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Abstract. In the presence of a cosmological constant, interpreted as a purely geometric entity, absence of matter is represented 
by a de Sitter spacetime. As a consequence, ordinary Poincare special relativity is no longer valid and must be replaced by a 
de Sitter special relativity. By considering the kinematics of a spinless particle in a de Sitter spacetime, we study the geodesies 
of this spacetime, the ensuing definitions of canonical momenta, and explore possible implications for quantum mechanics. 
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1. INTRODUCTION 

When the cosmological constant A vanishes, absence of gravitation is represented by Minkowski spacetime, a solution 
of the sourceless Einstein's equation. Its isometry transformations are those of the Poincare group, which is the group 
governing the kinematics of special relativity. For a non-vanishing A, however, Minkowski is no longer a solution of 
the corresponding A-modified Einstein equation and becomes, in this sense, physically meaningless. In this case, if we 
interpret A as a purely geometric entity, absence of gravitation turns out to be represented by the de Sitter spacetime. 
Now, the group governing the kinematics in a de Sitter spacetime is not the Poincare, but the de Sitter group. This 
means that, in the presence of a non-vanishing A, ordinary Poincare special relativity will no longer be valid, and must 
be replaced by a de Sitter special relativity [1].' 

An important point of this theory is that it retains the quotient character of spacetime and, consequently, a notion of 
homogeneity. As in ordinary special relativity, whose underlying Minkowski spacetime M is the quotient space of the 
Poincare by the Lorentz groups, the underlying spacetime of the de Sitter relativity will be the quotient space of the 
de Sitter and the Lorentz groups. Similarly to ordinary special relativity, therefore, in a de Sitter special relativity the 
Lorentz subgroup remains responsible for both the isotropy of space (rotation group) and the equivalence of inertial 
frames (boosts) [3]. The four additional transformations, given by a combination of translations and proper conformal 
transformations, define the homogeneity of spacetime. 

A space is said to be transitive under a set of transformations — or homogeneous under them — when any two points 
of it can be attained from each other by a transformation belonging to the set. For example, Minkowski spacetime is 
transitive under spacetime translations. However, the de Sitter spacetime is transitive, not under translations, but under 
a combination of translations and proper conformal transformations, with the relative importance of these contributions 
being determined by the value of the cosmological constant. An immediate consequence of this property is that the 
ordinary notions of energy and momentum will change [4]. In fact, the conserved momentum, for example, will now 
be obtained from the invariance of the physical system, not under translations, but under a combination of translations 
and proper conformal transformations. The conserved momentum, therefore, will be a combination of ordinary and 
proper conformal momenta [5]. 

Due to the smallness of the observed cosmological constant, the difference between ordinary and de Sitter relativities 
will be very small. However, there are situations where this difference could become significant. For example, 
according to our current theories on fields and particles, the phase transitions associated to the spontaneously broken 
symmetries can be considered the primary source for a non-vanishing A [6]. According to this view, a high energy 
experiment modifies the local structure of space-time for a short period of time, in such a way that the immediate 
neighborhood of a high energy colhsion departs from Minkowski and becomes a de Sitter — or anti-de Sitter — 
spacetime [7]. There would then exist a cormection between the energy scale of the experiment and the local value of 

Similar ideas have been explored in Ref. [2]. 
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A. The higher the energy, the larger the local value of A, and consequently the large the importance of the conformal 
symmetry. This is consistent with the idea that, at high energies the masses become neghgible, thence the importance 
of the conformal symmetry. For a high enough energy, the local kinematics would be ruled preponderantly by a de 
Sitter special relativity. 

The basic purpose of these notes is to study the kinematics subjacent to a de Sitter special relativity. In particular, we 
are going to study the equation of motion of spinless particles, which defines the geodesies of the de Sitter spacetime. 
Then, through an usual analysis of the action functional variation, we obtain the canonical momentum, and explore 
the consequences of this definition for quantum mechanics. We begin by introducing first the basic notions associated 
to the de Sitter spacetimes and groups. 

2. DE SITTER SPACETIMES AND GROUPS 

Spacetimes with constant scalar curvature R are maximally symmetric: they can lodge the highest possible number of 
Killing vectors. Given a metric signature, this spacetime is unique [8] for each value ofR. Minkowski spacetime M, 
with R = 0,is the simplest one. Its group of motions is the Poincare group ^ = ^ 0 =^, the semi- direct product of 
the Lorentz ^ = S0{3,1) and the translation group .9'. The latter acts transitively onM and its group manifold can 
be identified withM. Indeed, Minkowski spacetime is a homogeneous space under ^ : 

M=S^I^. 

Amongst curved spacetimes, the de Sitter and anti-de Sitter spaces are the only possibilities. One of them has 
negative, and the other has positive scalar curvature. They are hyper-surfaces in the "hosf' pseudo-Euchdean spaces 
E'*'̂  and E^'^, inclusions whose points in Cartesian coordinates {x^) = {x^-.X^-.X^•,X'-,%'') satisfy respectively [9] 

^ABx''l'' ̂  {f? - ix'? - ixY - ix'? - ix'? = -i^ 
and 

r]ABX''x'' ^ ( / ) ' - ix'? - iX^? - ixY + ( / ) ' = l^ 
where / is the so-called de Sitter length-parameter Using the Latin alphabet (a, 6, c. . . = 0,1,2,3) to denote the four-
dimensional algebra and tangent space indices, whose metric tensor isriab = diag ( 1 , - 1 , - 1 , - 1 ) , and writing T]44 = s, 
the above conditions can be put together as 

VabX"x' + s{x'? = sl\ (1) 

For s = - I , we have the de Sitter space dS{4,1), whose metric is induced from the pseudo-Euchdean metric TJAB = 
( + 1 , - 1 , - 1 , - 1 , - 1 ) . It has the pseudo-orthogonal group 5*0(4,1) as group of motions. Signs = +1 corresponds to 
anti-de Sitter space, denoted by dS{3,2). It comes from 17̂ 5 = ( + I , - l , - I , - l , + I ) , and has 5*0(3,2) as its group of 
motions. Both spaces are homogeneous [10]: 

dS{4,l)=SO{4,l)/^ and dS{3,2) =SO{3,2)/^. 

Furthermore, they are solutions of the sourceless Einstein's equation, provided the cosmological constant A and the de 
Sitter length-parameter / are related by 

A ^ - | . (2) 

We consider from now on the dS spacetime, for which A > 0. In this case, the four-dimensional stereographic 
coordinates {x"} — which are obtained through a stereographic projection from the de Sitter hyper-surface into a 
target Minkowski spacetime — is given by [11] 

(72 

where 

;t« = Q(x)x« and ;^* = - / Q ( x ) ( 1 + ^ ), (3) 

2x - 1 

" W = ( l - ^ ) ' (4) 
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with o^ = rjabx^x'^ a Lorentz invariant quadratic interval. The inverse relations are 

4/2 ixvn -1 
cr2 (y'^/D + l 

x" = n-\x)x" and —=^^J-L±-, (5) 

where now 
1 ^ X' 

o(^)^2 i - t ' - ^'^ 
In terms of the stereographic coordinates, the five-dimensional fine element 

reduces to the de Sitter line element 

with 

dT^ = riABdx'^dx^ (7) 

dx^ = gab dx"dx'^, (8) 

gab = ^Vab (9) 

the metric of de Sitter spacetime. 
The generators of infinitesimal de Sitter transformations are 

c d c ^ 
^AB = VACX^ - W ? - ^BCX^ -T-J • (10) 

In terms of the stereographic coordinates {x"}, these generators are written as 

•^ab = Vac x'-^b-VbcX'-^a (11) 

and 
J^a4 = l^a-{4l)-'X„ (12) 

where 
^a = d/dx" (13) 

are the translation generators (with dimension of length ^ ̂ ), and 

.J^a = (ir^abx^x' - a^5/) d/dx' (14) 

are the generators of proper conformal transformations (with dimension of length). Generators Jzfab refer to the Lorentz 
subgroup of de Sitter, whereas ^a4 define transitivity on the corresponding de Sitter space. For this reason, they 
are usually called the de Sitter "translation" generators. As implied by Eq. (12), the de Sitter spacetime is seen to 
be transitive under a combination of translations and proper conformal transformations. The relative importance of 
each one of these transformations is determined by the value of the length parameter /, that is, by the value of the 
cosmological constant. 

The group contraction procedure requires that, before each limit is taken, the generators be modified through 
an appropriate insertion of parameters. These alterations are frequently guided by dimensional considerations and 
are different for different limits [12]. For this reason, the limits of small and large cosmological constant must 
be considered separately. In particular, for a small cosmological constant, it is convenient to rewrite the de Sitter 
generators in the forms 

^ab = Vac X" ^b-Vbc^^a (15) 

and 

na = ^ = .^a-^-^a. (16) 

For / ̂  oô  the generators Ila reduce to ordinary translations, and the de Sitter group contracts to the Poincare group 
S^ = ̂  Q) S/'. Concomitant with the algebra and group deformations, the de Sitter space dS{\, 1) reduces to the 
Minkowski spacetime M = S^ j ^ , which is transitive under ordinary translations only. 
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3. KINEMATICS IN MINKOWSKI SPACETIME REVISITED 

The action functional describing a free particle of mass m moving in a Minkowski spacetime is 

rb 

S= —mc I ds, (17) 

where 
ds={riabdx''dx'')^/^ (18) 

is the Lorentz invariant interval. Now, the kinematic group of Minkowski is the Poincare group ^ = ^ 0 =^, the 
semi-direct product of the Lorentz ^ and the translation group .9'. The first Casimir invariant of the Poincare group, 
on the other hand, is 

^P = riabP"p''=mV (19) 

where p" = mcu" is the particle four-momentum, with u" = dx"/ds the four-velocity. Considering that the action S 
and the LagrangianZ are related by 

1 /•* 
S= - Lds, (20) 

C J a 
the corresponding Lagrangian can then be written in the form 

L = -c{r]abp''p''f'^=-c^M. (21) 

The identity ^abP"?^ = m^ (? is a weak constraint in the sense that it can be used only after the variational calculus is 
performed. The resulting equation of motion is 

dp'' 
- £ - = 0. (22) 
ds 

The equation of motion, therefore, coincides with the conservation of the particle four-momentum, which follows 
from the invariance of the system under spacetime translation. Its solution determines the geodesies of the Minkowski 
spacetime. The invariance of the system under Lorentz transformations yields the conservation of the particle angular 
momentum A "* = yf^p^ — yf'p", that is, 

dl"'' 
- — = 0 . (23) 

ds 

4. KINEMATICS IN DE SITTER SPACETIME 

4.1. Casimir Invariant 
For a spinless particle of mass m, the first Casimir invariant of the de Sitter group is given by [ 11] 

'^ds=-^ VAC VBD X""^ A^^ , (24) 

where 
^,A ,^^-_„Jr^-.'% (25) 

is the conserved five-dimensional angular momentum. In terms of the stereographic coordinates {x"}, the Casimir 
invariant (24) assumes the form 

f^ >^b « « ^ ab ^ cd 

where 

'^ds = Vabn''n'-^VacVbdX'"X''', (26) 

n"^ — = a\p"--^), n.^ — =p.--^ ill) 

Analogously to the generators, we use a parameterization appropriate for a small cosmological constant. 
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represents the de Sitter momentum, with 

p" = mc—- and If = 5\p''= {lr],b^:^ - o^5\)p\ (28) 
ax 

respectively, the hnear and the conformal momentum, ̂  and 

X''^ = Q}{xy^-x^p''y U = riacx'pb-ribax'pa (29) 

represents the orbital angular momentum. In the above expression, 

d% = 2ribcx'x"-a^d% (30) 

is a kind of conformal Kroenecker delta. Since A'̂ ^ is conserved, we have also 

dX"'' dn" 
—^=0 and ^ = 0 . (31) 

dT dx 
We remark that X"^ is the Noether conserved momentum related to the invariance of the system under the transforma­
tions generated by J^ab, whereas n" is the Noether conserved momentum related to the invariance of the system under 
the transformations generated by 11«. 

4.2. Equations of Motion 

Relying on the Minkowski case, the Lagrangian of a spinless particle of mass m in de Sitter spacetime can be 
assumed to be given by —c\fWds. In the five-dimensional spacetime, however, it is necessary to add a constraint 
restricting the movement to the de Sitter hyperboloid. In this case, therefore, the Lagrangian turns out to be 

L- (32) 

where /3 is a Lagrange multipher Using Eq. (24), the corresponding action is written as 

dx, (33) 
fb 

S = ^ VAC VBD X^' X^^) "\fi {r^^B t'x' +1') 

with dx the de Sitter invariant interval (7). Performing a functional variation, and neglecting the surface term coming 
from an integration by parts, the invariance of the action yields the equation of motion 

"^^^^ '(^ 2 / 3 ) / = 0 . (34) 
JT2 V/2 

Using the constraints 

r\ABrt = -l' and 1 7 ^ 5 ^ ^ = !, (35) „A ^,B _ a 

the value of the Lagrange multiplier is found to be 

/3 = ^ , (36) 

and the equation of motion reduces to to 
-JZ yA yA 

-^-JT-^- (37) 

Similarly to the identification ff = T , with T the energy-momentum tensor, the conformal momentum If is defined by A" = K , with K'^ 
the conformal current [13]. 
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In terms of the stereographic coordinates, it becomes 

d ( n 1 , r \ y^ Un ( „ 1 , „ \ /W C ,, 

The corresponding equation for the covariant components of the momentum is 

d ( 1 , \ mcil 
^ , ^ / ' « + 5 ] 2 ^ « ; - i F ^ « ^ - ' = 0- (39) 

Of course, due to the universality of gravitation, this equation is independent of the mass when written in terms of the 
four velocity. In fact, it is the same as 

^ («« + ^ 5 / M, j - " T7«feX* = 0, (40) 

with 5a given by Eq. (30). This is the equation of motion of a spinless particle of mass /w in a de Sitter spacetime. Its 
solutions determine the geodesies of this spacetime. 

Using the second of the conservation laws (31), it is possible to obtain separate evolution equations for p " and k". 
For example, the equation of motion for the linear momentum p" is found to be 

dpa mcQ. J 
^ - ^ ^ r i . , x ^ = 0, (41) 

or equivalently, 
dp" x^Uc „ mc 

This equation is nothing but the geodesic equation 

^ + T\,p\' = Q, (43) 

with r"fc the Levi-Civita cormection of the de Sitter metric (9). On the other hand, the equation of motion for the 
conformal momentum k" assumes the form 

dk" x^Uc ,„ 2mc ,, 

Differently from the ordinary momentum p ", which is conserved with a covariant derivative, the conformal momentum 
f is not covariantly conserved. In fact, it is found to satisfy 

dk" ^„ ,u ^ Imc 
dx Q ^"4]2 ( Q 2 « * « ' ^ ^ * ^ ' - ^ ^ (45) 

Put together, however, these two momenta yield the truly conserved total momentum n ". 

5. THE S C A L A R FIELD 

Let us consider now a de Sitter scalar field 0, that is, a field invariant under de Sitter transformations. We begin by 
considering the Casimir invariant (26), but now written as an operator, that is, 

r̂f̂  = T?'''n«nfe-^T7-T7*''^«fe^,rf, (46) 

with Ila and J^ab the de Sitter generators, given respectively by Eqs. (15) and (16). From the theory of group 
representations, one finds [14] 

^ds = m^c' + ^[s{s+\)-2], (47) 
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with m the mass and s the spin of the field {Ti= 1). For a scalar field, 5 = 0, and we get"̂  

%s = [m^ - j^] c2 = a^{m)c\ (48) 

Now, for a scalar field, we can identify 
%s=-a, (49) 

where 
• = -gaby^y' (50) 

is the d'Alembertian, with V the covariant derivative in the Levi-Civita connection of the de Sitter metric (9). 
Accordingly, the field equation for 0 is found to be 

a(j)+mV(j)--(j) = 0, (51) 
6 

where R = 12//^ is the scalar curvature of the de Sitter spacetime. For a massless field, it reduces to the conformal 
invariant field equation for 0. This shows in a simple maimer that the cosmological constant naturally introduces the 
conformal symmetry in any physical problem. This symmetry is enforced by the second term of the Casimir operator 
(47). In fact, it is responsible for the curvature term in the Klein-Gordon equation (51), which is essential for the 
conformal invariance of the equation. Observe that, forthe case of the electromagnetic field (s = 1), whichis naturally 
conformal invariant in the absence of sources, this term does not contribute to the corresponding field equation. 

Equation (51), with zero mass and no self-interaction, has already been obtained in the study of conformally 
invariant equations for massless particles [15, 16]. It also appeared in cormection with the so called improved energy-
momentum tensor for the scalar field [17]. Here, it has been obtained simply by considering that, instead of a Lorentz 
scalar, the field is in a singlet representation of the de Sitter group. 

6. QUANTUM PHYSICS 

Let us consider again the action (33). Its total variation is given by 

~d^XA XA rb 
5S= mc 

dx^ P 
8% dx- „J-Msr (52) 

where we have already used Eq. (36). If we admit now only possible trajectories, the first term in the variation vanishes 
identically. Then, the second term, with the upper hmit considered as variable, gives the differential of the action as a 
function of the coordinates: 

5S=-mc^5x''. (53) 

In terms of the stereographic coordinates, it reduces to 

5S=-pb5x^. (54) 

Consequently, we can write 
8S 

where 
Ph=mcuh (56) 

is the canonical momentum conjugate to the coordinate x*. 
We define now the quantum mechanical operator 

Pb = -ihdb- (57) 

'' Sometimes a{m) is called "de Sitter mass". However, we prefer not to use this terminology because, strictly speaking, it does not represent a 
mass [18]. The only mass present is the physical mass m. 
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As is well known, it satisfies the commutation relation 

[r^pb] = - 1^5%. (58) 

Analogously to the momentum, we define the operator 

h = 5b'Pc, (59) 

with 5b'' given by Eq. (30). Using the fundamental commutation relation (58), it is easy to see that 

[x^^fe] = -/•/?" 5%. (60) 

Now, as is well known, under a spacetime inversion 

x « ^ / = - ^ , (61) 

the translation generators are transformed into the proper conformal generators, and vice-versa [13]. Using this 
property, we obtain 

\y",kb] = -i^5%. (62) 

This means that the conformal momentum^^ is the canonical momentum conjugate to the coordinates^". 
It is important to observe that the total momentum of the particle is given hy n" = p" - {1/4/^) k", with p" repre­

senting the part related to translations, and k" representing the part related to the proper conformal transformations. 
This follows from the fact that the de Sitter spacetime is transitive under a combination of translations and proper 
conformal transformations. The total energy of the particle, therefore, will be given by the time component of n ", that 

In other words, 

E=Ep-^Ek, (64) 

with Ep = />" and Ek = k^. Accordingly, the total momentum operator is 

I 
^b=Pb--^ 

which satisfies the commutation relation 

h=Pb-^kb, (65) 

[x«,frd = - / 7 ^ ( n - ^ n ) . (66) 

This is the quantization mle in de Sitter special relativity. Of course, since Ttb is not the conjugate momentum to the 
coordinate x", the right-hand side is not a Kroenecker delta. 

The commutation rules, as is well known, are used to construct the uncertainty relations of quantum mechanics. For 
example, the commutation relation (58) imphes that 

A^Apb>l\{[x",pb])\ = l 5 \ . (67) 

Analogously, the commutation relation (60) imphes that 

A x « A ^ , > i | ( [ x « i , ] ) | = | 5 % . (68) 

The uncertainty relation for the total momentum, consequently, is 

A^ Anb>^-\{[x",nb])\ = l { 5 \ - ^ 5 \ ) . (69) 

For small values of the cosmological term A, the corrections to ordinary quantum mechanics will be very small. 
However, for large values of A, the corrections coming from the conformal momentum will become important, giving 
rise to a new quantum mechanics. 
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7. FINAL REMARKS 

A non-vanishing cosmological term A introduces the conformal generators in the definition of spacetime transitivity. 
As a consequence, the conformal transformations will naturally be incorporated in the kinematics of spacetime, 
and the corresponding conformal current will appear as part of the Noether conserved current. Of course, for a 
small cosmological term, the conformal modifications become neghgible and ordinary physics remains valid. For 
large values of A, however, the conformal contributions to the physical quantities cannot be neglected, and these 
contributions will give rise to deep conceptual changes. For example, ordinary special relativity, which is based on 
the Poincare group, will no longer be true, and must be replaced by a new special relativity based on the de Sitter 
group. As a consequence, the ordinary notions of energy and momentum will change [4]. The conserved momentum, 
for example, will now be obtained from the invariance of the physical system, not under translations, but under a 
combination of translations and proper conformal transformations. It will consequently be given by a combination 
of ordinary and proper conformal momenta. Energy, which is the time component of the momentum, will change 
accordingly. Due to the fundamental role played by energy and momentum, these modifications will affect all branches 
of physics, including of course quantum mechanics. Although these effects may be negligible for small values of the 
cosmological term A, there are situations where this difference could become significant. 

As an example of such situation, let us consider the following hypotheses. Taking into account that conformal 
symmetry has a relevant role at high energies, it is conceivable to assume that a high-energy phenomenon could 
modify the local structure of space-time for a short period of time, in such a way that the immediate neighborhood of 
a high energy phenomenon would depart from Minkowski and become a de Sitter — or anti-de Sitter — spacetime [7]. 
According to this hypotheses, around a high-energy experiment there would exist a large A, and the local kinematics 
would consequently be ruled by the de Sitter special relativity. Concomitantly, the conformal symmetry would 
naturally acquire a relevant role. This scenario fits quite reasonably with the idea that a high-energy experiment 
should modify the local structure (texture) of spacetime. The important point is that the de Sitter special relativity gives 
a precise meaning to this change, opening up the door for a possible experimental verification [3]. For an experiment 
with energy of the order of the Planck energy, the local value of A would be of the order A '~ 10 ^̂  cm^^, which 
differs from the observed [19] cosmological constant A r^ \Q^^^ cvar^ by roughly 120 orders of magnitude. The 
underlying spacetime in this case would approach a cone spacetime [5], which is transitive under proper conformal 
transformations only. In such extreme situation, the de Sitter special relativity would reduce to a conformal relativity, 
in which only the conformal notions of momentum and energy would survive. A very peculiar new quantum world 
would then emerge, whose physics has yet to be developed. 
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