
Deadline-based Escalation in

Process-Aware Information Systems

Wil M.P. van der Aalst1,2, Michael Rosemann2, Marlon Dumas2

1 Department of Technology Management
Eindhoven University of Technology, The Netherlands

w.m.p.v.d.aalst@tm.tue.nl
2 Centre for IT Innovation

Queensland University of Technology, Australia
m.rosemann,m.dumas@qut.edu.au

Abstract

Process-aware information systems are typically driven by process models capturing an ideal-
ized view of the actual processes. For example, most process models assume that planned activities
happen within a reasonable period. In reality such assumptions may not hold, and as a result
workers may be forced to bypass the system or the designer is forced to explicitly model all excep-
tions that may occur when activities are not handled on time, leading to spaghetti-like models. In
this paper, we acknowledge that processes may change when the organization is unable to meet
deadlines and refer to such changes as escalations. Escalations may change the routing of work
(e.g., bypass tasks), change the work distribution (e.g. allow other people to execute delayed ac-
tivities), or change the requirements with respect to available data (e.g. a decision is made before
all information is available). This paper proposes the 3D (Detect, Decide, and Do) approach to
deal with escalations and describes a number of escalation mechanisms. The approach has been
validated through case studies and simulation experiments.

1 Introduction

This paper focuses on deadline-based escalation, i.e., taking the appropriate actions when getting
close to a deadline or when it becomes clear that a deadline will not be met. One of the goals of
deadline-based escalation is to let process-aware information systems mimic human behavior when
it comes to deadlines. Humans typically change their behavior when confronted with a deadline
[11, 27, 31]. Consider for example the Yerkes-Dodson law [31] describing that increased pressure
(e.g., an approaching deadline) will improve performance but too much pressure will (eventually)
degrade performance. In daily life it can also be observed that humans tend to take more risks when
being late (e.g., driving a car). For example, workers may skip tasks or require less information to
make a decision. Clearly, such flexibility is desired in in many situations but rarely supported by IT.

Unlike humans, process-aware information systems such as workflow management systems, typi-
cally do not change their behavior when confronted with deadlines. As a result, these systems stick
to an idealized view of the process even when there is no time or it is even undesirable to stick to this
idealized process. Therefore, we introduce the concept of escalation in the context of process-aware
information systems. Just like a human would “escalate” (i.e., change his behavior) whenever he is
unable to meet certain deadlines, we propose the information system to escalate in a similar fashion.
Escalation could imply the skipping of tasks, allowing less qualified people to do certain tasks, or
making decisions based on incomplete data.

Note that escalations could also be driven by the opposite problem, i.e., the resources of an
organization assigned to a process are under-utilized. In this case, escalation could mean taking on

1

additional activities (e.g. increased pre-sales in a consulting company). The focus of and examples
within this paper will be focused on deadline-based escalations, but both cases are very similar.

As a working example, we consider the “teleclaims” process of a large Australian insurance
company.1 This process deals with the handling of inbound phone calls, whereby different types of
insurance claims (household, car, etc.) are lodged over the phone. The process is supported by two
separate call centers operating for two different organizational entities (Brisbane and Sydney). Both
centers are similar in terms of incoming call volume (approx. 9,000 per week), average call handling
time (550 seconds), number of call center agents (90) and performance objectives (90% of all calls
should be answered in less than 60 seconds). Differences are the underlying IT systems, the physical
locations and the modes of operation (24 hrs. versus 9-5). The teleclaims process model is shown
in Figure 1. The two highlighted boxes at the top show the subprocesses in the two call centers
(Brisbane and Sydney). The lower part describes the process in the back-office.

This process model is expressed in terms of an Event-Process Chain (EPC) [18, 26]. To introduce
the notation let us consider the subprocess corresponding to the call center in Brisbane. The process
starts with event “Phone call received”. This event triggers function “Check if sufficient information
is available”. This function is executed by a “Call Centre Agent”. Then a choice is made. The circle
represents a so-called connector and the “x” inside the connector indicates that it is an exclusive
OR-split (XOR). The XOR connector results in event “Sufficient information is available” or event
“Sufficient information is not available”. In the latter case the process ends. If the information
is available, the claim is registered (cf. function “Register claim” also executed by a “Call Centre
Agent”) resulting in event “Claim is registered”. The call center in Sydney has a similar subprocess
and the back office process should be self-explaining after this short introduction to EPCs.

One challenge for the Australian insurance company handling the process shown in Figure 1
is dealing with an increasing number of incoming phone calls during the Australian storm season
(October-March). Storms cause a higher number of damages, raising the number of incoming weekly
phone calls to more than 20,000. This not only puts significant burden on both call centers, but also
on the succeeding back-office processes related to evaluating and managing these claims. Overtime
as one way of adjusting the available resources is applied, but typically can not cope with the entire
demand. Thus, to cope with increased call traffic, the insurance company operates an “event-based
response system” that differentiates four categories of situations based mainly on how severe the
storms are. The first category includes localized storms and flooding and leads to a call volume of
10-50% above average for a period of at least two hours. Due to the increased call volume, customers
have to wait for 5-10 minutes in the queue. The second category is triggered if strong winds, hail and
structural damage occurs. This leads already to a wait time of 10-30 minutes and the call volume
is 50-100% above the forecast for at least two hours. The third category covers wide-spread damage
leading to waiting times of more than 30 minutes. The fourth and final category includes extreme
and rare cases, in which more than 80 customers would wait on the phone for more than 30 minutes.

Individual response strategies have been defined for each of these four categories. The responses
utilize additional external resources as well as a change in the way claims are lodged. First, additional
resources are utilized through redeployment of employees from other departments (e.g. sales) and
hiring of casual staff. While most of these people are trained, their performance in terms of average
call handling time is lower than the performance of the professional call center agents. Second, a
streamlined way of lodging the claims is applied in order to reduce the average call handling time
and to reduce the waiting time in the queue. In this so-called rapid lodgment process, only a reduced
amount of information is collected from the claimant. This leads to an average call handling time
of 380 seconds. for experienced call center agents, and 450 seconds. for the additionally employed
agents, down from the usual average of 550 seconds. One mechanism to deal with the different
performance of these two types of agents is call routing which directs all new and straight-forward
cases to the casual additional workforce, while the more complicated follow-up calls are directed to

1This case study (including the data provided in this section) is drawn from an interview with a call center manager.

2

Call Centre Brisbane / 24x7

Frequency, weekly: 9,000

Phone call
received

30.00 Second(s)

Check, if
sufficient

information is
available

Claims Handler

150

Payment has
been initiated

Claims Handler

150

Call Centre
Agent

90

0.85

Sufficient
information is

available

0.80

Sufficient
information is
not available

0.15

0.20

Call Centre
Agent

90

0.90 0.10

520.00 Second(s) Register
claim

Claim
is registered

20.00 Second(s)
Determine

likelihood of
claim

Insured
could be liable

Insured
could not be

iable

660.00 Second(s) Assess claim

Claim has been
accepted

Claim has been
rejected

120.00 Second(s) Initiate
payment 180.00 Second(s)

Advise claimant
on

reimbursement

30.00 Second(s) Close
claim

Claims Handler

150

Claims Handler

150

Claims Handler

150

Caimant has
been advised

Claim has
been closed

Frequency, weekly: 9,000

Phone call
received

30.00 Second(s)

Check, if
sufficient

information is
available

Call Centre
Agent

90

Sufficient
information is

available

Sufficient
information is
not available

Call Centre
Agent

90

0.90 0.10

520.00 Second(s) Register
claim

Claim
is registered

Call Centre Sydney / 5 days, 9-5

Figure 1: Insurance claim handling scenario (before escalation).

3

the experienced workforce.
The four categories of situations identified by the insurance company can be seen as four levels of

escalation. All levels of escalation involve the rapid lodgment process but the number of additional
resources varies per level. The manager in charge for claim services together with managers in charge
for the related back-office processes personally evaluate the severance of the weather conditions and
trigger the different escalation categories.

The teleclaims process model integrating the above escalation mechanisms (except for the “call
routing” step) is shown in Figure 2. In the situation shown there are 30 additional call center agents.
Moreover, for the back-office process there are 50 additional claim handlers.

Note that the four levels of escalation refer to the process as a whole. In reality it can also be the
case that a single case or a limited set of cases is escalated. For example, it could be that different
cases have different deadlines and that due to circumstances some cases have been delayed more than
others. Consider for example an insurance case requiring medical information from some specialist
and the information is still missing five days before some operation. There is no need to escalate
the whole process. It suffices to escalate the single case, e.g., look for another specialist. Another
example, would the reviewing process for a conference. If there is a paper that has not been reviewed
by any PC member, the PC chair will escalate and try to find a last minute reviewer. If the paper
is supposed to be reviewed by three reviewers and only one review is missing while the two reviews
agree, the escalation could be to just continue with one review missing.

Although not explicitly mentioned by the people involved in the teleclaims process, we added an
escalation mechanism to Figure 2 that escalates a case in isolation if needed. In the original process,
function “Assess claim” would on average take 660 seconds. As shown in Figure 2 there are now
two functions: one taking 660 second and one taking only 400 seconds. In a way this is similar to
the rapid lodgment. However, the escalation does not depend upon the “global” level of escalation.
Instead it depends on how long the case is already in the process. If it has been in the process for
more than 1 hour, a rapid assessment is done.

In the remainder of this paper, the teleclaims process is used as a running example. Using this
case study we will illustrate the challenges of workflow escalation, i.e.,

• What are the available strategies to cope with an increasing waiting time (i.e. escalation strate-
gies)?

• What are the scope, tradeoffs and effectiveness of these escalation strategies?

• How to use simulation to support the selection of the right level of escalation and escalation
strategy?

This paper is structured as follows. The next section provides an overview of process-aware
information systems and how escalations effect the main perspectives of these systems. Section 3
introduces the 3D approach, i.e., detect, decide and do, as a way of categorizing the main activities of
an escalation process. Alternative escalation mechanisms are differentiated for each of the perspec-
tives in Section 4. Section 5 gives insights into the contributions process simulation can make for the
evaluation of escalation mechanisms using the teleclaims process. Section 6 describes another case
using different escalation mechanisms. The paper ends with an overview of related work (Section 7)
and conclusions (Section 8).

2 Process-Aware Information Systems

Process-Aware Information Systems (PAISs) support business processes in organizations based on
explicit knowledge of both the organization and the processes. Note that classical applications such
as e-mail, spreadsheets, and databases are unaware of the processes at hand. As a result they do not

4

Call Center
Agent

(Novice)

30

Call Center
Agent

(Novice)

30

Frequency, weekly: 20,000

Phone call
received

30.00 Second(s)

Check, if
sufficient

information is
available

Claims Handler

200

Payment has
been initiated

Claims Handler

200

Call Centre
Agent

(Expert)

90

0.85

Sufficient
information is

available

Claims Handler

200

0.80

Sufficient
information is
not available

0.15

0.20

Call Centre
Agent

(Expert)

90

0.90 0.10

350.00 Second(s)

420.00 Second(s)
Rapid

Lodgement
of claim

Claim
is registered

20.00 Second(s)
Determine

likelihood of
claim

Insured
could be liable

The insured
could not be

iable

400.00 Second(s) Assess claim
(rapid method)

Claim has been
accepted

Claim has been
rejected

120.00 Second(s) Initiate
payment 180.00 Second(s)

Advise claimant
on

reimbursement

30.00 Second(s) Close
claim

Claims Handler

200

Claims Handler

200

Claims Handler

200

Caimant has
been advised

Claim has
been closed

Frequency, weekly: 20,000

Phone call
received

30.00 Second(s)

Check, if
sufficient

information is
available

Call Centre
Agent

90

Sufficient
information is

available

Sufficient
information is
not available

Call Centre
Agent

90

0.90 0.10

350.00 Second(s)

420.00 Second(s)
Rapid

lodegement
of claim

Claim
is registered

Call Centre Brisbane / 24x7 Call Centre Sydney / 5 days, 9-5

Call Center
Agent

(Novice)

30

Call Center
Agent

(Novice)

30

(if expert)

(if novice)

5.00 Second(s)
Check total

processing time
of claim

Total
processing time

> 60 mins.

Total
processing time

< 60 mins.

0.60 0.40

660.00 Second(s) Assess claim

Claims Handler

200

Figure 2: Insurance claim handling scenario including escalation mechanisms.

5

offer support for the definition, analysis, enactment, control, and monitoring of business processes.
Traditionally, organizations hard-coded fragments of business processes in dedicated software. How-
ever, since the nineties more and more organizations started to use generic software, e.g. Enterprise
Resource Planning (ERP) systems, Workflow Management (WFM) systems, Business Process Man-
agement (BPM) systems, etc. WFM systems such as Staffware, MQSeries, and COSA are the most
typical examples of a PAIS. Based on an explicit model a process is enacted, or as the Workflow Man-
agement Coalition (WfMC) defines it: “A system that defines, creates and manages the execution
of workflows through the use of software, running on one or more workflow engines, which is able to
interpret the process definition, interact with workflow participants and, where required, invoke the
use of IT tools and applications.” [20]. BPM systems can be considered to be the next generation
of workflow technology extending its functionality beyond automation [30]. BPM systems include
functionality for monitoring, analysis, flexibility, and cross-organizational processes. ERP systems
are also process aware but parts of the system are dedicated to specific processes (e.g. procurement,
sales, or finance). These parts can be configured within predefined boundaries. In addition most
ERP systems include a workflow component to allow for arbitrary processes. The workflow engines
of SAP, Baan, PeopleSoft, Oracle, and JD Edwards can be considered as integrated BPM systems.
Note that the class of PAISs is not restricted to ERP, WFM and BPM systems. There are many
other systems supporting explicitly modeled processes, e.g. Product Data Management (PDM), Cus-
tomer Relationship Management (CRM), and Case Handling (CH) systems. Note that systems like
the PDM system Windchill and the CH system FLOWer provide a workflow component. Also note
that, to date, many organizations still use self-developed PAISs. For example, many banks, insur-
ance companies, governmental organizations have developed dedicated PAISs whose functionality is
comparable to the systems just mentioned.

The topic of this paper, i.e. “dealing with escalation when getting closer to a deadline”, is relevant
to a wide range of PAISs. However, for presentation purposes we often focus on WFM systems as
typical examples of PAISs.

process perspective

task
perspective

data
perspective

resource
perspective

Figure 3: Perspectives of models driving PAISs.

PAISs are driven by models of processes and organizations. By changing these models, the behav-
ior of the system adapts to its environment and changing requirements. These models cover different
perspectives. Figure 3 shows some of the perspectives relevant for PAISs (for a detailed discussion
of perspectives in the context of WFM systems we refer to [16]). The process perspective describes
the control-flow, i.e., the ordering of tasks. The data perspective, also referred to as information
perspective, describes the data that are used. The resource perspective describes the structure of the
organization and identifies resources, roles, and groups. The task perspective describes the content
of individual steps in the processes and thus connects the other three perspectives.

Escalations may impact one or more perspectives. Therefore, we elaborate a bit on the perspec-
tives using the example shown in Figure 4. The figure shows four tasks: T1, T2, T3 and T4. The
process perspective shows that the four tasks are executed in a sequence, i.e., first T1, followed by
T2, etc. Most real-life processes are not simple sequential processes but include parallel routing,

6

T1 T2 T3 T4

R1 R2

D1 D2 D3 D4
data
perspective

process
perspective

resource
perspective

Figure 4: An example illustrating the process, data, and resource perspectives.

conditional routing, and iteration. In fact, as shown in [1], at least 20 routing patterns can be iden-
tified. Also note that the sequence shown in Figure 4 is executed for any case, i.e., the process may
be instantiated multiple times. If Figure 4 would model the reviewing process for a conference with
steps T1 : register paper, T2 : send to reviewers, T3 : collect reviews and T4 : decide and inform
author, then these four tasks would be executed for all papers. We assume that the process per-
spective describes the life-cycle of a case, and therefore we limit ourselves to case-driven processes.
Approving loans, processing insurance claims, billing, processing tax declarations, handling traffic
violations and mortgaging, are other examples of case-driven processes.

While the process perspective is concerned with the ordering of tasks, the resource perspective
focuses on the resources needed to execute these tasks. Resources may be human (e.g. employee) or
non-human (e.g. device, software, hardware). Non-human resources may be consumable (e.g. energy)
or not (e.g. a tool). In this paper, we will focus on human resources also referred to as “workers”
or “users”. To avoid the direct mapping of resources to tasks, resources are grouped into resource
classes. An example of a resource class is a role, i.e., a group of workers having similar qualifications.
Another example of a resource class is an organizational unit (e.g. a department, a team, or a branch).
Resources classes can be linked to tasks. For example, in Figure 4 tasks T1, T2, and T3 can be
executed by any of the three workers having role R1 and T4 can only be executed by the worker
having role R2. A worker may execute multiple tasks and the same task may be executed by multiple
workers, however for simplicity we assume that a worker cannot work on two tasks at the same time
and that for each case each of the corresponding tasks is executed by a single resource. For example,
one resource may execute T1 for one case while another resource executes the same task for the next
case. Note that resource classes may overlap, e.g. Figure 4 could be changed such that the fourth
worker also has role R1 in addition to role R2.

Tasks may produce or require information/data. The data perspective is concerned with the
data required to process the case. Figure 4 shows four data elements: D1, D2, D3 and D4. These
data elements may refer to structured (e.g. the name of a customer) or unstructured (e.g. a Word
document) data. There are many ways to describe data using techniques ranging from UML class
diagrams to XML schemas. In a PAIS data elements may be linked to tasks as shown in Figure 4.
T1 produces data element D1. This data element is again used by T3. Besides D1, task T3 also
uses D3 and produces data element D4. T2 uses D2 and T4 uses D4. Note that D2 and D3 are
external date elements, i.e., they are not produced by the process shown in Figure 4 but need to be
supplied by other sources (e.g. another process or another organization).

The task perspective is not shown explicitly in Figure 4. This perspective describes the content
of T1, T2, T3 and T4, i.e., a description of the actual work done in each of the steps.

Although providing only a simplistic view of case-driven processes, Figure 4 nicely illustrates the
perspectives. In addition to these classical perspectives of PAIS, it is important for the purpose
of escalation to differentiate two more perspectives. First, the context perspective describes the
environment for which a process model has been designed. The initial example included two contexts:

7

storm and non-storm season. A change in the context can motivate an escalation. Potential problems
with deadlines can often be anticipated based on experiences and a sound understanding of how a
specific context correlates with process performance criteria. For example, it is known that a predicted
storm will cause a problem in a few hours or days. In such a scenario, it would be too reactive to
wait until the first deadline-related problems occur. Second, the performance perspective includes
all relevant evaluation criteria for a certain process. Escalation may be required even if there are
no problems with data, resources or tasks, but instead the performance data has changed, e.g. a
customer wants delivery in two days instead of four days. On the other side, modifications in the
performance perspective can be one escalation mechanism, e.g. the finish date for make-to-stock
production orders can be extended if they compete with problematic make-to-order processes.

The following discussions, however, will be focused on the classical perspectives, i.e., data, re-
source, task and process. Before we start discussing the 3D approach to escalation, we would like to
point out that Figure 4 shows a number of constraints:

• All four tasks need to be executed for any case.

• Task T2 can only be executed after T1 completes, etc.

• Task T1 can only be executed by someone with role R1, etc.

• Task T2 can only be executed if D2 is available, etc.

Typically, these constraints are considered to be hard constraints. In general, PAISs such as WFM
systems focus on supporting such constraints. However, under some circumstances it may be useful
to consider some constraints as soft constraints, e.g. for some cases there may be good reasons to
skip task T2, execute T3 without D3, or allow someone with role R1 to execute task T4.

3 Escalations: The 3D approach

A PAIS deals with case-driven processes, i.e., cases are handled following the life-cycle in the process
perspective and using the data and resources specified in the other perspectives. One of the pitfalls
is that PAISs are typically configured on the basis of idealized models. As a result these systems
have problems dealing with situations that do not conform with the “normal flow”. Often the term
“exception handling” is used to refer to the things that need to be done when there are deviations
between what is planned and what is actually happening. Although many authors have published
interesting results on exception handling [5, 6, 10, 12, 13, 14, 19, 21, 25, 29] (cf. Section 7), today’s
PAISs still have problems dealing with exceptions. In this paper, we focus on a particular kind of
exception: for one or more cases the organization cannot meet its deadlines.

We assume that each case c has a deadline Dc. If some cases do not have a deadline, we simply
set the deadline to infinity, i.e., Dc = ∞. The deadline may be absolute or relative to the time the
case started. However, the result is an absolute timestamp. Similarly, tasks may have deadlines, e.g.
Dt

c is the deadline of task t for case c.2 The completion time of a case c, denoted Cc, is the actual
time the case was completed. Similarly, Ct

c is the completion time of task t for case c. Preferably,
Cc ≤ Dc and Ct

c ≤ Dt
c for all cases c and all tasks t. A case c is late if Cc > Dc and a task t is late

for case c if Ct
c > Dt

c. Note that Cc and Ct
c are only known after the completion of the case or task.

However, it is often possible to predict the completion time of a case or task. For a given case c, let
Pc be the predicted completion time of c and P t

c be the predicted completion time of task t for case
c. Case c is predicted to be late if Pc > Dc and a task t is predicted to be late for case c if P t

c > Dt
c.

Section 3.1 discusses how Pc and P t
c could be computed.

2Note that the notation assumes that there are no loops, i.e., tasks cannot be executed multiple times for the same
case. This can be solved in several was. For example, we can assume Dt

c to be the deadline for the last iteration of t
for c.

8

If a case or task is late or predicted to be late, it may be wise or even necessary to take special
measures. These measures are called escalations. Consider for example the reviewing process for a
conference. If close to the deadline for informing the authors still many reviews are missing, then
the program chairs may decide to ask additional reviewers, send reminders or base the decision on
fewer reviews. To date, such escalations are typically not supported by PAISs, i.e., workers have
to work around the system to deal with escalations and are not supported at all. There may be
several reasons for escalations, e.g. there may be seasonal influences in the number of cases (e.g. in
summer there will be more insurance claims related to fire), the number of available resources may
vary (e.g. during the Christmas holidays there are not enough workers to cope with the workload),
or there may be some kind of emergency (e.g. a catastrophe or a new law generating more work).
These are only few examples of circumstances that may cause cases or tasks to be late. Note that
many organizations depend on other organizations (e.g. for information). As a result, a problem in
one organization can cause escalations in other organizations.

T1 T2 T3 T4c1

T1 T2 T3 T4c2

T1 T2 T3 T4c3

T1 T2 T3 T4c4

Horizontal scope:
Which part of the process is affected by the escalation?

V
er

tic
al

 s
co

pe
:

W
hi

ch
 c

as
es

 a
re

 a
ffe

ct
ed

 b
y

th
e

es
ca

la
tio

n?

multi-case, single-task single-case, multi-task

Figure 5: Scope of escalations.

Figure 5 shows that the scope of an escalation may vary in at least two dimensions. First of all,
an escalation may involve a single case or multiple cases. An example of single-case escalation is a
permit request that must be processed within two weeks and a couple of days before the deadline,
it is found that there are still several tasks to be done, or worst, that the deadline has expired. On
the other extreme, there is the multi-case escalation that involves all cases of a given process. An
example is the introduction of a new law that forces organizations to handle cases within a certain
time-frame. Note that multi-case escalation may also refer to selected cases in a given process, e.g., a
cases involving a claim of more that one million euros. Second, the scope of an escalation may refer
to a single task or to multiple tasks (i.e. a portion of the process). A single-task escalation focuses on
a particular task in the process. For example, in the reviewing process of a conference a escalation
may result in the skipping of a review step but the author will always be informed, i.e., the escalation
is limited to the review task. On the other hand, an example of a multi-task escalation is that where
the manager of the department is on holidays and he is responsible for a number of tasks while no
other resources are allowed to execute these tasks. As a result some tasks are late and work is piling
up. An escalation mechanism may be to delegate these tasks to another person.

The teleclaims case described in the introduction proposes a multi-case escalation. A severe storm

9

does not lead to the escalation of a single case but of an entire process. Note that in the introduction
four possible escalation levels were mentioned. These refer to the whole process. However, in the
back office there is also a single-case escalation: cases that are delayed more than one hour get a
rapid assessment. The multi-case escalation in the teleclaims example is a single-task escalation
scenario since it focuses on the initial “lodgment” task of the claim handling process. The single-case
escalation (rapid assessment for delayed cases) is also an example of a single-task escalation.

To support escalation resulting from cases and/or tasks that are too late (or are predicted to be
late), we propose the 3D approach: Detect, Decide, and Do. First, one needs to detect that there
is a problem, i.e., that a case or task is (expected to be) late. Then one needs to make a decision
on what to do (i.e., decide which escalation to apply). Finally one needs to execute the escalation
that was selected. There are some similarities between the 3D approach and the well-known ECA
(Event-Condition-Action) rules. In fact, ECA rules have often been proposed to deal with workflow
exceptions [5, 6, 10, 12, 13, 14, 21, 25, 29]. However, the proposed 3D approach differs from the ECA
rules approach in several ways. First of all, detecting whether there will be delayed cases is quite
different from catching an event and evaluating a condition. Second, the decision process may involve
human judgment. Finally, as will be shown in the sequel, we consider a special kind of actions: mode
switching. The various parts of a process (including all perspectives) may be in different modes. In
case of an escalation, the process switches from one mode to another. We refer to this mode as an
escalation mode. Just like the US Homeland Security Advisory System with its alert levels green
(low), blue (guarded), yellow (elevated), orange (high), and red (extreme), we envision processes
operating at various levels. Instead of a color code we use numbers where 0 is the normal mode of
operation and higher numbers indicate modes corresponding to escalation. Consider for example task
T3 in Figure 4. This task should be executed by a person with role R1 and requires data elements
D1 and D3. At level 0 the PAIS enforces that T1 is indeed executed by a person having role R1
and that it can only start if both data elements D1 and D3 are available. Suppose that for a case c,
task T3 is not executed before its deadline. This is detected and the mode is set to 1. In this mode,
task T3 may be executed, even if D3 is unavailable. If this does not help, i.e., after some time T3 is
still not executed for case c, the mode is set to 2. In mode 2, T3 is offered to all people having role
R2 where R2 includes role R1. If this does not help, the mode is set to 3. In mode 2, T3 is simply
skipped. These examples illustrate the differences between ECA rules and the 3D approach.

Note that in the teleclaims case four levels of escalation were identified. These correspond to
escalation modes. Also note that an escalation mode has a certain scope (cf. Figure 5). A process
may switch from one escalation mode to another for a single case or multiple cases and for an
individual task or multiple tasks.

In the remainder of this section we discuss the three steps Detect, Decide, and Do in more detail.

3.1 Detect

The goal of deadline-based escalations is to avoid cases or tasks that are too late, i.e. Cc > Dc or
Ct

c > Dt
c, and if they happen to be too late to take rectification measures. We consider detection at

the level of a single case and at the level of the process or even the whole organization. As indicated,
detecting also includes monitoring the relevant context. However, this type of monitoring is outside
the scope of this paper.

Let us first consider detection at the level of a single case c. There are four possible situations
that result in a deadline-based escalation.

• Cc > Dc or time()> Dc, i.e. the case is completed too late. (Note that we use time() to denote
the current time.) In this situation there is not much that can be done, i.e. the case is too late
anyway and only rectification measures to try and compensate for this are possible.

• Ct
c > Dt

c or time()> Dt
c, i.e. task t is executed too late. In this situation, the case is delayed

10

with respect to task t. If t is not at the end of the process, this may be a signal to try and
speed-up the case. For example, if t was not executed yet, it may be skipped.

• Pc > Dc, i.e. the case is predicted to complete too late and an escalation may circumvent this.

• P t
c > Dt

c, i.e. it is predicted that task t is executed too late, and this may trigger some escalation.

To be able to detect this we need to have concrete values for Dc, Dt
c, Cc, Ct

c, Pc, and P t
c . The

first four values are easy to measure. The latter two estimates (Pc and P t
c) may be calculated in

various ways. Some examples:

• Based on historic information one can calculate the average time needed to execute a task
(waiting time + processing time). By calculating the longest path from the current state of a
case to the desired state (i.e. completion of the whole case or a specific task), we get a rough
estimate for the time needed to reach that state. The “prediction engine” of Staffware [28]
uses such an approach to estimate the completion time of cases. A major drawback of this
type of approaches is that they do not take into account the actual workload, i.e. if there are
many cases in the pipeline, then predictions based on historical data of flow times may be too
optimistic.

• Instead of using a “static” calculation based on the longest path from the current state of a case
to the desired state, it is also possible to use more sophisticated techniques such as queueing
analysis or simulation. This is more complicated but the results will be more accurate.

• Most approaches based on queueing analysis or simulation focus on averages, i.e. the normal
behavior of the flow in “steady-state”. However, these techniques can also take the current
state of the process (i.e. all cases) into account and do a transient analysis. For example, the
current state of the process can be used to initialize a simulation model. This approach has been
successfully applied using the WFM system COSA, the BPM tool Protos, and the simulation
tool ExSpect [24]. It results in more accurate predictions for Pc and P t

c but is more involved.

Factors resulting in delayed cases often do not delay a single case but multiple cases at the same
time. Therefore, it may be more suitable to consider multiple cases at the same time for detection
purposes. There are two ways to achieve this: (1) aggregate the results for individual cases (e.g.
monitor the value of

∑
c max((Pc − Dc), 0)); or (2) focus on monitoring the utilization of resources

relative to their capacity. The latter approach is attractive because it is relatively simple (if people
are too busy then escalate). It relies on the principle that high utilization levels usually indicate that
there is a lot of queueing and therefore this can serve as a trigger for resource-based escalations (e.g.
increasing the number of staff). It must be noted though that this approach may not detect the need
for escalation in some situations. Specifically, if cases are waiting excessively long for external data,
then it may happen that the utilization is low and yet there is a need to escalate in order to prevent
deadline violations.

Just like the flow time of a case, the expected utilization can be predicted using a wide range
of techniques. For example, based on the routing probabilities and the number of cases arriving
one can calculate the number of times each task needs to be executed. This combined with historic
information about the average processing time can be used to estimate future utilization levels. Also
more advanced techniques are possible, e.g. a simulation based on the current state [24].

In Section 2 we discussed a number of perspectives on workflows, including the context perspective
and the performance perspective. In the general case, prediction techniques need to take these two
perspectives into account. In the teleclaims scenario for example, the decision to do rapid lodgement is
not based on the timing of a single case but rather on a human interpretation of the weather forecast,
which is part of the context perspective. Similarly, changing performance targets can influence the
ability to meet deadlines.

11

3.2 Decide

Through the detection mechanisms just described, the cases and/or tasks that are (predicted to be)
too late are identified. The detection step is followed by a decision step were the escalation measure
is selected. There are three possible decision mechanisms: manual, automated, and semi-automated.

For manual decision making, the fact that a case or task is (predicted to be) too late is forwarded
to a human actor that decides on the actions that need to be taken. The actor can choose from a
wide range of actions as will be discussed in Section 4 (e.g. skipping a delayed task). The advantage
of human judgment is that a human can take into account “fuzzy” information ranging from the
weather forecast to gossip. Experienced workers can make excellent decisions and select the right
level of escalation. A drawback is that the human actor may be unavailable or too busy. This way
important decisions may be postponed. Note that for manual decision making it is important to
forward the escalation detection to the proper actors.

Automatic decision making results in escalations without any human involvement. Based on a
set of rules, the right escalation is selected. For example, if the head of the department does not
confirm within two weeks, the case is routed to her replacement. Note that automatic decision
making requires a rule language, e.g. some variant of RuleML [4]. The advantage of automated
decision making is that there are no delays and using the right set of rules the quality of the decision
may be high and consistent. The drawback is that rules typically have problems interpreting the
circumstances of the escalation, e.g. is the delayed case the “tip of the iceberg” or an isolated case.

To combine the best of both worlds, semi-automated decision making may be used, e.g. if a case
or task is (predicted to be) too late, first some automatic decisions are made. If these escalations
do not help and the situation gets worse, a human may get involved. It is also possible to do it the
other way around, i.e. if a case or task is (predicted to be) too late, first a human actor is notified.
If this actor does not respond in time, an automated rule is applied.

3.3 Do

The last step in the escalation process (i.e. the “Do step”) is the actual escalation. In the next
section, we describe possible escalation mechanisms. The intent is not to be complete but rather to
provide a framework that process designers can apply to specific scenarios.

4 Escalation mechanisms

An escalation is a deviation from a normal course of action. In the case of a priori escalation, an
escalation mechanism implements a tradeoff between on the one hand the amount of time required
to complete a task, a case, or a set of cases, and on the other hand the level of service or the resource
utilization (e.g. an escalation may result in service degradation or resource redeployment). Different
escalation mechanisms strike different tradeoffs. Accordingly, we adopt a model of escalation in which
each task has an escalation mode and in each mode the task may behave differently with respect
to the process perspective, the data perspective and the resource perspective. In the remainder of
this section, we examine some escalation mechanisms with respect to these perspectives. For each
mechanism, we provide an example and discuss its scope (i.e. single-case and/or multi-case), cost
and tradeoffs.

Though we will discuss in the following escalation strategies for each perspective separately, it is
important to note that there are two types of interrelationships between the perspectives in terms
of workflow escalation. First, a problem in one perspective can trigger an escalation in another
perspective as a compensation mechanism. For example, missing information in a lodged claim (e.g.
no reports from witnesses of a car accident), may require a specialist for the claim assessment. Second,
escalation mechanisms in two different perspectives can be alternatives. In our initial example, rapid

12

lodgement (process perspective) and the utilization of additional staff members (resource perspective)
could also be seen as alternatives.

4.1 Process Perspective

4.1.1 Alternative path selection

Description When defining a process it is possible to specify that certain paths are conditional
upon the potential violation of a deadline. In other words, there are different alternatives for per-
forming a part of the process: one corresponding to the normal course, and the others corresponding
to different escalation modes striking different cost tradeoffs. Two particular forms of this mechanism
are: (i) alternative task selection, where a choice is made between executing a given task or executing
an alternative (less desirable but faster) task; and (ii) task skipping (Figure 6) where a choice is
made between executing a task (or set of tasks) and doing nothing (i.e. the task(s) in question is/are
optional).

Example In the teleclaims process, the “claim lodgment” task is replaced by an alternative “rapid
claim lodgment” task. This is an example of alternative task selection.

Scope This mechanism applies to both single-case and multi-case escalation.

Cost and tradeoffs This mechanism aims at speeding up the process execution in exchange of
a degraded level of service (i.e. lower quality of service) or to push some work to later stages of a
process (or to other processes) in order to meet a deadline. A cost may be assigned to this mechanism
to reflect the loss in quality of service or the impact that it may have at later stages of the process.

T1 T2 T3 T4

R1 R2

D1 D2 D3 D4

T1 T3 T4

R1 R2

D1 D2 D3 D4

escalation

Figure 6: An example of an escalation using task skipping.

4.1.2 Escalation sub-process

Description When it is predicted that a deadline will be violated, or when the deadline is actually
violated, a sub-process is spawned off to perform actions specifically related to the deadline viola-
tion, such as notifying the appropriate stakeholders, re-negotiating a new deadline, or performing
compensation actions and cancelling the case. During the execution of this sub-process, the rest of
the process may be suspended.

Example When a deadline violation occurs, a procedure is spawned to notify the customer. The
customer is offered the choice to have the process stopped and be reimbursed, or to continue with a
new deadline (which can be seen as a modification in the performance perspective).

Scope This is typically a single-case escalation mechanism, however, one can also imagine that a
sub-process is spawned off to deal with multiple cases.

13

Cost and tradeoffs The costs of this mechanism are dependent on the nature of the escalation
sub-process.

4.1.3 Task pre-dispatching

Description Under some circumstances, it is possible to start preparing for the execution of a task
prior to completion of a previous task. This idea can be found in modern computer architectures,
where instructions may be started before completion or preceding instructions in order to exploit oth-
erwise idle resources. Two forms of task pre-dispatching can be identified: pipelining and predictive
branching.

In the pipelining mechanism, a task B that immediately follows another task A is enabled (i.e.
placed in the worklist) as soon as the execution of A starts (i.e. after A has been picked from
the worklist and the preparation phase for A has been completed). However, B is flagged as pre-
dispatched, in such a way that whenever a resource picks this task from the worklist, it will not be
allowed to proceed up to completion until A has completed, thereby ensuring that the control-flow
dependency (and any underlying data dependency) is preserved.

Predictive branching applies when a decision point D that immediately follows a task C is reached.
The workflow system then attempts to “guess” which branch will be taken (e.g. based on past history),
and pre-dispatches the first task in the chosen branch. After completion of C, the branching condition
is evaluated, leading to two possible scenarios: (i) the previously chosen branch is the one that should
be taken, in which case the branch is allowed to proceed; or (ii) a different branch is taken, in which
case the pre-dispatched task needs to be retracted (i.e. the task is withdrawn from the worklist, and
if a resource has already picked it, the resource is notified and any preparation actions are undone).
A variant of predictive branching is predication3, whereby all the branches are taken in parallel,
rather than a “guess” being made for one of them. In this case, the first task of each branch is
pre-dispatched, and some of these tasks are retracted when the branching condition is evaluated.

Example Before a clean-up team is authorized to enter an area it may be necessary to wait for
approval from an inspection team, however, the preparation of the clean-up (e.g. setting up the
clean-up equipment) could be pre-dispatched after a certain point in the inspection process.

Scope This mechanism applies to both single-case and multi-case escalation. The mechanism is
only applicable when the tasks in the process have an explicitly defined preparation phase and in the
case of predictive branching and predication, the resources must be able to undo any preparation
actions.

Cost and tradeoffs The cost of this mechanism is determined by two factors: (i) heavier resource
utilization as resources prepare tasks and then hold until they can start the actual execution; and
(ii) in the case of failed predictive branching, the cost of undoing the preparation actions.

4.1.4 Overlapping

Description Overlapping can be applied for workflow escalation in the case of large batches and
involves two sequential activities. The main idea behind overlapping is that two activities can be
accelerated, if they are parallelized. This goes further than pipelining as the following task will be
started (not just prepared) while the preceding is still processing.

3This technique has parallels with the one used in the Intel Itanium processor (http://www.devx.com/Intel/
Article/20218/2217).

14

Example A specialist works on 10 claims in one batch, before he forwards the entire batch for
further processing to the next resource. Overlapping would mean, that he forwards smaller batches,
e.g. in the size of two each.

Scope This escalation mechanism is related to a single case escalation.

Cost and tradeoffs The benefit of an accelerated processing of two sequential activities has to
be compared with the increasing costs related to increased coordination efforts between these two
activities.

4.1.5 Prioritization

Description Higher priorities are given to certain tasks or cases, letting them overtake other cases
in the consumption of resources.

Example If there are twenty customers with orders for a particular service and it is predicted that
half of them will result in deadline violation, the potentially late cases are given higher priority.

Scope This is a multi-case mechanism.

Cost and tradeoffs Giving higher priorities to some tasks or cases necessarily means lowering
the priorities of others. This may result in deadline violations for certain tasks or cases that would
not have occurred had the priorities been left unchanged. Apart from this, and the usual overhead
on the process execution environment of detecting, deciding and triggering the escalation procedure,
the cost of this mechanism is neutral. This mechanism may be attractive in cases where being late
by a small amount of time or being late by a larger amount of time have more or less the same
implications. (Note that often service levels are defined as the percentage of cases on time.) For
example, if there are several cases running late, one may choose to focus on some of them in order to
meet their deadlines, and neglect the others, even if this makes these other cases violate the deadline
by more time than they would otherwise have done.

4.2 Resource Perspective

4.2.1 Resource redeployment

Description The idea of resource redeployment is to increase the capacity of the resources associ-
ated to cases or tasks that are running late as illustrated in Figure 7. Resource redeployment can take
many forms including: adding more resources (e.g. moving people between departments), extending
the scope of the roles associated with a task (e.g. allow people with a lower role to execute the task,),
increasing the capacity per resource (e.g. overtime) or changing the allocation of tasks to achieve
load balancing. Therefore the “Resource redeployment” mechanism can be seen as a collection of
mechanisms aiming at achieving an increase in resource capacity.

Example In the teleclaims process, an escalation immediately leads to overtime being requested
from the call center operators. If this is not enough, employees from the sales and service departments
are redeployed to the teleclaims process, and if necessary, casual workforce is called upon.

Scope This is a multi-case escalation mechanism.

15

T1 T2 T3 T4

R1 R2

D1 D2 D3 D4

escalation

T1 T2 T3 T4

R1 R2

D1 D2 D3 D4

Figure 7: An example of escalation using resource redeployment.

Cost and tradeoffs Increased costs including variable costs (overtime and hiring additional work-
force) and fixed costs (need to train people to be able to be redeployed or to train a pool of potential
casual workers). Furthermore, the average performance per resource may be negatively impacted as
in the teleclaims scenario. Besides increased costs there is the risk of lower quality levels. If resources
start doing tasks outside of their normal routine or expertise area, the impact on quality may be
negative (e.g., more errors or a less professional service to the customer).

4.2.2 Batching

Description In some circumstances it may be possible to group together tasks that would be
more efficiently treated as a batch assigned to a single resource. This approach can be effective
in reducing the number of deadline violations when the tasks being batched are predicted to have
deadline violations. For example, in location-based batching, tasks from several process instances
are clustered based on their associated location and the location of the available resources. Task
instances “close” to each other in space are executed in batch by a resource, before the resource
moves to another location.

Example In the insurance claim handling process, when an event takes places at a given location
(e.g. a bushfire), all on-site assessment tasks related this event are batched and assigned to one or a
group of dedicated assessors.

Scope This is a multi-case escalation mechanism.

Cost and tradeoffs Batching accelerates activities by eliminating setup times for individual ac-
tivities. Costs can occur for the efforts related to batching activities.

4.2.3 Splitting

Description Splitting is the opposite of batching and refers to the case, in which finalizing the
work for an entire batch of cases would take too long. In these cases, it might be possible to split
the batch into smaller batches, which are worked on in parallel.

Example In a typical claims process, legal experts are involved as specialist. However, such an
expert can easily become the bottleneck. Instead of one full-time legal expert, it might be useful in
some case to have two (or more) experts working part-time and in parallel.

Scope This escalation mechanism converts a single case escalation into multi-case.

16

Cost and tradeoffs This approach reduces the processing time by splitting a batch over a num-
ber of resources, who work in parallel. This benefit has to be compared with the additional setup
time/costs at each resource, possible additional transportation costs and the efforts related to con-
solidating the cases again to one batch for the next activity.

4.3 Data perspective

4.3.1 Deferred data gathering

Description The gathering of certain data is postponed until the point in the process where it is
actually needed. In other words, data items that would normally be produced by a given task are
not produced when this task completes, but instead, they are gathered by the (first) task that needs
them.

Example In the teleclaims scenario, a simplified version of the claim creation form is used during
escalation.

Scope Applies both to single and multi-case escalation.

Cost and tradeoffs Deferred data gathering usually results in work being pushed to a later point
in the process. In the case of the teleclaims process, when the simplified version of the claim creation
form is used, some relevant data is not gathered. Some of these data is not necessary in some cases,
and when it does become necessary, a call is made by the relevant claim handling department to the
customer. In the case of claims where an on-site assessment needs to be made, the missing data may
be gathered by the assessor. Note that data degradation can be used in conjunction with “alternative
path selection”. For example, in the teleclaims scenario an alternative version of the “lodge claim”
task is associated to the simplified version of the claim creation form.

4.3.2 Data degradation

Description Tasks are allowed to be executed with less or different data. For example, if a doc-
ument is not available, the decision can be taken without it. It is also possible to look for other
sources of less reliable or more costly data.

Example During a paper review process, the acceptance/rejection decision is usually taken on the
basis of three reviews. However, if one of the reviews is missing by a given deadline, the decision
may be taken with only two reviews.

Scope Applies both to single and multi-case escalation.

Cost and tradeoffs The strategy results in loss of quality of service, and in certain cases, it may
result in some work being pushed to a later step in the process.

5 Simulation study: Teleclaims processing in the storm season

Let us now return to the teleclaims process shown in Figure 1. To illustrate the effect of different
escalations, we take this process and evaluate different scenarios using simulation. Note that some
of these scenarios describe the way the Australian insurance company is escalating during the storm
season. Other scenarios are merely used to provide a better coverage of the escalation mechanisms
discussed in the previous section.

17

T1 T2 T3 T4

R1 R2

D1 D2 D3 D4

escalation

T1 T2 T3 T4

R1 R2

D1 D2 D3 D4D5

Figure 8: An example of an escalation in the data perspective.

For our simulation study we use CPN Tools [7] which is based on Colored Petri Nets [17] as a
modeling and analysis language. The reasons for using CPN Tools are its expressiveness (it is easy
to model all escalation mechanisms), its theoretical basis (allowing for different types of analysis),
and its simulation speed (close to a classical programming language).

Let us first simulate the process shown in Figure 1. We assume the arrival process to be Poisson
(i.e., negative exponential interarrival times). Since the distribution of the call volume and number
of resources over the day was not given, we assumed these to be constant over an 8 hour period
per day. All activities (i.e., the functions in the EPC diagram) are assumed to have a negative
exponential service time. The average service times are indicated in the diagram and so are the
routing probabilities. For example, 10% of the incoming claims stop after the first step in the
process. The numbers of resources are also shown in Figure 1: there are 90 call center agents in each
call center and 150 claims handlers in the back office. Note that the same resource will execute all
steps in the process for a given claim in one of the call centers or the back office, i.e., transfer of work
only takes place in between a call center and the back office.

Figure 9: A screenshot of CPN showing the top-level model and the Brisbane call center.

18

Figure 9 shows a screenshot of the top-level model and the Brisbane call center in CPN Tools while
simulating the model. Figure 10 shows the CPN model of the back office. A detailed description of
the CPN models is outside of the scope of this paper. However, a superficial comparison of Figure 1
and the figures 9 and 10 will assist in obtaining a basic understanding of the CPN models.

claim is
registered

Case
In

resources

Resource

150‘"Claims handler"

SC insured
could not be liable

CR

SC insudered
could be liable

CR

claim has been
rejected

CR

claim has been accepted

CR

to payment

Case

to advice

Case

payment has
been initiated

Case

mutex

CR

claim has
been closed

Case

claimant has been adviced

Case

determine likelihood
of claim

input ();
output (ran);
action
(round(uniform(0.0,100.0)));

@+delay(20)

end1

input (t);
output ();
action
(measure("flow time",IntInf.toInt(time())-t);
measure("flow time not insured",IntInf.toInt(time())-t));

assess claim

input ();
output (ran);
action
(round(uniform(0.0,100.0)));

@+delay(660)

end2

input (t);
output ();
action
(measure("flow time",IntInf.toInt(time())-t);
measure("flow time rejection",IntInf.toInt(time())-t));

AND-split

advise claimant
on reimbursement

@+delay(180)

initiate payment

@+delay(120)

close claim

@+delay(30)

end3

input (t);
output ();
action
(measure("flow time",IntInf.toInt(time())-t);
measure("flow time success",IntInf.toInt(time())-t));

[(i,cl,t)=c]

c

r

if ran<85 then 1‘(c,r) else empty if ran>=85 then 1‘(c,r) else empty

((i,cl,t),r)

r

(c,r)

if ran>=80 then 1‘(c,r) else empty

if ran<80 then 1‘(c,r) else empty

((i,cl,t),r)

r

(c,r)

c c

cc

c

(c,r) (c,r)

(c,r)

c
(c,r)

c

c

c

c

(c,r)

r

Figure 10: The CPN model of the back office.

For calculating confidence intervals we assume a start run of 2 days and 10 subruns of 1 day (8
hours). The simulation shows that the average flow time is 1271 seconds, i.e., about 21 minutes.
The variance of the flow time is 928266 (with a 95% confidence interval of [911853,944679]), i.e.,
the standard deviation is approximately 963. This implies that there are considerable differences
between individual flow times. The average flow time of successful cases is 1667 [1660,1673]. The
utilization of the call center agents is 0.26 and utilization of the claims handlers is 0.60.

The process shown in Figure 1 cannot deal with the incoming claims in the storm season where the
average number of claims per week goes up from 2*9000=18000 to 2*20000=40000. The utilization
of the claims handlers would be more than 1.0 indicating that it is impossible to cope with the flow
of work.

Figure 2 shows the way the insurance company deals with 40000 per week. (Note that the
model contains both a single-case and a multi-case escalation.) The changes are the addition of
resources to both the call centers and the back office (i.e., the Resource redeployment mechanism),
the rapid lodging (i.e., the Alternative path selection mechanism), and rapid claim assessment (also

19

the Alternative path selection mechanism but now applied as a single-case escalation). As a result
of these escalations, the organization can cope with the incoming claims and the average flow time
is 937 seconds [932,943].

6 Another simulation study: Reviewing journal papers

The teleclaims simulation study used the Resource redeployment mechanism and Alternative path
selection mechanism to escalate. In the study no escalation mechanisms corresponding to the data
perspective were used. Moreover, the study was primarily a multi-case escalation (during a storm the
whole process is escalated). Therefore, we provide another simulation study focusing on single-case
escalation and also including escalation mechanisms corresponding the data perspective.

In this section, we consider the process of reviewing process for a journal. Each paper submission
to the journal is registered by the editorial officer (this takes on average 2 hours). The editor of the
journal will ask three reviewers to review each submission. The request of the editor to the reviewer
will generate a response of the reviewer who either accepts or declines the invitation. If the reviewer
accepts to review the paper, the editorial officer wil send it to him/her. If the reviewer declines the
invitation, the editor will invite another reviewer. This process is repeated until for each paper three
people have accepted the invitation. A reviewer that accepts the invitation, will review the paper
and propose to accept it or reject it the paper. (For simplicity, we assume that the outcome of any
review is “accept” or “reject”.) The editor will make a decision when all three review reports have
been returned. As long as a review is missing, the decision is postponed. If two reviewers propose to
accept, the editor will accept the paper. Otherwise, the paper is rejected. The editorial officer will
inform the author of the result (this takes on average 2 hours of working time). Finally, the case is
closed.

For the simulation, we assume that on average 4 new papers arrive per week. The arrival process
is Poisson (i.e., negative exponential interarrival times with a mean of 7/4=1.75 days). The task
execution times are also sampled from a negative exponential distribution. Handling the response of
a reviewer takes on average 1 hour of working time from the editorial officer. Reviewers on average
reply to an invitation within one week (negative exponential distribution with mean of 1 week) and
70% accepts to review the paper. This implies that for the other 30% the editor appoints another
reviewer, etc. The average reviewing time is 6 weeks after accepting the invitation and sending
the paper. On average, 60% of papers are rejected by the reviewer. Since the editor “follows” the
reviewers, on average only 40% is accepted. The editorial officer is assumed to be continuously
available. However, the editor only checks on the papers at the end of every month (every four weeks
to be precise). At that point in time, he can decide to appoint new reviewers and accept/reject
papers.

Figure 11 shows the top level of the CPN model. Note that the model has four subprocesses:
gen papers (for arrival of new papers), check papers (the handling of the papers by the editor at the
end of each month), reviewer contact (the actions related to the management of reviewer responses),
and reviewers (an external process modeling the reviewer base). In this paper, we will not show
or describe these subprocesses in detail. The textual description given above should resolve most
ambiguities. For our simulation experiments we use a start run (to avoid start-up effects) and 10
subruns. Each subrun takes one year (52 weeks) and the subruns are used to calculate 95% confidence
intervals. For the base scenario (i.e., without escalation) the average flow time is 131 days (with a
95% confidence interval of [129,133]), i.e., approximately 19 weeks. The average variance of the flow
time is 2733 (with a 95% confidence interval of [2587,2880]). This implies that frequently the review
process takes half a year or longer.

Taking this base scenario (without any form of escalation) as a point of departure, we now
investigate the effects of various escalation mechanisms:

20

results

CIResultssubmitted
paper

Case

editoral
officer

Resource

1‘"editorial officer"

papers

Papers

[]

active case

Case

request

ID

accept_r

ID

paper

ID

reject_r

ID

accept_p

ID

reject_p

ID

editor

Resource

1‘"Editor"

accept

ID

reject

ID

ready

Case

measurement_system

measurement_system

gen_papers

register
submission

[(i,cl,t)=c] @+delay(2*Hour)

accept
input (t);
output ();
action
(measure("flow time accept",
IntInf.toInt(time())-t));

[(i,cl,t)=c]

@+delay(2*Hour) reject input (t);
output ();
action
(measure("flow time reject",
IntInf.toInt(time())-t));

[(i,cl,t)=c]

@+delay(2*Hour)

Reviewers

Reviewers

close
caseinput (t);

output ();
action
(measure("flow time",IntInf.toInt(time())-t));

[(i,cl,t)=c]

reviewer_contact

reviewer_contact

check_papers

check_papers

c

r

(i,t,0,0,0,0)::ps

c

ps

i

c

i
c

c c

c

r

r

Figure 11: The top-level CPN model of the reviewing process.

Escalation 1 For the first escalation, we invite an additional reviewer if the reviewing process takes
more than one month. This means that in the end 4 people may review the same paper, but
after three reviews arrive a decision is made. If there happen to be 2 accepts and 2 rejects, the
paper will still be accepted. Clearly, this escalation uses the Resource redeployment mechanism
described in Section 4.

Escalation 2 The second escalation is similar to the first one but now up to two reviewers may be
added if there is no conclusion after one month.

Escalation 3 Again the Resource redeployment mechanism is used to allow one additional reviewer.
However, now, if needed, the additional reviewer is only invited after two months.

Escalation 4 The fourth escalation is a combination of the previous two: Potentially up to two
additional reviewers are invited after two months.

Escalation 5 Now we focus on the invitation of reviewers. If after one month there are still reviewers
that have to accept or decline the invitation, we invite one additional reviewer.

Escalation 6 Again we focus on the invitation of reviewers. If after one month there are still
reviewers that have to accept or decline the invitation, we invite up to two additional reviewers.
This means that in the end 5 people may review the same paper.

Escalation 7 We now apply the Data degradation mechanism, i.e., make decisions with less infor-
mation. Note that if a paper gets two positive reviews, it is certain that it will get accepted.
Therefore, two positive reviews or two positive reviews will result in a final decision and there
is no need to wait for the third review.

21

Escalation 8 Escalation 7 may discard the third review even if the third reviewer only takes a
bit longer than the other two. Therefore, we refine the Data degradation mechanism with a
temporal component. Now two positive reviews or two negative reviews may trigger a final
decision, but only after one month has passed.

Escalation 9 Combines Escalation 1 and Escalation 7, i.e., a combination of the Resource redeploy-
ment mechanism and the Data degradation mechanism is used.

Escalation 10 Combines Escalation 1 and Escalation 8, i.e., as in the previous escalation but now
with the temporal component.

For each escalation we conducted a simulation experiment using CPN Tools.4 The results are
shown in figures 12 and 13.

80

90

100

110

120

130

140

no
 e

sc
ala

tio
n

es
ca

lat
ion

 1

es
ca

lat
ion

 2

es
ca

lat
ion

 3

es
ca

lat
ion

 4

es
ca

lat
ion

 5

es
ca

lat
ion

 6

es
ca

lat
ion

 7

es
ca

lat
ion

 8

es
ca

lat
ion

 9

es
ca

lat
ion

 1
0

A
ve

ra
g

e
fl

o
w

 t
im

e

Figure 12: The average flow time and 0.95 confidence intervals for the base scenario and the 10
escalations.

Figure 12 shows the average flow time for the base scenario and each of the 10 escalations. In each
case, the average and the 95% confidence interval are given. The diagram shows that each of the 10
escalations provides an improvement. However, for Escalation 5 and Escalation 6 the improvements
are not significant, and at best only marginal. This shows that the problem is not in the first part of
the process, i.e., the invitation of reviewers. All other 8 escalations provide a clear improvement in
terms of flow time. If we focus on the first four escalations, we see that the Resource redeployment
mechanism works. Moreover, the earlier and the more reviewers get involved, the better the end
result. Escalation 7 and Escalation 8, i.e., the use of Data degradation, have a positive effect on
the flow time. Combining the Resource redeployment and Data degradation mechanisms, further
reduces the flow time. As could be expected, Escalation 9 is slightly more effective than Escalation
10 because in the first month one does not have to wait for the third review if the first two agree.

Figure 13 shows the variance of the flow times for each strategy. Here it is surprising to see that
the Resource redeployment mechanisms significantly reduce the variance while the Data degradation
mechanisms do not. For example, Escalation 7 and Escalation 8 have a variance comparable to the
base scenario and the less effective strategies Escalation 5 and Escalation 6. This can be explained
as follows. There will be cases with two positive or two negative reviews that are handled quickly.
However, for cases with a positive and a negative review, the reviewing process will take as long as

4Note that a simulation run of 11 years only takes about 10 seconds on a laptop (Intel Pentium M Processor,
1.40GHz, 512MB).

22

500

1000

1500

2000

2500

3000

3500

no
 e

sc
ala

tio
n

es
ca

lat
ion

 1

es
ca

lat
ion

 2

es
ca

lat
ion

 3

es
ca

lat
ion

 4

es
ca

lat
ion

 5

es
ca

lat
ion

 6

es
ca

lat
ion

 7

es
ca

lat
ion

 8

es
ca

lat
ion

 9

es
ca

lat
ion

 1
0

V
ar

ie
n

ce
 f

lo
w

 t
im

e

Figure 13: The variance of the flow times for each scenario.

in the base scenario. Hence, there will be a cases that take a long time and that do not benefit from
the escalation. The first four escalations are more robust because one or two more reviewers are
involved. Therefore, their variance is smaller.

The above discussions illustrate the benefits of simulation as a tool to investigate the effects of
the escalation mechanisms described in Section 4 in a given scenario.

7 Related work

In social sciences, researchers have investigated the effect of pressure (e.g., an approaching deadline)
on the performance of people [11, 27, 31]. These studies suggest that workers change the way of
working when confronted with a deadline. In most cases the effect is positive, i.e., people manage
to get the work done in time. Unfortunately, current workflow management systems do not support
or mimic human behavior in the presence of deadlines. A notable exception is the the FlowConnect
system of Shared Web Services [15]. FlowConnect supports the definition of milestones that have
planned values and actual values. These milestones are used to generate escalations and timeouts.
An escalation in the context of FlowConnect means that a user is signaled that it is now critical to
perform an action, i.e., the corresponding work-item is highlighted in the user’s worklist. A time-out
means that an action is executed if a milestone was not reached in time.

Deadline escalation can be seen as a special type of exception handling. Many proposals have
been put forward to address various aspects of exception handling in workflow systems [5, 6, 10,
12, 13, 14, 19, 21, 25, 29]. Some of these previous proposals (e.g. [5]) advocate an ECA rules-based
approach, which we contrasted with the 3D approach in Section 3. Other proposals such as [12]
focus on failures and rare or unexpected events rather than the ability to meet deadlines. Finally, a
number of generic frameworks for structuring exception handling knowledge have been put forward.
In particular, parallels can be drawn between the phases of the 3D approach (Detect, Decide and Do)
and the phases for exception handling proposed by Klein & Dellarocas [19], namely “Preparing for
exceptions”, “Diagnosing exceptions” and “Resolving exceptions”. In this respect, the 3D approach
can be seen as a refinement of the general exception handling framework of Klein & Dellarocas.
In the terminology of Klein & Dellarocas, what the 3D approach brings is an ontology (including
resolution mechanisms) for a specific subclass of exceptions (namely deadline escalations).

Some researchers have proposed techniques addressing the specific issue of deadline escalation in
workflow systems. For example, Panos & Rabinovich [22] describe an approach to dynamically adjust

23

deadlines based on costs, expected execution times, and available slack time. In [23] this approach
is refined and supported by simulation experiments. In [8] the topic of capturing time constraints
in workflow definitions is considered, and a PERT-like technique for the analysis of the temporal
behavior of a workflow is proposed. This technique is similar to the one employed by the “prediction
engine” of Staffware [28]. Unfortunately, these techniques implicitly assume that processing times
are independent of the workload and resource capacity.

The notion of “process fragments” in Staffware [28] allows composite activities to be bound at
runtime to specific subprocesses. This concept can be used to incorporate escalation mechanisms
into a workflow description. For example, based on the escalation level a specific subprocess may be
selected at a specific point in a workflow.

There is also a link between detection for deadline-based escalation and Business Activity Moni-
toring [9]. For example process mining techniques [2, 3] can be used to measure, predict and explain
escalations. To the best of our knowledge, the application of these techniques (generally aimed at
offline analysis) to support the “Decide” phase of deadline escalation at runtime, is an open question.

8 Conclusion

Although organizations are forced to escalate regularly, today’s (process-aware) information systems
offer little support for this. In this paper, we focused on escalations triggered by the (predicted)
inability to meet deadlines. Using an example of the teleclaims process of an Australian insurance
company, we identified and analyzed issues related to deadline-based escalation. We then proposed
a general approach to deadline-based process escalation and we presented various escalation mecha-
nisms. The effectiveness of these mechanisms was evaluated through simulation studies.

Future work will aim at designing and evaluating cost models for escalation. Such cost models are
key during the decision phase, when the cost of applying an escalation needs to be weighed against:
(1) the extent to which it decreases the probability of violating certain deadlines (or violating them
to lesser degrees than without escalation); and (2) the cost of these deadline violations. On the basis
of such model, it would then be possible to answer other key questions such as: (1) when to apply
a given escalation mechanism (individually); and (2) which combinations of mechanisms are most
likely to work effectively together. Finally, it is necessary to design ways to seamlessly incorporate
the cost model and the escalation mechanisms into existing process-aware information systems, and
in particular workflow systems. Today’s systems are typically unable to predict future problems
and modeling the various escalation mechanisms result in spaghetti-like diagrams that cannot be
maintained easily. A process modeling language that allows to clearly distinguish between a “base”
process model and “escalated” versions of this model would be desirable.

Acknowledgments The third author has been funded by a Queensland Govenerment “Smart
State” Fellowship co-sponsored by SAP Australia Pty Ltd. The author would also like to thank Greg
Bird from Advanced Data Integration for our fruitful discussions on deadline escalation mechanisms.
Many thanks also to the anonymous organization that kindly provided the teleclaims case study.

References

[1] W.M.P. van der Aalst, A.H.M. ter Hofstede, B. Kiepuszewski, and A.P. Barros. Workflow
Patterns. Distributed and Parallel Databases, 14(1):5–51, 2003.

[2] W.M.P. van der Aalst, B.F. van Dongen, J. Herbst, L. Maruster, G. Schimm, and A.J.M.M. Wei-
jters. Workflow Mining: A Survey of Issues and Approaches. Data and Knowledge Engineering,
47(2):237–267, 2003.

24

[3] W.M.P. van der Aalst and A.J.M.M. Weijters, editors. Process Mining, Special Issue of Com-
puters in Industry, Volume 53, Number 3. Elsevier Science Publishers, Amsterdam, 2004.

[4] H. Boley. The Rule Markup Language: RDF-XML Data Model, XML Schema Hierarchy, and
XSL Transformations. In O. Bartenstein, U. Geske, M. Hannebauer, and O. Yoshie, editors, Web
Knowledge Management and Decision Support, 14th International Conference on Applications of
Prolog, volume 2543 of Lecture Notes in Computer Science, pages 5–22. Springer-Verlag, Berlin,
2003.

[5] F. Casati, S. Ceri, S. Paraboschi, and G. Pozzi. Specification and Implementation of Exceptions
in Workflow Management Systems. ACM Transations on Database Systems, 24(3):405–451,
1999.

[6] D. Chiu, Q. Li, and K. Karlapalem. A Meta Modeling Approach to Workflow Management
Systems Supporting Exception Handling. Information Systems, 24(2):159–184, 1999.

[7] CPN Group, University of Aarhus, Denmark. CPN Tools Home Page.
http://wiki.daimi.au.dk/cpntools/.

[8] J. Eder, E. Panagos, and M. Rabinovich. Time Constraints in Workflow Systems. In M. Jarke and
A. Oberweis, editors, Proceedings of the 11th International Conference on Advanced Information
Systems Engineering (CAiSE ’99), volume 1626 of Lecture Notes in Computer Science, pages
286–300. Springer-Verlag, Berlin, 1999.

[9] Gartner. Gartner’s Application Development and Maintenance Research Note M-16-8153, The
BPA Market Catches another Major Updraft. http://www.gartner.com, 2002.

[10] D. Georgakopoulos, M. Hornick, and A. Sheth. An Overview of Workflow Management: From
Process Modeling to Workflow Automation Infrastructure. Distributed and Parallel Databases,
3:119–153, 1995.

[11] J.M.P. Gevers, W. van Eerde, and C.G. Rutte. Time pressure, potency, and progress in project
groups. European Journal of Work and Organizational Psychology, 10(2):205–221, 2001.

[12] D. Grigori, F. Casati, U. Dayal, and M.C. Shan. Improving Business Process Quality through
Exception Understanding, Prediction, and Prevention. In P. Apers, P. Atzeni, S. Ceri, S. Para-
boschi, K. Ramamohanarao, and R. Snodgrass, editors, Proceedings of 27th International Con-
ference on Very Large Data Bases (VLDB’01), pages 159–168. Morgan Kaufmann, 2001.

[13] C. Hagen and G. Alonso. Flexible Exception Handling in the OPERA Process Support System.
In International Conference on Distributed Computing Systems, pages 526–533, 1998.

[14] S.Y Hwang and J.Tang. Consulting Past Exceptions to Facilitate Workflow Exception Handling.
Decision Support Systems, 37(1):49–69, 2004.

[15] A. Iordachescu. FlowConnect: Process Timing and Distribution Concepts. Shared Web Services,
Ultimo, NSW, Australia, 2004.

[16] S. Jablonski and C. Bussler. Workflow Management: Modeling Concepts, Architecture, and
Implementation. International Thomson Computer Press, London, UK, 1996.

[17] K. Jensen. Coloured Petri Nets. Basic Concepts, Analysis Methods and Practical Use. Volume
1. EATCS monographs on Theoretical Computer Science. Springer-Verlag, Berlin, 1997.

25

[18] G. Keller, M. Nüttgens, and A.W. Scheer. Semantische Processmodellierung auf der Grundlage
Ereignisgesteuerter Processketten (EPK). Veröffentlichungen des Instituts für Wirtschaftsinfor-
matik, Heft 89 (in German), University of Saarland, Saarbrücken, 1992.

[19] M. Klein and C. Dellarocas. A Knowledge-Based Approach to Handling Exceptions in Workflow
Systems. Journal of Computer-Supported Collaborative Work, 9(”3-4”):399–412, 2000.

[20] P. Lawrence, editor. Workflow Handbook 1997, Workflow Management Coalition. John Wiley
and Sons, New York, 1997.

[21] Z. Luo, A. Sheth, K. Kochut, and J. Miller. Exception Handling in Workflow Systems. Applied
Intelligence, 13(2):125–147, 2000.

[22] E. Panagos and M. Rabinovich. Escalations in workflow management systems. In Proceedings of
the workshop on Databases: Active and Real Time (DART-96), pages 25–28. ACM Press, 1997.

[23] E. Panagos and M. Rabinovich. Reducing Escalation-Related Costs in WFMSs. In Workflow
Management Systems and Interoperability, pages 107–127. Springer-Verlag, Berlin, 1998.

[24] H.A. Reijers and W.M.P. van der Aalst. Short-Term Simulation: Bridging the Gap between
Operational Control and Strategic Decision Making. In M.H. Hamza, editor, Proceedings of the
IASTED International Conference on Modelling and Simulation, pages 417–421. IASTED/Acta
Press, Anaheim, USA, 1999.

[25] H. Saastamoinen and G.M. White. On handling exceptions. In Proceedings of the ACM Con-
ference on Organizational computing systems, pages 302–310. ACM Press, 1995.

[26] A.W. Scheer. ARIS: Business Process Modelling. Springer-Verlag, Berlin, 2000.

[27] A. Seers and S. Woodruff. Temporal pacing in task forces: Group development or deadline
pressure. Journal of Management, 23:169–187, 1997.

[28] Staffware. Staffware Process Suite Version 2 – White Paper. Staffware PLC, Maidenhead, UK,
2003.

[29] D.M. Strong and S.M. Miller. Exceptions and exception handling in computerized information
processes. ACM Transactions on Information Systems, 13(2):206–233, 1995.

[30] M. Weske, W.M.P. van der Aalst, and H.M.W. Verbeek. Advances in Business Process Man-
agement. Data and Knowledge Engineering, 50(1):1–8, 2004.

[31] R.M. Yerkes and J.D. Dodson. The relation of strength of stimulus to rapidity of habit-formation.
Journal of Comparative Neurology and Psychology, 18:459–482, 1908.

26

