
1268 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 8, NO. 12, DECEMBER 1997

Deadline Assignment in a
Distributed Soft Real-Time System

Ben Kao and Hector Garcia-Molina

Abstract —In a distributed environment, tasks often have processing demands at multiple different sites. A distributed task is usually
divided into several subtasks, each to be executed in order at some site. In a real-time system, an overall deadline is usually
specified by an application designer indicating when a distributed task is to be finished. In this paper, we present and analyze
techniques for automatically translating the overall deadline into deadlines for the individual subtasks.

Index Terms —Soft real-time, distributed systems, deadline assignment, scheduling.

—————————— ✦ ——————————

1 INTRODUCTION

N traditional soft real-time applications, a task is consid-
ered a single unit of work with a given deadline. The

system usually schedules tasks according to their deadlines,
with more urgent ones running at higher priorities. Over
the years, researchers have developed real-time scheduling
algorithms for different real-time system components, in-
cluding the communication network [8], [12], [5], database
[1], disk I/O [2], and processor [9]. One common tacit as-
sumption made by these algorithms is that the deadline of a
task truly reflects the urgency of completing the task. As
real-time systems evolve, however, “tasks” become
“bigger,” more complicated, and more frequently possess
subtasks to be executed on various system nodes or com-
ponents. In a distributed environment, local schedulers find
themselves scheduling subtasks, or “segments” of global
tasks, instead of complete, integrated tasks. In most situa-
tions, a single value of an end-to-end global deadline fails
to capture the sense of urgency of each individual subtask.
This severely hampers the efficacy of real-time scheduling
algorithms.

As an example of a complex distributed task, let us con-
sider stock market analysis and program trading. In this
application, information on stock prices is gathered through
multiple sources and is piped through a series of filters for
refinement. The information is then used by an expert sys-
tem that spots trading opportunities. This latter stage may
involve extensive database operations and knowledge rule
processing. A profit may then be realized by the appropri-
ate buy and sell actions. While the deadlines for high-level
tasks are usually given as a part of the system specification
(e.g., a buy-sell action should be implemented within two
minutes from the time when the information is gathered),
we lack a methodical way of assigning deadlines to the in-
dividual subtasks (e.g., how much time should we give a

database search? a disk access? a network transmission?). In
this paper, we study the subtask deadline assignment prob-
lem (SDA), and suggest guidelines for deriving subtask
deadlines from a global task’s end-to-end deadline. Our
study is abstract in nature, trying to identify the broad
classes of strategies that can be used and their general im-
plications. Our goal is not to present concrete algorithms or
performance results for a particular system.

To study the SDA problem, we need to understand the
structure of global tasks. A global task can be very complex,
with arbitrary precedence relationships among its subtasks.
Many global tasks, however, fall into the category of serial-
parallel tasks, which have a simpler structure. For this type
of tasks, we can generally reduce the SDA problem into two
simpler subproblems: the serial subtask problem (SSP, Sec-
tion 4) and the parallel subtask problem (PSP, Section 5). In
each case, we assign deadlines to the serial or parallel
subtasks that make up the task. We can then combine these
results for tasks that have both serial and parallel compo-
nents (Section 6).

In this paper, we focus on soft real-time systems
(although we would like to remark that the techniques we
will discuss can also be applied to hard systems). We as-
sume that the distributed system consists of independent
components, each with its own scheduler. The schedulers do
not perform load balancing among them. We believe that
large systems are built out of preexisting components. Each
component will have its own scheduling policy and will be
unable or unwilling to coordinate or subordinate its sched-
uling decisions with (or to) others.

2 RELATED WORK

There are relatively few studies on the SDA problem [6].
However, we would like to mention two studies that are
closely related to our approach and SDA. Bettati and Liu
[3], [4] discuss the problem of scheduling subtasks in a hard
real-time distributed environment. Their work focuses on
those systems for which global tasks can be characterized as
“flow shops.” In their model, global tasks consist of the
same set of subtasks to be executed on nodes in the same

1045-9219/97/$10.00 © 1997 IEEE

————————————————

• B. Kao is with the Department of Computer Science, The University of
Hong Kong. E-mail: kao@cs.hku.hk.

• H. Garcia-Molina is with the Department of Computer Science, Stanford
University, Stanford, CA 94305-9040. E-mail: hector@cs.stanford.edu.

Manuscript received 29 Apr. 1993.
For information on obtaining reprints of this article, please send e-mail to:
tpds@computer.org, and reference IEEECS Log Number 100593.

I

KAO AND GARCIA-MOLINA: DEADLINE ASSIGNMENT IN A DISTRIBUTED SOFT REAL-TIME SYSTEM 1269

order. The goal is to devise efficient off-line algorithms
(assuming all the information about global tasks is known
ahead) for computing a schedule of the subtasks, such that
all deadlines are met (if such a schedule exists). In their
work, different variations of the model are studied, based
on different assumptions on subtask execution time (e.g.,
whether all subtasks have the same execution time). Other
variations, like periodic tasks, are also discussed.

Another interesting paper [11], by Pang et al., investi-
gates the problem of “bias” against longer transactions un-
der “earliest-deadline-based” scheduling policies in real-
time database systems. The study shows that long transac-
tions miss more deadlines compared to short ones. This is
not because of tighter timing constraints (the phenomenon
occurs even when long transactions have larger amount of
slack), but because of their bigger size, which causes them
to have “further-in-the-future” deadlines. Long transactions
thus compete unfavorably with short transactions in ac-
cessing system resources.

Our work is similar to [11] in that we both try to assign
earlier deadlines to transactions (or tasks). However, in
their case, there is a single scheduler for a single database
system. For our problem, there are multiple “resources”
handled by independent schedulers. Furthermore, distrib-
uted tasks have natural breaks (subtasks) that make the
assignment of deadline more natural.

3 THE MODEL

In this section, we describe the task and system model we
use to study the SDA problem. We will first define global
tasks, and, then, describe a simple model of a distributed
system on which tasks are mapped for execution. We will
also define some terms that will help in our discussion.

3.1 The Task Model
We consider two types of tasks in our system: locals and
globals. A local task is one that is executed at one and only
one node. (Each system component, e.g., a database server,
is represented by a node in our model.) A global task, on
the other hand, can be quite complex and may involve
work at multiple nodes in the system. In this paper, we
only consider global tasks that are serial-parallel. As short-
hand, we use the notation T = [T1 T2 ... Tn] to represent a
global task T that consists of n subtasks, T1, T2, ..., Tn, to be
executed in series. A subtask Ti (i > 1) cannot execute before
subtask Ti-1 finishes. We also use the notation T = [T1 k T2 k
... k Tn] to represent a global task T consisting of n subtasks
T1, T2, ..., Tn to be executed in parallel. The n subtasks arrive
at the same time and task T is considered finished only if all
n subtasks finish. Composition of these notations is possi-
ble. We call a subtask which involves execution only at a
single node a simple subtask. A subtask that is itself a global
task is called a complex subtask.

A task X (whether it is a local task, a simple subtask, or a
global task) has the following five attributes: arrival time
(ar(X)), deadline (dl(X)), slack (sl(X)), real execution time
(ex(X)), and predicted execution time (pex(X)).

We do not assume the value of ex(X) be available, but
some of our SDA strategies do take advantage of an esti-

mate, pex(X), which is an approximation to ex(X). These
attributes are related by: dl(X) = ar(X) + ex(X) + sl(X).

We also define flexibility (denoted by fl(.)) of a task X to
be the ratio of X’s slack to the execution time of X. That is,
fl(X) = sl(X)/ex(X). Intuitively, the more flexible a task is
(higher fl(.)), the less stringent is its timing constraint.

Finally, in this paper, tardy tasks are not aborted. (For
the firm deadline policy, see [6], [7].)

3.2 The System Model
Our model of a distributed real-time system consists of a
number of nodes representing different processing compo-
nents (Fig. 1). These nodes manage different resources, like
a database, an expert system, or a compute engine. Even the
communication network is considered a resource and is
subsumed as one or more processing nodes. Each node
services both local tasks (which are generated at each node),
as well as simple subtasks of global tasks. Task service or-
der is scheduled by a real-time scheduler residing at each
node. These schedulers are all independent and they do not
collaborate. The only things that influence scheduling deci-
sion are the real-time attributes associated with each task.

Fig. 1. The system model.

Newly created global tasks are first processed by the
process manager. We assume that certain control informa-
tion of a global task, such as the precedence relationship
among the subtasks and the end-to-end deadline, is avail-
able to the process manager. The major functions of the
process manager are to assign deadlines to simple subtasks,
submit the simple subtasks to the appropriate nodes for
execution, and enforce the precedence constraints among
the subtasks of a global task. In reality, the process manager
consumes system resources (e.g., communication overhead
between the manager and the nodes,) but, as we pointed
out earlier, this consumption can be considered as addi-
tional subtasks that can be handled similarly by the SDA
algorithm. We therefore do not explicitly model the re-
source requirement of the process manager.

4 THE SERIAL SUBTASK PROBLEM (SSP)
As we mentioned earlier, the SDA problem can be divided
into two subproblems: SSP and PSP for the class of serial-
parallel tasks. Our approach to SDA is to study the two
subproblems individually, and, then, combine the tech-
niques to devise an integrated SDA strategy. In this section,
we study the serial subtask problem (SSP). We suggest

1270 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 8, NO. 12, DECEMBER 1997

some possible solutions and evaluate them through simu-
lation. The results of the analysis will be presented in Sec-
tion 4.2.

To study SSP, we consider global tasks of the form: T =
[T1 T2 ... Tm] where the Tis (1 < i < m) are all simple subtasks.
That is, a global task only consists of a sequence of subtasks
to be executed in order. An SSP strategy is one that deter-
mines the values of a virtual deadline dl(Ti) (1 £ i £ m) at the
time when Ti is submitted.

Without any knowledge on the execution times of the
subtasks, the only available measure of their timing re-
quirement is the deadline of their global task T. A simple
SSP strategy would be to set the deadline of a subtask to be
equal to the deadline of its global task. We call this strategy
Ultimate Deadline (UD).

(1) Ultimate Deadline (UD): dl(Ti) = dl(T).

A problem with UD is that the time for the execution of a
later-stage subtask is considered slack to an earlier stage
(Ti). This gives the schedulers incorrect information about
how much time a subtask can be delayed in its execution
without causing a missed deadline.

If an estimate of the subtask execution time is available,
we can compute the effective deadline of a subtask. The
effective deadline of a subtask Ti is equal to the deadline of
its global task T minus the total expected execution time of
the subtasks of T following Ti. Formally, we have,

(2) Effective Deadline (ED): dl T dl T pex Ti j
j i

m

c h a f e j= -
= +
Â

1

.

A problem common to both UD and ED is that all the
remaining slack of T is allocated to the currently active
subtask (Ti). This subtask thus has a low priority compared
to other tasks of the system. A big portion of this slack may
be consumed while the subtask is waiting for its turn in the
scheduler queue. Subtasks that represent early stages of
global tasks thus consume most of the slack of their global
tasks. This leaves little slack for the subtasks to follow.
Global tasks may, therefore, have a low probability of
meeting their deadlines.

The problem of “little slack for final-stage subtasks” gets
worse when there are many local tasks in the system. This
is because local tasks have only one, probably short, stage.
If local tasks have similar flexibility (sl(.)/ex(.)) as compared
to global tasks, then, on average, they have smaller total
amounts of slack than global ones do. When competing for
system resources, early-stage subtasks of global tasks will
be discriminated against (i.e., scheduled later than other
tasks), because of their much larger slack. The scheduler is
therefore biased in favor of local tasks at the expense of
global ones.

To avoid discrimination and to allow enough slack for
final-stage subtasks, each subtask should have its fair share
of its global task’s slack. One way of doing it is to divide the
total remaining slack equally among the remaining subtasks.
This gives us the Equal Slack (EQS) strategy:

(3) Equal Slack (EQS):

dl T ar T pex T dl T ar T pex T m ii i i i j
j i

m

c h c h c h a f c h e j a f= + + - - - +
=

Â[] / 1 .

A fourth strategy is to divide the total remaining slack
among the subtasks in proportion to their execution times.
In this way, subtasks of the same global task do not have
equal slack, but equal flexibility. We call this strategy Equal
Flexibility (EQF).

(4) Equal Flexibility (EQF):

dl T ar T pex T dl T ar T pex T

pex T pex T

i i i i j
j i

m

i j
j i

m

c h c h c h a f c h e j

c h e j

= + + - -
F
H
GG

I
K
JJ *

L
N
MM

O
Q
PP

=

=

Â

Â

[]

.

4.1 Simulation Model
In order to study and contrast system behavior under these
SSP strategies, we developed a simulation model and per-
formed extensive experiments. In this section, we describe
the model; our results are presented in Section 4.2.

Our simulator is written in the simulation language
DeNet [10]. Each simulation experiment (generating one
data point) consists of two simulation runs, each lasting one
million time units (at least 100,000 tasks are generated per
run, many more for high load experiments). The 95 percent
confidence interval is ±0.35 percentage points (much
smaller for high load experiments) for the missed deadlines
figures shown in later sections.

The structure of our simulation model follows the con-
ceptual model described in Section 3, with the following
characteristics:

Nodes. There are k (homogeneous) nodes in the system.
Each node services their tasks according to some real-
time scheduling algorithm with no preemption. In this
paper, we use earliest-deadline-first as the scheduling al-
gorithm for most of our experiments (see [6] for other
scheduling algorithms).

Local Tasks. Local tasks are being generated at each node
according to a Poisson distribution with mean interarri-
val time 1/llocal time units. (Poisson distributions are
typically used in analytical studies like ours because of
their simplicity and because they yield useful insights.)
Since there are k nodes, the total average arrival rate is
kllocal per unit time. Execution times of local tasks are ex-
ponentially distributed with mean 1/mlocal time units. The
rate of work due to local tasks is thus kllocal/mlocal. In this
paper, we set mlocal = 1; other time measures are, thus,
relativized to the average execution time of a local task.
Slack of local tasks is uniformly distributed in the range
[Smin, Smax].

Global Tasks. Similar to local tasks, global tasks are being
generated as a single stream of Poisson process with
mean interarrival time 1/lglobal. In order to simplify our
discussion, we hold a simple view that global tasks are
homogeneous. In particular, we assume that all global
tasks consist of m subtasks and the execution times of the
subtasks all follow the same exponential distribution
with mean equal to 1/msubtask time units. The total execu-
tion times of global tasks thus follow an m-stage Erlang
distribution with mean m/msubtask. The rate of work due

KAO AND GARCIA-MOLINA: DEADLINE ASSIGNMENT IN A DISTRIBUTED SOFT REAL-TIME SYSTEM 1271

to global tasks is therefore m lglobal/msubtask. The execution
node of a subtask is picked randomly (and uniformly) from
the k nodes. We also define the term rel_flex to be the rela-
tive flexibility of global tasks with respect to local tasks.

System Load. We define the normalized load (or load, for
short) to be the ratio of the rate of work generated to the
total processing capacity of the system. That is,

load
m k

kglobal

subtask

local

local
=

◊
+

◊F
HG

I
KJ

l
m

l
m .

For a stable system, we have 0 £ load < 1. We also define
frac_local} to be the fraction of load that is contributed by
local tasks. That is,

frac local k m klocal

local

global

subtask

local

local
_ = ◊ ◊ +

F
HG

I
KJ

F
HG

I
KJ

l
m

l
m

l
m .

Table 1 shows the parameter setting of our baseline ex-
periment. In particular, we assume that the prediction on
execution time is perfect, i.e., pex(.) = ex(.). (Readers are re-
ferred to [6] for a discussion on “error in the execution time
predictions.”) To study the effect of these parameters on sys-
tem performance, we will vary the parameters from their
base settings. This is discussed in the following section.

4.2 Results
In this section, we summarize the results of our simulation
experiments on SSP. The primary performance measure we

use to evaluate our algorithms is the percentage of missed
deadline (or miss ratio). In particular, we look at the prob-
ability of a task missing its deadline conditional on its task
class (i.e., global or local). We adopt the notation MDA

B ,

where MD stands for fraction of missed deadlines, and A Œ
{local, global}, B Œ {UD, ED, EQS, EQF} are optional modi-
fiers describing the task class and SSP strategy used. For
example, MDglobal

UD denotes the probability that a global task

misses its deadline under the UD strategy.

4.2.1 Baseline Experiment
As a starting point, let us look at how the various strategies
do relative to each other in our baseline experiment. Figs. 2a
and 2b show MDlocal and MDglobal of the various SSP strate-
gies as load varies from 0.1 to 0.5.

Comparing Figs. 2a and 2b, we see that, even though
global tasks and local tasks have the same average flexibil-
ity (rel_flex = 1 for the baseline setting), there is a significant
difference in their ability to meet deadlines. For example, at
load = 0.5, MDglobal

UD = 40% (point A), while MDlocal
UD = 24%

(point B). Also, different SSP strategies miss different num-
bers of global task deadlines, unless the load is very light
(Fig. 2b).

We should point out that, traditionally, soft real-time
systems are studied under high load situations. Most of the
time, the system will, hopefully, operate under low load; no
deadlines will be missed, regardless of what scheduling
policy is used. However, once in a while, the system will be
overloaded, and it is precisely at those times that we need a
scheduling policy that can miss the fewest deadlines. For
this reason, the big differences in missed deadlines under
high load in Fig. 2b are important.

In order to understand these differences, let us consider
the types of resource competition among tasks. Since there
are two task classes, there are three types of contention:
local-local, local-global, and global-global. A local scheduler
resolves contention by comparing the deadlines of tasks.
Since an SSP strategy only affects subtask deadlines, it only
impacts local-global and global-global contention. The rea-
son why local tasks are not affected by the SSP strategy
(Fig. 2a) is that, in our baseline experiment, 75 percent of
the load is contributed by local tasks. Thus, much of the
contention faced by local tasks is local-local, and unaffected

TABLE 1
BASELINE SETTING

Overload Management Policy No Abort
Local Scheduling Algorithm Earliest Deadline First

msubtask 1.0

mlocal 1.0

k (# of nodes) 6

m (# of subtasks of a global task) 4

load 0.5

frac_local 0.75

[Smin, Smax] [0.25,2.5]

rel_flex 1.0

pex(X)/ex(X) 1.0

(a) (b)

Fig. 2. Performance of various SSP strategies in the baseline experiment: (a) local tasks, (b) global tasks.

1272 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 8, NO. 12, DECEMBER 1997

by the SSP strategy. On the other hand, global tasks face
local-global and global-global contention, so the choice of a
SSP strategy affects them significantly (Fig. 2b).

Through extensive simulation experiments (not shown
here), we observe (and this is confirmed in Fig. 2) that the
performance of ED lies between that of UD and EQF. We
also observe that EQS’s performance is very close to that of
EQF over a wide range of parameter settings. In cases when
they differ, EQF usually is superior. Thus, in order to sim-
plify our presentation, we will exclusively focus on UD and
EQF in the rest of this section.

4.2.2 UD Vs EQF: Their Different Treatment of Global
Tasks

Comparing the miss rates of UD and EQF, we make the
following observations:

1) Under UD and high loads, global tasks miss many
more deadlines than local tasks.

2) Strategy EQF significantly improves the performance
of global tasks (high load), but, still, local tasks have a
better chance of meeting their deadlines.

Observation 1 is not surprising. We had hypothesized
that, by giving early subtasks of global tasks too much
slack, UD makes global tasks “second class citizens” as they
compete with local tasks. To confirm the hypothesis, in
Fig. 3, we vary the relative proportion of the two task
classes, i.e., we vary frac_local from 0.1 to 0.95.

Fig. 3. Effect of varying the fraction of local tasks.

In the figure, we see that, as frac_local increases (fewer
global tasks), indeed MDglobal

UD increases. This is because

global tasks face more and more conflicts with local tasks,
and are discriminated against more and more. Notice that
MDlocal

UD also increases (although to a smaller extent): This is
because local tasks are also facing more and more conflicts
with “first class” tasks. On the other hand, observe that the
MDlocal

EQF and MDglobal
EQF values hardly change as frac_local

varies. This is because EQF does not discriminate against
global tasks.

If there is no discrimination under EQF, then why are
global tasks still performing poorly (Observation 2)? The
reason is that global tasks consist of a series of subtasks and
there are two phenomena affecting the series. One phe-
nomenon is beneficial to global tasks: If one subtask fin-

ishes early, its leftover slack is inherited by the subtasks
that follow. Thus, later subtasks will tend to have even
more slack. The second phenomenon is detrimental to tight
tasks. If a global task has little slack to begin with, it may
miss an early subdeadline, robbing slack from the following
subtasks, and making things even worse for them. Essen-
tially, “the poor get poorer while the rich get richer.”

4.3 Variations of the Baseline Model
To evaluate the gains of EQF over UD, we varied all of our
model parameters over wide ranges, for example, the slack
and the number of subtasks of a global task. Our observa-
tion is that EQF almost always performs better than, or at
least as well as, UD. The EQF gains are more significant
when there is “moderate” slack and load. That is, if slack is
too tight or the load too high, no matter what SSP policy we
use, many deadlines will be missed. If slack is too loose or
load too light, then all tasks will make their deadlines, no
matter how we schedule. But, in the intermediate range, a
smart SSP policy can make a difference and this is where
EQF wins big. The EQF strategy is also superior when
global tasks have many subtasks [6].

Several assumptions have been made in the baseline ex-
periments so far. In particular, we have assumed that tardy
tasks are not aborted, the local scheduling algorithm is earli-
est-deadline-first, execution time estimates are perfect, and
information on the number of subtasks is available. We have
conducted extensive experiments in which these assumptions
are relaxed. In particular, we have studied the cases in which
random error is introduced into the task execution time esti-
mate, in which tardy tasks are aborted, and in which mini-
mum-laxity-first is used as the local scheduling algorithms.
In addition, we studied a scenario when global tasks can
have different number of subtasks, and another scenario
where some of the nodes had higher local task loads than
others. Due to space limitations, we do not include results for
all these cases here. However, the results do not change the
basic conclusions presented in the previous sections.

5 THE PARALLEL SUBTASK PROBLEM (PSP)
In this section, we discuss the second part of the SDA
problem: PSP. To study PSP, we only consider global tasks
of the form: T = [T1 k T2 k ... k Tm], where the Tis (1 < i < m)
are all simple subtask. For the global task T to meet its dead-
line (dl(T)), all Tis have to be finished before dl(T), their
natural deadline.

In a soft real-time environment, when a task is submitted
to a node for execution, there is no guarantee that the task
will be completed before its deadline. There is, thus, a
probability that a task becomes tardy due to a transient
overload at its execution node. This “missed deadline”
probability gets amplified in the case of global tasks with
parallel subtasks because, if any subtask misses the dead-
line, the whole group becomes tardy.

5.1 Heuristics for PSP
To give global tasks a better chance of completing, we can
again assign their subtasks virtual deadlines before they are
submitted to their execution nodes. With our global task T =

KAO AND GARCIA-MOLINA: DEADLINE ASSIGNMENT IN A DISTRIBUTED SOFT REAL-TIME SYSTEM 1273

[T1 k T2 k ... k Tn], our goal is to set a virtual dl(Ti) from dl(T).
As a base strategy for comparison, we set dl(Ti) = dl(T).

That is, the subtasks inherit the deadline of their global
task. We call this the Ultimate Deadline strategy (UD): dl(Ti)
= dl(T).

To make the simple subtasks of global tasks more com-
petitive, we need to set their deadlines earlier. Here, we
look at a class of strategies called DIV-x:

DIV-x: dl(Ti) = [dl(T) - ar(T)]/(n * x) + ar(T). (1)

Here, x is a parameter we can adjust. The DIV-x strategy
simply divides the amount of time that a global task has by
x times its number of subtasks. The larger the value of x is,
the earlier are the virtual deadlines assigned to the
subtasks, and, thus, the higher the priority of the subtasks.

One may notice that, with the DIV-x strategy, the virtual
deadlines assigned to the subtasks are, however big x is,
later than the tasks’ arrival time. A subtask, therefore, may
still have a lower priority than a local task if the local task
has an early enough deadline. A strategy that is even more
aggressive than DIV-x would always serve subtasks before
locals. We call this strategy Globals First (GF). With GF, the
earliest-deadline-first servicing order is preserved indi-
vidually within the classes of globals and locals. However,
global subtasks are always scheduled before local tasks.

5.2 Simulation Model
We use the same simulation model as in the SSP case, ex-
cept that global tasks now consist of purely parallel
subtasks. Specifically, a global task T consists of m subtasks
T1, T2, ..., Tm to be executed in parallel at m different nodes
(we use the same value m for all global tasks). The deadline
of a global task is set by the following formula:

dl T ex T slack ar T
i ia f c hn s a f= + +max . (2)

where maxi{ex(Ti)} is the execution time of the longest
subtask among the Tis, and slack is the slack chosen (from
the uniform distribution) for this particular global task. We
note that, even though the slack of global tasks and local
tasks is generated from the same slack distribution, on av-
erage, a subtask of a global task has more slack than a local.
Also, we use the same baseline setting (see Table 1), except
that the slack distribution is now [1.25, 5.0].

5.3 Results
UD. Fig. 4 compares the performance of UD (u) and DIV-x
for x = 1 (e) and x = 2 (¥). Let us first focus on UD and DIV-1.
The x-axis is the normalized load to the system, while the y-
axis shows the fraction of missed deadlines of the various
task types. As the load increases, the waiting time of tasks
increases and more tasks (of all kinds) miss their deadlines.

From the figure, we see that UD causes global tasks to
miss their deadlines almost three times as often as locals. In
general, it is inadequate to assign the deadline of a global
task to its subtasks and let them compete fairly with local
tasks.

DIV-x. From our previous discussion, we can deduce
that the more subtasks a global task has, the poorer is its
chance of meeting its deadline. By dividing up the amount
of time that a global task is allowed to finish (see (1)), DIV-x

effectively promotes the priority of the subtasks and, thus,
reduces global task miss rate. One nice property of DIV-x is
that the amount of priority promotion grows with the
number of subtasks of the global task. It, therefore, adjusts
automatically to the need.

By giving subtasks higher average priority, DIV-1 man-
ages to keep the miss rate of both locals and globals at
similar level (the two e lines are close to each other). Since
only the subtasks are given earlier virtual deadlines for a
raise in their priority, local tasks suffer from this unfairness
with a higher miss rate than under UD. However, under
our baseline setting, this increment is marginal compared
with the improvement achieved on global tasks.

By pushing the virtual deadlines of subtasks further ear-
lier, DIV-2 raises the priority of subtasks even higher than
does DIV-1. The difference between their performance,
however, is hardly noticeable, except at very high load.
Setting x > 1 in our baseline experiment is, therefore, not
necessary to provide a low level of missed deadlines for
global tasks. The question of how to set the value of x for
the DIV-x strategy is addressed in [7].

GF. The minute difference between DIV-1 and DIV-2, as
shown in Fig. 4, may suggest that one should not look fur-
ther for even more aggressive strategies. GF, which repre-
sents the ultimate one in raising subtask priority, may not
be expected to provide any significant improvement over
DIV-x in reducing global task miss rate. Surprisingly, our
experiment shows that GF does further reduce MDglobal by a
significant amount. One disadvantage of GF, however, is
that it is not applicable to components that discard tasks
with a past deadline (virtual or not). Due to space limitation,
we refer readers to [7] for a discussion of the GF policy.

As a conclusion, our baseline experiment shows that the
PSP problem can be corrected at the expense of losing some
local tasks. Two simple strategies DIV-x and GF are shown
to be effective under our baseline setting. For additional
results on the PSP problem, readers are referred to [7].

6 SSP + PSP
The SSP and PSP strategies discussed in this paper can be
integrated nicely and be applied to serial-parallel tasks: A
global deadline is broken down into virtual deadlines using
either the SSP or the PSP strategies, depending on whether
the global task is serial or parallel. If a subtask is itself a

Fig. 4. Performance of UD and DIV-x in baseline experiment.

1274 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 8, NO. 12, DECEMBER 1997

complex serial-parallel task, the virtual deadline assigned
to it is further decomposed. For example, if, at the highest
level, the task consists of serial subtasks, we first use SSP. If,
say, the first of these subtasks consists of parallel subtasks,
then we apply PSP to it, and so on.

To study the relative importance of the SSP and PSP
strategies and how they affect complex distributed tasks,
we ran experiments on a system of serial-parallel tasks with
four SDA strategies applied, namely, UD-UD, UD-DIV1,
EQF-UD, and EQF-DIV1 corresponding to the different
SSP-PSP combinations. Our observation is that the UD-UD
strategy misses vastly more global deadlines than it misses
local ones. The application of either EQF or DIV-1 signifi-
cantly reduces MDglobal with a mild increment in MDlocal.
Also, the two strategies complement each other and, when
applied at the same time, are able to keep MDglobal close to
MDlocal, even under a high load situation. This suggests that
the SSP and the PSP policies can be combined, and that their
benefits are “additive.” As soft real-time applications get
larger and more complex, our results show that a good SDA
strategy becomes a very crucial part of the system design.

7 CONCLUSION

For the class of serial-parallel tasks, the SDA problem can
be divided into two subproblems: SSP and PSP. For SSP,
our performance study revealed that, even though EQF
significantly reduces the difference between the miss ratios
of local and global tasks, global tasks still miss (in many
cases) more deadlines than local ones. As we pointed out,
this phenomenon is due to the “multiple stages” of global
tasks, which induces variation in the slack distribution. An
interesting modification to EQF would control the extent of
slack variability, perhaps by giving subtasks of tight global
tasks less slack than EQF would give. One trick would be to
add artificial stages. We intend to study this option in fu-
ture research.

For PSP, DIV-x and GF are two effective strategies. Our
study shows that they are most outstanding under high
load situation and when there is a nontrivial population of
local tasks in the system. Between DIV-x and GF, GF usu-
ally holds an edge if tardy task abort is not supported by
the system. Otherwise, DIV-x is a better choice because it
evens up the miss rate of global tasks with different number
of subtasks.

Finally, we would like to remark that the SDA problem
is an important one in the design of open systems. An open
system is usually built with existing standard components,
often developed by different vendors. It is thus hard (or
impossible) to orchestrate the independent schedulers that
are built into each individual component to carry out a
global scheduling policy. A good way of automatically as-
signing deadlines to subtasks which truly reflects the ur-
gency of each unit of work is thus vital in an open system
environment.

REFERENCES

[1] R. Abbott and H. Garcia-Molina, “Scheduling Real-Time Transac-
tions,” SCM SIGMOD Record, pp. 1-12, 1988.

[2] R. Abbott and H. Garcia-Molina, “Scheduling I/O Requests with
Deadlines: A Performance Evaluation,” Proc. IEEE Real-Time Sys-
tems Symp., pp. 113-124, 1990.

[3] R. Bettati and J.W.S. Liu, “Algorithms for End-to-End Scheduling
to Meet Deadlines,” Proc. Second IEEE Conf. Parallel and Distributed
Systems, 1990.

[4] R. Bettati and J.W.S. Liu, “End-to-End Scheduling to Meet Dead-
lines in Distributed Systems,” Proc. IEEE Real-Time Systems Symp.,
pp. 452-459, 1992.

[5] D.D. Kandlur, K.G. Shin, and D. Ferrari, “Real-Time Communi-
cation in Multi-Hop Networks,” Proc. 11th Int’l Conf. Distributed
Computing Systems, pp. 300-307, 1991.

[6] B. Kao and H. Garcia-Molina, “Deadline Assignment in a Distrib-
uted Soft Real-Time System,” Technical Report STAN-CS-92-1452,
Stanford Univ., 1992.

[7] B. Kao and H. Garcia-Molina, “Subtask Deadline Assignment for
Complex Distributed Soft Real-Time Tasks,” Proc. 14th Int’l Conf.
Distributed Computing Systems, 1994.

[8] J.F. Kurose, M. Schwartz, and Y. Yemini, “Multiple-Access Proto-
cols and Time-Constrained Communication,” Computing Survey,
vol. 16, no. 1, pp. 43-70, 1984.

[9] C.L. Liu and J.W. Layland, “Scheduling Algorithms for Multipro-
gramming in a Hard Real-Time Environment,” J. ACM, vol. 20,
no. 1, pp. 46-61, 1973.

[10] M. Livny, “DeNet User’s Guide,” technical report, Univ. of Wis-
consin-Madison, 1990.

[11] H. Pang, M. Livny, and M.J. Carey, “Transaction Scheduling in
Multiclass Real-Time Database Systems,” Proc. IEEE Real-Time
Systems Symp., 1992.

[12] W. Zhao and K. Ramamritham, “Virtual Time CSMA Protocols
for Hard Real-Time Communication,” IEEE Trans. Software Eng.,
vol. 13, no. 8, pp. 938-952, Aug. 1987.

Ben Kao received the BS degree in computer
science from the University of Hong Kong in
1989 and the MS degree in computer science
from Princeton University, Princeton, New Jer-
sey, in 1991. He is currently an assistant profes-
sor in the Department of Computer Science at
the University of Hong Kong. From 1989-1991,
he was a teaching and research assistant at
Princeton University. From 1992-1995, he was a
research fellow in the Computer Science De-
partment at Stanford University, Stanford, Cali-

fornia. His research interests include database management, distrib-
uted algorithms, real-time systems, and information retrieval systems.

Hector Garcia-Molina received a BS in electri-
cal engineering from the Instituto Tecnologico de
Monterrey, Mexico, in 1974, and an MS in elec-
trical engineering and a PhD in computer sci-
ence from Stanford University, Stanford, Califor-
nia, in 1975 and 1979, respectively. Dr. Garcia-
Molina is currently the Leonard Bosack and
Sandra Lerner Professor in the Department of
Computer Science and Electrical Engineering at
Stanford University. From 1979 to 1991, he was
a member of the faculty of the Computer Science

Department at Princeton University, Princeton, New Jersey. His re-
search interests include distributed computing systems and database
systems. Dr. Garcia-Molina is a fellow of the ACM.

