
Deadline Based Resource Provisioning
and Scheduling Algorithm for Scientific

Workflows on Clouds

Maria Alejandra Rodriguez and Rajkumar Buyya

Abstract—Cloud computing is the latest distributed computing paradigm and it offers tremendous opportunities to solve large-scale

scientific problems. However, it presents various challenges that need to be addressed in order to be efficiently utilized for workflow

applications. Although the workflow scheduling problem has been widely studied, there are very few initiatives tailored for cloud

environments. Furthermore, the existing works fail to either meet the user’s quality of service (QoS) requirements or to incorporate

some basic principles of cloud computing such as the elasticity and heterogeneity of the computing resources. This paper proposes a

resource provisioning and scheduling strategy for scientific workflows on Infrastructure as a Service (IaaS) clouds. We present an

algorithm based on the meta-heuristic optimization technique, particle swarm optimization (PSO), which aims to minimize the overall

workflow execution cost while meeting deadline constraints. Our heuristic is evaluated using CloudSim and various well-known

scientific workflows of different sizes. The results show that our approach performs better than the current state-of-the-art algorithms.

Index Terms—Cloud computing, resource provisioning, scheduling, scientific workflow

Ç

1 INTRODUCTION

WORKFLOWS have been frequently used to model large-
scale scientific problems in areas such as bioinformat-

ics, astronomy, and physics [1]. Such scientific workflows
have ever-growing data and computing requirements and
therefore demand a high-performance computing environ-
ment in order to be executed in a reasonable amount of
time. These workflows are commonly modeled as a set of
tasks interconnected via data or computing dependencies.
The orchestration of these tasks onto distributed resources
has been studied extensively over the years, focusing on
environments like grids and clusters. However, with the
emergence of new paradigms such as cloud computing,
novel approaches that address the particular challenges and
opportunities of these technologies need to be developed.

Over the years, distributed environments have evolved
from shared community platforms to utility-based models;
the latest of these being cloud computing. This technology
enables the delivery of IT resources over the Internet [2],
and follows a pay-as-you-go model where users are charged
based on their consumption. There are various types of
cloud providers [2], each of which has different product
offerings. They are classified into a hierarchy of as-a-service
terms: Software as a Service (SaaS), Platform as a Service
(PaaS) and Infrastructure as a Service (IaaS). This paper
focuses on IaaS clouds which offer the user a virtual pool of

unlimited, heterogeneous resources that can be accessed on
demand. Moreover, they offer the flexibility of elastically
acquiring or releasing resources with varying configura-
tions to best suit the requirements of an application. Even
though this empowers the users and gives them more con-
trol over the resources, it also dictates the development of
innovative scheduling techniques so that the distributed
resources are efficiently utilized.

There are two main stages when planning the execution
of a workflow in a cloud environment. The first one is the
resource provisioning phase; during this stage, the comput-
ing resources that will be used to run the tasks are selected
and provisioned. In the second stage, a schedule is gener-
ated and each task is mapped onto the best-suited resource.
The selection of the resources and mapping of the tasks is
done so that different user defined quality of service (QoS)
requirements are met. Previous works in this area, espe-
cially those developed for Grids or Clusters, focused mostly
on the scheduling phase. The reason behind this is that these
environments provide a static pool of resources which are
readily available to execute the tasks and whose configura-
tion is known in advance. Since this is not the case in cloud
environments, both problems need to be addressed and
combined in order to produce an efficient execution plan.

Another characteristic of previous works developed for
clusters and grids is their focus on meeting application
deadlines or minimizing the makespan (total execution
time) of the workflow while ignoring the cost of the utilized
infrastructure. Whilst this is well suited for such environ-
ments, policies developed for clouds are obliged to consider
the pay-per-use model of the infrastructure in order to
avoid prohibitive and unnecessary costs.

Virtual machine (VM) performance is an additional
challenge presented by cloud platforms. VMs provided by
current cloud infrastructures do not exhibit a stable perfor-
mance in terms of execution times. In fact, Schad et al. [21]

� The authors are with the Cloud Computing and Distributed Systems
(CLOUDS) Laboratory, Department of Computing and Information
Systems, The University of Melbourne, Australia.
E-mail: mariaars@student.unimelb.edu.au, rbuyya@unimelb.edu.au.

Manuscript received 17 Dec. 2013; revised 18 Mar. 2014; accepted 23 Mar.
2014. Date of publication 1 Apr. 2014; date of current version 30 July 2014.
Recommended for acceptance by I. Bojanova, R.C.H. Hua, O. Rana, and M.
Parashar.
For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.
Digital Object Identifier no. 10.1109/TCC.2014.2314655

222 IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 2, NO. 2, APRIL-JUNE 2014

2168-7161� 2014 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



report an overall CPU performance variability of 24 percent
on Amazon’s EC2 cloud. The shared nature of the infrastruc-
ture as well as virtualization and the heterogeneity of the
underlying non-virtualized hardware are some of the rea-
sons behind such variability. This may have a significant
impact when scheduling workflows on clouds and may
cause the application to miss its deadline. Many scheduling
policies rely on the estimation of task runtimes on different
VMs in order to make a mapping decision. This estimation is
done based on the VMs computing capacity and if this capac-
ity is always assumed to be optimal during the planning
phase, the actual task execution will most probably take lon-
ger and the task will be delayed. This delay will also impact
the task’s children and the effect will continue to escalate
until the workflowfinishes executing.

Our work is based on the meta-heuristic optimization
technique, particle swarm optimization (PSO). PSO was first
introduced by Kennedy and Ebehart in [4] and is inspired on
the social behavior of bird flocks. It is based on a swarm of
particles moving through space and communicating with
each other in order to determine an optimal search direction.
PSO has better computational performance than other evolu-
tionary algorithms [4] and fewer parameters to tune, which
makes it easier to implement. Many problems in different
areas have been successfully addressed by adapting PSO to
specific domains; for instance this technique has been used to
solve problems in areas such as reactive voltage control [5],
pattern recognition [6] and datamining [7], among others.

In this paper, we develop a static cost-minimization,
deadline-constrained heuristic for scheduling a scientific
workflow application in a cloud environment. Our
approach considers fundamental features of IaaS providers
such as the dynamic provisioning and heterogeneity of
unlimited computing resources as well as VM performance
variation. To achieve this, both resource provisioning and
scheduling are merged and modeled as an optimization
problem. PSO is then used to solve such problem and pro-
duce a schedule defining not only the task to resource
mapping but also the number and type of VMs that need
to be leased, the time when they need to be leased and the
time when they need to be released. Our contribution is
therefore, an algorithm with higher accuracy in terms of
meeting deadlines at lower costs that considers heteroge-
neous resources that can be dynamically acquired and
released and are charged on a pay-per-use basis.

The rest of this paper is organized as follows. Section 2
presents the related work followed by the application and
resource models as well as the problem definition in
Section 3. Section 4 gives a brief introduction to PSO while
Section 5 explains the proposed approach. Finally, Section
6 presents the evaluation of the algorithm followed by the
conclusions and future work described in Section 7.

2 RELATED WORK

Workflow scheduling on distributed systems has been
widely studied over the years and is NP-hard by a reduc-
tion from the multiprocessor scheduling problem [7]. There-
fore it is impossible to generate an optimal solution within
polynomial time and algorithms focus on generating
approximate or near-optimal solutions. Numerous

algorithms that aim to find a schedule that meets the user’s
QoS requirements have been developed. A vast range of the
proposed solutions target environments similar or equal
to community grids. This means that minimizing the
application’s execution time is generally the scheduling
objective, a limited pool of computing resources is assumed
to be available and the execution cost is rarely a concern.
For instance, Rahman et al. [9] propose a solution based on
the workflow’s dynamic critical paths, Chen and Zhang [10]
elaborate an algorithm based on ant colony optimization
that aims to meet different user QoS requirements and,
finally, Yu and Buyya use Genetic Algorithms to implement
a budget constrained scheduling of workflows on utility
Grids [11].

The aforementioned solutions provide a valuable insight
into the challenges and potential solutions for workflow
scheduling. However, they are not optimal for utility-like
environments such as IaaS clouds. There are various charac-
teristics specific to cloud environments that need to be con-
sidered when developing a scheduling algorithm. For
example, Mao and Humphrey propose a dynamic approach
for scheduling workflow ensembles on clouds [12]. They
acknowledge that there are various types of VMs with dif-
ferent prices and that they can be leased on demand,
depending on the application’s requirements. Furthermore,
they tailor their approach so that the execution cost is mini-
mized based on the cloud’s pricing model, that is, VMs are
paid by a fraction of time, which in most cases is one hour.
They try to minimize the execution cost by applying a set of
heuristics such as merging tasks into a single one, identify-
ing the most cost-effective VM type for each task and con-
solidating instances. Although this is a valid approach
capable of reducing the execution cost of workflows on
clouds, the solution proposed only guarantees a reduction
on the cost and not a near-optimal solution.

Another recent work on workflow ensemble developed
for clouds is presented by Malawski et al. [13]. They pro-
pose various dynamic and static algorithms which aim to
maximize the amount of work completed, which they define
as the number of executed workflows, while meeting QoS
constraints such as deadline and budget. Their solutions
acknowledge different delays present when dealing with
VMs leased from IaaS cloud providers such as instance
acquisition and termination delays. Furthermore, their
approach is robust in the sense that the task’s estimated exe-
cution time may vary based on a uniform distribution and
they use a cost safety margin to avoid generating a schedule
that goes over budget. Their work, however, considers only
a single type of VM, ignoring the heterogeneous nature of
IaaS clouds.

While the algorithms presented by Mao and Humphrey
[12] and Malawski et al. [13] are designed to work with
workflow ensembles, they are still relevant to the work
done in this paper since they were developed specifically
for cloud platforms and as so include heuristics that try to
embed the platform’s model. More in line with our work is
the solution presented by Abrishami et al. [14] which
presents a static algorithm for scheduling a single workflow
instance on an IaaS cloud. Their algorithm is based on the
workflow’s partial critical paths and it considers cloud fea-
tures such as VM heterogeneity, pay-as-you-go and time

RODRIGUEZ AND BUYYA: DEADLINE BASED RESOURCE PROVISIONING AND SCHEDULING ALGORITHM FOR SCIENTIFIC WORKFLOWS... 223



interval pricing model. They try to minimize the execution
cost based on the heuristic of scheduling all tasks in a partial
critical path on a single machine which can finish the tasks
before their latest finish time (which is calculated based on
the application’s deadline and the fastest available
instance). However, they do not have a global optimization
technique in place capable of producing a near-optimal
solution; instead, they use a task level optimization and
hence fail to utilize the whole workflow structure and char-
acteristics to generate a better solution.

Other authors have used PSO to solve the workflow
scheduling problem. Pandey et al. [15] propose a PSO based
algorithm to minimize the execution cost of a single work-
flow while balancing the task load on the available resour-
ces. While the cost minimization objective is highly desired
in clouds, the load balancing one makes more sense in a
non-elastic environment such as a cluster or a grid. The exe-
cution time of the workflow is not considered in the schedul-
ing objectives and therefore this value can be considerably
high as a result of the cost minimization policy. The authors
do not consider the elasticity of the cloud and assume a fixed
set of VMs is available beforehand. For this reason, the solu-
tion presented is similar to those used for grids where the
schedule generated is a mapping between tasks and resour-
ces instead of a more comprehensive schedule indicating
the number and type of resources that need to be leased,
when they should be acquired and released, and in which
order the tasks should be executed on them.

Wu et al. [16] also use PSO to produce a near-optimal
schedule. Their work focuses on minimizing either cost or
time while meeting constraints such as deadline and bud-
get. Despite the fact that their heuristic is able to handle het-
erogeneous resources, just as Pandey et al. [15], it assumes
an initial set of VMs is available beforehand and hence lacks
in utilizing the elasticity of IaaS clouds.

Finally, Byun et al. [23] develop an algorithm that esti-
mates the optimal number of resources that need to be
leased so that the execution cost of a workflow is mini-
mized. Their algorithm also generates a task to resource
mapping and is designed to run online. The schedule and
resources are updated every charge time interval (i.e., every
hour) based on the current status of the running VMs and
tasks. Their approach takes advantage of the elasticity of the
cloud resources but fails to consider the heterogeneous
nature of the computing resources by assuming there is
only one type of VM available.

3 PROBLEM FORMULATION

3.1 Application and Resource Models

Aworkflow applicationW ¼ ðT;EÞ is modeled as a directed
acyclic graph (DAG) where T ¼ t1; t2; . . . ; tnf g is the set of
tasks and E is the set of directed edges. An edge eij of the
form ðti; tjÞ exists if there is a data dependency between ti
and tj, case in which ti is said to be the parent task of tj and
tj is said to be the child task of tj. Based on this definition, a
child task cannot be executed until all of its parent tasks are
completed. A sample workflow is shown in Fig. 1. In addi-
tion, each workflow W has a deadline dW associated to it.
A deadline is defined as a time limit for the execution of
the workflow.

The IaaS cloud provider offers a range of VM types. A
VM type VMi is defined in terms of its processing capacity
PVMi

and cost per unit of time CVMi
. We target workflow

applications such as those presented by Juve et al. [1]. Based
on the profiling results obtained in their work for memory
consumption and the VM types offered by Amazon EC2,
we assume that VMs have sufficient memory to execute the
workflow tasks.

We assume that for every VM type, the processing capac-
ity in terms of floating point operations per second (FLOPS)
is available either from the provider or can be estimated
[17]. This information is used in our algorithm to calculate
the execution time of a task on a given VM. Performance
variation is modeled by adjusting the processing capacity of
each leased VM and introducing a performance degradation
percentage degVMi

.
The unit of time t in which the pay-per-use model is

based is specified by the provider; any partial utilization of
the leased VM is charged as if the full time period was con-
sumed. For instance, for t ¼ 60 minutes, if a VM is used
for 61 minutes, the user will pay for two periods of
60 minutes, that is, 120 minutes. Also, we assume that
there is no limitation on the number of VMs that can be
leased from the provider.

The execution time ET
VMj
ti

of task ti in a VM of type
VMj and is estimated using the size Iti of the task in terms
of floating point operations (FLOP). This is depicted in
Equation (1). Additionally, TTeij is defined as the time it
takes to transfer data between a parent task ti and its
child tj and is calculated as depicted in Equation (2). To
calculate TTeij we assume that the size of the output data
doutti

produced by task ti is known in advance and that the
entire workflow runs on a single data center or region.
This means that all the leased instances are located on the
same region and that the bandwidth b between each VM
is roughly the same. Notice that the transfer time between
two tasks being executed on the same VM is 0. Finally,
the total processing time PT

VMj
ti

of a task in a VM is com-
puted as shown in Equation (3), where k is the number of
edges in which ti is a parent task and sk is 0 whenever ti
and tj run on the same VM or 1 otherwise:

ET
VMj
ti

¼ Iti=ðPVMj
�ð1� degvmj

ÞÞ; (1)

TTeij ¼ doutti
=b; (2)

PT
VMj
ti

¼ ET
VMj
ti

þ
X

k

1

TTeij�sk

 !

: (3)

Fig. 1. Sample workflow. Each node represents a task and the arcs show
the data transfer times between nodes.

224 IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 2, NO. 2, APRIL-JUNE 2014



Many IaaS providers do not charge for data transfers if
they are made within the same data center; hence, we do
not consider this fee when calculating the workflow’s execu-
tion cost. Nevertheless, we do consider the fact that a VM
needs to remain active until all the output data of the run-
ning task is transferred to the VMs running the child tasks.
Moreover, when a VM is leased, it requires an initial boot
time in order for it to be properly initialized and be made
available to the user; this time is not negligible and needs to
be considered in the schedule generation as it could have a
considerable impact on the same. We acknowledge such
delay present in most cloud providers [21] when generating
our schedule and calculating the overall cost for the execu-
tion of the workflow.

3.2 Problem Definition

Resource provisioning and scheduling heuristics may have
different objectives; this work focuses on finding a schedule
to execute a workflow on IaaS computing resources such
that the total execution cost is minimized and the deadline is
met. We define a schedule S ¼ ðR;M; TEC; TET Þ in terms of
a set of resources, a task to resource mapping, the total exe-
cution cost and the total execution time. Fig. 2 shows a sam-
ple schedule generated for the workflow depicted in Fig. 1.
R ¼ fr1; r2; . . . ; rng is the set of VMs that need to be leased;
each resource ri has a VM type VMri associated to it as well
as an estimated lease start time LSTri and lease end time
LETri . M represents a mapping and is comprised of tuples
of the form m

rj
ti
¼ ðti; rj; STti ; ETtiÞ, one for each workflow

task. A mapping tuplem
rj
ti
is interpreted as follows: task ti is

scheduled to run on resource rj and is expected to start exe-
cuting a time STti and complete by time ETti . Equations (4)
and (5) show how the total execution cost TEC and total exe-
cution time TET are calculated:

TEC ¼
X

jRj

i¼1

CVMri
�

ðLETri � LSTriÞ

t

� �

; (4)

TET ¼ maxfETti : ti 2 Tg: (5)

Based on the previous definitions, the problem can be
formally defined as follows: find a schedule S with mini-
mum TEC and for which the value of TET does not exceed
the workflow’s deadline. This is depicted in Equation (6).

Minimize TEC

subject to TET � dW :
(6)

4 PARTICLE SWARM OPTIMIZATION

Particle swarm optimization is an evolutionary computa-
tional technique based on the behavior of animal flocks. It
was developed by Eberhart and Kennedy [4] in 1995 and
has been widely researched and utilized ever since. The
algorithm is a stochastic optimization technique in which
the most basic concept is that of particle. A particle repre-
sents an individual (i.e., fish or bird) that has the ability to
move through the defined problem space and represents a
candidate solution to the optimization problem. At a given
point in time, the movement of particles is defined by their
velocity, which is represented as a vector and therefore has
magnitude and direction. This velocity is determined by the
best position in which the particle has been so far and the
best position in which any of the particles has been so far.
Based on this, it is imperative to be able to measure how
good (or bad) a particle’s position is; this is achieved by
using a fitness function that measures the quality of the par-
ticle’s position and varies from problem to problem,
depending on the context and requirements.

Each particle is represented by its position and velocity.
Particles keep track of their best position pbest and the
global best position gbest; values that are determined based
on the fitness function. The algorithm will then at each step,
change the velocity of each particle towards the pbest and
gbest locations. How much the particle moves towards these
values is weighted by a random term, with different ran-
dom numbers generated for acceleration towards pbest and
gbest locations [18]. The algorithm will continue to iterate
until a stopping criterion is met; this is generally a specified
maximum number of iterations or a predefined fitness value
considered to be good enough. The pseudo code for the
algorithm is shown in Algorithm 1. In each iteration, the
position and velocity of a particle are updated based in
Equations (7) and (8) respectively:

~xi tþ 1ð Þ ¼ ~xi tð Þ þ~vi tð Þ; (7)

~viðtþ 1Þ ¼ v �~viðtÞ þ c1r1ð~x
�
i ðtÞ �~xiðtÞÞ

þ c2r2ð~x
�ðtÞ �~xiðtÞÞ;

(8)

where:

v ¼ inertia;

ci ¼ acceleration coefficient; i ¼ 1; 2

ri ¼ random number; i ¼ 1; 2 and ri 2 ½0; 1�

~x�
i ¼ best position of particle i

~x� ¼ position of the best particle in the population

~xi ¼ current position of particle i

The velocity equation contains various parameters that
affect the performance of the algorithm; moreover, some of
them have a significant impact on the convergence of the
algorithm. One of these parameters is v, which is known as
the inertia factor or weight and is crucial for the algorithm’s
convergence. This weight determines how much previous
velocities will impact the current velocity and defines a
tradeoff between the local cognitive component and global
social experience of the particles. On one hand, a large

Fig. 2. Example of a schedule generated for the workflow shown in
Fig. 1. Each task is mapped onto one of the three available resources.
Parent tasks are executed before their children ensuring the data depen-
dencies are met.

RODRIGUEZ AND BUYYA: DEADLINE BASED RESOURCE PROVISIONING AND SCHEDULING ALGORITHM FOR SCIENTIFIC WORKFLOWS... 225



inertia weight will make the velocity increase and therefore
will favor global exploration. On the other hand, a smaller
value would make the particles decelerate and hence favor
local exploration. For this reason, a v value that balances
global and local search implies fewer iterations in order for
the algorithm to converge.

Conversely, c1 and c2 do not have a critical effect in the
convergence of PSO. However, tuning them properly may
lead to a faster convergence and may prevent the algorithm
to get caught in local minima. Parameter c1 is referred to as
the cognitive parameter as the value c1r1 in Equation (8)
defines how much the previous best position matters. On
the other hand, c2 is referred to as the social parameter as
c2r2 in Equation (8) determines the behavior of the particle
relative to other neighbors.

There are other parameters that are not part of the velocity
definition and are used as input to the algorithm. The first
one is the number of particles; a larger value generally
increases the likelihood of finding the global optimum. This
number varies depending on the complexity of the optimiza-
tion problem but a typical range is between 20 and 40 par-
ticles. Other two parameters are the dimension of the
particles and the range in which they are allowed to move,
these values are solely determined by the nature of the prob-
lem being solved and how it is modeled to fit into PSO.
Finally, the maximum velocity defines the maximum change
a particle can have in one iteration and can also be a parame-
ter to the algorithm; however, this value is usually set to be
as big as the half of the position range of the particle.

5 PROPOSED APPROACH

5.1 PSO Modeling

There are two key steps when modeling a PSO problem. The
first one is defining how the problem will be encoded, that
is, defining how the solution will be represented. The sec-
ond one is defining how the “goodness” of a particle will be
measured, that is, defining the fitness function.

To define the encoding of the problem, we need to estab-
lish the meaning and dimension of a particle. For the sched-
uling scenario presented here, a particle represents a
workflow and its tasks; thus, the dimension of the particle is
equal to the number of tasks in the workflow. The dimen-
sion of a particle will determine the coordinate system used
to define its position in space. For instance, the position of a
two-dimensional particle is specified by two coordinates,

the position of a three-dimensional one is specified by three
coordinates and so on. As an example, the particle depicted
in Fig. 3 represents a workflow with nine tasks; the particle
is a nine-dimensional one and its position is defined by nine
coordinates, coordinates 1 through 9.

The range in which the particle is allowed to move is
determined in this case by the number of resources avail-
able to run the tasks. As a result, the value of a coordinate
can range from 0 to the number of VMs in the initial
resource pool. Based on this, the integer part of the value of
each coordinate in a particle’s position corresponds to a
resource index and represents the compute resource
assigned to the task defined by that particular coordinate. In
this way, the particle’s position encodes a mapping of task
to resources. Following the example given in Fig. 3; there
are three resources in the resource pool so each coordinate
will have a value between 0 and 3. Coordinate 1 corre-
sponds to task 1 and its value of 1.2 means that this task
was assigned to resource 1. Coordinate 2 corresponds to
task 2 and its value of 1.0 indicates that task 2 was assigned
to resource 1. The same logic applies to the rest of the coor-
dinates and their values.

Since the fitness function is used to determine how good
a potential solution is, it needs to reflect the objectives of the
scheduling problem. Based on this, the fitness function will
be minimized and its value will be the total execution cost
TEC associated to the schedule S derived from the particle’s
position. How this schedule is generated is explained later
in this section.

Because of the elasticity and dynamicity of the resource
acquisition model offered by IaaS providers, there is no ini-
tial set of available resources we can use as an input to the
algorithm. Instead, we have the illusion of an unlimited
pool of heterogeneous VMs that can be acquired and
released at any point in time. Consequently, a strategy to
define an initial pool of resources that the algorithm can use
to explore different solutions and achieve the scheduling
objective needs to be put in place.

Such strategy needs to reflect the heterogeneity of the
VMs and give PSO enough options so that a suitable particle
(i.e., solution) is produced. If this initial resource pool is lim-
ited, then so will be the resources that can be used to sched-
ule the tasks. If it is very large, then the number of possible
schedules becomes very large and so does the search space
explored by PSO, making it difficult for the algorithm to
converge and find a suitable solution.

Fig. 3. Example of the encoding of a particle’s position. There are nine
tasks to schedule so the particle is nine-dimensional and its position has
nine coordinate values. The coordinate index (coordinate 1 through
coordinate 9) maps onto a task ðt1 through t9Þ. The value of each coordi-
nate is a real number between 0 and the number of available resources,
in this case 3. When rounded with the floor function, this values maps
onto a resource ðr1 through r3Þ.

226 IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 2, NO. 2, APRIL-JUNE 2014



A possible approach would be to project the illusion of
unlimited resources into the algorithm by simulating a
pool of VMs, one of each type for each task. Notice that at
this stage, the algorithm is evaluating various solutions
and therefore no VMs need to be actually leased; a simple
representation of them is sufficient for the algorithm to
work at this point. This strategy though, may result in a
very large VM pool and hence a very large search space.

Instead, to reduce the size of the search space, we pro-
pose the following scheme. Let P be the set containing the
maximum number of tasks that can run in parallel for a
given workflow; then the initial resource pool Rintial that
PSO will use to find a near-optimal schedule will be com-
prised of one VM of each type for each task in P . Our algo-
rithm will then select the appropriate number and type of
VMs to lease from this resource pool. In this way, we reflect
the heterogeneity of the computing resources and reduce
the size of the search space while still allowing the algo-
rithm to execute all the tasks that can run in parallel to do
so. The size of Rintial would then be equal to Pj j � n (where
n is the number of available VM types) and thus, it is possi-
ble for PSO to select more than Pj j resources if required
(unless n ¼ 1).

As for the problem constraints, PSO was not designed
to solve constrained optimization problems. To address
this, we use a version of PSO that incorporates the con-
straint-handling strategy proposed by Deb et al. [20]. In
such strategy, whenever two solutions are being com-
pared, the following rules are used to select the better
one. If both of the solutions are feasible, then the solution
with better fitness is selected. If on the other hand, one
solution is feasible and the other one is not, then the feasi-
ble one is selected. Finally, if both solutions are infeasible,
the one with the smaller overall constraint violation is
selected. The latter scenario implies that a measure of
how much a solution violates a constraint needs to be in
place. Our problem specifies a single constraint, meeting
the application’s deadline. Therefore, we define the over-
all constraint violation value of a solution to be the differ-
ence between the solution’s makespan and the
workflow’s deadline. In this way, a solution whose make-
span is closer to the deadline will be favored over a solu-
tion whose makespan is further away.

5.2 Schedule Generation

The pseudo-code to convert a particle’s position into a
schedule is shown in Algorithm 2. Initially, the set of
resources to lease R and the set of task to resource map-
pings M are empty and the total execution cost TECand
time TET are set to zero. After this, the algorithm esti-
mates the execution time of each workflow task on every
resource ri 2 Rinitial. This is expressed as a matrix in which
the rows represent the tasks, the columns represent the
resources and the entry ExeTime½i; j� represent the time it
takes to run task ti on resource rj. This time is calculated
using Equation (1). The next step is the calculation of the
data transfer time matrix. Such matrix is represented as a
weighted adjacency matrix of the workflow DAG where
the entry TransferTime½i; j� contains the time it takes to
transfer the output data of task ti to task tj. This value is
calculated using Equation (2) and is zero whenever i ¼ j

or there is no directed edge connecting tiand tj. An exam-
ple of these matrices is shown in Fig. 4.

Fig. 4. Sample execution and data transfer time matrix. (a) Execution
time matrix. (b) Data transfer time matrix.

RODRIGUEZ AND BUYYA: DEADLINE BASED RESOURCE PROVISIONING AND SCHEDULING ALGORITHM FOR SCIENTIFIC WORKFLOWS... 227



At this point the algorithm has all the information
needed to begin decoding the particle’s position and con-
structing the schedule. To achieve this, it iterates through
every coordinate i in the position array pos and updates
R and M as follows. First, it determines which task and
which resource are associated to the current coordinate
and its value. This is accomplished by using the encod-
ing strategy depicted earlier, whi states that coordinate i
corresponds to task ti and its value pos i½ �corresponds to
resource rpos½i� 2 Rinitial. Now that the first two compo-
nents of a mapping tuple are identified, the algorithm
calculates the value of the remaining two, the start STti

and end ETti times of the task.
The start time value STti is based on two scenarios. In the

first case, the task has no parents and therefore it can start
running as soon as the resource it was assigned to is avail-
able; this value corresponds to the current end of lease time
of resource rpos½i�, which is LETrpos½i�

. In the second case, the
task has one or more parents. In this situation, the task can
start running as soon as the parent task that is scheduled to
finish last completes its execution and the output data is
transferred. However, if the resource is busy with another
task at this time, the execution has to be delayed until such
VM is free to execute ti.

The value of ETti is calculated based on the total process-
ing time and the start time of the task. To determine the
processing time PT

rpos½j�
ti

we first need to compute the execu-
tion and the data transfer times. The former is simply the
value in ExeTime½i; pos½i�� whereas the latter is computed
by adding the values in TransferTime½i; childðiÞ� for every
child task tchildðiÞ of ti which is mapped to run in a resource
different to rpos½i�. These two values are then added to obtain
PT

rpos½j�
ti

as defined in Equation (3). Finally we obtain the
value of ETti by subtracting STti from PT

rpos½j�
ti

.
Now that we have computed all the elements of m

rpos½i�
ti

¼
ðti; rpos½i�; STti ; ETtiÞ we need to update two parameters
associated to rpos½i� and add the resource to R if necessary.
The first parameter is the time when the VM should be
launched, LSTrpos½i�

. If the resource already exists in R then
this means that it already has a start time and LSTrpos½i�

does
not need to be updated. However, if the resource is new
and tiis the first task to be assigned to it then R is updated
so that it contains the new resource rpos½i� and LSTrpos½i�

is set

to be equal to either the start time of the task or the VM boot
time, whichever is bigger. In this way, we account for VM
boot time and do not assume that a resource is available
to use as soon as it is requested. The second parameter
we need to update is LETrpos½i�

, this is the time when the
resource is scheduled to finish executing the last task
assigned to it and therefore is free to either run another task
or be shutdown. The new lease end time of rpos½i� is thus the
time it takes to process the task ti ðPT

rpos½j�
ti

Þ, plus the time
when the resource is scheduled to start running, LSTrpos½i�

.
Once the algorithm finishes processing each coordinate

in the position vector, R will contain all the resources that
need to be leased as well as the times when they should be
started and shutdown. Additionally, the entire task to
resource mapping tuples will be in M and each task will
have a resource assigned to it as well as an estimated start
and end times. With this information, the algorithm can
now use Equations (4) and (5) to compute the execution cost
TEC and time TET associated to the current solution. After
this, the algorithm has computed R, M, TEC and TET
and therefore it can construct and return the schedule asso-
ciated to the given particle’s position.

Finally, Algorithms 1 and 2 are combined to produce a
near optimal schedule. In step 3 of Algorithm 1, instead of
calculating the fitness value of the particle, we generate the
schedule as outlined in Algorithm 2. Then we use TEC as a
fitness value in steps 4 through 6 and introduce the con-
straint handling mechanism in step 4, ensuring that TET
doesn’t exceed the application’s deadline.

6 PERFORMANCE EVALUATION

In this section we present the experiments conducted in
order to evaluate the performance of the proposed
approach. We used the CloudSim framework [19] to simu-
late a cloud environment and chose four different work-
flows from different scientific areas: Montage, LIGO,
SIPHT, and CyberShake. Each of these workflows has dif-
ferent structures as seen in Fig. 5 and different data and
computational characteristics. The Montage workflow is an
astronomy application used to generate custom mosaics of
the sky based on a set of input images. Most of its tasks are
characterized by being I/O intensive while not requiring

Fig. 5. Structure of the four different workflows used in the experiments. (a) Montage. (b) LIGO. (c) SIPHT. (d) CyberShake.

228 IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 2, NO. 2, APRIL-JUNE 2014



much CPU processing capacity. The LIGO workflow is used
in the physics field with the aim of detecting gravitational
waves. This workflow is characterized by having CPU
intensive tasks that consume large memory. SIPHT is used
in bioinformatics to automate the process of searching for
sRNA encoding-genes for all bacterial replicons in the
National Center for Biotechnology Information1 database.
Most of the tasks in this workflow have a high CPU and low
I/O utilization. Finally, CyberShake is used to characterize
earthquake hazards by generating synthetic seismograms
and may be classified as a data intensive workflow with
large memory and CPU requirements. The full description
of these workflows is presented by Juve et al. [1].

When leasing a VM from an IaaS provider, the user
has the ability to choose different machines with varying
configurations and prices. The first variation of our algo-
rithm, referred to as PSO, considers this heterogeneous
environment. However, in order to evaluate if this
resource heterogeneity has an impact on the makepsan
and cost of a workflow execution, we propose a second
variation of our algorithm called PSO_HOM. PSO_HOM
considers a homogeneous environment in which only a
single type of VM is used.

We used the IC-PCP [14] and SCS [12] algorithms as a
baseline to evaluate our solution. As mentioned in Section 2,
IC-PCP was designed for the same problem addressed in
this paper: schedule a single workflow instance in an IaaS
cloud whilst minimizing the execution cost and meeting the
application’s deadline. What is more, the algorithm consid-
ers many of the characteristics typical of IaaS resource mod-
els. For instance, the IC-PCP algorithm accounts for
heterogeneous VMs which can be acquired on demand and
are priced based on a predefined interval of time. It also con-
siders data transfer times in addition to computation times
of each task. However, IC-PCP does not account for VM
startup time.

The IC-PCP algorithm begins by finding a set of tasks or
critical paths associated to each exit node of the workflow
(an exit node is defined as a node with no children tasks).
The tasks on each path are scheduled on the same VM and
are preferably assigned to an already leased instance which
can meet the latest finish time requirements of the tasks.
However, if this cannot be achieved, the cheapest instance
that can finish the tasks before their latest finish time is
leased and the path assigned to it. Finally, a critical path for
each unassigned task on the scheduled path is calculated
and the process is repeated until all tasks have been sched-
uled. At the end of this process, each task has been assigned
to a VM and has a start and end times associated to it. Addi-
tionally, each VM has a start time determined by the start
time of its first scheduled task and an end time determined
by the end time of its last scheduled task.

SCS on the other hand, is a dynamic algorithm designed
to schedule a group of workflows, instead of a single one.
It can however be used to schedule a single instance with-
out any modification. We chose this algorithm as it has the
same scheduling objectives and considers the same cloud
model as in this paper. What is more, it is of interest to

compare the performance of a static approach versus a
dynamic one.

The SCS algorithm first identifies and bundles tasks
with a one-to-one dependency into a single one. This is
done in order to reduce data transfer times. After this, the
overall deadline of the workflow is distributed over the
tasks, with each task receiving a portion of the deadline
based on the VM which is most cost-efficient for the task.
The technique used to achieve this deadline assignment is
done based on the work by Yu et al. [24]. The next step is
to define a load vector for each VM type; this load vector
indicates how many machines are needed in order for the
tasks to finish by their assigned deadline at a given point
in time. This value is calculated based on the execution
interval derived from the deadline assignment phase and
the estimated running time of a task on the specific
instance type. Afterwards, the algorithm proceeds to con-
solidate partial instance hours by merging tasks running
on different instance types into a single one if one of the
VMs has idle time and can complete the additional task by
its original deadline. Finally, earliest deadline first is used
to map tasks onto running VMs; the task with the earliest
deadline is scheduled as soon as an instance of the corre-
sponding type is available.

We modeled an IaaS provider offering a single data cen-
ter and six different types of VMs. The VM configurations
are based on current Amazon EC22 offerings and are pre-
sented in Table 1. We used the work by Ostermann et al.
[17] to estimate the processing capacity in MFLOPS based
on the number of EC2 compute units. Each application was
evaluated using three different workflow sizes, small, large,
and extra large. Small workflows have 50 tasks on average
whereas large ones have 100 and extra large ones 1,000.

We used a VM billing interval of 1 hour and a boot
time of 97 seconds. We chose the latter value based on
the results obtained by Mao and Humphrey [22] for
Amazon’s EC2 cloud. Each experiment was executed
20 times and the results displayed are those obtained for
the large workflows.

One of the assumptions made by the evaluated algo-
rithms is that the execution time of the tasks is known in
advance; considering they target scientific workflows with
well-known tasks and structures, it is reasonable to make
such assumption and expect a quite accurate estimation.
However, we acknowledge that such estimations are not 100
percent accurate and therefore introduce in our simulation a

TABLE 1
Type of VMs Used in the Experiments

1. National Center for Biotechnology Information http://www.
ncbi.nlm.nih.gov/. 2. Amazon EC2. http://aws.amazon.com/ec2/.

RODRIGUEZ AND BUYYA: DEADLINE BASED RESOURCE PROVISIONING AND SCHEDULING ALGORITHM FOR SCIENTIFIC WORKFLOWS... 229



variation of �10 percent to the provided task size based on a
normal distribution.

Performance variation was modeled after Schad et al.
[21] findings; the performance of each VM in the datacenter
was diminished by at most 24 percent based on a normal
distribution with mean 12 percent and standard deviation
of 10 percent . In addition to this performance degradation,
we modeled a data transfer variation of 19 percent [21]; the
bandwidth available for each data transfer within the data
center was subject to a degradation of at most 19 percent
based on a normal distribution with mean 9.5 percent and a
standard deviation of 5 percent.

The experiments were conducted using four different
deadlines. These deadlines were calculated so that their val-
ues lie between the slowest and the fastest runtimes. To cal-
culate these runtimes, two additional policies were
implemented. The first one calculates the schedule with the
slowest execution time; a single VM of the cheapest type is
leased and all the workflow tasks are executed on it. The
second one calculates the schedule with the fastest execu-
tion time; one VM of the fastest type is leased for each work-
flow task. Although these policies ignore data transfer
times, they are still a good approximation to what the slow-
est and fastest runtimes would be. To estimate each of the
four deadlines, the difference between the fastest and the
slowest times is divided by five to get an interval size. To
calculate the first deadline interval we add one interval size
to the fastest deadline, to calculate the second one we add
two interval sizes and so on. In this way we analyze the
behavior of the algorithms as the deadlines increase from
stricter values to more relaxed ones.

To select the best value for the PSO parameters c1; c2, and
v, we defined an artificial workflow with 100 tasks and ran
the algorithm with different parameter values. The values
of c1 and c2 were varied from 1.5 to 2.0 and v ranged from
0.1 to 1.0. To compare the results we considered the average
workflow execution cost after running each experiment
10 times. We found the impact of c1 and c2 to be negligible.
The inertia value v had a slightly higher impact with the
lowest average cost obtained with a value of 0.5. Based on
this we define c1 ¼ c2 ¼ 2:0 and v ¼ 0:5 and use these
parameter values in the rest of our experiments. The num-
ber of particles was set to 100.

6.1 Results and Analysis

6.1.1 Deadline Constraint Evaluation

To analyze the algorithms in terms of meeting the user
defined deadline, we plotted the percentage of deadlines
met for each workflow and deadline interval. The results
are displayed in Fig. 6. For the Montage workflow, IC-
PCP fails to meet all of the deadlines. PSO_HOM meets
fewer than 50 percent of the deadlines on interval 1 but
improves its performance on interval 2 and achieves a
100 percent hit rate for both intervals 3 and 4. PSO and
SCS are the best performing algorithms in terms of dead-
lines met with PSO meeting slightly less deadlines on
intervals 1 and 2 but achieving 100 percent on the last
two intervals.

The results for the SIPHT application again show that IC-
PCP fails to meet the most number of deadlines and its per-
formance is significantly worse than that of the other

Fig. 6. Individual value plot of deadlines met for each workflow and deadline interval.

230 IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 2, NO. 2, APRIL-JUNE 2014



algorithms. SCS, PSO and PSO_HOM all meet the deadline
over 95 percent of the times for intervals 2, 3 and 4.

The results obtained for the LIGO workflow and the SCS,
PSO and PSO_HOM algorithms are very similar to those
obtained for the SIPHT workflow. IC-PCP on the other
hand is unable to meet any of the first three deadlines with
a 0 percent hit rate. Its performance improves considerably
for the 4th interval where it achieves a 100 percent hit rate.

As for the CyberShake workflow, IC-PCP meets the least
amount of deadlines with the highest percentage being 30
percent on deadline interval 3. For deadline interval 1, SCS
and PSO have the lowest percentages; however, as opposed
to IC-PCP, SCS and the PSO based algorithms perform bet-
ter as the deadline becomes more relaxed. The performance
of PSO, PSO_HOM and SCS is similar from deadline inter-
val 2 onwards. Overall, IC-PCP is outperformed by the
other three algorithms. The percentage of deadlines met by
this algorithm greatly differs from its counterparts and is in
most cases under 50 percent. A possible explanation for this
is the fact that IC-PCP fails to capture the dynamicity of the
cloud by ignoring performance variation. Another feature
that is not considered by the algorithm is the VM startup
time, delay which is not negligible and might have a signifi-
cant impact on the schedule, especially when a large num-
ber of VMs are needed to meet the specified deadline. SCS
on the other hand, has a 100 percent hit rate in most of the
cases. This are the results expected of an online algorithm as
it was designed to adapt to the conditions of the cloud to
ensure the deadlines are met. Both PSO and PSO_HOM

have a very similar performance to SCS having a 100 per-
cent hit rate in most of the cases. Even though our approach
is offline, as is IC-PCP, we succeed in considering the
dynamic nature of the cloud and the variability of CPU per-
formance. Overall, PSO, PSO_HOM and SCS meet the most
number of deadlines for all of the workflows, making them
the most appealing algorithms for the scheduling problem
stated in this paper. There is a considerable difference in the
percentage of deadlines met by IC-PCP and these three
algorithms.

6.1.2 Makespan Evaluation

The values obtained for the makespan of each of the work-
flows are displayed in Fig. 7. The dotted line on each panel
of each graph corresponds to the deadline value for the
given interval. Evaluating the makespan with regards to
this value is essential as all of the algorithms were designed
to meet the given deadline. For the LIGO and Montage
workflows, IC-PCP fails to meet this goal by producing
schedules which take longer time to execute on average
than the workflow’s deadline. In fact, for the four deadline
intervals, the Q1 (first quartile), median and Q3 (third quar-
tile) values obtained with IC-PCP are considerably higher
than the deadline. For the LIGO workflow, both of the PSO
approaches and SCS have medians well below the deadline
value for the four intervals and Q3 values smaller than the
deadline on intervals 2, 3 and 4. This means that in at least
75 percent of the cases, they are able to produce schedules
that finish on time. What is more, PSO has the lowest

Fig. 7. Boxplot of makespan by algorithm for each workflow and deadline interval. The reference line on each panel indicates the deadline value of
the corresponding deadline interval.

RODRIGUEZ AND BUYYA: DEADLINE BASED RESOURCE PROVISIONING AND SCHEDULING ALGORITHM FOR SCIENTIFIC WORKFLOWS... 231



average makespans on all the intervals followed by PSO_-
HOM for intervals 2 through 4. The results are similar for
the Montage workflow.

In the Sipht workflow case, PSO and PSO_HOM have the
lowest average makespans while IC-PCP has the highest on
every case. SCS has higher average makespans than both of
the PSO approaches. PSO, PSO_HOM and SCS have median
values lower than the deadline in every case and for dead-
line intervals 2 through 4 they have lower Q3 values.

IC-PCP performs better with the CyberShake workflow.
It seems to have the best performance for deadline interval
1 with an average execution time close to the deadline.
However, PSO performs similarly with a slightly higher
median. For deadline interval 2, IC-PCP has the hi-guest
Q1 value which is also higher than the deadline. PSO gen-
erates the fastest schedules on average with the lowest Q1,
median and Q3 values. The results are similar for the
deadline interval 3 but SCS has a lower Q3 value and less
variation than PSO and PSO_HOM, resulting in a smaller
average makespan. The average execution time for IC-PCP
on deadline interval 4 is above the deadline value, while
both of the PSO based approaches and SCS have Q3 values
smaller than the deadline.

These results are in line with those analyzed in the
deadline constraint evaluation section, from which we
were able to conclude that IC-PCP is not very efficient in
meeting the deadlines whereas the other three heuristics
are. For the LIGO and Montage workflows, the difference
is substantial on every case. For the CyberShake and
SIPHT workflows on the other hand, when larger than the
deadline, the average IC-PCP makespan is only slightly
larger than the deadline. Furthermore, IC-PCP and SCS
being heuristic based algorithms are much more predict-
able in the sense that the execution time does not vary
much from run to run. PSO_HOM and PSO on the con-
trary exhibit a larger makespan variation, which is
expected as it is a meta-heuristic based approach with a
very large search space.

6.1.3 Cost Evaluation

The average execution costs obtained for each workflow
are shown in Fig. 8. We also show the mean makespan as
the algorithms should be able to generate a cost-efficient
schedule but not at the expense of a long execution time.
The reference line on each panel displaying the mean
makespan is the deadline corresponding to the given
deadline interval. We present this as there is no use in an
algorithm generating very cheap schedules but not meet-
ing the deadlines; the cost comparison is made therefore,
amongst those heuristics which managed to meet the par-
ticular deadline in a give case.

For the Montage workflow, IC-PCP execution costs are
the lowest ones for the four deadline intervals but its execu-
tion times are on average much higher than each of the four
deadlines. Amongst the algorithms that do comply with the
deadline constraint, PSO obtains the lowest cost on deadline
interval 1; PSO_HOM on deadline interval 2 and finally,
PSO for deadline intervals 3 and 4. From the results, it is
clear that the PSO based strategies perform better than SCS
in terms of cost by generating much cheaper schedules. The
differences in costs are very pronounced for this workflow,

with the costs obtained by the algorithms being significantly
different to each other, especially when comparing the
cheapest and the most expensive one. A possible explana-
tion for this might be the fact that heuristics such as SCS
and PSO lease more VMs in order to meet the deadline; this,
combined with the fact that the Montage tasks are relatively
small, means that the machines are only used for a small
amount of time but charged for the full billing period. The
reason for IC-PCP generating schedules with such a low
cost and large makespan might be accounted to it not con-
sidering VM performance variation or boot time when esti-
mating the schedule times, causing these to greatly differ
from the actual execution ones.

The results for SIPHT show that our solution has the best
performance in the first three deadline intervals; it achieves
the lowest costs while having an average makespan smaller
than the deadline. IC-PCP exhibits the lowest cost for the
four deadlines; however, the average makespan obtained
by this algorithm is higher than the deadline value for the
first three intervals. Hence, IC-PCP outperforms the other
heuristics with the most relaxed deadline but, on average,
fails to produce schedules that meet the three tighter dead-
lines. The other three algorithms succeed on meeting the
deadline constraint on average in every case; this is sup-
ported by the boxplot of makespan depicted in Fig. 7. Since
SCS, PSO and PSO_HOM all meet the deadline; the best
performing algorithm is that capable of generating the
schedule that leads to the lowest cost. For deadline interval
1, PSO_HOM achieves this, for deadline interval 2 and 3
PSO does, and finally, as stated before, IC-PCP has the low-
est cost on deadline interval 4. Overall, both PSO and SCS
are capable of meeting the imposed deadline; however, our
solution with a bigger window between the makespan and
deadline and a lower cost and SCS closer to the deadline
and at a higher price.

For the CyberShake application, the results for the IC-
PCP algorithm show a considerably higher cost when com-
pared to the other algorithms for deadline interval 1. In this
particular scenario, IC-PCP has the lowest average make-
span, with it being only slightly higher than the deadline
value. The other algorithms on the other hand have lower
costs but at the expense of having longer execution times
which do not comply with the deadline constraint. PSO and
SCS perform similarly in this particular scenario and obtain
only slightly higher average makespans than IC-PCP but at
much lower costs. For deadline intervals 2, 3 and 4, IC-PCP
generates cheap schedules but it fails to meet each of the
specified deadlines. PSO has the lowest average cost for
deadline intervals 2, 3 and 4, making it the most efficient
algorithm by meeting the deadlines at the lowest cost. Aside
from deadline interval 1, all algorithms have very similar
results in terms of cost for this application; PSO outperforms
all the other heuristics on intervals 2, 3 and 4 by not only
generating the cheapest schedule but also the fastest one in
some of the cases.

The performance of IC-PCP for the LIGO workflow is the
same as for the SIPHT application; it achieves the lowest
average cost in every case but produces the schedules with
the longest execution times, which are well above the dead-
line value for the four intervals. PSO and SCS on the other
hand meet on average the deadline on every case with PSO

232 IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 2, NO. 2, APRIL-JUNE 2014



producing the most efficient schedules with shorter make-
spans and lower prices.

Overall, we found that IC-PCP is capable of generating
low cost schedules but fails to meet the deadline in these
cases. SCS is very efficient when generating schedules that

meet the deadline but because it is a dynamic and heuristic
based approach, its cost optimization is not as good as that
obtained by our solution. We found that in every case in
which both algorithms meet the deadline, our approach
incurs in cheaper costs, in some cases generating not only

Fig. 8. Lineplot of mean makespan (ms) and mean cost (USD) for each workflow and deadline interval. The reference line on each panel indicates the
deadline value of the corresponding deadline interval.

RODRIGUEZ AND BUYYA: DEADLINE BASED RESOURCE PROVISIONING AND SCHEDULING ALGORITHM FOR SCIENTIFIC WORKFLOWS... 233



cheaper but faster solutions. As expected, PSO performs
better than PSO_HOM.

6.1.4 Further Analysis

The results found for the small and extra large workflows
were similar to the ones presented here, although, our
approach seems to perform better with smaller sized work-
flows which is reasonable as bigger workflows mean larger
search spaces. We also found that in some cases our solution
tends to generate schedules with lower makespans and
higher costs as long as the deadline is met. Some users
might prefer this as a solution whereas others might prefer
the makespan to be closer to the deadline and pay a lower
price. As future work, experiments will be held to analyze
the performance of the scheduling algorithm in these sce-
narios using different optimization techniques such as
genetic algorithms.

Another finding is the significant impact that the selec-
tion of the initial pool of resources has on the performance
of the algorithm. The same set of experiments was con-
ducted with an initial VM pool composed of one VM of
each type for each task. The results show that the algorithm
takes longer to converge and find an optimal solution pro-
ducing schedules with higher execution times and costs.
We noticed this strategy leads the algorithm into leasing
more VMs with lower utilization rate and hence incurring
in higher costs and more delays such as startup and data
transfer times.

Overall, in most of the cases, IC-PCP fails to meet the
deadlines whereas our approach and SCS succeed; the rea-
son why IC-PCP fails to meet so many deadlines might be
accounted to the fact that it does not consider VM boot time
or performance variation. When compared to SCS, our
algorithm is capable of generating cheaper schedules and
hence outperforms it in terms of cost optimization.

Regarding the computational complexity of the algo-
rithm, in each PSO iteration, the position and velocity of
all particles is updated and their fitness is evaluated. The
number of particles N and their dimension D determine
the number of calculations required to update the position
and velocity of particles. The fitness function complexity
is based on the schedule generation algorithm and
depends on the number of tasks T, and the number of
resources being used R. Based on this and the fact that
D ¼ T in our formulation, the proposed algorithm has an
overall complexity of order OðN � T 2 �RÞ per iteration.
The convergence time is also influenced by the number of
tasks and compute resources. IC-PCP and SCS being heu-
ristic based, run much faster than our meta-heuristic
based proposal. While IC-PCP and SCS have a polynomial
time complexity, PSO has an exponential one. However,
considering that our solution is designed to generate an
offline schedule for a single workflow, the high time com-
plexity of PSO is acceptable and the benefits in terms of
better schedules outweigh this disadvantage.

7 CONCLUSIONS AND FUTURE WORK

In this paper we presented a combined resource provision-
ing and scheduling strategy for executing scientific work-
flows on IaaS clouds. The scenario was modeled as an

optimization problem which aims to minimize the overall
execution cost while meeting a user defined deadline and
was solved using the meta-heuristic optimization algorithm,
PSO. The proposed approach incorporates basic IaaS cloud
principles such as a pay-as-you-go model, heterogeneity,
elasticity, and dynamicity of the resources. Furthermore,
our solution considers other characteristics typical of IaaS
platforms such as performance variation and VM boot time.

The simulation experiments conducted with four well-
known workflows show that our solution has an overall bet-
ter performance than the state-of-the-art algorithms, SCS
and IC-PCP. In every case in which IC-PCP fails to meet the
application’s deadline, our approach succeeds. Furthermore,
our heuristic is as successful in meeting deadlines as SCS,
which is a dynamic algorithm. Also, in the best scenarios,
when our heuristic, SCS and IC-PCP meet the deadlines, we
are able to produce schedules with lower execution costs.

As future work, we would like to explore different
options for the selection of the initial resource pool as it has
a significant impact on the performance of the algorithm.
We would also like to experiment with different optimiza-
tion strategies such as genetic algorithms and compare their
performance with PSO. Another future work is extending
the resource model to consider the data transfer cost
between data centers so that VMs can be deployed on differ-
ent regions. Extending the algorithm to include heuristics
that ensure a task is assigned to a VM with sufficient mem-
ory to execute it will be included in the algorithm. Finally,
we aim to implement our approach in a workflow engine so
that it can be utilized for deploying applications in real life
environments.

ACKNOWLEDGMENTS

The authors would like to thank Dr. Rodrigo Calheiros,
Mohammed Alrokayan and Deepak Poola for their com-
ments on improving this paper.

REFERENCES

[1] G. Juve, A. Chervenak, E. Deelman, S. Bharathi, G. Mehta, and K.
Vahi, “Characterizing and profiling scientific workflows,” Future
Generation Comput. Syst., vol. 29, no. 3, pp. 682–692, 2012.

[2] P. Mell, T. Grance, “The NIST definition of cloud computing—
recommendations of the National Institute of Standards and Tech-
nology” Special Publication 800-145, NIST, Gaithersburg, 2011.

[3] R. Buyya, J. Broberg, and A. M. Goscinski, Eds., Cloud Computing:
Principles and Paradigms, vol. 87, Hoboken, NJ, USA: Wiley, 2010.

[4] J. Kennedy and R. Eberhart, “Particle swarm optimization,” in
Proc. 6th IEEE Int. Conf. Neural Netw., 1995, pp. 1942–1948.

[5] Y. Fukuyama and Y. Nakanishi, “A particle swarm optimization
for reactive power and voltage control considering voltage
stability,” in Proc. 11th IEEE Int. Conf. Intell. Syst. Appl. Power Syst.,
1999, pp. 117–121.

[6] C. O. Ourique, E. C. Biscaia Jr., and J. C. Pinto, “The use of particle
swarm optimization for dynamical analysis in chemical proc-
esses,” Comput. Chem. Eng., vol. 26, no. 12, pp. 1783–1793, 2002.

[7] T. Sousa, A. Silva, and A. Neves, “Particle swarm based data min-
ing algorithms for classification tasks,” Parallel Comput., vol. 30,
no. 5, pp. 767–783, 2004.

[8] M. R. Garey and D. S. Johnson, Computer and Intractability: A
Guide to the NP-Completeness, vol. 238, New York, NY, USA:
Freeman, 1979.

[9] M. Rahman, S. Venugopal, and R. Buyya, “A dynamic critical path
algorithm for scheduling scientific workflow applications on
global grids,” in Proc. 3rd IEEE Int. Conf. e-Sci. Grid Comput., 2007,
pp. 35–42.

234 IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 2, NO. 2, APRIL-JUNE 2014



[10] W. N. Chen and J. Zhang, “An ant colony optimization approach
to a grid workflow scheduling problem with various QoS
requirements,” IEEE Trans. Syst., Man, Cybern., Part C: Appl. Rev.,
vol. 39, no. 1, pp. 29–43, Jan. 2009.

[11] J. Yu and R Buyya, “A budget constrained scheduling of workflow
applications on utility grids using genetic algorithms,” in Proc. 1st
Workshop Workflows Support Large-Scale Sci., 2006, pp. 1–10.

[12] M. Mao and M. Humphrey, “Auto-scaling to minimize cost and
meet application deadlines in cloud workflows,” in Proc. Int. Conf.
High Perform. Comput., Netw., Storage Anal., 2011, pp. 1–12.

[13] M. Malawski, G. Juve, E. Deelman, and J. Nabrzyski, “Cost-and
deadline-constrained provisioning for scientific workflow ensem-
bles in IaaS clouds,” in Proc. Int. Conf. High Perform. Comput.,
Netw., Storage Anal., 2012, vol. 22, pp. 1–11.

[14] S. Abrishami, M. Naghibzadeh, and D. Epema, “Deadline-con-
strained workflow scheduling algorithms for IaaS clouds,” Future
Generation Comput. Syst., vol. 23, no. 8, pp. 1400–1414, 2012.

[15] S. Pandey, L. Wu, S. M. Guru, and R. Buyya, “A particle swarm
optimization-based heuristic for scheduling workflow applica-
tions in cloud computing environments,” in Proc. IEEE Int. Conf.
Adv. Inform. Netw. Appl., 2010, pp. 400–407.

[16] Z. Wu, Z. Ni, L. Gu, and X. Liu, “A revised discrete particle
swarm optimization for cloud workflow scheduling,” in Proc.
IEEE Int. Conf. Comput. Intell. Security, 2010, pp. 184–188.

[17] S. Ostermann, A. Iosup, N. Yigitbasi, R. Prodan, T. Fahringer,
and D. Epema, “A performance analysis of EC2 cloud computing
services for scientific computing,” in Cloud Computing, Berlin,
Germany: Springer, 2010 pp. 115–131.

[18] A. Lazinica, Ed. Particle Swarm Optimization. Rijeka, Croatia:
InTech, 2009.

[19] R. N. Calheiros, R. Ranjan, A. Beloglazov, C. A. De Rose, and R.
Buyya, “CloudSim: A toolkit for modeling and simulation of
cloud computing environments and evaluation of resource provi-
sioning algorithms,” Softw.: Practice Experience, vol. 41, no. 1,
pp. 23–50, 2011.

[20] K. Deb, A. Pratap, S. Agarwal, and T. A. M. T. Meyarivan, “A fast
and elitist multiobjective genetic algorithm: NSGA-II,” IEEE
Trans. Evol. Comput., vol. 6, no. 2, pp. 182–197, Apr. 2002.

[21] J. Schad, J. Dittrich, and J. A. Quian�e-Ruiz, “Runtime measure-
ments in the cloud: observing, analyzing, and reducing variance,”
Proc. VLDB Endowment, vol. 3, no. 1/2, pp. 460–471, 2010.

[22] M. Mao and M. Humphrey, “A performance study on the VM
startup time in the cloud,” in Proc. 5th IEEE Int. Conf. Cloud Com-
put., Jun. 2012, pp. 423–430.

[23] E. K. Byun, Y. S. Kee, J. S. Kim, and S. Maeng, “Cost optimized
provisioning of elastic resources for application workflows,”
Future Generation Comput. Syst., vol. 27, no. 8, pp. 1011–1026, 2011.

[24] J. Yu, R. Buyya, and C. Tahm, “A cost based scheduling of scien-
tific workflow applications on utility grids,” in Proc. 1st IEEE Int.
Conf. e-Sci. Grid Comput., 2005, pp. 140–147.

Maria Alejandra Rodriguez received the bach-
elor’s degree in computer science from Andes
University, Colombia, in 2008 and the master’s
degree in distributed computing from the Univer-
sity of Melbourne, Australia. She is currently
working toward the PhD degree at the CLOUDS
laboratory in the Computing and Information Sys-
tems Department, The University of Melbourne,
Australia. Her research interest includes distrib-
uted systems and scientific computing.

Rajkumar Buyya is currently a professor and a
future fellow of the Australian Research Council,
and the director of the Cloud Computing and Dis-
tributed System (CLOUDS) Laboratory at the
University of Melbourne, Australia. He has auth-
ored more than 450 publications and four text
books includingMastering Cloud Computing pub-
lished by McGraw Hill and Elseiver/Morgan
Kaufman, 2013 for Indian and international mar-
kets, respectively. He is one of the highly cited
authors in computer science and software engi-

neering worldwide (h-index¼ 79, g-index ¼ 160, 29,600 þ citations).

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

RODRIGUEZ AND BUYYA: DEADLINE BASED RESOURCE PROVISIONING AND SCHEDULING ALGORITHM FOR SCIENTIFIC WORKFLOWS... 235


