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Abstract—It is widely recognized that the Internet transport
layer has become ossified, where further evolution has become
hard or even impossible. This is a direct consequence of the ubiq-
uitous deployment of middleboxes that hamper the deployment
of new transports, aggravated further by the limited flexibility of
the application programming interface (API) typically presented
to applications. To tackle this problem, a wide range of solutions
have been proposed in the literature, each aiming to address a
particular aspect. Yet, no single proposal has emerged that is
able to enable evolution of the transport layer. In this paper,
after an overview of the main issues and reasons for transport-
layer ossification, we survey proposed solutions and discuss their
potential and limitations. The survey is divided into five parts,
each covering a set of point solutions for a different facet of
the problem space: 1) designing middlebox-proof transports;
2) signaling for facilitating middlebox traversal; 3) enhancing
the API between the applications and the transport layer; 4) dis-
covering and exploiting end-to-end capabilities; and 5) enabling
user-space protocol stacks. Based on this analysis, we then iden-
tify further development needs toward an overall solution. We
argue that the development of a comprehensive transport layer
framework, able to facilitate the integration and cooperation of
specialized solutions in an application-independent and flexible
way, is a necessary step toward making the Internet trans-
port architecture truly evolvable. To this end, we identify the
requirements for such a framework and provide insights for its
development.

Index Terms—Transport protocols, protocol-stack ossification,
API, middleboxes, user-space networking stacks.
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I. INTRODUCTION

N
ETWORKS can and do vary significantly in the set

of functions they offer and their ability to move data

between endpoints. The transport layer operates across the

network and is responsible for efficient and robust end-to-end

communication between network endpoints. The term end-to-

end is often associated with a principle, called the end-to-end

argument [1]. This suggests that “functions placed at low lev-

els of a system may be redundant, or of little value, when

compared with the cost of providing them at that low level.”

This argument followed Schroeder et al.’s [2] earlier work on

system design and security, and is now generally considered

as a simple guide for which services should be realized at the

transport layer.

The transport layer was designed to hide the details and

variability of the network service from the applications that

need to use it. The Internet’s transport layer also contains

other functions that are difficult or impossible to provide

within a network, such as reliability, verification of delivery,

flow control to prevent the application from overwhelming the

remote endpoint, congestion control to prevent the application

from overwhelming the network, etc. People using the Internet

mostly run applications that are based on the Transmission

Control Protocol, TCP [3], which provides these transport

functions.

Some applications need a different set of services to those

offered by TCP. For example, a Web client may wish to be able

to prioritize sub-flows carrying specific objects, a multimedia

flow may prefer timeliness to reliable delivery, and IP tele-

phony can be tolerant to packet loss or in some cases to bit

errors. There are many cases where TCP simply does not meet

the need of applications—yet it ends up being used because

it “just works,” but not necessarily very well [4]. Applications

that do not want the transport semantics of TCP typically just

use the User Datagram Protocol, UDP [5]. While UDP pro-

vides flexibility that allows any set of services to be defined,

every function needed has to be implemented at the application

layer.

Some initiatives have developed alternate protocols to TCP,

suited for other application types, for instance: the Datagram

Congestion Control Protocol (DCCP) [6] was proposed to

support streaming multimedia; the Stream Control Transport

Protcol (SCTP) [7], [8] originally targeted telephony signaling;

UDP-Lite [9] supports error-tolerant audio and video services

over wireless links. However, despite being standardized, with
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available implementations for common platforms, these trans-

ports are seldom seen in the general Internet, and TCP and

UDP remain the only widely used transports.

A. Transport-Layer Ossification: Overview of Issues

Why do developers and users not adopt more modern pro-

tocols? It is not because new transports do not meet a real

need. The following paragraphs examine the main reasons for

this ossification of the transport layer.

1) Middleboxes: Since the time [1] was first published,

computer operating systems and Internet equipment have

evolved. In today’s commercial Internet environment, there

is now no market for simplicity, and each new product and

improvement adds complexity—necessary to differentiate mar-

kets and to cater for the wide variety of applications supported

by modern systems. New stakeholders have emerged [10]:

Internet service providers seeking differentiation; new govern-

ment interests; changing motivations of a growing user base;

tension between the demand for trustworthy overall operation

and the inability to trust individual users or operators. Most

importantly, most operators have chosen to introduce these

functions using middleboxes [10].

To become usable, a new transport needs to be made avail-

able to applications, requiring upgrades of both the sending

and receiving endpoints. However, for a new transport to be

adopted, the need to upgrade end-hosts is not the only obsta-

cle to overcome. Ossification of the network infrastructure is

probably the most significant barrier [11]–[14]: a transport

protocol must be able to traverse the network; a new pro-

tocol is only useful if it is able to traverse paths on a larger

part of the Internet. The ubiquity of middleboxes of a vari-

ety of forms (from Network Address and Port Translators

(NAPTs) to firewalls, accelerators, load-balancers, and a range

of portals and more exotic devices) makes it very hard to

change the status quo. Blumenthal and Clark [10] also warn

of the implications of this approach: “certain kinds of inno-

vation will be stifled if the open and transparent nature of the

Internet erodes.” Performing advanced network functions that

go beyond the network layer, middleboxes not only need to

understand the semantics of transport layer protocols, but some

also tamper with protocol headers and thus violate end-to-end

semantics [10], [15]. As a result, any new native transport

(layered directly on IP) is doomed to fail to pass through

middleboxes until specific explicit support is added for that

transport, while new extensions to standard transports (i.e.,

to TCP and UDP) are also vulnerable to potential middlebox

interference [16].

If a protocol (or application) is widely used, then it is

likely that there exists a business case to support the protocol.

However, the motivation to support a protocol that has not yet

reached wide-scale use is much weaker or non-existent. This

creates a “tussle,” described in [17], or similarly the “vicious

circle” described in [4]. Quite simply, a new protocol will not

be deployed over the Internet—because to do so would first

require a business case, predicated on a user base that already

have deployed the protocol. This ossification has resulted in

little-to-no use of new transports for the last decade.

Even when TCP or UDP is used, middleboxes still cause

significant connectivity problems to applications. For instance,

since most NAPTs are built around the traditional client/server

application model, they usually break end-to-end connectivity

for applications that need direct communication between two

arbitrary hosts, such as peer-to-peer applications [18]. While

Application Layer Gateways (ALGs) are often used to embed

application-specific knowledge into middleboxes to facilitate

protocol traversal for particular applications, this solution has

significant limitations in terms of deployment and scalability:

a separate ALG is needed for each application protocol used

(e.g., SIP [19], [20], FTP [21], etc.) and hence all NAPTs

would require to be updated every time a new application—

i.e., a new application protocol—needs to be supported. There

are various forms of middlebox that perform a transport

proxy function, for instance to enable multipath transports

(e.g., [22] and [23]). Although able to mitigate the deployment

tussle between new protocols and applications/services, proxy

solutions have limited scalability and break end-to-end con-

nectivity [24]. Security-related manipulation of TCP and UDP

traffic performed by corporate firewalls and NAPTs can also

cause significant connectivity problems in enterprise environ-

ments. Finally, a class of middleboxes expects only a certain

application protocol like HTTP; in the face of such devices,

the only solution is to tunnel connections over the supported

protocol.

2) Application Programming Interfaces: A flexible and

extensible API between the applications and the transport

layer is essential for applications to be able to harness the

benefits of new transport services [25]. Today, the socket

API essentially serves as the omnipresent application net-

working interface. However, it has become more and more

apparent that this API is contributing to the Internet transport-

layer ossification problem [26]. Its simplicity may have led

to its ubiquity, but has also held back the development of

more enhanced APIs. This is evident in the currently ongoing

standardization of the SCTP socket API—the SCTP trans-

port protocol incorporates support for multihoming, but it

is impossible to export this support through the standard

socket API.

The very success of TCP and UDP has therefore led to

ossification of the API presented to applications. These two

have now become the only widely available transports. This is

reflected in the implementation of the socket API, which ties

applications to a priori choices of transport protocol (either

TCP or UDP). An application designed to work with one of

these transports will need to be changed to support any new

transport protocol.

The Internet has been designed so that transports only rely

on core network functions, the so-called Best-Effort service.

This has enabled transports to work across a diverse range

of networks without having to know exactly how these pro-

vide the network service. However, this does not mean that

information about what the transport/application needs from

the network would not be helpful to improve the efficiency

of the network or to enable the application to receive the

most suitable service, but the current socket API does not

facilitate this.
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3) Other Issues: An evolvable transport layer architecture

requires that endpoints are capable of discovering if a new

transport can be used: An endpoint initiating a communication

session must know whether a transport (and any required trans-

port options) are supported both along the end-to-end network

path, and by the intended remote endpoint(s).

Except for some one-sided transport-layer mechanisms (e.g.,

a TCP sender’s choice between a range of congestion control

algorithms [27]), the choice of a transport will require not

only discovering the set of transports that are available at the

remote endpoint, but also when more than one is supported at

both ends, there needs to be an agreement from both endpoints

on the choice of the particular transport.

Many network paths include middleboxes, some of which

can, and often will, interfere with transport protocols.

Endpoints need to assess whether a particular choice of

transport can be safely used over the path.

Finally, one major additional challenge to deploying a new

transport protocol is whether the transport protocol is sup-

ported across multiple OS platforms (e.g., Linux, FreeBSD,

Mac OS X and Windows). Modifying OS kernel code can be

costly in terms of deployment effort and often requires an OS

update at the sender and/or the receiver to support the new

transport, making any development effort platform-dependent.

B. Scope and Structure of the Paper

A range of point solutions have been proposed in the lit-

erature to address the above issues. Each covers a different

aspect of the overall problem. In this paper, we review previ-

ous and ongoing efforts in the field. Our goal is to provide a

better understanding of the pertained research issues, identify

the potential and limitations of existing point solutions, and

identify the need for further development.

We focus on evolutionary deployment. This restricts our sur-

vey to proposals that do not require redesigning the Internet

architecture from scratch, hence, clean-slate approaches, such

as Information-Centric Networking (ICN) [28], have been

ruled as out of scope. ICN is a approach to evolve the Internet

infrastructure away from host-centric end-to-end communi-

cation to receiver-driven content retrieval based on “named

information” (or content or data). Among different ICN pro-

posals, Named Data Networking (NDN) [29] is designed to

integrate fundamental architectural primitives: security built

into data itself; inherently self-regulating network traffic (flow

balance); and adaptive routing and forwarding capabilities. The

NDN architecture does not have a separate transport layer and

transport functionality is moved into applications, their sup-

porting libraries, and the strategy component in the forwarding

plane.

In addition to clean-state approaches like NDN, less rad-

ical solutions are being considered such as Mobile-Edge

Computing (MEC) [30], [31]. This moves the transport end-

point for IT and cloud-computing capabilities closer to sub-

scribers, moving transport connections from the network core

to the edge of a cellular network, which may reduce core con-

gestion and latency. MEC may offer opportunities to simplify

transport protocols, for instance by using cross-layer signaling

from the RAN (e.g., knowledge of a short path RTT, and/or

throughput guidance) to optimize transport stacks for through-

put and/or delay. This is still the subject of future research as

the MEC concept evolves.

Another less radical solution is the concept of network

overlays, which were seen as a promising approach to tackle

ossification of the Internet architecture [32], [33]. Network

overlays have employed network-layer encapsulation meth-

ods to introduce new functions not supported in the net-

work [34]. Examples of such functions include support for

IP multicast [35]–[37] and network virtualization within a

data center environment [38] based on methods like NVGRE,

VXLAN, GRE-in-UDP and GUE [39]. Li [40] surveys propos-

als to improve future scalability of the Internet, including the

Locator/ID Separation Protocol (LISP) [41] which—besides

helping with, e.g., route table scaling—can aid in overcom-

ing ossification by, e.g., adding edge support for mobility and

multicast [42] or enabling some form of multipath transport

proxy [43], [44]. Network overlays have benefits (especially

in transition to support new protocols), however, they hide the

underlying network from the transport, impose homogeneity

on a diverse network service and can be an obstacle to evo-

lution of different network-transport interactions, which adds

to ossification. The remainder of this survey therefore focuses

on native transport protocols.

Communication middleware is also beyond the scope of this

survey, because such middleware usually provides a different

communication abstraction to applications, rather than offering

transport services different to those of a common networking

stack.

Based on our analysis, we argue that proposing solutions

in isolation cannot result in an Internet transport layer archi-

tecture that is truly evolvable, and that a necessary step

forward is the development of a comprehensive transport layer

framework able to facilitate the integration and cooperation

of new network and transport functions in an application-

independent and flexible way. We therefore identify the

requirements for such a framework and provide insights for its

development.

The remainder of the paper is organized as follows:

Sections II to VI provide an overview of previous and ongo-

ing efforts to tackle ossification of the Internet transport layer,

where each section covers a different aspect of the overall

problem:

• Section II focuses on ways to design middlebox-proof

transports, as a means to overcome the barriers imposed

by middleboxes to using new transport protocols and

protocol features.

• Section III is devoted to mechanisms that seek to better

support end-to-end connectivity by facilitating traversal

of middleboxes.

• Section IV outlines approaches that aim to enhance the

API between applications and the transport layer.

• Section V examines approaches that allow endpoints to

discover and agree on which protocols are supported

along an end-to-end path.

• Lastly, Section VI explores techniques for enabling user-

space protocol stacks.
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Fig. 1. Examples of middlebox interactions with TCP.

Section VII summarizes the survey and taxonomy of point

solutions to transport ossification presented in Sections II–VI.

Next, Section VIII analyzes the requirements for an evolvable

transport framework. Finally, Section IX concludes the paper

by identifying future research directions that may assist work

in this area.

II. DESIGN OF MIDDLEBOX-PROOF TRANSPORTS

There have been recent efforts to provide a richer set of

transport services to applications than those provided by TCP

and UDP within the constrained design space imposed by

the ubiquitous deployment of middleboxes. These span two

broad research directions: 1) extending TCP to provide a

richer set of transport services, while guarding new extensions

against potential middlebox interference, and 2) building new

application-specific transports on top of UDP or TCP to ensure

they transparently pass through existing middleboxes.

A. Extending TCP to Offer a Richer Set of

Transport Services

TCP is an extensible protocol. It can negotiate proto-

col extensions during connection establishment and exchange

additional control information throughout the lifetime of a con-

nection. During the last decade, measurement studies have

investigated how existing middleboxes interact, either inten-

tionally or unintentionally, with TCP extensions, how prevalent

these interactions are, and to what extent they affect TCP’s

extensibility [14], [16], [45]–[47]. Examples of middlebox

behavior (some of which are illustrated in Fig. 1) include:

blocking or stripping of unknown TCP options, modifica-

tion of TCP header fields and options (such as the Initial

Sequence Number (ISN) and the Maximum Segment Size

(MSS) option), re-segmentation or coalescence of TCP seg-

ments, and behavior triggered by “non-stereotypical” TCP

communication seen on the wire. These empirical studies

provide a first demarcation of the solution space and the

first guidelines for designing middlebox-proof TCP exten-

sions [16].

Multipath TCP (MPTCP) [16], [48]–[50],

Tcpcrypt [51], [52], and Gentle Aggression [53] are

prominent examples of TCP extensions whose design was

highly influenced by the need to account for known middle-

box behavior. Techniques were adopted to guard extended

operations against potential middlebox interference. For

instance, a fallback strategy to plain TCP is incorporated in

all approaches to handle cases where extended operations fail

(e.g., when options are stripped from SYN or regular packets,

or when payload modification is detected). This ability to

fall back to plain TCP assures stability and is considered an
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important design goal for achieving widespread deployment.

Relative sequence numbers are considered when encoding

sequencing information within the new options to cope with

potential re-writing of sequence numbers. Other techniques

include the use of an additional data-level sequence space

in MPTCP that allows it to maintain consistent sequence

numbering on the wire while ensuring in-order data delivery

over multiple subflows. Tcpcrypt was intentionally designed

to exclude fields from the authentication header that could be

expected to be modified by the path.

Recent work has identified the need for TCP to infer in-path

alterations of packet header fields as a way to enable deploy-

ment of new TCP functions. Craven et al. [47] proposed TCP

HICCUPS, an enhancement that allows TCP to detect packet

header manipulation at field-level granularity and take appro-

priate actions (such as disabling a non-compatible extension)

based on the middlebox behavior observed on a path.

TCP has a limited maximum header size. This led the

designers of Tcpcrypt to the exchange of encryption infor-

mation within the TCP payload (i.e., the body of the INIT1

and INIT2 sub-options). This highlights a significant factor

that constrains the design space of TCP extensions: The lim-

ited size constrains the number and the extent of TCP options

that can be simultaneously used by a TCP connection.

Extending the TCP option space has become an active

research area that faces similar middlebox-related issues. For

instance, Ramaiah [54] presents several middlebox consid-

erations for designs to increase the TCP options space and

reviews approaches proposed up to 2012. More recent pro-

posals include TCP Extended Data Offset (EDO) [55], [56],

TCP SYN Extended Option Space (SYN-EOS) [57], and Inner

Space [58]. TCP EDO extends the option space in all pack-

ets except the initial SYN packets (i.e., SYN and SYN/ACK)

using a TCP option to override the TCP data offset field,

while TCP SYN-EOS complements TCP EDO by extending

the option space in SYN packets using an additional out-of-

band packet during connection establishment. Inner Space uses

a different strategy to extend the option space in every seg-

ment, where options are tunneled within the segment payload

and a dual handshake procedure is used for assuring back-

wards compatibility with legacy servers. These approaches are

currently under development and further work is needed to

evaluate their deployability.

Experience in the design of MPTCP inspired another possi-

ble dimension to the design space: TCP “camouflaging” [59].

This suggests a new transport protocol could operate alongside

TCP when the new protocol is disguised to look like TCP on

the wire as in Polyversal TCP (PVTCP) [59]. Built upon the

MPTCP subflow mechanism, PVTCP allows applications to

explicitly customize the transport semantics of each subflow

according to their requirements and assures a fallback to plain

TCP or MPTCP. It remains to be seen whether the complexity

of Polyversal TCP, or similar approaches, will offer a feasible

path to deployment.

Although recent advances indicate that TCP continues

to be extensible, more detailed and large-scale studies are

needed to provide a deeper insight into the prevalence and

range of middlebox behaviors. The IAB Workshop on Stack

Evolution in a Middlebox Internet (SEMI) [60] identified

this need and resulted in the “Measurement and Analysis

for Protocols” (MAP) IRTF research group1 that aims to be

a forum for exchange and discussion of insights from such

measurements [61].

B. Using Widely Deployed Transports as Substrates

The broad deployment and support of TCP and UDP

in the Internet have led to the proliferation of a new

design/deployment model where transport layer innovation

occurs on top of these protocols. Typically, such transports

are integrated into applications and aim to fulfill specific

application requirements.

The choice between TCP and UDP involves a trade-off

between design and implementation effort, flexibility and

performance. On the one hand, UDP provides a “least-

common-denominator” substrate with greater flexibility to

control how data are sent over the network. However, build-

ing new transports on top of UDP often involves reinventing

the wheel for services already offered by TCP (e.g., feature

negotiation, congestion control, and reliability) and requires

maintaining connection state in middleboxes by sending keep-

alive messages that waste capacity and energy [62]. Guidelines

for using UDP robustly are given in [63]. On the other hand,

TCP is a feature-rich transport protocol that has undergone

remarkable evolution over the past decades and can hence offer

significant performance advantages over UDP [64]. However,

TCP does not preserve message boundaries and is unable to

support the use of only a subset of the services it provides;

providing services that may not be needed can result in sig-

nificant performance penalties. For example, the TCP in-order

delivery service can incur increased end-to-end delays in lossy

networks due to head-of-line blocking at the receiver.

The Minion suite of protocols has been proposed to address

the above shortcomings of using TCP as a substrate pro-

tocol [64], [65]. This was designed to offer an unordered,

message-oriented delivery alternative to UDP. Minion is wire-

compatible with TCP (or TLS/TCP when secure services are

needed), at the expense of using slightly increased capacity.

Other facilities offered by Minion to the application include

message multiplexing and priority-based data transmission.

Despite its attractive features, the Minion suite has not seen

wide-scale use. One reason could be that one of its great-

est benefits, the ability to relax the in-order semantics of TCP,

requires changes to the TCP stack, and hence is OS-dependent.

UDP can be used as a lightweight substrate and has been

used since the 1990s to carry multimedia traffic with the Real-

Time Transport Protocol (RTP) [66]. Characteristic examples

using UDP are:

• Google’s Quick UDP Internet Connections (QUIC) pro-

tocol [67], [68], a UDP-based low-latency alternative to

TCP/TLS for SPDY [69] and HTTP/2 [70].

• Adobe’s Real Time Media Flow Protocol (RTMFP) [71],

a protocol for efficient peer-to-peer multimedia streaming.

• The Multipath Real-Time Transport Protocol

(MPRTP) [72], a protocol for multipath media streaming.

1Formerly known as “How Ossified is the Protocol Stack?” (HOPS).
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• The widely used DTLS [73] protocol that provides

stream- and datagram-oriented security services over

UDP.

• The uTorrent Transport Protocol (uTP) [74], a UDP-based

protocol for BitTorrent designed to offer a less-than-best-

effort service for peer-to-peer file sharing applications.

• The UDP-based Data Transfer (UDT) protocol [75], [76]

designed for efficient transferring of large data volumes

over high-speed networks.

• The Structured Stream Transport (SST) protocol [77], a

generic approach designed to offer services similar to

SCTP [8], such as multistreaming and stream prioritiza-

tion, over UDP.

In addition to the above approaches, methods have been

standardized by the IETF that encapsulate native protocols

such as SCTP [8] and DCCP [6] within UDP [78], [79].

Methods have been proposed for encapsulating TCP over

UDP enabling it to traverse network paths where only UDP

is supported [80]. There is a large variety of (incompatible)

tunnel and encapsulation frameworks that allow protocols

to operate over UDP. Generic solutions have been sug-

gested for encapsulating native IP protocols within UDP:

Generic UDP Tunneling (GUT) [81] is a simple UDP encap-

sulation that aims to transparently tunnel native transports

over a single well-known UDP port. GUT modifies native

IP packets by including an appropriate UDP/GUT header,

reconstructing the packets at the receiver. Generic UDP

Encapsulation (GUE) [82] is similar to GUT, but focuses on

leveraging the capabilities of network devices for handling

UDP flows (e.g., load balancing). GUE uses a UDP source

port as an inner flow identifier and permits encapsulation of

layer-2 and layer-3 protocols. Although generic approaches

could allow for more consistent deployment, protocol-specific

designs may still be needed to ensure the functionality of the

encapsulated protocol is not affected. Fig. 2 illustrates some

of the UDP-based encapsulation methods just described.

Besides enabling middlebox traversal, UDP encapsulation

offers an additional benefit: it allows user-space implementa-

tions of native protocols to be a part of applications without

requiring special privileges to access the IP layer. The SCTP

user-space implementation in [83] also offers this option.

However, UDP encapsulation increases protocol overhead due

to the additional UDP headers and also affects interoperability

as the encapsulated protocol cannot in principle interoperate

with the native one. Other potential drawbacks include: addi-

tional processing overhead, possibly redundant functionality

(e.g., checksums) and increased design complexity due to an

additional point of multiplexing.

McQuistin et al. [84] approach the problem from a slightly

different perspective and suggest, at a conceptual level, to

reinterpret the semantics of TCP and UDP to support novel

services. They propose reinterpretation of UDP headers as

transport identification headers where port numbers become

dynamic identifiers of the transport protocol carried in the

payload, as well as the relaxation of TCP semantics (based

on McQuistin et al.’s [85] earlier work on TCP Hollywood).

Earlier work that “relaxes” TCP includes Time-lined TCP

(TLTCP) [86] and Receiver-Centered TCP (TCP-RC) [87].

Fig. 2. Examples of transport encapsulation methods based on UDP.

The Minion suite [64] discussed above could contribute to

this development.

Finally, there is ongoing work [88] to identify the suitabil-

ity of the DTLS protocol [73] as a sub-transport for providing

standardized security to higher-layer transports, along with ser-

vices similar to that of PLUS (Section III-B), for instance

signals to a middlebox to indicate the beginning or end of a

flow. Huitema et al. [88] identified requirements that need to

be fulfilled, including zero-latency setup and low overhead.

III. SIGNALING FOR FACILITATING

MIDDLEBOX TRAVERSAL

Even when TCP or UDP is used, middleboxes can cause sig-

nificant connectivity problems to applications. For example,

a NAPT can break the end-to-end connectivity for peer-

to-peer applications (see Fig. 3) and applications that use

control protocols such as SIP [19], [20], RTSP [89], or

FTP [21] preventing them from communicating reachability

information.
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Fig. 3. Examples of connectivity issues due to NATs, and of implicit control techniques to address them.

A variety of support protocols and mechanisms have been

proposed to improve connectivity across paths with middle-

boxes. These focus on ways to control middlebox behavior,

methods to allow cooperation between endpoints and middle-

boxes, and methods to facilitate end-to-end connectivity. Such

methods may be categorized as either implicit or explicit.

Implicit control solutions treat middleboxes as black boxes

and trigger specific middlebox behaviors using data traffic

sent to a well-known third party server. An explicit control

solution allows an endpoint to explicitly interact with a middle-

box to control or influence its behavior, e.g., to create NAPT

mappings or to configure the lifetime for flow state.

A. Implicit Middlebox Control

Interactive Connection Establishment (ICE) [90], [91] seeks

to increase the probability of successful connection by try-

ing a set of implicit control techniques and selecting the one

that works best. ICE was developed for middlebox traversal of

UDP-based multimedia streams established by an offer/answer

protocol (e.g., SIP) and is the middlebox traversal solution

used in WebRTC [92]. This utilizes the Session Traversal

Utilities for NAT (STUN) [93], a STUN signaling relay as a

rendezvous point [19], and the Traversal Using Relays around

NAT (TURN) protocol [94], a media relay. Ford et al. [18]

describe a method for UDP hole punching. A TCP-based

extension of ICE [95] adds TCP hole punching and con-

siders UDP encapsulation as an alternative traversal solution

for TCP. Techniques for TCP hole punching are presented

in [18] and [96]. The IETF has defined a TURN relay for

TCP [97] and DTLS [98].

No single solution is perfect in terms of applicability and

performance. For instance, UDP hole punching cannot work

with symmetric NATs, TURN uses a media relay server and

hence can be a performance bottleneck, and TCP hole punch-

ing techniques have lower success probability because they

depend on specific middlebox behaviors that are not always

supported [99].
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B. Explicit Middlebox Control and Cooperation

There is a range of approaches that can allow the transport

to exchange control information with a middlebox, such as the

Universal Plug and Play Internet Gateway Device (UPnP IGD)

protocol [100], the Port Control Protocol (PCP) [101] and its

precursor NAT Port Mapping Protocol (NAT-PMP) [102], the

Middlebox Communication (MIDCOM) framework [103], and

the NAT/Firewall NSIS Signaling Layer Protocol (NSLP) of

the NSIS protocol suite [104]. Each solution has its own mer-

its depending on network topology and security requirements,

and hence there is no single solution that an application can

rely upon to be universally available. For this reason, appli-

cations usually resort to use implicit control schemes that do

not require additional support by middleboxes. However, no

solution can always guarantee traversal.

A new form of UDP encapsulation layer could allow

explicit cooperation with middleboxes [60], [105], [106]. This

approach may help re-instantiate the layer boundary between

a hop-by-hop network layer and an end-to-end transport

layer [106], by allowing endpoints to control the information

exposed to the path (encrypting everything above the UDP

header), while still allowing appropriate transport semantics

to be explicitly exposed to the path to assist the middlebox

in establishing and maintaining state. An approach in which

the transport protocol encrypts its protocol information can

allow the transport to evolve without needing to consider the

interference of middleboxes [69].

The Path Layer UDP Substrate (PLUS) protocol (previously

called the Substrate Protocol for User Datagrams (SPUD)

prototype [107]) is ongoing work that seeks to realize and

facilitate middlebox traversal for new transports. PLUS groups

the packets of a transport connection into a “tube” that can

allow network devices on the path to understand basic session

semantics (e.g., beginning and end of a flow). PLUS may also

enable communication of path information to the sender, and

permits explicit endpoint to/from middlebox communication.

PLUS requires support at both endpoints, and only gains

benefits from middleboxes when they also implement sup-

port for the protocol. While use of encryption presents

opportunities to readdress the incentives for stakeholders to

declare the metadata that they use, this can not be consid-

ered a “quick-fix” solution. It has therefore been designed so

that the PLUS protocol is useful as a simple encapsulation

until support is enabled in middleboxes, enabling incremental

deployment [107].

IV. ENHANCING THE API BETWEEN THE APPLICATIONS

AND THE TRANSPORT LAYER

The first part of this section gives an overview of the stan-

dard socket API and how it has been extended to support

SCTP. The remaining parts consider ways to address some of

the major inherent limitations of this API, i.e., those limita-

tions that are believed to contribute to the ossification of the

transport layer. We examine some proposed extensions to the

standard socket API, and ways to address its current tight cou-

pling between the offered transport service and the underlying

transport protocol offering this service.

TABLE I
BASIC TCP SOCKET API FUNCTIONS

A. The Socket API

The socket API [108] is one of the most pervading

and longest-lasting interfaces in distributed computing. After

almost three decades of existence, however, novel technolo-

gies, like for instance multipath transport, are challenging the

socket API’s continued success [109].

Conceptually, a socket is an abstraction of a communication

endpoint through which an application may send and receive

data in much the same way as an open file permits an appli-

cation to read and write data to a stable storage device such

as a hard disk. Applications use socket descriptors to access

sockets in the same way that they use file descriptors to access

files.

The API was designed from the start to be independent

from the underlying protocol stack, as seen in the way that

a socket is created: int socket(int domain, int type,

int protocol). The domain parameter determines the com-

munication domain or protocol family of a socket. Examples

of protocol families include: AF_INET for the IPv4 Internet

domain; AF_INET6 for the IPv6 Internet domain; and,

AF_UNIX for the local or Unix domain. The type parame-

ter determines the type of a socket, or, more specifically, the

semantics for the transport service—e.g., whether the transport

service should be stream-oriented, reliable, and connection-

oriented (SOCK_STREAM), or message-oriented, unreliable,

and connectionless (SOCK_DGRAM). Finally, the protocol

parameter lets an application specify which transport protocol

to use to provide the transport service specified by the type

parameter.

Although the socket API comprises a fairly large number of

functions, there are less than a dozen core ones. For example,

a simple connection-oriented client-server application does not

need more than the eight functions listed in Table I. A server

application generally executes the first four functions in the

order given in the table, while a client application attempts to

connect to the server after having created a socket; the send

and recv functions may be called by both the client and the

server. A connection that is no longer needed is closed by the

client or server.

The API lets an application control the behavior of a socket

through options. The set of options has expanded over time,

as usage has evolved. There are essentially three ways to

manipulate socket options:

1) The functions setsockopt and getsockopt pro-

vide access to the majority of available socket options.
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2) The function fcntl is primarily used with non-

blocking and asynchronous I/O.

3) The function ioctl has traditionally been the way to

access implementation-dependent socket attributes.

The socket options accessed via setsockopt and

getsockopt are divided into two levels: The first level

are generic (i.e., non-protocol specific) options. For exam-

ple, the sizes of the socket send (SO_SNDBUF) and

receive (SO_RCVBUF) buffers are generic socket options. The

second level comprises protocol-specific options such as those

that control the behavior of IP, UDP, and TCP. An example of

a well-known, second-level socket option is TCP_NODELAY,

which determines whether the Nagle algorithm [110] should

be enabled.

The deployment of the SCTP transport protocol [7], [8]

demanded changes to the socket API. In addition to the ser-

vices offered by TCP, SCTP supports both multi-homing (i.e.,

connections comprising several network paths) and multi-

streaming (i.e., several independent logical flows over a single

connection). These additions required extended versions of

several existing socket API functions and a new notification

mechanism to enable signaling of transport-level events to

an application, such as connection status changes [111]. A

good example of how SCTP extended the socket API, is the

extended version of bind: The normal bind socket call only

enables for a communication endpoint to bind to a single IP

address. SCTP introduces the sctp_bindx socket call which

lets an application bind to several or all IP addresses on a host.

Since SCTP has its roots in the transport of critical tele-

phony signaling traffic, it had to be able to communicate

transport-level events to an application, such as connection

availability and remote operational errors. To ensure the SCTP

event notification is well aligned with the rest of the socket

API, events are enabled by a socket option: SCTP_EVENTS.

Once enabled, the SCTP stack sends events as normal mes-

sages to the application. An application may distinguish

between event notifications and normal messages, by a flag

in event notification messages set to MSG_NOTIFICATION.

SCTP also extended the semantics of the socket API by

supporting two types of sockets: one-to-one and one-to-many.

A one-to-one socket resembles usage by TCP. A one-to-many

socket makes it possible for an application to manage several

SCTP connections via a single socket. This has advantages for

server applications that may use a one-to-many socket to avoid

the need to administer each client request through a separate

socket.

The example of SCTP has shown that incorporating a trans-

port with different techniques has required updates to the

current socket API. It would seem reasonable to expect simi-

lar changes may also be needed to support any additional new

transport (or technique) [109]. A significant drawback is that

this also requires any application that wishes to benefit from

using a new technique to be updated to use the new API.

B. More Expressive APIs/Extensions to the Socket API

Extensions to the socket API have also been proposed that

change the way an application interacts with the transport

Fig. 4. Extensions to the socket API.

layer. These may be categorized according to the abstraction

level at which the underlying transport services are exposed

(Fig. 4). Some proposed extensions, which we call basic

extensions, only aim to remove perceived limitations and draw-

backs of the standard socket API. For example, Msocket [112]

makes it possible to have several implementations for each

domain, type, and protocol assignment. These proposals pro-

vide the same exposure of the transport layer as the standard

socket API.

In contrast, high-level extensions hide the implementa-

tion of offered transport services from applications. These

focus on ways to allow an application to express its

quality-of-service (QoS) requirements to the transport layer.

Examples include Socket Intents [113], [114] and Multi-

Sockets [115]. High-level extensions can be further divided

into application-oriented and resource-oriented extensions.

Application-oriented extensions let an application express

its QoS requirements in terms of application-dependent

performance metrics or the characteristics of the traffic it will

generate. In contrast, resource-oriented extensions focus on

system-wide, network-oriented performance metrics such as

packet loss, re-ordering, bitrate, or end-to-end delay. We now

present each category of socket API extensions and provide

examples within these categories.

1) Basic Extensions: If several protocol stacks are avail-

able, the standard socket API does not enable an application

to explicitly select the one to use. The Msocket [112] exten-

sion removes this limitation by adding a stack parameter to

the socket call. In Unix systems, the stack parameter is a

device file. This does not have to be the case in other systems,

and could refer to a kernel module. Backward compatibility

with the standard socket API is assured by the definition of

so-called default stacks: each protocol family is assigned a

default stack.

Sockets++ [116] is an object-oriented basic extension that

addresses a range of shortcomings with the socket API. It

supports multipoint connections to enable several applica-

tions to participate in the same connection. It also supports

direct forwarding allowing multimedia applications to request

data to be directly forwarded from one stream to another. It

seeks to minimize parameters in socket calls, e.g., combin-

ing domain and protocol parameters in the socket call, and

to simplify socket API options. Importantly, this extension

also enables applications to express their quality-of-service

requirements.

2) High-Level Extensions: Intentional extensions origi-

nated in work for mobile devices with more than one available

network interface. They allow applications to inform the API
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about the traffic they intend to send (e.g., whether it will

be latency-sensitive video conferencing traffic or throughput-

dependent file transfers). This information enables the trans-

port layer to select the most appropriate network interface,

dividing the responsibility for communication between the

application and the transport stack.

Intentional networking was first realized in

Multi-Sockets [115], allowing an application to use labels to

communicate its intents. Labels provided qualitative rather

than quantitative information, e.g., to inform the API whether

a message unit belongs to an interactive or non-interactive

traffic flow, or whether it belongs to a flow that consumes little

or much capacity. Conceptually, a multi-socket multiplexes

several different labels across a single virtual connection,

however, in practice, the proposal instantiated and used

actual TCP connections over one or several physical network

interfaces.

Socket Intents [113], [114] is a successor to Multi-Sockets,

seeking to support multi-homed applications. Socket Intents

replaced the labels used in Multi-Sockets by augmenting the

socket API with additional socket options. An implementa-

tion of Socket Intents comprises three components: a wrapper

library over the standard socket API, a policy module, and the

multi-access manager—a daemon that hosts the policy mod-

ule. Since creating a single policy that maps different traffic

flows to different network interfaces is, in general, not feasi-

ble, the Socket Intents API was built as a generic framework

with a replaceable policy module.

Resource-oriented socket API extensions offer communi-

cation between themselves and the application. For exam-

ple, QoSockets [117] enables an application to negotiate its

quality-of-service requirements with the transport layer, and

for the transport layer to signal violations of these require-

ments back to the application. The requirements include loss

rate, ordered or unordered delivery, end-to-end delay, and jitter.

Application- and network-management functions were inte-

grated by adding an interface to a Management Information

Base (MIB), and a status interface for connections. These

MIBs show how communication resources are allocated and

utilized, and enable an application to detect and adapt to

quality-of-service violations.

QSockets [118] is another resource-oriented socket API

extension. Similar to QoSockets, QSockets also offers bidirec-

tional communication to the application, enabling applications

to obtain detailed quality-of-service feedback. It uses an

extended socket API that adds a structure that contains the

QoS preferences. The QoS parameters may also be set on a

per-packet level by passing a structure to sendto calls, allow-

ing per-packet deadlines and the setting of other flags. The API

communicates with an in-kernel management module to con-

trol an in-kernel scheduler. This exposes functionality to the

management module for managing scheduled packet streams.

A pluggable scheduling layer allows various QoS scheduling

algorithms.

Although no single approach has been adopted by the com-

munity, this body of research has shown there are benefits to

enriching the transport API to express more than the traditional

socket API.

C. Transparent Transport Protocol Selection

The current design of the socket API has a design that

focuses on specific support for each transport protocol, each

with different needs. Fairhurst et al. [119] provide a recent sur-

vey of the services provided by the range of IETF-standardized

transports. The present design of the API makes it difficult to

introduce any new protocol [120].

These limitations could be overcome by re-designing the

way that the API is used, e.g., by using a protocol-independent

mechanism to set parameters; by describing application

requirements at a higher level of abstraction (similar to inten-

tional methods); and by providing a service-oriented interface

between applications and the transport (where applications

describe the required services rather than the protocols to

use). The latter would allow transport protocol selection to

be dynamically handled at run-time, easing the introduction

of new and alternate protocols.

A prototype implementation [121] used a service-oriented

API to indicate a combination of inherent properties (reli-

ability, security, etc.) and qualitative properties (expressing

tendencies and preferences). The set of inherent transport prop-

erties was derived by examining several transport protocols

(TCP/IP, UDP/IP, RDP [122], RDP/IP, XTP [123], XTP/IP,

SCTP/IP). Five qualitative properties were also suggested

(transmission delay, flow setup delay, network resource usage,

host resource usage, and quality). A broker then matched

the inherent properties with application requirements to first

identify the transport to use, and then used the qualitative

properties to optimize the matching.

Welzl [26] identified deployment problems resulting from

the complexity of the different protocol APIs and proposed an

“Adaptation Layer” that hides protocol details and exposes a

common service-oriented interface. This allowed applications

to specify their requirements and characteristics. An adapta-

tion layer then sought to provide the best transport service

based on available transport protocols and the current network

environment. This adaptation layer could also tune protocol

parameters and provide additional functions, such as buffering.

Welzl et al. [124] later derived a methodology for construct-

ing a service-oriented transport API. This started with a list

of all services provided by SCTP, DCCP and UDP-Lite, and

iteratively pruned redundant services or services considered

unnecessary, resulting in a list of 23 distinct transport services

composed from six different features. This led to a straw-

man proposal for a protocol-independent version of the socket

API, where the selected transport services could be accessed

through their service number.

A similar proposal [125] expressed the desired service

through a set of requirements, such as packet boundary preser-

vation, authentication or maximum delays. Their adapted

socket API used a name similar to a URI [126] to identify the

communication peer, removing dependence on IP addresses.

There is a need to standardize any new service-oriented

API [26], to ensure that it can have significant impact and

becomes used by applications in future. This requires the com-

munity of application developers, and transport developers to

reach consensus on the set of desirable interface features.

Recent IETF work within the Transport Services working
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Fig. 5. “Happy eyeballs” technique for the discovery of SCTP support, with SCTP being the preferred choice. The first handshake of the SCTP association
succeeds shortly after the TCP connection does, so the latter is aborted.

group (TAPS) [119], [127] provides a unique opportunity to

develop this sort of consensus.

D. Enhancing the API to Allow Evolution Below

the Transport Layer

There is a long history of proposals to support communica-

tion between end systems and the network. Proposed solutions

can be divided into two broad classes according to their scope:

1) solutions that facilitate middlebox traversal for applications

(discussed in Section III-B), 2) solutions that focus on commu-

nicating information between the network and the endpoints

to improve application experience (signaling of QoS require-

ments, QoS reservations, and indications of capacity changes,

of data corruption, of congestion, etc.). However, there are also

challenges to finding suitable, scalable, secure and robust sig-

naling mechanisms that can be deployed across the Internet

(e.g., [107] and [128]–[131]). Finding appropriate methods

largely remain an area of research. One issue with deploying

these mechanisms is that many require applications to indi-

cate their needs and how they expect the network to respond.

The current socket API does not provide such information,

nor have applications typically been designed to utilize such

methods, and hence at present these are unlikely to be widely

deployed.

A higher-level transport API that places the responsibil-

ity for negotiating and using network signaling below the

transport API may encourage future applications to utilize

new methods as the stack and network introduce them. This

technique was adopted by some of the API proposals dis-

cussed [118] and could be enabled by the approaches being

proposed in [132].

V. DISCOVERY AND EXPLOITATION OF

END-TO-END CAPABILITIES

Some application-layer proposals provide limited sup-

port for negotiation of e.g., transport security for unicast,

connection-oriented application sessions [133], [134], or trans-

port protocol, port and IP address for multimedia ses-

sions [135], [136]. A more generic approach is for end-points

to use a negotiation protocol to exchange protocol-stack infor-

mation, and to agree on a transport stack (i.e., transport and

security protocols to be used, and their options), as described

in [137]. This proposal focused on connection-oriented trans-

ports. Minimizing latency, by reducing the number of RTTs

needed for negotiation, requires changes to the implementa-

tions of the transport protocols being negotiated.

In the absence of an explicit end-to-end signaling or a nego-

tiation protocol, the only way for an end-host to discover and

(implicitly) agree on the choice of protocol(s) is to simultane-

ously try a set of candidate methods, and choose one method

that works. This “test-and-select” approach, known as happy

eyeballs [138], has been proposed both for choosing between

transports [139], [140] and between versions of the IP proto-

col [141]. To the best of our knowledge, only the latter has

been implemented in real systems (e.g., [142]), coupled with

address-selection algorithms such as [143], with a few papers

(e.g., [144]–[146]) reporting on performance assessments of

IP-version happy eyeballs.

Fig. 5 depicts a possible variant of happy eyeballs for a

client to discover SCTP support, both at a server and along

the path to the server. A drawback of this kind of tech-

nique is it increases both the number of packets sent, and

(potentially) the server-side load and the amount of state cre-

ated in middleboxes; hence, it does not scale well with the

number of candidates to try. For instance, testing for native

SCTP, SCTP-over-UDP and TCP, combined with both IPv4

and IPv6, would in principle require testing six protocol com-

binations (compared to two in the example). Moreover, happy

eyeballs requires careful design of timers, needed to decide

when to discard a trial for a given protocol choice. Also, the

sequence in which trials are attempted can be important, to

avoid systematic bias towards particular protocol choices.

It is important to consider the overhead in the design of a

happy eyeballs algorithm, especially the overhead in terms of

added latency for initiating a session. In general, any trans-

port signaling or feature discovery/negotiation mechanism may

incur either additional round-trip times (e.g., if connection

attempts are serialized) or waiting delay (e.g., due to waiting

for replies to two parallel connection requests). It is therefore

essential to cache results to speed up subsequent trials. For

instance, prior knowledge that protocol choice X works with

destination D can be used to tune the testing process, e.g.,

by slightly delaying trials with protocols other than X [139].

Cached information can also inform the happy eyeballs mech-

anism to give preference to certain choices, e.g., ones expected

to offer lower path latency [142]. Another overhead worth

considering is that of CPU and memory load on servers.

These could be, in principle, important performance metrics

for transport-layer happy eyeballs, since creating transport
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connections implies creating state in end hosts. However,

results in [147] suggest this may not necessarily be a major

issue, especially when considering the impact of caching and

the overhead inherent to transport-layer security.

VI. ENABLING USER-SPACE PROTOCOL STACKS

It is possible to run a transport as a user-space library, letting

applications use the transport in user-space, rather than the one

provided by an OS kernel. This can allow more portability and

deployability across multiple OS and hardware platforms. This

approach can enable easy introduction and ease testing of new

features and protocols (e.g., a simple user-space TCP library

(UTCP) used on top of MultiStack [148]).

In many systems, privileges are needed to add a new pro-

tocol and may not always be granted to the entity trying to

introduce a new transport protocol. User-space transport imple-

mentations can be installed on a host machine without root

privileges and, as pointed out in Section II-B, when run over

UDP, no special privileges are needed to access the IP layer.2

However, the use of user-space transports presents a range of

challenges.

One challenge is that network I/O operations that originate

in user-space can incur higher latency compared to network

I/O operations handled in the kernel. MultiStack [148] offers

a solution that enhances commodity operating systems with

support for dedicated user-level network stacks. It can con-

currently host a large number of independent stacks, and can

fall back to the kernel stack if necessary. MultiStack provides

high speed packet I/O at rates up to 10 Gb/s [148], by extend-

ing two components: the netmap framework [149] and the

VALE software switch [150]. Using the netmap framework,

Marinos et al. [151] show that using specialized user-level

stacks can provide a substantial performance improvement

compared to using generic protocol stacks.

Other libraries can help achieve fast packet I/O in user-

space, such as the Data Plane Development Kit (DPDK) [152]

and PACKET_MMAP [153]. DPDK is a set of libraries and

drivers for fast packet processing mostly in Linux user-space.

However, DPDK is not a networking stack and does not pro-

vide functions such as Layer-3 forwarding, IPsec, firewalling,

etc. PACKET_MMAP seeks to provide efficient raw packet

transmission and reception in the Linux kernel using a zero-

copy mechanism with a configurable circular buffer, mapped

in user-space to minimize the number of system calls.

In addition to user-space TCP [154], there is also a user-

space SCTP implementation for all major OS platforms [83]

using the FreeBSD kernel sources for SCTP. Since it is not

always possible to send data directly over native SCTP (e.g.,

because not all middleboxes can process SCTP packets), the

SCTP user-space implementation in [83] additionally supports

the option of encapsulating SCTP packets in UDP.

User-space SCTP [83] is implemented using raw sockets

in user-space. A raw socket receives or sends raw datagrams

(at OSI Layer 3), whereas packet sockets receive or send raw

packets at the device driver level (OSI Layer 2). This allows

2This requires that UDP port numbers ≥ 1024 be used.

a user to implement protocol modules in user-space on top of

the physical layer (e.g., PACKET_MMAP [153]).

Another technique that enables transport protocols to run

in user-space is to run the entire kernel (instead of only the

transport) as a user-space process, as in User-Mode Linux

(UML) [155]. This permits experimenting with new trans-

port protocols implemented in different Linux kernels without

interfering with the host Linux setup. UML provides a vir-

tual machine as a single file, potentially with more (virtual)

hardware/software resources than the actual host, and can

potentially provide limited access to host hardware. A similar

approach is followed by LibOS [156], which runs the kernel

as a library that can be called by an application. LibOS has

been used by NUSE [157] to provide a Linux network stack

for user-space applications.

VII. SUMMARY OF POINT SOLUTIONS

Table II summarises the taxonomy of issues and point solu-

tions to transport-layer ossification described in more detail in

the previous sections. The first column recaps the four main

reasons behind ossification, discussed in Section I-A:

• The first two main problems, Middlebox-related hin-

drances and API ossification, are those that have received

the most attention by the research and standards commu-

nities; this is reflected by the number of point solutions

(examined in Sections II–III and IV, respectively) that

have been proposed in this space.

• For clarity, the table subdivides families of solutions for

the last two types of issues, Lack of local knowledge

about path- and remote end-host support and End-host

deployment issues (examined in Sections V and VI,

respectively), according to the different approaches taken

by the reviewed proposals.

VIII. A WAY FORWARD: A TRANSPORT-LAYER

FRAMEWORK

The previous sections have shown that de-ossifying the

Internet transport layer to re-enable its evolution is a

multi-dimensional problem. This requires the enhancement

of multiple components of the end-to-end communication.

Several point solutions have been proposed or are under-

way, each aiming to address a specific aspect of the overall

problem. However, there has been little effective integration

of techniques that can produce an evolvable transport layer.

For instance, incorporating a new application-level transport

within the application’s code (e.g., QUIC) to enable new trans-

port services would inevitably require a negotiation service,

e.g., a negotiation protocol like the one described in [137] to

discover if the transport is supported by the remote peer (e.g., a

Web server), accompanied with a fall-back strategy for the case

where the new transport is not supported.3 Implementing more

advanced transport and network functions, such as dynamic

selection and configuration of a transport based on current

network state and QoS negotiation, would additionally require

3At the time of writing, the Chrome browser (version 46.0.2490.86) does
this by implementing Happy Eyeballs (see Section V) between QUIC/UDP
and TCP.
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TABLE II
SUMMARY OF MAIN ISSUES AND POINT SOLUTIONS TO INTERNET TRANSPORT-LAYER OSSIFICATION

the involvement of more components, such as a policy system,

measurement modules and network signaling mechanisms, that

need to interact with each other.

While various solutions could be partly implemented

according to certain application needs, this would inevitably

result in an application-specific and less flexible implementa-

tion, that is neither sufficiently general to support other types

of applications nor incrementally upgradable to support new

transport and network functions as they become available. This

would need considerable effort from application developers to

re-implement common functions or services that might not be

interoperable or efficient. Examples include QUIC in Chrome,

RTMFP [71] in Adobe Flash Player, and proprietary protocols

in Skype [158] and the WebRTC framework [92].

We argue that a truly evolvable Internet transport archi-

tecture requires a necessary step to design and develop a
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Fig. 6. Requirements for an evolutionary transport layer framework, as presented in Section VIII. Leaves and nodes in the tree correspond to requirements
and their categories, respectively. Relevant sections in the text are shown in parentheses.

comprehensive and evolutionary transport layer framework

that can facilitate integration and cooperation of transport layer

solutions in an application-independent and flexible way.

This would relieve application developers from the burden

of changing the application code to introduce new transport

or network services and functions, breaking the vicious circle

that hampers evolution.

The remainder of this section motivates the requirements

for such a framework. Based on the discussion in previous

sections, we identify such requirements and summarize them

in five general categories: 1) API flexibility, 2) Deployability,

3) Extensibility, 4) Guided parameter value selection, and

5) Scalability. Figure 6 provides a visual guide to the require-

ments presented below.

A. API Flexibility

As discussed in Section IV, the ossification of the current

transport API is a key obstacle that needs to be overcome.

Applications using the framework should only interact with

it via the API provided by the framework. This API should

be able to decouple applications from a priori decisions on

underlying protocols and functions. It should also allow to

use the framework in the future by providing a simple way

for porting existing applications to it. To this end, the API

must be flexible, in the sense of the following requirements.

1) Backward Compatibility: The API provided by the

framework needs to provide backward compatibility to enable

evolution from previous versions of the framework without

affecting the applications that use the framework.

2) Support of Low Level Configuration: The classical

socket API requires detailed usage of the transport protocol

stack, where the network and transport protocol need to

be specified, and protocol-specific parameters chosen (when

values different other than the defaults are needed). The

framework should continue to permit this detailed level of

configuration.

3) Support of High Level Configuration: The framework

should allow configuration at a high level of abstraction.

Mechanisms should describe the needs of an application in

a more generic way than required by the classic socket

API. Possible needs include message-orientation, preservation

of message order, reliability, low latency, mobility support,

relative priorities and security features.

An application may assume that it receives the requested

service, but should not implicitly receive additional services.

This allows the framework to make any further decisions

necessary to establish optimal communication with the peer

endpoint. As the framework evolves, different choices might

lead to a better service without the need to change the

application. Finally, multiple levels of abstraction need to be

supported.

Recent advances in the development of more expressive,

high-level, extensions to the socket API (e.g., Socket Intents

and QSockets, Section IV-B2), and the important ongoing

standardization effort of the IETF TAPS working group can

provide a basis towards satisfying this requirement.

4) Comprehensibility: The framework must make low level

information available to the application and to reveal the

decision processes, so that applications know the concrete

choices that were made to fulfill the requested abstract require-

ments. QoS feedback, as provided by QoSockets and QSockets

(Section IV-B2), is an example of how such low level infor-

mation could be of interest to an application.
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B. Deployability

The framework should enable fast seamless deployment

with as little disruption as possible. The deployability goals

translate into the following requirements:

1) Application Focus: The evolutionary character of the

framework requires support of existing host operating systems.

It must be installable, usable and upgradable without spe-

cific privileges. This enables the speed of the evolution of

the framework to be independent of the speed that operating

systems are updated.

2) Host Operating System Feature Tolerance: The frame-

work should not only make use of protocols and features

available on the host operating system, but allow integration of

additional protocols (e,g., SCTP or DCCP) and features (e.g.,

caching network or transport information).

To enable easy deployment of new transport protocols

and/or transport protocol components, solutions that enable the

deployment of user space transport stacks should be supported

by the framework. Examples include support for application-

level transports (such as uTP and QUIC, Section II-B), UDP

encapsulation schemes (such as SCTP/UDP encapsulation and

GUT, Section II-B), and user space implementations of native

transports (such as SCTP and TCP, Section VI).

3) Peer Feature Tolerance: It can not be assumed either that

all endpoints use the new framework. Even when the frame-

work is supported by all endpoints, it must not be assumed

that they use the same version of the framework. This allows

for incremental deployment, possibly at the cost of providing

less benefit. Similar robustness is required for the protocols

and mechanisms used to realize the transport service.

A method that allows implicit or explicit discovery of the

set of protocols/mechanisms supported by a remote endpoint

could allow the framework to leverage the best common set of

available features. Examples of such solutions are the nego-

tiation protocol described in [137] and the happy eyeballs

mechanisms (Section V). Feature negotiation and fallback

mechanisms can be incorporated within a protocol or a mecha-

nism itself, such as the options mechanism for negotiating TCP

extensions and the fallback scheme of MPTCP (Section II-A).

4) Network Feature Tolerance: The ability to use the frame-

work must not depend on the network support for specific

features (e.g., quality of service mechanisms or middlebox

interaction), but may utilize these when they are found to be

supported.

Support for middlebox-proof transports (Section II) and

mechanisms for implicit middlebox control (Section III-A)

can be of great value for making the framework independent

of the features supported by middleboxes. Additionally, sup-

port for “looser” network signaling mechanisms (e.g., PLUS,

Section III-B) for interacting with network devices can enable

a “best effort” use of available network features.

C. Extensibility

The framework must be able to support seamless, indepen-

dent evolution of the different components.

1) Support of Framework Evolution: An evolutionary

framework must permit addition of new protocols and features

in the future.

2) Support of Operating System Evolution: The interface

between the framework and the operating system may change

over time to improve the service provided by the framework,

including additional protocols and features. This allows mov-

ing implementations from the framework to the host operating

systems and vice versa as they evolve.

3) Support of Network Evolution: Some middleboxes may

allow an endpoint to signal its needs. Applications should not

rely on signaling, but can benefit when this is available, pos-

sibly increasing the chance that a path can be used (e.g., by

explicitly controlling middlebox traversal, Section III-B), or

even enabling features (such as QoS support) that can benefit

the transport (e.g., through the signaling of advisory metadata,

Section IV-D). It should be assumed that the available methods

for interacting with the network (and middleboxes) will evolve

over time. The architecture of the framework must therefore

allow applications using the framework to benefit from this

evolution.

D. Guided Parameter Value Selection

Current transport and network stacks require explicit param-

eter value selection. For example, an application may choose

IPv4 or IPv6 and select DCCP, SCTP, TCP, UDP-Lite or UDP.

Furthermore, parameter values can be specified by explicit

socket or protocol level socket options. The framework should

be able to combine network-wide and local information to

select the appropriate parameter values that make the best of

available features for satisfying application requirements. Such

guided parameter value selection corresponds to the following

requirements.

1) Derivation of Parameter Values: The framework must

map high-level requirements provided by the application to

the low level parameter values to be used. This parameter

selection should be guided by the requirements provided by

each application to result in selection of the interfaces to be

used, the network protocol, the transport protocol, and the

setting of parameter values at each layer. Examples include

the policy-based interface selection system of Socket Intents

(Section IV-B2) and the run-time service broker in [121]

(Section IV-C). The IETF TAPS working group is seeking to

provide guidance on choosing among available protocols and

mechanisms [25].

2) Dependency on Local Tools: If possible, tools included

in an operating system (for example, link status supervision

tools) should provide useful information to the framework

when making the decisions and parameter value selections.

3) Dependency on Network and Peer: Any decision to use

a particular protocol must be based on the set of protocols

supported by the local and remote endpoints. A prerequisite

to using a protocol is that it can communicate over the path

between the endpoints, including any middleboxes employed

along the path. The framework should support mechanisms for

discovering characteristics of the end-to-end path and/or the

remote endpoint, such as happy eyeballs, end-to-end signaling

and negotiation protocols (Section V).

4) Ability to Use Time-Dependent Path Information: The

final decision to use a candidate protocol can be based on
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historical information such as whether a protocol or fea-

ture was previously supported on the path, but needs to also

consider that path characteristics can change over both long

time-scales (e.g., due to upgrades or route changes) and short

time-scales (due to load balancing over alternate paths, wire-

less links, etc.). Use of historical information will require

components for caching path properties (e.g., caching happy

eyeballs results, Section V) and which will be able to effi-

ciently store information with diverse lifetime requirements.

5) Agnostic to Application Protocol: Testing and discovery

must be done by the framework and must not require any

change to, or specific support by, application protocols.

E. Scalability

The framework must be scalable in a variety of ways.

1) Traffic Volume: The framework must limit the impact

on CPU load and scale to support a high volume of user traf-

fic (e.g., to support high-speed interfaces). Hardware support

should be leveraged whenever possible. At the same time, the

framework must not by itself produce control traffic (signaling)

that limits scalability.

2) Number of Peers: The number of transport associations

needed (for example TCP connections or SCTP associations)

depend on the use case. The framework must efficiently

support a high number of simultaneous transport associations.

3) Size of Feature Set: Finally, the framework needs to be

able to support a variety of combinations of protocols, param-

eter settings and network interactions. The selection process

must therefore be able to select from a large set of possibilities,

while providing an acceptable communication setup time.

IX. FUTURE RESEARCH DIRECTIONS

To conclude, we identify ongoing and forthcoming research

efforts that we expect will lead to further developments

towards de-ossifying the transport layer.

Considering the approaches discussed so far, it seems that

the ossification problem has two main root causes: 1) middle-

boxes that examine and/or manipulate the contents of packets

beyond the IP header make it hard to deploy protocols that

these middleboxes do not yet know; 2) the application net-

working interface that is exposed by the socket API ties

applications (or the middleware or library that these appli-

cations are based upon) to a specific protocol choice. Both

sub-problems have been addressed in various ways by research

proposals. Unfortunately, some of these proposals are not new,

yet it seems that present solutions have had little to no impact

on the Internet: the transport layer still appears to consist of

only TCP and UDP, often even further constrained to specific

port numbers [12]. If anything, the situation seems to have

worsened over the years.

There is however some reason for hope that we may be

reaching a turning point. At the time of writing, several ini-

tiatives are focusing on making such a change possible; these

initiatives point at the different open research directions in this

space:

• The IETF TAPS working group seeks to specify how

applications could express their transport requirements,

instead of being tied to a specific protocol, and how

a transport system based on such requirements speci-

fications could be constructed.4 This work begins with

identifying the services that current IETF transport pro-

tocols provide [119], [127], [159]. An outcome of TAPS

could include a new abstract API, and it will include

recommendations on how to perform selection between

protocols. One of the group’s documents [25] provides

guidance on choosing the minimal set of Transport

Services that end systems should expose. Identifying this

minimal set is important as not exposing some Transport

Services limits the ability to benefit from protocols other

than TCP and UDP. For example, SCTP can deliver

delimited messages faster than TCP in case they arrive

out-of-order, for applications that can tolerate such out-

of-order delivery. With most of today’s APIs providing a

reliable byte stream, there is no way to automatize the use

of this SCTP service, and just replacing TCP with SCTP

does not necessarily yield much benefit (with the pos-

sible exceptions of potential gains from transparent use

of multi-streaming [160], and increased resilience due to

multihoming [161]).

• The IP Stack Evolution Program within the Internet

Architecture Board (IAB) provides architectural guid-

ance, and a point of coordination for work at the

architectural level to improve the present situation of

ossification in the Internet protocol stack.5 This program

provides a forum for discussion of design principles to

make new Internet protocols deployable, based in part on

RFC 5218 [162], and principles for the use of encapsu-

lation (e.g., UDP-based). It has also organized a number

of workshops and other meetings around topics related

to stack evolution—e.g., the “Managing Radio Networks

in an Encrypted World” (MaRNEW) workshop which

focused on questions related to network management in

the face of increasingly ubiquitous encryption.6

• Current activity around the PLUS protocol at the IETF7 is

striving for better visibility and control over the coopera-

tion between end-points and middleboxes in a context of

increasing use of encryption. “Birds-of-a-Feather” (BoF)

sessions related to PLUS (and its predecessor SPUD)

were held at two IETF meetings (IETF-92, Dallas,

March 2015; IETF-96, Berlin, July 2016) and were

well attended, with much debate on many aspects of

the problem space that PLUS intends to cover, espe-

cially on the question of privacy implications of this

proposal.8

• The IRTF “Measurement and Analysis for Protocols”

Research Group9 (MAPRG), chartered on August 2016,

4https://tools.ietf.org/wg/taps/charters
5https://www.iab.org/activities/programs/ip-stack-evolution-program/
6https://www.iab.org/activities/workshops/marnew/
7https://www.ietf.org/mailman/listinfo/spud
8See https://www.ietf.org/proceedings/92/minutes/minutes-92-spud

and https://www.ietf.org/proceedings/96/minutes/minutes-96-plus for the
sessions’ minutes.

9https://irtf.org/maprg
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serves as a forum to exchange insights derived from mea-

suring the Internet, including the possibility to design

protocols based on measured path characteristics, rather

than conservatively designing just for the worst case.

• The European collaborative research project “NEAT”

implements a transport system, following the require-

ments detailed in Section VIII, that will allow transport

decisions to be made and verified at run-time, instead

of design time, based on understanding application needs

and the available transport protocols [163]—this is key to

breaking the vicious circle and enabling deployment of

new transports.10 NEAT contributes to the TAPS working

group [25], [119], [127], [140], [159], and the project wel-

comes contributions to their open-source implementation

on github.11

• The European collaborative research project “MAMI” is

set to perform a large-scale assessment of middlebox

behavior [164], and to use this to inform development

of an architecture for middlebox cooperation.12 MAMI

is involved in several of the activities listed above: devel-

opment of the PLUS protocol, creation of the MAPRG,

TAPS and the IAB Stack Evolution program.
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