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Abstract

The replacement of the Poincaré-invariant Einstein special relativity by 

a de Sitter-invariant special relativity produces concomitant changes in all 

relativistic theories, including general relativity. A crucial change in the latter 

is that both the background de Sitter curvature and the gravitational dynamical 

curvature turns out to be included in a single curvature tensor. This means that 

the cosmological term Λ no longer explicitly appears in Einstein equation, 

and is consequently not restricted to be constant. In this paper, the Newtonian 

limit of such theory is obtained, and the ensuing Newtonian Friedmann 

equations are shown to provide a good account of the dark energy content of 

the present-day universe.
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1. Introduction

The de Sitter spacetime is usually interpreted as the simplest dynamical solution of the sourceless 

Einstein equation  in the presence of a cosmological constant, standing on an equal footing with 

all other gravitational solutions, like for example Schwarzschild and Kerr. However, as a non- 

gravitational spacetime (in the sense that its metric does not depend on Newton’s gravitational 

constant), the de Sitter solution should instead be interpreted as a fundamental background for the 

 construction of physical theories, standing on an equal footing with the Minkowski solution. General 

relativity, for instance, can be constructed on any one of them. Of course, in either case gravitation 

will have the same dynamics, only their local kinematics will be different. If the underlying space-

time is Minkowski, the local kinematics will be ruled by the Poincaré group of special relativity. If 

the underlying spacetime is de Sitter, the local kinematics will be ruled by the de Sitter group, which 

amounts then to replacing ordinary special relativity by a de Sitter-invariant special relativity [1–3]1.

1 The �rst ideas about a de Sitter special relativity are due to Fantappié, who in 1952 introduced what he called Projective 

Relativity, a theory that was further developed by Arcidiacono. The relevant literature can be traced back from [4].
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It turns out that there is a physical motivation for making such replacement. It is related to 

the existence of an invariant length parameter at the Planck scale, represented by the Planck 

length. The problem is that the Lorentz group is believed not to allow the existence of an 

invariant length parameter. Since Lorentz is a subgroup of Poincaré—which is the group that 

rules the kinematics in ordinary special relativity—the kinematics at Planck scale cannot be 

described by ordinary special relativity. This, however, does not mean that Lorentz symmetry 

must be violated at the Planck scale. To understand why, let us �rst recall that Lorentz trans-

formations can be performed only in homogeneous spacetimes. In addition to Minkowski, 

therefore, they can be performed in de Sitter and anti-de Sitter spaces, which are the unique 

homogeneous spacetimes in (1  +  3)-dimensions [5]. In what follows, our interest will be 

restricted to the de Sitter spacetime and group.

As a homogeneous space, the de Sitter spacetime has constant sectional curvature. Of 

course, the Ricci scalar is also constant and has the form

R = 12 l
−2

,
 

(1)

where l is the de Sitter length-parameter, or pseudo-radius. Now, by de�nition, Lorentz 

 transformations do not change the curvature of the homogeneous spacetime in which they 

are performed. Since the scalar curvature is given by (1), Lorentz transformations are found 

to leave the length parameter l invariant [6]. Although somewhat hidden in Minkowski 

 spacetime, because what is left invariant in this case is an in�nite length—corresponding to a 

vanishing scalar curvature—in de Sitter spacetime, whose pseudo-radius is �nite, this prop-

erty becomes manifest. Contrary to the usual belief, therefore, Lorentz transformations do 

leave invariant a very particular length parameter: that de�ning the scalar curvature of the 

homogeneous spacetime in which they are performed. If the Planck length lP is to be invariant 

under Lorentz transformations, it must then represent the pseudo-radius of spacetime at the 

Planck scale, which will be a de Sitter space with a Planck cosmological term

ΛP = 3/l
2

P
≃ 1.2 × 10

70
m

−2
.

 
(2)

In a de Sitter-invariant special relativity, therefore, the existence of an invariant length- 

param eter at the Planck scale does not clash with Lorentz invariance, which remains a sym-

metry at all scales. Taking into account the deep relationship between Lorentz symmetry and 

causality [7], in this theory causality is always preserved, even at the Planck scale. Instead of 

Lorentz, translation invariance is broken down. In fact, in this theory, physics turns out to be 

invariant under the so-called de Sitter translations, which in stereographic coordinates are 

given by a combination of translations and proper conformal transformations [8]. We can then 

say that, in the same way Einstein special relativity may be thought of as a generalization of 

Galilei relativity for velocities near the speed of light, the de Sitter-invariant special relativity 

may be thought of as a generalization of Einstein special relativity for energies near the Planck 

energy. It holds, for this reason, at all energy scales.

When the Poincaré-invariant Einstein special relativity is replaced by a de Sitter-invariant 

special relativity, general relativity changes to what we have called de Sitter-modi�ed general 

relativity2. In this theory, the kinematic curvature of the underlying de Sitter spacetime and 

the dynamical curvature of general relativity are both included in a single Riemann tensor. 

This means that the cosmological term Λ no longer appears explicitly in Einstein’s equation, 

and consequently the second Bianchi identity does not require it to be constant [10]. Far away 

2 It is opportune to remark that, even though both the de Sitter-modi�ed general relativity and the MacDowell-

Mansouri theory [9] rely on the de Sitter symmetry, they are completely different theories. In fact, whereas the �rst 

is a modi�ed gravity that presents a different phenomenology in relation to general relativity, the second is simply 

an alternative way to formulate general relativity.
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3

from the Planck scale, Λ can consequently assume smaller values, corresponding to larger val-

ues of the de Sitter length-parameter l. For low energy systems, like for example the present-

day universe, the value of Λ will be very small, and the de Sitter invariant special relativity 

will approach the Poincaré-invariant Einstein special relativity.

Spacetimes that do not reduce locally to Minkowski are known since long and come under 

the name of Cartan geometry [11]. The particular case in which it reduces locally to de Sitter 

is known in the literature as de Sitter–Cartan geometry [12]. By considering general relativity 

in such geometry, we are going �rst to study its Newtonian limit. Then, by using this limit, we 

obtain the corresponding Newtonian Friedmann equations with basic purpose of examinig the 

ability of this theory to deal with cosmology, and in particular with the dark energy problem.

2. The local value of the cosmological term Λ

Implicit in de Sitter-modi�ed general relativity is the idea that any physical system with 

energy density εm induces a local cosmological term Λ in spacetime, with an energy density 

εΛ, which is necessary to comply with the local symmetry of spacetime, now ruled by the de 

Sitter group3. Note that the ensuing cosmological term Λ is different from the usual notion 

in the sense that it is not constant. For example, outside the region occupied by the physical 

system, where εm vanishes, Λ vanishes as well. In a sense we can say that it represents an 

asymptotically �at local de Sitter spacetime. The question then arises: given a physical sys-

tem, how to obtain the local value of the cosmological term? To answer this question, let us 

recall that, at the Planck scale, the cosmological term assumes the Planck value given by (2). 

Since Λ represents ultimately an energy density, this expression can be rewritten in the form

ΛP =
4πG

c4
εP (3)

where

εP =
mP c

2

(4π/3)l3
P

 (4)

is the Planck energy density, with mP the Planck mass. Now, the very de�nition of ΛP can be 

considered an extremal particular case of a general expression relating the local cosmologi-

cal term to the corresponding energy density of a physical system. Accordingly, to a physical 

system of energy density εm will be associated the local cosmological term

Λ =
4πG

c4
εm . (5)

As an example, let us consider the present-day universe. According to the results of WMAP, 

the space section of spacetime is nearly �at today. As a consequence, the mean energy den-

sity of the universe is of the same order of the critical energy density, which is equivalent to 

εm ≃ 10−9 Kg m−1 s−2. Using this value, the effective cosmological term of the present-day 

universe is found to be

Λ ≃ 10
−52

m
−2

, (6)

which is of the order of magnitude of the observed value [14–16].

3 The idea that the presence of matter with an energy density εm
 could somehow change the underlying spacetime 

from Minkowski to de Sittter, was �rst put forward by Mansouri in 2002 [13].

A Araujo et alClass. Quantum Grav. 34 (2017) 115014
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It is important to remark that, although Λ is allowed to change in space and time, it is not a 

dynamic, but a kinematic variable. This means that the dynamical �eld equations of the theory 

are unable to account for its space and time evolution. It is actually an external parameter, and 

as such assumed to be constant when solving the dynamical �eld equations of the theory. Once 

the �eld equations are solved, including their Newtonian limit, one can then use the values of 

Λ obtained from the algebraic relation (5).

3. Diffeomorphism in de Sitter–Cartan geometry

The de Sitter spacetime dS  can be seen as a hypersurface in the (1  +  4)-dimensional ‘host’ 

pseudo-Euclidean space with metric

ηAB = (+1,−1,−1,−1,−1),

inclusion whose points in Cartesian coordinates χA = (χµ,χ4) satisfy [17]

ηµνχ
µ
χ
ν
− (χ4)2 = − l

2
. (7)

In terms of the host space coordinates χA, an in�nitesimal de Sitter transformation is 

 written as

δχA
=

1

2
ǫBCξ A

BC
, (8)

where ǫBC
= −ǫ

CB are the transformation parameters, and

ξ A

BC
= χB δ

A

C
− χC δA

B (9)

are the Killing vectors of the de Sitter group. The components

ξ α
βγ = χβ δ

α
γ − χγ δ

α
β (10)

represent the Killing vectors of the Lorentz group, whereas the components

ξαβ ≡ l
−1ξ α

β4
= l

−1
(

χ4 δ
α
β − χβ δ

α
4

)

= l
−1χ4 δ

α
β (11)

represent the Killing vectors of the de Sitter ‘translations’.

Let us consider now the static coordinates (ct, r, θ,ϕ). They can be obtained from the 

embedding coordinates χA through the projection

χ0 = l

√

1 − r2/l2 sinh(ct/l) (12)

χ1 = r sin θ sinϕ (13)

χ2 = r sin θ cosϕ (14)

χ3 = r cos θ (15)

χ4 = l

√

1 − r2/l2 cosh(ct/l) . (16)

The de Sitter metric in terms of the embedding coordinates is

ds
2
≡ ηAB dχ

A
dχ

B = (dχ0)2
− (dχ1)2

− (dχ2)2
− (dχ3)2

− (dχ4)2
. (17)

Using equations (12)–(16), one can easily verify that it is

A Araujo et alClass. Quantum Grav. 34 (2017) 115014
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ds
2
=

(

1 − r
2/l

2
)

c
2
dt

2
−

dr
2

1 − r2/l2
− r

2
(

dθ2
+ sin

2 θ dϕ2
)

. (18)

Similarly, it is possible to obtain the Killing vectors of the de Sitter group in static coordinates. 

In particular, the Killing vectors (11) associated to the de Sitter ‘translations’ are found to be

ξαµ = (1 − r
2/l

2)1/2 cosh(ct/l) δαµ . (19)

The corresponding generators are then written in the form

Πµ = ξα
µ
∂α .

Now, as a local transformation, diffeomorphisms are able to detect the local structure of 

spacetime. In a locally-de Sitter spacetime, therefore, a diffeomorphism will be de�ned by

δΠx
µ = ξµ

α
ǫα(x) , (20)

where ξµα are the Killing vectors (19) of the de Sitter ‘translations’. In the contraction limit 

l → ∞, the underlying de Sitter spacetime reduces to Minkowski [18], and the diffeomor-

phism (20) reduces to the diffeomorphism of locally-Minkowski spacetimes,

δx
µ = δ

µ

α
ǫ
α(x) , (21)

with δµα the Killing vectors of ordinary translations.

4. Einstein equation in locally-de Sitter spacetimes

To begin with, let us consider the action integral of a general source �eld

Sm =

1

c

∫
Lm

√
−g d

4
x , (22)

with Lm the lagrangian density. Invariance of this action under the diffeomorphism (20) yields, 

through Noether’s theorem, the conservation law [19]

∇µΠ
ρµ

= 0 , (23)

where the conserved current has the form

Π
ρµ

= ξρ
α

T
αµ

, (24)

with Tαµ the symmetric energy-momentum current. On the other hand, the Einstein–Hilbert 

action of general relativity in a locally-de Sitter spacetime is written as

Sg =

∫
R
√
−g d

4x , (25)

with R the scalar curvature obtained from the de Sitter–Cartan curvature tensor Rα
βµν, which 

is a tensor that represents both the dynamical curvature of general relativity and the kinematic 

curvature of the underlying de Sitter spacetime.

We consider now the total action integral

S = Sg + Sm . (26)

The invariance of S  under the diffeomorphism (20) yields the de Sitter-modi�ed Einstein 

equation

Rµν −

1

2
gµνR =

8πG

c4
Πµν . (27)

A Araujo et alClass. Quantum Grav. 34 (2017) 115014
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This is the equation that replaces ordinary Einstein equation when the Poincaré-invariant spe-

cial relativity is replaced by a de Sitter-invariant special relativity. A crucial point of this 

approach is that, since both the dynamical curvature of general relativity and the kinematic 

curvature of the underlying de Sitter spacetime are now included in the Riemann tensor 

R
α
λµν, the (contracted form of the second) Bianchi identity,

∇µ

(

Rµν
−

1

2
gµνR

)

= 0 , (28)

does not require Λ to be constant. It should be noted that such non-constant Λ is possible at 

the expense of violating the conservation of the usual notions of energy and momentum [20]. 

What is conserved now is the projection of the energy-momentum tensor along the Killing 

vectors associated to the de Sitter ‘translations’, as given by equation (24).

5. Linearization of the de Sitter-modi�ed Einstein equation

Let us rewrite the �eld equation (27) in the form

Rµν =
8πG

c4

(

Πµν −

1

2
gµνΠ

)

. (29)

In a de Sitter–Cartan geometry, in which the background spacetime is de Sitter instead of 

Minkowski, the spacetime metric is expanded in the form

gµν = ĝµν + hµν , (30)

where ĝµν represents the background de Sitter metric and hµν is the metric perturbation. The 

background connection, which corresponds to the zeroth-order connection, is

Γ̂
ρ
µν =

1

2
ĝ
ρλ
(

∂µĝλν + ∂ν ĝµλ − ∂λĝµν

)

. (31)

The corresponding Riemann tensor R̂α
βµν represents the curvature of the (non-gravitational) 

de Sitter background.

The �rst-order connection, on the other hand, is given by

Γ
ρ

(1)µν =
1

2
ĝµν

(

∂µhρ
ν + ∂νhρ

µ − ∂
ρhνµ

)

−

1

2
hρλ

(

∂µĝλν + ∂ν ĝµλ − ∂λĝµν
)

.

 

(32)

After some algebraic manipulation, it can be rewritten in the form

Γ
ρ

(1)µν =
1

2

(

∇̂µh
ρ
ν + ∇̂νh

ρ
µ − ∇̂

ρ
hνµ

)

, (33)

with ∇̂µ a covariant derivative in the de Sitter connection (31). The corresponding �rst-order 

Ricci tensor is

R
(1)
µν

=
1

2
∇̂ρ∇̂νh

ρ
µ +

1

2
∇̂ρ∇̂µh

ρ
ν −

1

2
∇̂

ρ
∇̂ρhµν −

1

2
∇̂µ∇̂νh, (34)

where h = h
ρ
ρ. Using the identity4

∇̂ρ∇̂µh
ρ
ν − ∇̂µ∇̂ρh

ρ
ν = h

σ
ν R̂σµ − h

ρ
σ R̂

σ
νρµ , (35)

we get

4 We use the same notation and conventions of [21].

A Araujo et alClass. Quantum Grav. 34 (2017) 115014
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R
(1)
µν

= −
1

2
ˆhµν +

1

2
∇̂µ

(

∇̂ρh
ρ
ν −

1

2
∇̂νh

)

+
1

2
∇̂ν

(

∇̂ρh
ρ
µ −

1

2
∇̂µh

)

+ h
σ

(ν R̂σµ) − h
ρ
σ R̂

σ

(µρν),

 (36)

with the parentheses indicating a symmetrization in the neighbor indices.

At the �rst order, the class of harmonic coordinates is obtained by imposing the condition

ĝ
µν

Γ
ρ

(1)µν = 0 , (37)

which can be recast in the form

∇̂νh
ρν

−
1

2
∇̂

ρ
h = 0. (38)

Using this condition in (36), the �rst-order Ricci tensor is found to be

R
(1)
µν

= −

1

2
ˆhµν + h

σ

(ν R̂σµ) − h
ρ
σ R̂

σ

(µρν). (39)

At this order the de Sitter-modi�ed Einstein equation (29) assumes then the form

−

1

2
ˆhµν + hσ(ν R̂σµ) − hρ

σ R̂σ

(µρν) =
8πG

c4

(

Πµν −

1

2
ĝµνΠ

)

. (40)

For the sake of comparison we recall that in ordinary general relativity, where spacetime 

reduces locally to Minkowski, the corresponding �eld equation has the form

−

1

2
hµν =

8πG

c4

(

Tµν −

1

2
ĝµνT

)

. (41)

6. Newtonian limit

The Newtonian limit is obtained when the gravitational �eld is weak and the particle velocities are 

small. In the presence of a cosmological term Λ, on the other hand, it has some subtleties related 

to the process of group contraction. Notice, to begin with, that the Galilei group is obtained from 

Poincaré under the contraction limit c → ∞. The Newton–Hooke group, however, does not fol-

low straightforwardly from the de Sitter group through the same limit. The reason is that, under 

such limit, the boost transformations are lost. In order to obtain a physically acceptable result, one 

has to simultaneously consider the limits c → ∞ and Λ → 0, but in such a way that

lim c
2
Λ =

1

τ
2

 (42)

with τ a time parameter. This means that the usual weak �eld condition of Newtonian gravity 

must be supplemented by the small Λ condition [22]

Λr
2
≪ 1 , (43)

which is equivalent to r2/l
2
≪ 1. Accordingly, in what follows we will keep terms up to order 

r
2/l

2; terms of order r/l2 will be discarded as they represent corrections to Newtonian limit.

6.1. de Sitter-modi�ed Poisson equation

In the Newtonian limit, only the component R
(1)
00

 is needed. In this case, the last term on the 

right-hand side of (39) vanishes. Identifying furthermore

h00 = 2φ/c
2
, (44)

A Araujo et alClass. Quantum Grav. 34 (2017) 115014
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with φ the gravitational scalar potential, we get

R
(1)
00

=
2

c2

[

−

1

2
ˆφ+ φ R̂00

]

. (45)

Neglecting the time derivatives in the d’Alembertian, we obtain

R
(1)
00

=
1

c2

[

∆̂φ+ 2φ R̂00

]

, (46)

with ∆̂ the Laplacian in the de Sitter metric. Using this result in the de Sitter-modi�ed Einstein 

equation (40), it becomes

∆̂φ+ 2φ R̂00 =
4πG

c2
Π00 , (47)

where we have already used that Π = Π
0

0.

Now, in static coordinates, and up to the approximation we are using, the component R̂00 

of the Ricci tensor is

R̂00 = −

3

l2
(1 − r

2/l
2) ≃ −3/l

2
, (48)

where we have discarded a term of order r2/l
4. On the other hand, the source current is

Π00 = ξ0
0 T00 , (49)

with ξ0

0
 the zero-component of the Killing vectors of the de Sitter ‘translations’, and T00 = ρc

2. 

Substituting ξ0

0
 as given by equation (A.5) of the appendix, we get Π00 = ρΠc

2, where

ρΠ ≃ ρ
(

1 − r
2/2l

2
)

. (50)

Equation (47) assumes then the form

∆̂φ−

6

l2
φ = 4πGρΠ . (51)

The Laplace operator ∆̂ in the background de Sitter metric ĝij is given by

∆̂ ≡ ĝij∇̂i∇̂j =
1√
ĝ
∂i

(
√

ĝ ĝij
∂j

)

 (52)

with ĝ = det ĝij. Using the space components of the metric (18), up to terms of order r2/l
2, it 

is found to be

∆̂φ =
1

r2

∂

∂r

(

r
2
∂φ

∂r

)

−

r
2

l2

∂2φ

∂r2
. (53)

Equation (51) can then be rewritten in the form

1

r2

∂

∂r

(

r
2
∂φ

∂r

)

−

r
2

l2

∂2φ

∂r2
−

6

l2
φ = 4πGρπ . (54)

The solution to this equation will be the de Sitter-modi�ed Newtonian potential.

6.2. The de Sitter-modi�ed Newtonian potential

In the contraction limit l → ∞ (which corresponds to Λ → 0), equation (54) reduces to the 

usual Poisson equation

A Araujo et alClass. Quantum Grav. 34 (2017) 115014
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∆φ ≡

1

r2

∂

∂r

(

r
2
∂φ

∂r

)

= 4πGρ . (55)

Its solution is given by

φ(r) = −

∫
G

r − r′
ρ(r′) dV

′
, (56)

where r′ is the distance from the volume element dV
′ to the point where we are determining 

the potential. For a point particle located at r′ , the mass density is given by ρ(r′) = Mδ(r − r
′) 

and we get

φ(r) = −

GM

r
, (57)

which is the Newtonian potential.

The same procedure should, in principle, be used to solve equation (54). However, this is 

not necessary because, as an easy computation shows, if we replace

φ(r) →

(

1 −

r
2

l2

)

φ(r) (58)

in the left-hand side of the ordinary Poisson equation (55), up to terms of order r/l2 it trans-

forms into the left-hand side of the de Sitter-modi�ed Poisson equation (54). If φ(r) is solu-

tion of the ordinary Poisson equation (55), the transformed potential (1 − r
2/l

2)φ(r) will be a 

solution of the de Sitter-modi�ed Poisson equation (54) with the same Green function:

(

1 −

r
2

l2

)

φ(r) = −

∫

G

r − r′
ρΠ(r

′) dV
′
. (59)

The solution can then be written in the form

φ(r) = −

(

1 −

r
2

l2

)

−1 ∫

G

r − r′
ρΠ(r

′) dV
′
. (60)

For a point particle located at r′ , the mass density ρΠ is given by

ρΠ(r
′) = M

(

1 −

r
′2

l2

)
1

2

δ(r − r
′) , (61)

and the solution is easily found to be

φ(r) = −

GM

r
−

GMΛ

6
r , (62)

where we have used the relation Λ = 3/l
2. This is the de Sitter-modi�ed Newtonian potential. 

The associated gravitational force F = −∂φ/∂r  is

F = −

GM

r2
+

GMΛ

6
+

GM

6
r
∂Λ

∂r
. (63)

The �rst term represents the attractive Newtonian force. The de Sitter background contributes 

with an additional repulsive force, which is constant within regions where Λ is constant. The 

last term is a new force that will be attractive or repulsive depending on whether ∂Λ/∂r is 

negative or positive. For physical systems in which Λ is uniform, like for example the universe 

as a whole, this force vanishes, and (63) reduces to
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F = −

GM

r2
+

GMΛ

6
. (64)

It is opportune to mention here that, as we have already discussed, the underlying de Sitter 

spacetime changes the very notion of diffeomorphism, which in turn changes the form of 

the conserved current that appears in the right-hand side of Einstein equation. It so happens 

that such current appears behind the Newton gravitational constant G. This means that the de 

Sitter modi�cation of Einstein equation, although kinematic in origin, acquires a gravitational 

character in the sense that it turns out to depend on the gravitational constant G, as can be 

seen from the Λ-term of the Newtonian force equation (63). This should be compared with the 

expression of the Newton–Hooke force [23],

FNH = −

GM

r2
+

Λc
2
r

3
, (65)

which is obtained in the Newtonian limit from the usual Einstein equation with a cosmologi-

cal constant

Rµν −

1

2
gµνR − gµνΛ =

8πG

c4
Tµν . (66)

In addition to a different dependence on the distance r, the Λ-part of the Newton–Hooke force 

(65) remains non-gravitational in the sense that it does not depend on Newton’s gravitational 

constant.

7. Newtonian Friedmann equations

Newtonian cosmology was �rst discussed by Milne and McCrea in 1934 [24, 25]. The surpris-

ing result of this approach is that the Friedmann equations that follow from general relativity 

coincide with those obtained from Newtonian gravity. Of course, in spite of this coincidence, 

there are fundamental differences between the two approaches. For example, whereas in the 

Newtonian view the universe expands in �at Euclidian space under the in�uence of Newtonian 

gravity, in the relativistic view the whole universe consists of an expanding curved space. For 

many purposes, however, the Newtonian cosmology may still be used5. Since our purpose here 

is not to study the time evolution of the universe, but just to explore the consequences of the 

de Sitter-invariant special relativity for the present-day universe, the Newtonian Friedmann 

equations should suf�ce.

Let us then begin by considering a sphere of radius R ≡ R(t) and mass M undergoing an 

isotropic and homogeneous expansion. The equation of motion for R can be obtained from 

the gravitational acceleration at the border of the sphere

d2
R

dt2
= −

GM

R2
+

GMΛ

6
, (67)

where we have used the de Sitter modi�ed force (64), which is valid for the case of a uniform 

Λ. Multiplying both sides by dR/dt and integrating, we get the energy equation

1

2

(

dR

dt

)2

=
GM

R
+

GMΛR

6
+ E , (68)

5 For a discussion of the properties and limitations of the Newtonian cosmology, see for example [26], chapter 16.
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where the integration constant E represents the total (kinetic plus potential) energy per unit 

mass at the surface of the expanding sphere. We write now the radius in the form

R(t) = r a(t) , (69)

with a(t) ≡ a the scale function parameter, and r the co-moving radius of the sphere. Recalling 

that the mass of the sphere is

M =

4π

3
R

3
ρ , (70)

with ρ ≡ ρ(t) the mass density, after some algebraic manipulation, the energy equation (68) 

assumes the form

(

ȧ

a

)2

=
8πG

3
ρ+

4πGΛρR2

9
+

2E

R2
. (71)

Now, in order to make contact with the Friedmann equations, the mass density ρ must 

be replaced by the total density εm/c
2, where the subscript ‘m’ denotes all forms of matter 

energy, including the mass energy. Furthermore, the energy E must be related to the curvature 

of space. If we write

E = −

kc
2

2
 (72)

with k the curvature parameter, equation  (71) acquires the usual form of the Friedmann 

equations

H
2
≡

(

ȧ

a

)2

=
8πG

3c2
εm +

4πGΛR2

9c2
εm −

kc
2

R2
, (73)

where H = ȧ/a is the Hubble parameter. For a universe with a �at space section (k  =  0), it 

becomes

εc = εm +
ΛR2

6
εm , (74)

where εc = 3H
2
c

2/8πG is the Friedmann critical energy density. Since in this case 

εc = εm + εΛ, we can immediately identify the dark energy density as

εΛ =
ΛR

2

6
εm . (75)

We see from this expression that, according to the de Sitter-modi�ed general relativity, 

any physical system with energy density εm induces a local cosmological term Λ, with an 

associated dark energy density εΛ, which is necessary to comply with the local symmetry 

of spacetime, now ruled by the de Sitter group. We can then say that the presence of a local 

cosmological term Λ is a natural consequence of the presence of ordinary matter. Most impor-

tantly, the dark energy density εΛ is not a free parameter, but determined by the matter content 

of the universe through equation (75). This means that, at each time of the universe evolution, 

one can infer the value of εΛ. For example, using the approximate present-day values of Λ and 

R, given respectively by

Λ ≃ 10
−52

m
−2

and R ≃ 4 × 10
26

m, (76)

we obtain

εΛ = 2.7 εm. (77)
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The corresponding density parameters are found to be

Ωm ≡

εm

εc

≃ 0.27 and ΩΛ ≡

εΛ

εc

≃ 0.76, (78)

which are close to the current values obtained from observations. We see in this way that the 

present theory provides a natural explanation for the so-called coincidence problem.

8. Final remarks

An appealing aspect of the theory presented in this paper is that it follows entirely from �rst-

principles: one has just to replace the Poincaré-invariant Einstein special relativity by a de 

Sitter-invariant special relativity. Such replacement produces concomitant changes in all rela-

tivistic theories, including of course general relativity. According to this theory, dubbed de 

Sitter-modi�ed general relativity, any physical system with energy-momentum density εm 

induces in spacetime a local cosmological term (see equation (5))

Λ =
4πG

c4
εm , (79)

which is necessary to comply with the local symmetry of spacetime, now ruled by the de 

Sitter group. In regions where no matter is present, εm vanishes and Λ vanishes as well. 

Notice that, differently from the usual notion of cosmological constant, the kinematic cur-

vature of the background de Sitter spacetime and the dynamic curvature of general relativity 

are both included in the same Riemann tensor. As a consequence, the cosmological term 

is no longer restricted to be constant, being allowed to change in space and time. In addi-

tion, due to the change in the notion of diffeomorphism, the conserved currents change 

as well. For example, in static coordinates, the source Noether current has the form (see 

 equations (24) and (19))

Πµν
≡ ξµα T

αν = (1 − r
2/l

2)1/2 cosh(ct/l) T
µν

. (80)

The usual energy-momentum tensor, therefore, is no longer conserved. What is conserved 

now is the projection of the energy-momentum tensor along the Killing vectors associated to 

the de Sitter ‘translations’.

To get a glimpse of how the de Sitter-modi�ed general relativity works, let us consider �rst 

the solar system. Considering that no signi�cant matter is present in the region between the 

Sun and the planets, the cosmological term Λ is negligible in this region, and consequently no 

deviations are expected in relation to Newtonian gravity. Note that Earth, for example, pro-

duces a non-vanishing Λ in the place where it is located. However, since its energy density is 

very small, Λ will also be very small and no detectable effects are expected. On the other hand, 

for high energy photons, like for example those present in gamma ray bursts, the local value of 

Λ can be large enough to interfere in the propagation of the photons themselves [27]. Of course, 

since the energy of these photons are roughly �fteen orders of magnitude below the Planck 

energy [28], the interference will still be very small. However, considering that the physical 

effect of this interference is cumulative, and that the sources of gamma ray bursts are at very 

large distances from Earth, this effect could eventually be detectable. This is a crucial point in 

the sense that it could be used as an experimental test of the de Sitter-invariant special relativity.

For the universe as a whole, the matter energy density εm gives rise to an effective cosmolog-

ical term Λ, with an associated dark energy density εΛ. The dependence of εΛ on εm establishes 

a relation between the matter density and the dark energy density, which in the Newtonian limit 

A Araujo et alClass. Quantum Grav. 34 (2017) 115014



13

is given by equation (75). When applied to the present-day universe, it gives a good account 

of the observed relation between εΛ and εm, providing in this way an explanation for the coin-

cidence problem. In addition, it is possible to envisage other properties of the universe. For 

example, considering that Λ depends directly on the energy density of the universe, it might 

have assumed a huge value immediately after the big bang [8], which could account for in�a-

tion. Subsequently, it decayed together with the energy density of the universe, its current value 

being determined by the current energy density. Of course, in order to assess all properties of 

the theory, as well as the details of the ensuing cosmological model, the relativistic Friedmann 

equations for the de Sitter-modi�ed Einstein equation should be obtained and studied. Based 

on the preliminary results obtained in this paper, such approach may constitute a new paradigm 

for the study of cosmology.
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Appendix. Newtonian limit of the Killing vectors

As we have seen in section 3, the Killing vectors associated to the de Sitter ‘translations’ are

ξαµ = (1 − r
2/l

2)1/2 cosh(ct/l) δαµ . (A.1)

As is well-known, the Newtonian limit is achieved by taking the limit c → ∞. However, as we 

have discussed in section 6, in the presence of a cosmological term Λ = 3/l
2, such limit has 

physical meaning only if concomitantly we take l → ∞, but in such a way that

lim
c,l→∞

c

l
=

1
√

3 τ
, (A.2)

with τ a time parameter, sometimes interpreted as a cosmological time [22]. In this limit, 

therefore, the Killing vectors (A.1) assume the form

ξαµ = (1 − r
2/l

2)1/2 cosh(t/
√

3 τ) δαµ , (A.3)

which no longer depends on c. Since the Killing vectors in the Newtonian limit must be static, 

we can choose t such that cosh(t/
√

3 τ) = 1, which yields

ξαµ = (1 − r
2/l

2)1/2 δαµ ≃ (1 − r
2/2l

2) δαµ . (A.4)

These are the Newtonian Killing vectors. In particular, the component ξ0

0
 is

ξ0

0
≃ (1 − r

2/2l
2) . (A.5)
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