blies remains very high. The ONT assembly with fewer indels (Racon, indels = 11 per kb) has about 11 times 
more indels than the best PacBio case (Canu, indels = 1 per kb), and about 3 times more indels than the worst 
PacBio case (Racon, indels = 4 per kb). The high accuracy reached with the PacBio data shows that most PacBio 
errors can be corrected by generating a consensus between the reads that cover the same genomic region, and is a 
clear indication that PacBio read errors are mostly randomly distributed. For the ONT data the situation is more 
challenging: while it is true that some of the errors have a random distribution and are corrected by the various 
pipelines, a good portion of them, mainly indels, seem to escape the correction attempts, pointing to a possible 
systematic source of errors. Indeed most of the remaining errors are due to missing homomers in the ONT reads. 
For instance, the assembly from Canu contains far fewer 5-homomers (“AAAAA”, “TTTTT”, “CCCCC” and 
“GGGGG”) than the reference, as shown in Fig. 2, where the blue bars represent the Reference’s counts and the 
orange bars Canu’s counts. The figure also shows that if the Canu assembly is polished with Nanopolish24 (green 
bars) many of the missing homomers are recovered, and the final assembly accuracy reaches 99.57%, as shown in 
Table 3 for the ‘2D-Pass 31X’ sample. This table also shows the downside of Nanopolish: it needs 1,835 CPU hours 
to polish the Canu assembly, which makes this pipeline impractical for larger genomes.

Mitochondrial genome reconstruction. While all of the 16 yeast nuclear chromosomes are well recon-
structed by every tested pipeline with respect to continuity, accuracy and completeness, many pipelines failed to 
reconstruct the mitochondrial genome (Supplementary Tables S5 and S6). This chromosome is the smallest one 
in the reference assembly, only containing 85,779 bases, but appears to be very challenging to assemble, especially 
with ONT datasets. Using ONT data, only PBcR-MiSeq was able to reconstruct it almost completely (96%), and 

Oxford Nanopore S288C Datasets

Dataset Assembler
Bases 
(Mb) Contigs

N50 
(kb)

Reference 
Coverage

SNPs, Indels 
(#per kb) Identity MisAss

Na50 
(kb)

Genes 
(6,615)

CPU 
Time (h)

Memory 
(GB)

2D-Pass 31X

PBcR-MiSeq 11.9 76 305 99.08% 0.1, 0.2 99.94% 18 273 6,514 147 17

Miniasm 11.8 27 739 94.85% 34, 67 89.42% 26 362 3,353 0.1 5

Racon 12.0 27 752 98.80% 0.4, 11 98.76% 24 534 6,533 8 5

Falcon 11.9 43 717 99.09% 0.5, 21 97.79% 27 546 6,526 19 71

SMARTdenovo 12.1 28 625 99.54% 0.3, 14 98.50% 25 531 6,556 2 5

ABruijn 12.4 26 769 98.89% 0.1, 15 98.49% 31 536 6,533 44 8

PBcR-Self 12.9 64 616 99.21% 0.2, 17 98.24% 92 525 6,552 695 23

Canu 12.1 29 698 99.62% 0.1, 17 98.30% 34 530 6,566 80 14

+Nanopolish 12.3 29 709 99.63% 0.1, 4 99.57% 35 538 6,584 1,835 12

2D-Pass 20X

PBcR-MiSeq 11.8 66 269 99.09% 0.1, 0.2 99.94% 8 262 6,522 95 13

Miniasm 11.6 39 418 94.66% 34, 67 89.36% 24 286 3,271 0.1 3

Racon 11.8 39 423 98.11% 0.7, 13 98.56% 26 393 6,478 5 2

Falcon 10.7 84 210 90.64% 0.6, 21 97.56% 17 194 5,946 10 44

SMARTdenovo 11.9 29 656 98.99% 0.8, 16 98.23% 24 455 6,528 1 4

ABruijn 12.0 29 468 98.55% 0.3, 16 98.28% 12 436 6,495 29 7

PBcR-Self 12.9 72 545 99.32% 0.3, 18 98.08% 74 452 6,550 342 20

Canu 11.9 31 544 98.99% 0.2, 18 98.10% 25 441 6,525 41 10

2D-Pass 10X

PBcR-MiSeq 11.3 123 161 95.75% 0.1, 0.2 99.94% 13 146 6,310 33 7

Miniasm 7.9 158 58 67.90% 24, 46 89.26% 12 43 2,256 0.02 0.002

Racon 8.1 158 60 70.33% 2, 13 97.72% 15 58 4,520 3 1

Falcon 1.4 113 17 15.90% 0.1, 3 97.43% 6 16 901 3 24

SMARTdenovo 10.4 114 115 88.71% 5, 24 96.58% 12 104 5,610 1 1

ABruijn 8.5 86 111 72.68% 1, 16 97.47% 21 97 4,711 16 8

PBcR-Self 11.5 167 106 91.33% 1, 22 97.40% 64 102 5,957 71 3

Canu 10.7 115 134 91.52% 1, 23 97.32% 18 112 5,955 13 6

Table 3. Statistic information about the de novo assemblies for the S288C ONT datasets for the hybrid pipeline 

PBcR-MiSeq, the pipeline Miniasm, with no base error correction nor consensus step, and for the non-hybrid 

pipelines: Racon (on a Miniasm draft assembly), Falcon, SMARTdenovo, ABruijn, PBcR-Self and Canu for, 

from top to bottom: all the 2D-Pass reads (2D-Pass 31X), the 2D-Pass 20X subset and the 2D-Pass 10X subsets. 

For the 2’D-Pass 31X’ dataset also the results from Nanopolish on the Canu assembly is shown. In each column 

the best value is highlighted in bold. For the identity column the best value is always for the hybrid assembly 

PBcR-MiSeq, but we also highlighted (bold and underlined) the best value for the non-hybrid pipelines, 

ignoring Nanopolish as it is the only polishing tool. For the 10X datasets, we ignored assemblies with less than 

80% reference coverage when choosing the best values.

http://S5
http://S6
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only Falcon and Canu were able to reconstruct at least half of it (67%, 64%, respectively). Using PacBio data there 
are three full reconstructions from Racon, SMARTdenovo and Canu, while Miniasm manages to reconstruct 77% 
of it. There are a number of possible reasons for the mitochondrial genome to be more challenging to reconstruct 
than the other chromosomes. The GC content in the mitochondrial genome is only 17%, much lower than the 
average value of 38% for the nuclear chromosomes. There are also a lot of highly repetitive small AT k-mers, 
which contribute to the difficulty of assembly.

Pacific Biosciences S288C Datasets

Dataset Assembler
Bases 
(Mb) Contigs

N50 
(kb)

Reference 
Coverage

SNPs, Indels 
(# per kb) Identity MisAss

Na50 
(kb)

Genes 
(6,615)

CPU 
Time 
(h)

Memory 
(GB)

ONT-Emu 31X

PBcR-MiSeq 11.9 76 270 98.68% 0.1, 0.1 99.97% 9 270 6,526 132 17

Miniasm 12.5 35 563 96.10% 19, 88 89.37% 53 106 3,226 0.1 5

Racon 12.1 34 544 99.09% 0.3, 4 99.50% 22 429 6,540 19 5

Falcon 12.0 35 549 98.18% 0.3, 2 99.78% 28 436 6,508 13 64

SMARTdenovo 12.3 20 929 99.97% 0.2, 3 99.66% 27 549 6,596 2 4

ABruijn 12.3 26 666 99.30% 0.1, 1 99.87% 43 469 6,565 19 7

PBcR-Self 12.4 39 751 99.50% 0.1, 1 99.92% 43 548 6,590 63 24

Canu 12.3 28 607 99.92% 0.1, 1 99.93% 29 534 6,601 15 10

ONT-Emu 20X

PBcR-MiSeq 11.7 64 304 98.73% 0.1, 0.1 99.97% 7 264 6,501 86 13

Miniasm 12.0 86 202 93.08% 18, 84 89.57% 53 69 3,255 0.04 3

Racon 11.6 86 194 95.35% 1, 7 99.18% 25 189 6,241 10 2

Falcon 9.9 152 115 82.22% 0.3, 2 99.65% 29 112 5,341 5.6 41

SMARTdenovo 12.2 38 545 99.80% 0.5, 8 99.09% 24 434 6,534 1 3

ABruijn 11.7 58 272 96.06% 0.1, 2 99.72% 36 258 6,325 23 9

PBcR-Self 12.3 44 502 99.03% 0.2, 2 99.78% 35 428 6,560 30 20

Canu 12.2 42 454 99.47% 0.2, 2 99.79% 28 432 6,565 8 7

ONT-Emu 10X

PBcR-MiSeq 10.9 144 117 92.26% 0.1, 0.1 99.97% 9 111 6,058 46 7

Miniasm 4.0 120 35 33.92% 6, 27 89.61% 4 19 1,035 0.02 0.1

Racon 3.8 120 34 35.48% 1, 5 98.28% 8 33 2,095 5 1

Falcon 0.6 59 14 8.99% 0.1, 0.2 99.41% 10 13 421 1 23

SMARTdenovo 8.5 157 61 71.29% 3, 22 96.43% 8 55 4,271 1 1

ABruijn 4.7 67 71 41.45% 0.4, 4 98.87% 10 67 2,631 13 7

PBcR-Self 9.7 232 57 78.99% 1, 7 98.96% 35 55 5,111 12 18

Canu 8.9 178 62 75.35% 0.4, 6 99.14% 19 59 4,811 3 4

Table 4. As Table 3 but for PacBio-based assemblies from the ONT-Emu PacBio subsets at, from top to bottom, 

31X, 20X and 10X depth.

Figure 2. Homomer counts. Counts for the 5 bases homomers in the Reference (blue), in the Canu assembly 
(orange), and in the Canu assembly after polishing with Nanopolish (green).
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We found that while for the ONT dataset the mitochondrial read depth was consistent with that of the other 
chromosomes, the PacBio mitochondrial depth was about 6 times higher which could help explain why the mito-
chondrial genome reconstruction is more complete with the PacBio data. To exclude the possibility that this is 
due to a bias in our subsetting, we looked at the whole PacBio dataset and found that, similarly to the subset, the 
mitochondrial genome depth is about 7 times higher than the nuclear chromosomes. This is likely due to the 
high copy number of mitochondria in a cell. Possibly, the PacBio library preparation preserves this higher copy 
number, while the ONT library preparation does not. For instance, it is possible that DNA molecules have been 
less vigorously sheared in the ONT case, so that many of the very short mitochondrial genome remained circular 
preventing the ligation of the adapters needed for sequencing.

In addition to a lower depth with respect to PacBio, the mitochondrial genome assembly from ONT data is 
also hindered by an higher than average homomer content: using the S288C reference, we estimated that the 
mitochondrial genome has at least 30% more homomers than the other chromosomes, for k-mer lengths 3, 4, 5, 
6 and 7. Figure 3 shows the 5-homomer counts (#5A + #5T + #5G + #5C) ratios between each chromosome and 
the mitochondrial genome, each count normalized by the chromosome length in bases.

De novo Assembly by Varying the Read Depth. In order to assess the scalability of the assembly pipe-
lines and to determine how the performances of the assemblers vary with read depth, we selected and analyzed 
subsets of the ONT and the PacBio full datasets. A dedicated study focusing only on the higher depth PacBio 
dataset is discussed in the Supplementary Note. Here, we compared the assemblies at 31X mentioned in the 
previous section, with 20X and 10X subsets from the ONT 2D-Pass and similar subsets from PacBio reads emu-
lating the read length distribution of the ONT subsets, as we did for the 31X case. These datasets are presented in 
Tables 1 and 2 for ONT and PacBio respectively, where the PacBio subsets are labeled as ONT-Emu. The results 
of the pipelines are summarized for the 31X, 20X and 10X in Table 3 for ONT and Table 4 for PacBio data. At 
very low read depth, 10X, the hybrid pipeline, PBcR-MiSeq, was the best performing pipeline for both ONT and 
PacBio data providing assemblies which cover more than 92% of the genome with accuracies larger than 99.9%, 
and the longest Na50s, in the 100s of kb. At 20X depth the Na50 is about doubled, and 98–99% of the genes are 
reconstructed.

For the non-hybrid pipelines, the Celera-based ones, Canu and PBcR-Self, were the best performers at low 
read depths. At 10X, Canu and PBcR-Self performed better on ONT than PacBio data. These assemblies cover 
about 90% (75–79%) of the reference with an accuracy of 97% (99%) and a Na50 of 100 (60) kb with ONT 
(PacBio) data. All the other assemblies cover significantly less proportions of the reference genome, and in par-
ticular Falcon seems to have the most difficulties at such low read depth. At 20X, all the Celera-based pipe-
lines still performed very well, with Canu and PBcR-Self providing Na50s in the range of 400s kb, as well as 
SMARTdenovo. The assembly from Racon distinguishes itself on ONT data for the highest accuracy, immediately 
followed by ABruijn and SMARTdenovo, while for PacBio data Canu, PBcR-Self and ABruijn assemblies have 
the highest accuracies. Already at 20X, Canu, PBcR-Self, PBcR-MiSeq and SMARTdenovo reconstructed about 
99% of the genes. At 31X depth the non-hybrid pipelines increased the Na50s up to 500s kb and slightly improved 
their final accuracies.

Genome scaffolding using long reads. We explored the scaffolding performance of three pipelines that 
use long ONT/PacBio reads to bridge and merge contigs from a NGS assembly. The NGS assembly used here 
has been generated from a dataset of 80X of 2 × 150 bp MiSeq paired-reads by SPAdes, as one of the scaffolding 
pipelines is embedded with it (HybridSPAdes). As expected, the assembly from SPAdes is fragmented but has 
very high accuracy: it has 206 contigs and its N50 is only 125 kb, as shown at the top of Table 5. The scaffolding 

Figure 3. Chromosome homomer rate with respect to that of the mitochondrial genome. Ratios of 5–homomer 
counts normalized by the chromosome length between each chromosome and the mitochondrial genome (mt).
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pipelines were able to bridge a number of contigs significantly increasing the assemblies’ N50s while maintaining 
a high accuracy for both the PacBio and ONT samples. The npScarf pipeline achieved N50s much longer than 
HybridSPAdes or SMIS, 771 kb for ONT and 715 kb for PacBio, but the Quast analysis of these assemblies revealed 
that they are affected by a number of misassemblies, and their final Na50 is 514 kb for the ONT data and 413 kb 
for PacBio. Even after correcting for the misassemblies npScarf provided the more contiguous assemblies, but 
the HybridSPAdes and SMIS ones were able to maintain a higher accuracy than npScarf, 99.97–99.98% against 
99.91%. The assemblies from HybridSPAdes have a higher coverage over the reference and reconstruct more 
genes than SMIS or npScarf. The npScarf tool has the advantage of requiring the least resources as it is faster than 
the other two pipelines and it uses less memory.

We ran the same scaffolding pipelines on the three other yeast strains N44, CBS432 and SK1 with 2D-Pass 
ONT data at the lower depths of 11X, 9X and 4X, respectively. The scaffolding results are shown in Table 6. As a 
reference is not available for these strains, we could not evaluate the accuracy and misassemblies of the scaffolds, 
but, as for the S288C case, we can expect high accuracy, >99.95%, as these assemblies are based on Illumina data. 
The longer N50s from npScarf are likely significantly affected by misassemblies, as observed in the S288C case, 
while the N50s estimated by HybridSPAdes and SMIS are expected to be more accurate. A comprehensive struc-
ture variation analysis of these strains can be found in ref. 25.

Discussion
We have shown that the yeast genome can be de novo assembled with Na50s up to 550 kb with 31X read depth 
from PacBio or ONT platforms, reaching an accuracy of up to 99% for PacBio and 98% for ONT, when not using 
Illumina data. More fragmented assemblies but with an higher accuracy (up to 99.98%) can be achieved when 
using long reads in conjunction with Illumina reads in hybrid or scaffolding assemblies. Miniasm was the fastest 
pipeline, requiring only few minutes to run, but because of the lack of a correction or consensus step it gener-
ated assemblies with very poor accuracy (~89%). After Miniasm, SMARTdenovo is the pipeline requiring the 
least resources and in particular the least time for running, <2 h, but providing accuracies close to the highest 
one achieved without help from Illumina (98.5% for ONT and 99.7% for PacBio). The non-hybrid Celera-based 

S288C Datasets: Scaffolding Pipelines

Dataset Assembler
Bases 
(Mb) Contigs

N50 
(kb)

Reference 
Coverage

SNPs, Indels (# 
per kb) Identity MisAss

Na50 
(kb)

Genes 
(6,615)

CPU 
Time (h)

Memory 
(GB)

MiSeq SPAdes 11.6 206 125 98.3% 0.04, 0.03 99.98% 5 125 6,399 5 12

ONT 
2D-Pass 
31X

npScarf 11.9 21 771 99.8% 0.4, 0.3 99.91% 69 514 6,559 3 4

HybridSPAdes 11.8 64 444 99.97% 0.1, 0.04 99.97% 7 416 6,582 18 12

SMIS 11.8 85 549 98.4% 0.04, 0.04 99.98% 13 493 6,411 13 4

PacBio 
ONT-Emu 
31X

npScarf 11.7 22 715 98.5% 0.3, 0.4 99.91% 67 413 6,458 2 3

HybridSPAdes 11.7 68 364 99.9% 0.1, 0.04 99.97% 5 317 6,583 27 12

SMIS 11.7 89 546 98.8% 0.04, 0.04 99.97% 40 309 6,399 9 6

Table 5. MiSeq-only assembly from SPAdes in top row. MiSeq-only assembly from SPAdes scaffolded by the 

npScarf, HybridSPAdes and SMIS pipelines using the ‘2D-Pass 31X’ ONT sample (Middle) and the ‘ONT-Emu 

31X’ PacBio subset (Bottom).

Oxford Nanopore Datasets

Dataset Assembler Bases (Mb) Contigs N50 (kb) Genes (6,615) CPU Time (h)
Memory 
(GB)

N44 2D-Pass: 11X

SPAdes 11.6 187 117 5,475 7 13

npScarf 11.7 19 898 5,538 1 2

HybridSPAdes 11.7 61 324 5,547 8 13

SMIS 11.7 58 511 5,474 2 5

CBS432 2D-Pass: 9X

SPAdes 11.6 181 150 5,498 5 12

npScarf 11.4 19 928 5,443 1 1

HybridSPAdes 11.7 49 515 5,611 6 12

SMIS 11.7 64 658 5,499 1 5

SK1 2D-Pass: 4X

SPAdes 11.6 240 118 6,341 6 12

npScarf 11.7 43 507 6,435 0.3 1

HybridSPAdes 11.7 111 227 6,444 5 12

SMIS 11.7 142 358 6,341 1 3

Table 6. Statistic information on the de novo assemblies from the MiSeq-only SPAdes pipeline and the same 
SPAdes assembly scaffolded with npScarf, HybridSPAdes and SMIS for the N44 (top panel), CBS432 (middle 
panel), and SK1 (bottom panel) strains.
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assemblers, PBcR-Self and Canu, generated continuous and accurate assemblies, and appeared to be the most 
performing pipelines as the read coverage decreased.

In our experience, PacBio and ONT platforms provided reads with similar error rates and lengths in the thou-
sands of bases. The average PacBio lengths were generally smaller than the ONT ones, but the ONT throughput 
per run was significantly lower than the one from PacBio’s runs. This was mainly because we used early MinION 
flowcells and chemistries: the throughput improved significantly both in size and stability with more recent 
MinION kits and software. In addition, a fairer throughput comparison should be done between two benchtop 
devices, e.g. the PacBio RSII and the Oxford Nanopore GridION, or PromethION, both not available at the time 
of this study. Both platforms provided error-prone reads, but missing homomers in the ONT data represent a 
major difference with respect to PacBio. Because of this difference, while PacBio reads could be corrected with 
enough depth to reach assembly accuracies >99.9%, for ONT data increasing the read depth only helped to reach 
an accuracy up to 98–99%. To improve further a very time consuming polishing step is needed, at least until the 
missing homomers issue is reduced or solved, possibly already with a new Neural Network-based basecaller, 
Scrappie, presently in development at Oxford Nanopore.

Methods
Library Preparation. Library preparations for Oxford Nanopore sequencing. Two ug of genomic DNA was 
sheared to approximately 18,000 bp by centrifugation at 4000 rpm in a gTUBE. Sequencing libraries were pre-
pared according to the SQK-MAP006 or SQK-NSK007 Sequencing Kit protocol, including the NEBNext FFPE 
DNA repair step.

MinIONTM flow cell preparation and sample loading. The sequencing mix was prepared with 6 uL of the DNA 
library, water, the Fuel Mix and the running buffer according to the SQK-MAP006 or the SQK-MAP007 proto-
cols. The sequencing mix was added to the R7 or R9 flowcell for a 24–48 hour run. Typically the flowcells were 
reloaded after 24 hours as data yield had plateaued.

Pacific Biosciences sequencing library preparation. PacBio sequencing libraries were prepared as follows. Five 
ug of genomic DNA was sheared to approximately 15,000 bp by centrifugation at 5200 rpm in a gTUBE. DNA 
was repaired with damage repair reagent and end-repaired using end repair mix before ligation to PacBio blunt 
end adapter. Unligated material was digested with Exo III and Exo VII then library fragments purified via two 
consecutive Ampure clean-ups and size selection on Blue Pippin (SageScience, Beverley, MA, USA) with a 0.75% 
agarose cassette to purify fragments from 12–25 kb.

Illumina PCR-free library preparation and sequencing. DNA (1 ug) was sonicated to a 400 to 600 bp size range 
using a Covaris LE220 acoustic shearing device (Covaris, Woburn, MA, USA). Fragments were end-repaired 
using the NEBNext EndRepair Module (New England Biolabs, Ipswich, MA, USA) and A-tailed with the 
NEBNext dA-Tailing Module. Illumina adapters were added using the NEBNext Quick Ligation Module. Ligation 
products were purified with AMPure XP beads (Beckman Coulter Genomics, Danvers, MA, USA). Libraries 
were quantified by qPCR using the KAPA Library Quantification Kit for Illumina Libraries (Kapa Biosystems, 
Wilmington, MA, USA) and library profiles were assessed using a DNA High Sensitivity LabChip kit on an 
AgilentBioanalyzer (Agilent Technologies, Santa Clara, CA, USA). Libraries were sequenced on an Illumina 
MiSeq instrument (San Diego, CA, USA) using paired 150 base read chemistry.

Assembly Assessment and Other Tools. The ONT fastq sequencing reads were extracted from the fast5 
files using Poretools26. For the assembly accuracy and other summary statistics we used dnadiff from MUMmer27, 
while the number of misassemblies and the Na50s, i.e. the N50s after breaking the contigs at the misassembly 
points, were calculated using Quast22. We ran Quast with default parameters except for the Miniasm assemblies. 
For Miniasm we required the additional parameter: –min-identity 85, to enable Quast to align the low accu-
racy assemblies to the reference. Because of such low accuracies, Quast seemed to overestimate the presence of 
misassemblies for Miniasm, and reported Na50s smaller than the expected ones if comparing the Na50s with 
those of the higher accuracy Racon assemblies, based on Miniasm. We used the R Biostrings package (available 
from https://bioconductor.org/packages/release/bioc/html/Biostrings.html) to count the number of homomers in 
some of the assemblies, using the function oligonucleotideFrequency. Statistics and assessment for all the assem-
blies have been estimated after eliminating contigs shorter than 1 kb.

References
 1. Sanger, F., Nicklen, S. & Coulson, A. Dna sequencing with chain-terminating inhibitors. Proc. Natl. Acad. Sci. 74(12), 5463–5467 

(1977).
 2. Goodwin, S., McPherson, J. D. & McCombie, W. R. Coming of age: ten years of next-generation sequencing technologies. Nat. Rev. 

Genet. 17, 333–351 (2016).
 3. Liu, L. et al. Comparison of next-generation sequencing systems. Journal of Biomedicine and Biotechnology 2012, Article ID 251364 

(2012).
 4. Glenn, T. 2016 NGS field guide: Overview. http://www.molecularecologist.com/next-gen-fieldguide-2016 (2016).
 5. Quick, J. et al. Real-time, portable genome sequencing for Ebola surveillance. Nature 530, 228–232 (2016).
 6. Hoenen, T. et al. Nanopore sequencing as a rapidly deployable ebola outbreak response tool. Emerg Infect Dis 22 (2015).
 7. Faria, N. R. Zibra project: real-time sequencing of zika virus in brazil. https://nanoporetech.com/publications/zibra-project-real-

time-sequencing-zika-virus-brazil (2016).
 8. Parker, J., Helmstetter, A. J., Devey, D. S. & Papadopulos, A. S. T. Field-based species identification in eukaryotes using single 

molecule, real-time sequencing. bioRxiv (Cold Spring Harbor Labs Journals), doi:10.1101/107656 (2017).
 9. Judge, K., Harris, S. R., Reuter, S., Parkhill, J. & Peacock, S. J. Early insights into the potential of the Oxford Nanopore MinION for 

the detection of antimicrobial resistance genes. J. Antimicrob. Chemother. 70, 2775–2778 (2015).

https://bioconductor.org/packages/release/bioc/html/Biostrings.html
http://www.molecularecologist.com/next-gen-fieldguide-2016
https://nanoporetech.com/publications/zibra-project-real-time-sequencing-zika-virus-brazil
https://nanoporetech.com/publications/zibra-project-real-time-sequencing-zika-virus-brazil
http://dx.doi.org/10.1101/107656


www.nature.com/scientificreports/

1 0Scientific RepoRts | 7: 3935  | DOI:10.1038/s41598-017-03996-z

 10. Greninger, A. L. et al. Rapid metagenomic identification of viral pathogens in clinical samples by real-time nanopore sequencing 
analysis. Genome Medicine 7, 99 (2015).

 11. Schmidt, K. et al. Identification of bacterial pathogens and antimicrobial resistance directly from clinical urines by nanopore-based 
metagenomic sequencing. Journal of Antimicrobial Chemotherapy, doi:10.1093/jac/dkw397 (2016).

 12. Istace, B. et al. de novo assembly and population genomic survey of natural yeast isolates with the oxford nanopore minion 
sequencer. bioRxiv (Cold Spring Harbor Labs Journals), doi:10.1101/066613 (2016).

 13. Koren, S. et al. Hybrid error correction and de novo assembly of single-molecule sequencing reads. Nature Biotechnology 30, 
693–700 (2012).

 14. Koren, S., Walenz, B., Berlin, K., Miller, J. & AM, P. Canu: scalable and accurate long-read assembly via adaptive k-mer weighting 
and repeat separation. Genome Research, doi:10.1101/gr.215087.116 (2017).

 15. Chin, C. et al. Phased diploid genome assembly with single-molecule real-time sequencing. Nature Methods, doi:10.1038/
nmeth.4035 (2016).

 16. Lin, Y., Yuan, J., Kolmogorov, M., Shen, M. & Pevzner, P. Assembly of long error-prone reads using de Bruijn graphs. PNAS 113, 52, 
doi:10.1101/048413 (2016).

 17. Li, H. Minimap and miniasm: fast mapping and de novo assembly for noisy long sequences. Bioinformatics 32(14), 2103–2110 
(2016).

 18. Vaser, R., Sović, I., Nagarajan, N. & Sikic, M. Fast and accurate de novo genome assembly from long uncorrected reads. Genome 
Research, doi:10.1101/gr.214270.116 (2016).

 19. Cao, M. et al. Scaffolding and completing genome assemblies in real-time with nanopore sequencing. Nature Communications 8, 
Article number: 14515 (2017).

 20. Antipov, D., Korobeynikov, A., McLean, J. & Pevzner, P. hybridSPades: an algorithm for hybrid assembly of short and long reads. 
Bioinformatics 32(7), 1009–15 (2016).

 21. Nurk, S. et al. Assembling genomes and mini-metagenomes from highly chimeric reads. Research in Computational Molecular 
Biology: 17th Annual International Conference, RECOMB 2013, Beijing, China, April 7-10, 2013. Proceedings 158–170 (2013).

 22. Gurevich, A., Saveliev, V., Vyahhi, N. & Tesler, G. Quast: quality assessment tool for genome assemblies. Bioinformatics 29(8), 
1072–1075 (2013).

 23. Li, H. Aligning sequence reads, clone sequences and assembly contigs with bwa-mem. arXiv: 1303.3997v2 [q–bio.GN] (2013).
 24. Loman, N., Quick, J. & Simpson, J. A complete bacterial genome assembled de novo using only nanopore sequencing data. Nature 

Methods 12, 733–735 (2015).
 25. Yue, J.-X. et al. Contrasting genome dynamics between domesticated and wild yeasts. Nature Genetics, doi:10.1038/ng.3847 (2017).
 26. Loman, N. & Quinlan, A. Poretools: a toolkit for analyzing nanopore sequence data. Bioinformatics 30(23), 3399–3401 (2014).
 27. Kurtz, S. et al. Versatile and open software for comparing large genomes. Genome Biology 5:R12 (2004).

Acknowledgements
This work was supported by the Wellcome Trust (Grant WT098051). The authors would like to thank Oxford 
Nanopore Technologies for the opportunity to join the MinION early access program.

Author Contributions
R.D. and T.M.K. conceived the project; F.G. carried out the data analysis; J.X.Y., G.L. and J.L. provided DNA 
samples for sequencing; R.D., T.M.K., D.K.J. and Z.N. managed the project; L.A., M.A.Q. and P.C. conducted 
the experiments, including DNA extraction, library preparation and running the devices; R.M.D., J.K.B. and 
G.T. performed data quality assessment; F.G., Z.N. and M.A.Q. wrote the manuscript. All authors reviewed the 
manuscript.

Additional Information
Supplementary information accompanies this paper at doi:10.1038/s41598-017-03996-z

Competing Interests: The Wellcome Trust Sanger Institute is a member of the MinION Access Program (MAP) 
and received flowcells and sequencing kits free of charge from Oxford Nanopore Technologies. The authors 
declare no other potential conflict of interest.

Accession codes: The ONT and MiSeQ data are available from the EBI database with Study accession code 
PRJEB19900. The PacBio data are available from the EBI database with Study accession code PRJEB7245 (See 
Supplementary Notes for more details). All the generated assemblies are available from the EBI Bio-Studies 
database with Study accession code S-BSST17. Scripts to download the final assemblies, the datasets and sample 
scripts to run the pipelines are available from GitHub: https://github.com/fg6/YeastStrainsStudy.git.

Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Cre-
ative Commons license, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons license and your intended use is not per-
mitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the 
copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
 
© The Author(s) 2017

http://dx.doi.org/10.1093/jac/dkw397
http://dx.doi.org/10.1101/066613
http://dx.doi.org/10.1101/gr.215087.116
http://dx.doi.org/10.1038/nmeth.4035
http://dx.doi.org/10.1038/nmeth.4035
http://dx.doi.org/10.1101/048413
http://dx.doi.org/10.1101/gr.214270.116
http://dx.doi.org/10.1038/ng.3847
http://dx.doi.org/10.1038/s41598-017-03996-z
https://github.com/fg6/YeastStrainsStudy.git
http://creativecommons.org/licenses/by/4.0/

	De novo yeast genome assemblies from MinION, PacBio and MiSeq platforms
	Results
	Data Sequencing and Production. 
	De novo Assembly and Scaffolding Pipelines. 
	Assemblies from different pipelines and platforms. 
	Missing homomers. 
	Mitochondrial genome reconstruction. 
	De novo Assembly by Varying the Read Depth. 
	Genome scaffolding using long reads. 

	Discussion
	Methods
	Library Preparation. 
	Library preparations for Oxford Nanopore sequencing. 
	MinIONTM flow cell preparation and sample loading. 
	Pacific Biosciences sequencing library preparation. 
	Illumina PCR-free library preparation and sequencing. 

	Assembly Assessment and Other Tools. 

	Acknowledgements
	Figure 1 Read length distributions for the ONT and PacBio datasets.
	Figure 2 Homomer counts.
	Figure 3 Chromosome homomer rate with respect to that of the mitochondrial genome.
	Table 1 Statistic information for the 2D-Pass ONT datasets for the S288C, N44, CBS432 and SK1 strains.
	Table 2 Statistic information for the PacBio datasets for the S288C, N44, CBS432 and SK1 strains.
	Table 3 Statistic information about the de novo assemblies for the S288C ONT datasets for the hybrid pipeline PBcR-MiSeq, the pipeline Miniasm, with no base error correction nor consensus step, and for the non-hybrid pipelines: Racon (on a Miniasm draft a
	Table 4 As Table 3 but for PacBio-based assemblies from the ONT-Emu PacBio subsets at, from top to bottom, 31X, 20X and 10X depth.
	Table 5 MiSeq-only assembly from SPAdes in top row.
	Table 6 Statistic information on the de novo assemblies from the MiSeq-only SPAdes pipeline and the same SPAdes assembly scaffolded with npScarf, HybridSPAdes and SMIS for the N44 (top panel), CBS432 (middle panel), and SK1 (bottom panel) strains.


