
Deadlock Detection in Distributed Databases

EDGAR KNAPP

Department of Computer Sciences, University of Texas at Austin, Austin, Texas 78712

The problem of deadlock detection in distributed systems has undergone extensive study.

An important application relates to distributed database systems. A uniform model in

which published algorithms can be cast is given, and the fundamental principles on which

distributed deadlock detection schemes are based are presented. These principles

represent mechanisms for developing distributed algorithms in general and deadlock

detection schemes in particular. In addition, a hierarchy of deadlock models is presented;

each model is characterized by the restrictions that are imposed upon the form resource

requests can assume. The hierarchy includes the well-known models of resource and

communication deadlock. Algorithms are classified according to both the underlying

principles and the generality of resource requests they permit. A number of algorithms are

discussed in detail, and their complexity in terms of the number of messages employed is

compared. The point is made that correctness proofs for such algorithms using

operational arguments are cumbersome and error prone and, therefore, that only

completely formal proofs are sufficient for demonstrating correctness.

Categories and Subject Descriptors: C.2.4 [Computer-Communication Networks]:

Distributed Systems-distributed applications; distributed databases; network operating

systems; D.4.1 [Operating Systems]: Process Management-concurrency; deadlocks;

synchronization; D.4.7 [Operating Systems]: Organization and Design-distributed

systems; H.2.4 [Database Management]: Systems-distributed systems; transaction

processing

General Terms: Algorithms

Additional Key Words and Phrases: Deadlock detection, deadlock models, distributed
deadlocks

INTRODUCTION

Deadlock detection is an important prob-
lem in database systems (DBSs), and much
attention has been devoted to it in the
research community. Generally speaking, a
deadlock situation is the possible result of
competition for resources, such as multiple
database transactions requesting exclusive
access to data items.

The deadlock problem has several inter-
esting components. Among these are dead-
lock prevention, deadlock avoidance, and-
in connection with deadlock detection-the

selection of a so-called victim whose roll-
back or abortion breaks the deadlock, and
finally, deadlock resolution itself. This pa-
per is concerned only with the aspect of
deadlock detection. Recent developments
in the area of distributed deadlock detec-
tion algorithms are surveyed, with a special
emphasis on their relation to distributed
DBSs. The paper introduces a uniform
framework for the discussion of these al-
gorithms. The abstraction achieved this
way allows us to talk about the algorithms
in terms of the underlying theoretical con-
cepts, instead of just giving a phenomeno-

Permission to copy without fee all or part of this material is granted provided that the copies are not made or
distributed for direct commercial advantage, the ACM copyright notice and the title of the publication and its
date appear, and notice is given that copying is by permission of the Association for Computing Machinery. To
copy otherwise, or to republish, requires a fee and/or specific permission.
0 1988 ACM 0360-0300/87/1200-0303 $1.50

ACM Computing Surveys, Vol. 19, No. 4, December 1987

304 l Edgar Knapp

CONTENTS

INTRODUCTION

1. THE DEADLOCK PROBLEM

1.1 A Brief Introduction to Concurrency Control

1.2 Deadlock in Centralized Systems

1.3 Deadlock in Distributed Databases

1.4 The Database Model

1.5 A Specification of the Deadlock Problem

1.6 Centralized versus Distributed Deadlock

Detection

2. MODELS OF DEADLOCK

2.1 One-Resource Model

2.2 AND Model

2.3 OR Model

2.4 AND-OR Model

2.5 (;) Model

2.6 Unrestricted Model

3. CLASSES OF DISTRIBUTED DEADLOCK

DETECTION ALGORITHMS

3.1 Path-Pushing Algorithms

3.2 Edge-Chasing Algorithms

3.3 Diffusing Computations

3.4 Global State Detection

4. A SURVEY OF SELECTED ALGORITHMS

4.1 Obermarck’s Path-Pushing Algorithm

4.2 Mitchell and Merritt’s Algorithm

for the Single-Resource Model

4.3 Chandy and Misra’s Algorithm

for the AND Model

4.4 Chandy, Misra, and Haas’s Algorithm

for the OR Model

4.5 Hermann and Chandy’s Algorithm

for the AND-OR Model

4.6 Brscha and Toueg’s Algorithm

for the (;) Model

5. DISCUSSION

ACKNOWLEDGMENTS

REFERENCES

BIBLIOGRAPHY

logical description of the workings of the
algorithms (cf. Elmagarmid [1986]).

The paper is organized as follows. Sec-
tion 1 focuses on the relationship between
the deadlock problem and DBSs. For the
benefit of those readers not familiar with
the necessary database terminology, a brief
outline of the relevant concepts is given.
For a more thorough treatment of this ma-
terial, the reader is referred to recent
texts on concurrency control, for example,
Bernstein et al. [1987] and Papadimitriou
[1987]. Next, a database model is pre-
sented, and a specification of the deadlock
detection problem in terms of this model is

developed. Section 2 gives a systematic
classification of the models of deadlock as
they appear in database applications. A
hierarchy of models that gives rise to one
way of classifying most of the distributed
deadlock detection procedures found in the
literature is introduced. Another classifi-
cation, focusing on the theoretical princi-
ples underlying the work in distributed
deadlock detection schemes, is given in Sec-
tion 3. A survey of a number of algorithms
can be found in Section 4, with examples
from each of the classes introduced in the
two previous sections. In the final section
the relative merits of the algorithms pre-
sented are discussed. The references con-
tain an exhaustive list on the work done in
the field of distributed deadlock detection
after 1980. Earlier papers included consti-
tute “classical articles” related to the
subject.

1. THE DEADLOCK PROBLEM

1.1 A Brief Introduction to Concurrency

Control

The deadlock problem in DBSs is part of
the area of concurrency control.’ Concur-
rency control deals with the problem of
coordinating the actions of processes that
operate in parallel, access shared data, and
therefore potentially interfere with each
other. The object of study is an abstraction
(model) of many different types of infor-
mation systems. The main component of
this model is the transaction. Informally, a
transaction is an execution of a program
that accesses a shared database. In our
model transactions are characterized by a
sequence of operations, for example, R(x)
denoting the operation of reading some
data item x from the database and W(X)
standing for the operation of assigning a
new value to data item x in the database.
When two or more transactions execute
concurrently, their database operations ex-
ecute in an interleaved fashion. That is,
operations from one transaction may exe-
cute in between two operations of another
transaction. This interleaving can cause

1 Part of Section 1.1 follows the introductory chapter
of Bernstein et al. 11987 1.

ACM Computing Surveys, Vol. 19, No. 4, December 1987

Deadlock Detection in Distributed Databases 305

transactions to behave incorrectly or inter-
fere, thereby leading to an inconsistent
database state.

The part of the DBS that controls the
relative order in which database operations
requested by transactions execute is called
the scheduler. The scheduler determines
the interleaving of database operations
such that the consistency of the database
is preserved. A particular such interleaving
of database operations is called a schedule.

As an example, consider the schedule
given below involving two transactions tl

and t2 and two entities x and y (the notation
follows Bernstein et al. [1987] and Papa-
dimitriou [19871):

t1: R(x) W(Y)
tz : R(Y) W(x)

This schedule formalizes the following se-
quence of database operations: transaction
tl first reads database item x, then t2 reads
y, followed by tl writing y, and finally t2

writing x.

1.2 Deadlock in Centralized Systems

There are many different known strategies
for schedulers for solving the problem of
concurrent accesses without compromising
database consistency. A detailed discussion
of these strategies is beyond the scope of
this paper. The interested reader is referred
to Bernstein et al. [1987] and Papadimi-
triou [1987 1.

The most popular of these strategies is
so-called locking. Locking is the strategy of
reserving access rights (locks) that prevent
other transactions from obtaining certain
other (conflicting) locks.

As an example, consider a protocol called
basic two-phase locking (2PL), which is
widely in used in commercial systems. In
this protocol’ a transaction that has re-
leased a lock may not subsequently obtain
any more locks. If this strategy is applied
to the example schedule given above, the
following scenario is bound to happen:

tl locks x,
tz locks y,
tl waits for t2 to release the lock on y,
t2 waits for tl to release the lock on x.

* Also called dynamic 2PL in Papadimitriou [1987].

Hence both transactions are blocked, wait-
ing for each other: a deadlock situation.

Informally, deadlock in a DBS can be
defined as “a situation in which each trans-
action in a set of transactions is blocked
waiting for another transaction in the set,
and therefore none will become unblocked
unless there is external intervention” (cf.
Bernstein et al. [1987]).

Even though some concurrency control
protocols are provably deadlock free (e.g.,
conservative 2PL,3 tree locking), most
known protocols are vulnerable to dead-
lock. We next look at a number of other
ways in which deadlock can arise in a DBS.

Let us consider the case of multiversion
schedulers, where each write operation on
some data item produces a new version of
this item, and each read operation of an
item is mapped to some version of this item
that was written previously. In the proto-
col for a multiversion-view-serializability
(MV-VSR) scheduler, the last step of a
transaction is treated in a special way to
ensure that at most one uncommitted
version exists for any data item in the
database. If such a scheduler is given the
schedule of the previous example, the
following happens:

tl reads x,
t:! reads y,
tl waits for t2 to finish (commit),
t2 waits for tl to finish (commit),

and, again, the result is deadlock.
Lock conversion is a concurrency control

technique that allows upgrading of a lock
to a stronger lock type, such as converting
a read lock on a data item into a write lock
on the same item. Schedulers that allow for
lock conversion are prone to deadlock sit-
uations for yet another reason. To see this,
consider the following example:

tl: R(x) W(x)
tz : R(x) W(x)

After both reads have been performed, with
tl and t2 holding read locks on x, neither
transaction can convert its read lock into a
write lock; hence they are blocked forever.

3 Also called static 2PL in Papadimitriou [1987].

ACM Computing Surveys, Vol. 19, No. 4, December 1987

306 . Edgar Knapp

Multigranularity locking is a method
whereby transactions can lock different
granularities of data items, such as a record,
a disk page, or an entire file. In multigran-
ularity locking protocols, deadlock can oc-
cur for more than one reason. First, we
have the problems due to the already men-
tioned two-phase rule and lock conversion,
especially in conjunction with lock escala-
tion, a technique in which a transaction
that obtains too many locks on data items
of small granularity can increase the gran-
ularity of its subsequent lock requests. An-
other problem arises when granules are
structured hierarchically in a rooted di-
rected acyclic graph. In this case a locking
protocol may require a transaction that
wants to lock some set of granules to lock
a majority of parents of these granules first.
If two transactions happen to try locking
the same set of granules, they may get to a
point at which they both hold locks on
exactly half of the parents of the set so that
neither of them will succeed. If more than
two transactions are competing for an in-
tersecting set of granules, then deadlock is
even more likely to result.

Notice that there is a fundamental dif-
ference between deadlocks due to majority
locking and the other schemes mentioned
above. The former has been termed com-
munication deadlock, since it was first stud-
ied in systems of communicating processes,
where a process waits to communicate with
any one from a set of neighbors. The same
principle underlies majority locking, in
which a transaction that is blocked can
proceed after some other transaction re-
leases its lock on a parent of the granule in
question.

The other examples demonstrate what
has been called a resource deadlock, which
assumes that a process becomes unblocked
only after it receives all the resources for
which it is waiting. In the case of a database
model in which a transaction is either ac-
tive or waiting for exactly one resource, the
distinction between resource and commu-
nication deadlock is irrelevant since they
reduce to the same concept.

As we shall see in Section 2, there is a
whole hierarchy of deadlock models that

subsumes-among others-the traditional
resource and communication models.

1.3 Deadlock in Distributed Databases

In general, a distributed DBS consists of a
number of sites, each of which constitutes
a centralized system. Hence all problems of
the previous section plus additional ones
due to the distributed nature of the data-
base (e.g., replication of data, single trans-
actions executing in parallel at different
sites) are present. Also, distributed dead-
lock is harder to detect, since each site has
only a local view of the whole system, and
hence collaboration of the sites is required
to detect deadlocks involving more than
one site.

Both resource and communication dead-
locks can be distributed. In distributed
DBSs, transactions that access nonlocal
data migrate to other sites by invoking
subtransactions that may run concurrently
with each other. So the originating trans-
action is blocked until all subtransactions
terminate, an indication of the resource
model.

Communication deadlock can occur if
in a replicated database a transaction re-
quests the value of some nonlocal data
item and is blocked until one of the sites
that hold a copy of this item responds.
Furthermore, one can conceive of subtrans-
actions running in parallel on a repli-
cated database, resulting in situations
in which resource and communication
models are interwoven.

As an example of such an interplay be-
tween both models, consider a distributed
DBS with replicated data. Gifford [1979]
has shown that in order to preserve data-
base consistency, a transaction that wants
to read (write) a replicated data item, must
read (write) r (w) copies out of the n copies
of the data item such that r + w > n and
2w > n. This is to ensure that at most one
writer has access to a replicated data item
at a time. To read or write some copy of a
data item, a transaction must request and
obtain a lock on this copy. Therefore, the
reading and writing of a data item generate
so-called (:) and (Z) resource requests, re-

ACM Computing Surveys, Vol. 19, No. 4, December 1987

Deadlock Detection in Distributed Databases 307

spectively. These requests require essen-
tially a combination of the resource and
communication models.

A uniform model of a distributed DBS
underlying most of the algorithms found in
the literature is made precise in the follow-
ing section.

1.4 The Database Model

We introduce a model due to Menasce and
Muntz [1979] for studying deadlock detec-
tion algorithms for distributed DBSs. A
distributed DBS consists of a collection of
N sites, S1, Sz, . . . , SN, connected by a
communication network. The network is
assumed to be reliable and fully connected.
Each site is a centralized DBS that stores
some portion of the database. There are M
transactions, TI, T,, . . . , TM running on
the distributed database. A transaction pre-
sents resource requests to a transaction
manager (TM), also called controller.
There is one controller Ci per site Si. A
resource request may be a request to lock
some data item or may have a more abstract
meaning. A transaction is blocked from the
time it presents a request to a TM until the
TM grants the request and the transaction
becomes active. A resource request can be
local or can refer to a resource at another
site, in which case the transaction is dis-
tributed. A distributed transaction Ti is
implemented by transaction agents tij , each
of which is the local agent for transaction
Ti at site Sj. In case a transaction agent tij
requests a nonlocal resource that is man-
aged by some controller C,, controller Cj
transmits the request to agent ti, via con-
troller C,. When ti, acquires the requested
resource from C,, it sends a message to tij
(via C, and Cj) stating that the resource
has been acquired. Hence intersite requests
are always between two agents of the same
transaction.

When agents in a transaction Ti no
longer need a resource managed by con-
troller C,, they communicate with agent
tim, which is responsible for releasing the
resource to C,. We assume that messages
sent by any controller Ci to Cj arrive se-
quentially and in finite time. We assume

further that if a single transaction runs by
itself in the distributed DBS, it will termi-
nate in finite time and release all resources.
When two or more transactions run in par-
allel, deadlock may arise.

A transaction agent is said to be idle if it
is waiting to acquire a resource; it is said to
be executing if it is not idle. Thus, if an
agent never acquires a requested resource,
it is permanently idle. For notational sim-
plicity, we may assign a single identifying
subscript (rather than a double subscript)
to an agent. Hence ti denotes the ith agent.

In subsequent sections we often refer to
processes instead of transaction agents.
Processes are more powerful than transac-
tion agents. They are assumed to know the
identities of all the processes they are wait-
ing for, for example, by having access to
their controller’s tables. Besides sending
request and release messages like transac-
tion agents, they can also exchange other
messages. This means that, with respect to
deadlock computations, transactions are
passive objects, whereas processes are ac-
tive participants in deadlock detection. In
our database model, processes can be
thought of as belonging in part to the
controller and in part to the transaction.
Although there can be at most one trans-
action agent per transaction at each
site, there is no such restriction for pro-
cesses. As for controllers, message passing
between processes is assumed to be first in,
first out.

At any time a process is in one of two
states: blocked or executing. A process is
blocked from the time it issues a resource
request until it receives a grant message for
the requested resource. If a process never
receives a grant message for which it is
waiting, it is permanently blocked. While a
process is blocked it may not send any
request or grant messages. It may, however,
send and receive other messages or perform
other tasks (e.g., related to deadlock detec-
tion). Examples of this behavior are given
in later sections.

Henceforth we refer to either transaction
agents or processes, depending on which
variant of the model is more appropriate
for our discussion.

ACM Computing Surveys, Vol. 19, No. 4, December 1987

308 l Edgar Knapp

1.5 A Specification of the Deadlock Problem

A transaction wait-for-graph (WFG) is a
mathematical model of resource requests.
The vertices of the graph are associated
with transaction agents (or processes, de-
pending on the context). Directed edges in
the graph represent blocking relations be-
tween transaction agents (processes). A
vertex with outgoing edges corresponds to
an idle transaction agent (blocked process).
More precisely, there is an edge in the WFG
from transaction agent tij to tkj if controller
Cj has a request from tij for resources held
by tkj; such an edge is called an intracon-
troller edge. There is an edge from tij to tin
if tij is waiting for a grant message from ti,
(that it has acquired a resource managed
by C,,,); such an edge is called an intercon-
troller edge.

A cyclic structure in this graph indicates
a deadlock. The precise definition of the
term cyclic structure depends on the dead-
lock model we are considering. An example
is given in Figure 1. There are five trans-
actions Z’,-Z’,, implemented by eight trans-
action agents. The directed edge from node
tll to node tzl indicates that transaction
agent tll is blocked. This edge is an intra-
controller edge, whereas edge (tzl, tzz) is an
intercontroller edge. Node tzz has no out-
going edges and is therefore active (non-
blocked). Node tll has two outgoing edges,
which means that it has two outstanding
resource requests. Note the presence of the
cycle tll + tsl + t33 + t43 + & + tll in the
WFG. This cycle may or may not indicate
a deadlock, depending on which deadlock
model we adopt. The relationship between
deadlocks and WFGs is made more precise
in Section 2, when we talk about specific
deadlock models.

The correctness of a deadlock algorithm
depends on two conditions. First, every
deadlock must be detected eventually. This
constitutes the basic progress property any
solution must have. Second, if a deadlock
is detected, it must indeed exist (safety
property). Incorrectly detected deadlocks
due to message delays and out-of-date
WFGs have been termed phantom dead-
locks. In the presence of spontaneous aborts
no deadlock scheme can guarantee to detect
only genuine deadlocks. For global dead-

lock detection, Bernstein et al. [1987] show
that as long as transactions follow a 2PL
protocol, a phantom deadlock can occur
only if some transaction spontaneously
aborts. In accordance with most of the ar-
ticles on the subject, for the purpose of our
discussion we assume that the DBS is free
of spontaneous abortions.

1.6 Centralized versus Distributed Deadlock
Detection

There are a number of reasons why distrib-
uted deadlock detection seems more attrac-
tive than a centralized scheme, that is, one
in which a single agent is responsible for
deadlock detection. First, a centralized
deadlock detection algorithm is vulnerable
to failures of the central detector. Hence
special provisions for this kind of faults
have to be made, resulting in long delays
until a new central agent is determined and
supplied with up-to-date wait-for informa-
tion. Distributed algorithms deal with these
kinds of problems in a much more natural
way. Furthermore, because of the heavy
traffic to and from the central agent, this
agent can constitute a performance bottle-
neck, limiting the overall performance of
the DBS.

More evidence for the superiority of dis-
tributed schemes is supplied by the obser-
vation that for typical applications most
WFG cycles are very short. Bernstein et al.
[1987] give theoretical reasons for the pre-
dominance of short paths in WFGs. In par-
ticular, for most applications over 90% of
WFG cycles can be expected to be of length
2. The same figure also appears in an em-
pirical study [Gray et al. 19811.

The observation that deadlock cycles are
short makes centralized deadlock detection
an even less attractive choice. With a global
algorithm there may be a significant time
and message overhead in assembling all the
local WFGs at the global detector. Thus, a
distributed deadlock might go undetected
for quite a while. Since most deadlocks
involve only two sites, they can detect the
deadlock more efficiently by communicat-
ing directly.

Mitchell and Merritt [1984] present a
fully distributed deadlock detection algo-

ACM Computing Surveys, Vol. 19, No. 4, December 1987

Deadlock Detection in Distributed Databases l 309

I Site 1

Figure 1. Example of a WFG.

I I

rithm that has a very simple and appealing is given in the next section. The model is
correctness proof and that, according to the widely used in theoretical studies of data-
authors, had been implemented in a DBS base systems (cf. Bernstein et al. [1987]
in less than an hour. This dissents from the and Papadimitriou [1987]). A very simple
widely held opinion that distributed algo- and elegant algorithm for deadlock detec-
rithms are necessarily more complex and tion in the one-resource model appears in
harder to prove and implement than cen- Mitchell and Merritt [1984] and is de-
tralized schemes. scribed in Section 4.2.

2. MODELS OF DEADLOCK
2.2 AND Model

Depending on the application, database
systems allow a number of different kinds
of resource requests. For example, a trans-
action might need to acquire a combination
of resources like (resource a and resource
b) or resource c. This section introduces a
hierarchy of request models used in the
literature, starting from very restricted
forms and going to models with no restric-
tions whatsoever. This hierarchy can then
be used to classify deadlock detection al-
gorithms according to the complexity of the
resource requests they permit.

2.1 One-Resource Model

In the AND model, transactions are per-
mitted to request a set of resources. A
transaction is blocked until it is granted all
the resources it has requested. Therefore,
requests of this type are called AND re-
quests. The AND model is identical to the
resource model mentioned in Section 1.2.
We prefer the term AND model for system-
atic reasons. The AND model has been the
traditional view of resource requests in dis-
tributed DBSs. The nodes of the WFG are
called AND nodes and may have outdegree
greater than 1. The problem of detecting
deadlocks again reduces to finding cycles
in the WFG.

The simplest possible model is one in which
a transaction can have at most one out-
standing resource request at a time. Hence
the maximum outdegree of the WFG is 1.
Finding deadlocks in this model corre-
sponds to finding a cycle in the WFG. A
formal justification for this correspondence

As an example, again consider the WFG
given in Figure 1. Node tll has two out-
standing resource requests, and in the case
of the AND model both must be satisfied
before tll becomes active. The example de-
picts a deadlock situation, corresponding to
the cycle tll + h1 + t33 ---, t43 + t41 --, hl.

ACM Computing Surveys, Vol. 19, No. 4, December 1987

310 l Edgar Knapp

More precisely, we define deadlock in the
AND model along the lines of Chandy and
Misra [1982] as follows: A transaction
agent ti is said to be dependent on agent tj
if there is a sequence seq = ti, ti,, . . . , ti,, tj
of transaction agents such that each agent
in seq is idle and each agent except the first
holds a resource for which the previous
agent in seq is waiting. We define ti to be
locally dependent on tj if all the agents in
seq belong to the same controller. Observe
that, if ti is dependent on tj , then ti remains
idle at least as long as tj does. Furthermore,
ti is deadlocked if it is dependent on itself
or an agent that is dependent on itself. In
either case, deadlock exists only if there is
a cycle of idle agents, each dependent on
the next one in the cycle.

Deadlock detection algorithms for the
AND model declare that deadlock exists if
and only if such cycles exist. Note that this
condition does not imply that, if an agent
ti is deadlocked, the detection algorithm
will detect that ti is deadlocked. In fact, if
ti is deadlocked but not part of a cycle of
deadlocked agents, ti might never be de-
clared deadlocked. As an example, consider
transaction agent ts3 in Figure 1, which is
deadlocked even though it is not part of a
cycle.

Deadlock in the one-resource model is
conveniently defined the same way, with
the additional restriction that a transaction
agent can have at most one outstanding
request (i.e., one outgoing edge) at a time.
From this it is immediate that the AND
model is strictly more general than the one-
resource model.

In the literature a number of algorithms
have been proposed for the AND model
[Chandy and Misra 1982; Chandy et al.
1983; Gligor and Shattuck 1980; Haas 1981;
Haas and Mohan 1983; Menasce and
Muntz 1979; Obermarck 1980, 19821. We
take a closer look at two of them [Ober-
marck 1982; Chandy and Misra 19821 in
Sections 4.1 and 4.3, respectively.

2.3 OR Model

An alternative model of resource requests
is the OR model. A request for numerous
resources is satisfied by granting any re-

quested resource, such as satisfying a read
request for a replicated data item by read-
ing any copy of it. This model was referred
to as communication model in Section 1.2.
In the OR model, discovery of a cycle is
insufficient for deadlock detection. To see
this, suppose all requests in Figure 1 are
OR requests; the nodes are then called OR
nodes. In this case, transaction T1 is not
deadlocked because tzz has no outgoing
edges, and after Tz releases the resources it
holds, T, can continue.

In terms of the WFG, a knot will indicate
a deadlock [Holt 19721. By definition, a
vertex IJ is in a knot if (VW :: w is reachable
from UJ u is reachable from w). Intui-
tively, no paths originating from a knot
have “dead ends.”

Formally, we define deadlock in the OR
model in terms of processes as follows (cf.
Chandy et al. [1983]): A process is blocked
if it has an outstanding OR request. Asso-
ciated with each blocked process is a set of
processes, called its dependent set. A
blocked process starts executing upon re-
ceiving any grant message from a process
in its dependent set. Otherwise it does not
change state or its dependent set. Intui-
tively, a set S of processes is deadlocked if
all processes in S are permanently blocked.
A process is permanently blocked if it never
receives a grant message from any process
in its dependent set. More precisely, a set
S of processes is deadlocked if

(1) all processes in S are blocked,

(2) the dependent set of every process in S
is a subset of S, and

(3) there are no grant messages in transit
between processes in S.

A process is deadlocked if it belongs to
some deadlocked set. A set S of processes
satisfying the above three conditions re-
mains permanently blocked because (1) a
blocked process pi in S can start executing
only after receiving a grant message from
some process pj in its dependent set,
(2) every process pj in pi’s dependent set is
also in S and cannot send a grant message
while remaining blocked, and (3) there are
no grant messages in transit from pj to pi,
which implies that pi will never receive a

ACM Computing Surveys, Vol. 19, No. 4, December 1987

Deadlock Detection in Distributed Databases 311

message from any process in its dependent
set.

Presence of a deadlocked sei of processes
is equivalent to the existence of a knot in
the WFG. Hence, deadlock detection in the
OR model can be reduced to finding knots
in a graph. Note, however, that a process
can be deadlocked without being in a knot.
Rather, a necessary and sufficient criterion
for deadlock of some process p is the follow-
ing: A blocked process p is deadlocked if p
is in a knot or p can reach only deadlocked
processes. The algorithm for the OR model
we discuss in Section 5.4 detects deadlock
for any process belonging to some dead-
locked set.

AND-model deadlock detection can be
simulated by repeated applications of OR-
model deadlock computations, where each
invocation operates on a subgraph of the
AND-model WFG. This method, however,
is hopelessly inefficient, so it is only of
theoretical interest. In this sense, OR-
model deadlock is a more general notion
than AND-model deadlock.

An algorithm for distributed knot detec-
tion appears in Misra and Chandy [1982a].
Termination detection of diffusing compu-
tations in the OR model, which is also the
model of deadlock in CSP, is discussed in
Misra and Chandy [1982b]. The algorithm
presented in Section 5.4 is taken from
Chandy et al. [1983]. Other algorithms for
the OR model are given in Haas [1981],
Natarajan [1986], and Rauchle and Toueg
[1983].

2.4 AND-OR Model

The AND-OR model is a generalization of
the two previous models. AND-OR re-
quests may specify any combination of and
and or in the resource request. For example,
a request for (a and (b or c)) or d is possible,
and a, b, c, and d may exist at different
sites. There does not appear to be a familiar
construct of graph theory to describe a
deadlock situation in the AND-OR model
in terms of the WFG. In principle, deadlock
in the AND-OR model can be detected by
repeated application of the test for OR-
model deadlock, exploiting the fact that
deadlock is a stable property; that is, it does
not go away by itself. But this strategy is,

in general, not very efficient. A more effi-
cient algorithm that was developed in
Hermann and Chandy [1983] is the topic
of Section 5.5. This section also includes a
formalization of deadlock in the AND-OR
model. Since this definition does not cap-
ture the notion of deadlock exclusively, it
has been omitted from the more general
discussion here.

2.5 (;) Model

The (Z) model allows the specification of
requests to obtain any k available resources
out of a pool of size n. The (E) model is a
generalization of the AND-OR model.
Even though it turns out that both models
are equivalent in expressive power, the
length of an AND-OR formula correspond-
ing to an (;) request is k(Z), which is of
exponential size for n = 212, since

2n

0

def 2n(2n - 1) . . . (n + 1) =
n n(n - 1) ... 1

2n 2n - 2 2
>-- . . . - -

n n-l 1

Y

n factors

= 2”.

So every request in the (E) model can be
expressed in the AND-OR model. To see
that the converse is also true, observe that
any AND or OR requests for n resources
can be stated as an (“n) or (7) request, re-
spectively. The only definition of deadlock
in the (E) model we know was given by
Bracha and Toueg [1983] and suffers
from the same deficiencies as that of the
AND-OR model. It is, therefore, not dis-
cussed here. An algorithm for deadlock
detection in the (E) model was published in
Bracha and Toueg [1983] and is presented
in Section 5.6.

2.6 Unrestricted Model

In the most general model no underlying
structure of resource requests is assumed.
Instead, the stability of deadlock is the only
assumption made. The advantage of look-
ing at the deadlock problem in this way is

ACM Computing Surveys, Vol. 19, No. 4, December 1987

312 . Edgar Knapp

that it helps in the separation of concerns:
Properties of the underlying database com-
putations (e.g., degree of concurrency, i.e.,
single locus of control for each transaction
versus parallelism of individual transac-
tions, and message passing versus syn-
chronous communication) are rigorously
abstracted and separated from concerns
about properties of the problem (stability
of deadlock). Therefore, all the algorithms
dealing with this general model can be used
to detect other stable properties as well.
However, in the context of deadlock detec-
tion in distributed databases, these algo-
rithms seem to be of more theoretical value,
since the very fact that no further assump-
tions are made about the underlying struc-
ture of the database computation leads to
a great deal of overhead that can be avoided
in algorithms for the simpler models. In
Section 3.4 we present a general theory due
to Chandy and Lamport [1985], which can
be applied to both the previous and the
unrestricted models. For more details on
the subject, the interested reader is referred
to Awerbuch and Micali [1986], Chandy
and Lamport [19851, Chandy and Misra
[1986], Chang [1982], Helary et al. [1987],
and Misra [19831.

3. CLASSES OF DISTRIBUTED DEADLOCK
DETECTION ALGORITHMS

The distributed deadlock detection algo-
rithms that are found in the literature de-
veloped basically from four different roots:
path-pushing, edge-chasing, diffusing com-
putations, and global state detection. This
observation gives rise to another way of
classification, which will be developed in
the next four sections.

3.1 Path-Pushing Algorithms

The first distributed algorithms for the
deadlock problem maintained the notion of
an explicit global WFG, which had worked
so well in the centralized case. One influ-
ential algorithm appeared in Menasce and
Muntz [19791. The basic idea underlying
this class of algorithms is to build some
simplified form of global WFG at each site.
For this purpose each site sends its local

WFG to a number of neighboring sites
every time a deadlock computation is per-
formed. After the local data structure of
each site is updated, this updated WFG is
then passed along, and the procedure is
repeated until some site has a sufficiently
complete picture of the global situation to
announce deadlock or to establish that no
deadlocks are present. The main feature of
this scheme, namely, to send around paths
of the global WFG, has led to the term
path-pushing algorithms.

One noteworthy point about path-
pushing algorithms is that many of them
were found to be incorrect, either by not
detecting true deadlocks, by discovering
phantom deadlocks, or both. For example,
Gligor and Shattuck [1980] show that the
algorithm of Menasce and Muntz [1979]
is defective; a counterexample to the algo-
rithm of Ho and Ramamoorthy [1982]
was presented by Jagannathan and
Vasudevan [1982]; in Section 4.1 we
give reasons why Obermarck’s algorithm
[Obermarck 19821 is incorrect. This is even
more surprising as these algorithms had all
been “proved” correct.

Looking back, the failure of many of
these algorithms is not so astonishing as
might first appear, since at that time the
notion of snapshots and consistent global
states in asynchronous systems was not
well understood. Another consequence of
this lack of understanding was the fact that
most of the algorithms had to depend on
“ freezing” the underlying (database) com-
putation for the time the deadlock detec-
tion was going on. This guaranteed in most
cases that the picture of the assembled
global WFG was consistent.

For historical reasons, an example of a
path-pushing algorithm [Obermarck 19821,
which has been implemented in System R,
is presented in Section 4.1.

3.2 Edge-Chasing Algorithms

The presence of a cycle in a distributed
graph structure can be verified by propa-
gating special messages called probes along
the edges of the graph. Probes are assumed
to be distinct from resource request and
grant messages. When the initiator of such

ACM Computing Surveys, Vol. 19, No. 4, December 1987

Deadlock Detection in Distributed Databases l 313

a probe computation receives a matching
probe, it knows that it is on a cycle in the
graph.

A nice feature of this approach in con-
nection with deadlock detection is that ex-
ecuting processes can simply discard any
probes they receive. Blocked processes
propagate the probe along their outgoing
edges. An interesting variation of this
method can be found in Mitchell and Mer-
ritt [19841, where probes are sent upon
request and in the opposite direction of the
edge. We look at this algorithm more
closely in Section 4.2.

Another example for this approach is
Chandy and Misra’s algorithm [Chandy
and Misra 19821, which is discussed in
Section 4.3.

3.3 Diffusing Computations

The second category of algorithms was in-
spired by the work of Chang [1982] and
Dijkstra and Scholten [1980]. Here the
basic idea is that a diffusing computation is
activated, for example, by a transaction
manager that suspects a deadlock. This
computation is superimposed on the under-
lying database computation. If this com-
putation terminates, the initiator declares
deadlock. The characteristic feature of the
superposed computation in the case of dis-
tributed deadlock detection is that the
global WFG is implicitly reflected in the
structure of the computation. The actual
WFG, however, is never built explicitly.
The diffusing computation grows by
sending query messages and shrinks by re-
ceiving replies. In our case query and reply
messages are concerned exclusively with
deadlock detection and are distinct from
resource request and grant messages. When
a diffusing computation shrinks back to its
root, it terminates.

More precisely, nodes different from the
root are called internal nodes. Each node in
the diffusing computation has an initial
state called the neutral state. The root (also
called initiator) sends queries to its succes-
sors to start a diffusing computation. After
receipt of its first query, a node leaves the
neutral state and becomes active. The first
query received by node pi is called the en-

gaging query for pi. The process that sent
the engaging query is called the engager of
pi. The edge along which the engaging
query was sent is called the engagement
edge of pi.

After receipt of the engaging query, an
internal node is free to send queries to its
successors. Besides its ability to receive
queries from its predecessors and send
queries to its successors, a node is also able
to receive replies from its successors and
send replies to its predecessors. Notice that
queries always travel in the direction of the
edges, whereas replies always travel the
opposite way.

We require that the number of queries
received along an edge always be at least
the number of replies sent in the opposite
direction. The difference between the num-
ber of queries and replies sent over an edge
is called the deficit of this edge. Hence, from
the above we have the following: The deficit
of all edges is at least zero.

The neutral state of a node can now be
defined to be the state in which the deficits
of all incoming and outgoing edges are zero.
The diffusing computation terminates if
the root returns to its neutral state. When
should a node reply to a query? We stipu-
late that an active node reply to all queries
it receives immediately. The crucial ques-
tion is: When should a node reply to its
engaging query? This reply is called the
engaging reply. We require that a node send
back its engaging reply only after it has
received replies for each query it sent.

With these stipulations it is not hard to
show that (1) each engagement edge con-
nects two active nodes, (2) engagement
edges do not form cycles, and (3) each ac-
tive internal node has exactly one incoming
engagement edge. We say that the diffusing
computation has terminated if and only if
all internal nodes are in their neutral state.
From what has been said above, it now
follows that (cf. [Dijkstra and Scholten
19801)

(1) when the root returns to the neutral
state, the diffusing computation has
terminated;

(2) a bounded number of steps after the
diffusing computation has terminated,

ACM Computing Surveys, Vol. 19, No. 4, December 1987

314 l Edgar Knapp

the root will have returned to the neu-
tral state.

Algorithms using the paradigm of diffus-
ing computations are presented in Sec-
tions 4.4 [Chandy and Misra 19821 and 4.5
[Hermann and Chandy 19831. In general,
this approach results in shorter messages
and less deadlock detection overhead as
compared with path-pushing algorithms.
Besides the work mentioned above, there
are other variations on this theme [Chandy
and Misra 1986; Chang 1982; Dijkstra et al.
1983; Haas 1981; Haas and Mohan 1983;
Misra 1983; Misra and Chandy 1982a;
Misra and Chandy 1982b].

3.4 Global State Detection

The work that has been done in the area of
global state detection is largely based on
results by Chandy and Lamport [1985].
The key notion here is a consistent global
state that can be determined without tem-
porarily suspending (“ freezing”) the under-
lying (database) computation. Below we
give a condensed presentation of the results
of Chandy and Lamport, that are relevant
to our context. The discussion follows
Bracha and Toueg [19831.

The underlying computation, henceforth
referred to as the system, is a collection of
processes, that can be thought of as trans-
action managers and transaction agents.
Processes communicate by sending mes-
sages (e.g., resource requests or grants) ac-
cording to some underlying protocol (2PL,
e.g.). Events in the system are the sending
and receipt of messages. We denote the set
of events in a system by E. The local state
of a process p consists of the history of all
events that occurred on p. Along the lines
of Lamport [19781 we define a partial order
5 G E x E as follows:

Definition 3.1

Let el, e2 E E. Then el 5 e2 (el happened
before e2) if either

(1) el and e2 are both on the same process
p, and el occurred earlier in p then e2;

(2) el is a send event and e2 is the corre-
sponding receive;

(3) (3e’: e’ E E:el 5 e’ A e’ 5 e2).

Part (1) of the definition says that the
events of a single process are totally or-
dered. Part (2) expresses the fact that mes-
sages are received after they are sent. Part
(3) essentially states that 5 is transitive.

We can represent the history of a system
and its happened-before relation by a dia-
gram like that in Figure 2. The dots repre-
sent events, the horizontal lines are the
time axes of the processes, and the arrows
link corresponding sends and receives.

The following formalization is due to
Chandy and Lamport [19851. A cut c of E
is a partition of E into two sets PC and F,,
standing for past and future, respectively.
A cut is consistent if F, is closed under 5.
A consistent cut defines a consistent state.
Hence we use consistent cut and consistent
state interchangeably. Intuitively, consist-
ent cuts are those that do not contain a
send event in F, with the corresponding
receive event in PC.

Looking again at the example in Figure
2, we see that PC = (elf e3, e4, e7, es, es, elo]
and F, = (e2, e5, e6). Furthermore, since F,
is closed under 5, c is a consistent cut.

A special type of consistent state is S,,
the global state at time t that is the collec-
tion of all the local states of the processes
at time t. Note that S, is a purely theoretical
construct that cannot be observed, since
this would require an outside observer to
record the local states of the processes
instantaneously, an impossible task in
practice. In contrast, consistent states
can be obtained from within the system.
We now extend the relation 5 to consistent
states.

Definition 3.2

Let S1, S2 be consistent states. Then S1 5

S2, if Ps, C PSA.
We define a relation l- between states,

called reachability relation.

Definition 3.3

Let S be a consistent state and e E E, such
that Ps U (e) defines a consistent state S ‘.
Then S I-” 5” (S’ is reachable from S).

ACM Computing Surveys, Vol. 19, No. 4, December 1987

Deadlock Detection in Distributed Databases 315

PC c FC

\-

es

1% j
elo I

Figure 2. A cut of a distributed system.

A sequence of events (r = (el, e2, . . . , e,)
is a schedule, if S l--“I SI l--“z . . . l-en-1 Snel
I-“n S I. We then write S l--” S ’ for short.
One can show [Chandy and Lamport 19851
that

Lemma 3.1

S 5 S’ implies (3schedule a::S P’S’).

In the context of deadlock detection, the
state of the system is a WFG, and schedules
are sequences of WFG transformations. We
say that a transaction is deadlocked if it is
deadlocked in WFGt, the WFG at time t.
Given a definition of deadlock in terms of
a WFGt, the following lemma of Bracha
and Toueg [1983] allows us to apply a dis-
tributed deadlock detection algorithm to
consistent WFGs instead of WFG, s:

Lemma 3.2

(WFG 5 WFG ’ and v is deadlocked
WFG) implies v is deadlocked in WFG I.

in

This is the fundamental result on which
deadlock detection algorithms can be
based. Chandy and Lamport [1985] show
how to obtain a consistent global state of a
distributed system by propagating markers
along the channels of the system. A con-
sistent global state obtained in this fashion
is also called a snapshot of the system.
Such a snapshot can then be examined for
deadlock off-line. Since this snapshot is by
definition a static object, there are no prob-
lems in conjunction with message delays,
and deadlock detection becomes much eas-
ier. In Section 4.6 we see an example of the
application of this result.

4. A SURVEY OF SELECTED ALGORITHMS

4.1 Obermarck’s Path-Pushing Algorithm

In this section we discuss an algorithm that
appeared in Obermarck [19821. The under-
lying deadlock model is the AND model;
hence the algorithm looks for cycles in the
global WFG. First, the author makes some
simplifying assumptions:

0)

(2)

(3)

(4)

Transactions have a single locus of con-
trol; that is, at most one transaction
agent of each transaction can be active
at any time.

Communication between transaction
agents is logically synchronous.

The transactions are totally ordered,
which is useful in reducing deadlock
detection overhead and ensuring that
exactly one transaction in each cycle
detects deadlock.

The portion of the local WFG sent from
one site to another does not change
until the information has been received
and processed by some final site. The
final site is defined as

(a) the site at which a deadlock cycle
is completed, or

(b) the most distant site at which
global deadlock can be proved not
to exist.

Points (1) and (2) imply that in each trans-
action only one agent may be active or in
resource-wait. This agent is expected to
send a message to other agents of the same
transaction, which are waiting to receive a
message.

Obermarck [1982] admits that point (4)
is a fairly unrealistic assumption. It turns
out that even with this assumption the
algorithm is still vulnerable to detecting
phantom deadlocks. He suggests that, if the
occurrence of deadlock is rare, the assump-
tion be dropped and cycles found by the
algorithm be validated.

Each controller cj at site Sj runs a copy
of the deadlock detection algorithm. The
basic structure of the algorithm is an iter-
ation of the following steps:

(1) Receive deadlock information from
some other sites that was produced

ACM Computing Surveys, Vol. 19, No. 4, December 1987

316 9 Edgar Knapp

(2)

(3)

(4)

by the previous deadlock detection
iteration.

Build part of the global WFG using
local wait-for information and the
information received from other sites
in step 1. A special node in the WFG
called External is used to represent
intersite wait-for relations.

Find all elementary cycles in the WFG.
Break all cycles that do not contain EX
by aborting suitable transactions.

Consider each elementary cycle con-
taining EX. Such a cycle constitutes a
potential global deadlock. For each
such cycle EX + T1 + . . . + T, +
EX compare Tl with T,. If Tl > T,,,
send the cycle to each site, where an
agent of T,, is waiting to receive a mes-
sage from the agent of T,, at this site.

In Obermarck [1982, sect. 61, an attempt
is made to prove the algorithm correct.
That the algorithm and proof are incorrect
(in the sense that false deadlocks may be
detected) can easily be seen from the fol-
lowing observation [Elmagarmid 19861:
The portions of the WFG that are shipped
around may not represent a consistent view
of the global WFG, since each site takes its
snapshot asynchronously.

As far as the performance of the algo-
rithm is concerned, Obermarck shows that,
ifs sites are involved in a deadlock, at most
s(s - 1)/2 messages are sent, where each
message may be of length O(s). Under cer-
tain assumptions the expected case per-
formance is shown to be roughly linear in
s, with a small constant factor.

For more details, the reader may consult
Obermarck [19821. In our opinion, however,
this algorithm has been rendered obsolete
by more recent developments.

4.2 Mitchell and Merritt’s Algorithm for the
Single-Resource Model

The algorithm by Mitchell and Merritt
[19841 presented in this section is as simple
as the deadlock model for which it was
defined. It is an edge-chasing algorithm in
which probes are sent in the opposite direc-
tions of the edges of the WFG. In the

simplest case, a probe consists of a single
natural number that is unique to the nodes
in the WFG. When the probe comes back
to its initiator, the initiator declares dead-
lock.

The algorithm will be stated in terms of
processes. It has a number of nice features:

(1)

(2)

(3)

It is very simple, making the proofs
elegant and fun to read (and write), and
the task of implementing a matter of
hours.

Exactly one process in the cycle will
detect deadlock, which simplifies dead-
lock resolution since this process could
simply abort. By including priorities in
the algorithm, the lowest priority pro-
cess in a cycle detects deadlock and
aborts.

Spontaneous aborts are allowed, even
though under this assumption phantom
deadlocks cannot be excluded. It can be
shown, however, that only genuine
deadlocks will be detected in the ab-
sence of spontaneous aborts.

In this discussion, only the first version
of the algorithm (without priorities) is
given. The extension to priority handling
can be found in Mitchell and Merritt
[1984].

Each node of the (virtual) WFG has two
local variables, called labels: a private label,
which is unique to the node at all times,
though not constant, and a public label,
which can be read by other processes and
need not be unique. A process is repre-
sented as 8 where u and u are the public
and private labels, respectively. Initially,
private and public labels are equal for each
process.

The state of the system is given by the
global WFG. The WFG is maintained by
the four state transitions shown in Fig-
ure 3, where z = inc(u, v), and inc(u, u)
yields a unique label greater than both
u and u. Labels not mentioned explicitly
remain unchanged.

Block creates an edge in the WFG. Two
messages are needed, one resource request
and one message back to the blocked pro-
cess to inform it of the public label of the

ACM Computing Surveys, Vol. 19, No. 4, December 1987

Deadlock Detection in Distributed Databases 317

Block 8 8 ==+ 8-8

Activate e-e -8 8

Transmit
eiise a 8-8

Figure 3. The four possible state transitions.

process it is waiting for. Activate means
that a process acquired the resource from
the process it was waiting for. Transmit
propagates larger labels in the opposite di-
rection of the edges by sending a probe
message. A process that receives a probe
with a number smaller than its own public
label can simply ignore the probe. Detect
means that the probe with the private label
of some process has made a whole round in
a circle, indicating a deadlock.

Note that the requirement for unique-
ness of the public label does not cause any
problems at all in the Block step of the
algorithm. Assuming that we can assign a
unique name to each process, labels can be
represented as pairs of sequence numbers
and process names, and < can be chosen to
be lexicographical ordering. Then to Block,
only sequence numbers have to be com-
pared; to Transmit, the whole pair is sent.

The proof of the correctness of the algo-
rithm is quite simple. Mitchell and Merritt
show that every deadlock is detected. Since
they did not exclude spontaneous aborts,
they did not worry about phantom dead-
locks. Below we prove that in the absence
of spontaneous aborts only genuine dead-
locks are detected.

Assume for now that there are no spon-
taneous aborts. The following is an inuar-
iant :

For all processes 8 : u I U.

Proof. Initially u = u for all processes.
The only transactions that change u or u
are

(1) Block: u and u are set such that u = u.

(2) Transmit: u is increased. Cl

From the invariant the following lemma
is immediate:

Lemma 4.1

For any process 8, if u > u, then u was set

by a Transmit step.

Now we are ready to prove the following
theorem:

Theorem 4.1

If a deadlock is detected, a cycle of blocked
nodes exists.

Proof. Deadlock is detected if the fol-
lowing edge p + p’ exists:

@---+@

We will prove the following claims:

(1) u has been propagated from p to p’ via
a sequence of Transmits.

(2) p has been continuously blocked, since
it “transmitted” u (i.e., engaged in a
Transmit event with some process 4,

Q+-P)*
(3) For all intermediate nodes q in the

transmit path of(l), includingp’, q has
been continuously blocked since it
transmitted u.

The result then follows immediately.

Ad 1. By the invariant and the unique-
ness of private labels, we have for the pri-
vate label u of p ’ : u < u. By Lemma 4.1, u
was set by a Transmit step. By the seman-
tics of Transmit, there is some p” with
private label u, public label w.

If w = u, then p” = p, and we are done.
Otherwise, w < u, and we repeat the argu-
ment. Since there are only finitely many
processes, one of them is p.

Ad 2. Assume that p was active since it
transmitted u. It is blocked when it detects
deadlock; hence upon Blocking it incre-
mented its private label. But then private
and public labels cannot be equal.

Ad3. Assume that there is a process
that has been active since it transmitted
u. Its predecessor has been active since
its transmission, too, because Transmits
migrate in the opposite direction of the

ACM Computing Surveys, Vol. 19, No. 4, December 1987

318 . Edgar Knapp

edges. By repeating this argument, we find gorithm for handling processes with more
that p has been active since it transmitted than one outgoing edge (AND requests).
u. 0

The algorithm given can be easily ex-
tended to include priorities such that the
lowest priority process in a deadlock cycle
aborts itself. The extended algorithm has
two phases. The first phase is almost iden-
tical to the simple algorithm. In the second
phase the smallest priority is propagated
around the circle, as the largest public label
was propagated before. The propagation
stops when one process recognizes the
propagated priority as its own. The full
algorithm is given in Mitchell and Merritt
[1984].

The performance of this algorithm is not
studied in Mitchell and Merritt [19841. It
is, however, not hard to obtain the follow-
ing complexity results. Assuming that a
deadlock persists long enough to be de-
tected, the worst-case complexity of the
simple algorithm is s(s - 1)/2 Transmit
steps, where s is the number of processes
in the cycle. After this many steps, every
process in the cycle will have compared its
public label with every other one. That this
bound is tight can be seen from an example
in which the public labels of the processes
are ordered increasingly around the cycle,
with the detecting process having the great-
est label and the process for which the
detecting process is waiting having the
smallest label. A similar argument shows
that for the priority algorithm the largest
number of Transmit steps for detecting
deadlock is twice as large: s(s - 1). We
conjecture that the expected-case complex-
ity is linear for both algorithms.

Interestingly, the algorithm does not re-
main correct if public labels are transmitted
in the same direction as the edges instead
of the other way round. The reason for this
is exactly the point we were making when
we defined AND- and OR-model deadlock
in Section 3: If a deadlocked process that
is not part of a cycle has the largest public
label among the deadlocked processes, this
label might enter the cycle and circulate
once without any process in the cycle de-
tecting the deadlock. Also, there seems to
be no straightforward extension of the al-

4.3 Chandy and Misra’s Algorithm for the

AND Model

In the approach developed by Chandy and
Misra [19821, each controller runs a copy
of the deadlock detection algorithm. In
order to determine whether an idle trans-
action agent is deadlocked, its controller
initiates a probe computation. In a probe
computation, controllers send probes to
each other. Probe computations may be
initiated for several transactions, and the
same transaction agent may have several
probe computations initiated for it in se-
quence. A probe consists of a triple (i, j, k),
denoting that it belongs to a probe compu-
tation for ti4 and that this probe was sent
along intercontroller edge (tj, tk). A con-
troller sends a probe (i, j, k) if the following
conditions hold: (1) tj is idle, (2) tj is waiting
for tk, and (3) ti is dependent on tj. We call
an intercontroller edge (tj , tk) that meets
these three conditions an outgoing edge
Ofti.

Probes received by a controller may be
discarded or accepted; probes that are ac-
cepted are called meaningful. Formally, a
probe (i, j, lz) is meaningful if (1) tk is idle
and (2) the controller of tk did not know
that ti was dependent on tk and can now
deduce that t; is dependent on tk. It is
immediate that, if the controller of ti re-
ceives a meaningful probe (i, j, i) for any j,
then ti is deadlocked. The formulation of
these observations in terms of an algorithm
can be found in Figure 4.

Observe that in a subsequent refinement
step, the test of whether a probe is mean-
ingful can be implemented by a Boolean
array dependentk, where dependentk(i) =
tk’s controller knows that ti is dependent
on tk. Local dependence and outgoing edges
can be determined by a standard marking
algorithm, like the one used for reachability
problems in graphs.

The algorithm is proved correct by col-
oring the edges of the WFG in the following

4 Note, that we make use of the fact that double
subscripts can be replaced by a single subscript.

ACM Computing Surveys, Vol. 19, No. 4, December 1987

Deadlock Detection in Distributed Databases 319

For initiation of a probe computation by the controller of ti:

if ti is locally dependent on itself

then declare deadlock for ti

else send probes (i, j, Jz) on all outgoing edges (tj,th) of ti.

For a controller on receiving a probe (i, j, k):

if the probe is meaningful

thenifk=i

then declare deadlock for ti

else send probes (i, p, q) on all outgoing edges (tp, te) of th.

Figure 4. Algorithm for the AND model.

manner. An edge (tip tj) is

l gray if ti has sent a request to tj that tj
has not yet received;

l black if tj has received a request from
ti but has not yet sent a grant message
t0 ti;

l white if tj has sent a grant message to ti
but ti has not yet received it.

Hence edge colors represent the state of
a “channel” between processes. This ap-
proach is also used in Bracha and Toueg
[1984], Chandy et al. [1983], and Hermann
and Chandy [1983].

Gray and black edges are called dark
edges. It is easy to see that in our model of
message passing, a dark cycle, that is, a
cycle in which all edges are dark, will persist
forever. Hence the existence of a dark cycle
is equivalent to deadlock. In order to prove
the algorithm correct, one must show the
following:

(1) [Safety] If the initiator of a probe com-
putation for ti receives a meaningful
probe (i, j, i), then ti is on a black cycle
when this probe is received.

(2) [Progress] If ti is on a dark cycle at the
time its controller initiates a probe
computation for it, then the controller
of ti will eventually get a meaningful
probe (i,j, i).

Site 1

Site 2

Site 3

Figure 5. A counterexample to the algorithm in Sec-
tion 6.6 of Chandy and Misra [1982].

Incidentally, the algorithm given in
Chandy and Misra [1982, sect. 6.61 is not
correct, as can be observed by applying it
to the counterexample of Figure 5. If the
controller at site 1 initiates a probe com-
putation for tll, tll will not be marked in
the process of finding a local deadlock at
site 1 (because tll is not part of a local
deadlock). Since the set of outgoing edges
is determined starting from marked trans-
action agents only, the set of outgoing edges
will be found empty, and no probes will be
sent. Therefore, deadlock will never be de-
tected by the controller of site 1, even
though tll is part of a deadlock cycle. A
subsequent version of the algorithm that

ACM Computing Surveys, Vol. 19, No. 4, December 1987

320 . Edgar Knapp

appeared in Chandy et al. [1983, sect. 3.11
introduced the notion of dependence and is
(to our knowledge) correct. The formula-
tion of this algorithm given above both
retains the notational simplicity of the
first-incorrect-solution and is free of
errors.

Below, the performance analysis of the
algorithm is summarized. Each probe sent
is of fixed length. Deadlock detection over-
head is introduced primarily when trans-
action agents are idle (i.e., have nothing to
do and nothing to send). Furthermore, if
transaction agents that are referred to in a
probe are executing, the controller simply
discards that probe. Every single deadlock
detection computation involves no more
than e probes, where e is the number of
communicating pairs of controllers in
the network. Hence in the worst case e =
N(N - 1). Normally, however, e will be
much less, depending on the locality behav-
ior of the transactions.

Some optimizations regarding questions
of when and how often probe computations
should be initiated are given in Chandy and
Misra [19821.

4.4 Chandy, Misra, and Haas’s Algorithm for

the OR Model

The algorithm for the OR model [Chandy
et al. 1983, sect. 41 is an application of the
technique of diffusing computations. A
blocked process can determine whether it
is deadlocked by initiating a diffusing com-
putation. Several processes may initiate
diffusing computations at the same time.
However, for the time being we restrict
ourselves to the case in which each process
initiates at most one diffusing computation.
The extension to the same process initiat-
ing diffusing computations several times in
a row is then quite straightforward.

The messages in the deadlock compu-
tation have the form query (i, j, k) and
repZy(i, j, k), denoting that these messages
belong to the diffusing computation initi-
ated by process pi and are being sent
from pj to pk; pi, pi, pk are called the ini-
tiator, sender, receiver, respectively. There
will be at most one message of the form
query(i, j, K); there will be at most one reply

message of the form reply (i, k, j) to the
query message query(i, j, k). A blocked
process initiates a deadlock computation
by sending queries to processes in its de-
pendent set (cf. Section 2.3). The basic idea
is that a blocked process, on receiving a
query, should propagate the query to its
dependent set if it has not done so already.
Thus, if there is a sequence of permanently
blocked processes pi, . . . , pj such that each
process in the sequence (except the first) is
in the dependent set of the previous process
in the sequence, a query initiated by pi will
be propagated to pj .

Next we discuss the action taken by a
process pk on receiving a query or reply
with fixed initiator i and some sender j. If
pk is active, it ignores all queries and replies.
If it is blocked, there are several possibili-
ties: If pk receives an engaging query, it
propagates the query to all processes in its
dependent set and remembers the number
of queries sent in a local variable nun(i).
Let the local variable wait(i) denote the
fact that pk has been continuously blocked
since it received its engaging query. If pk
receives subsequent queries, it replies to
them immediately, if wait(i) holds. If it has
been executing since then, that is, -I wait(i)
holds, it discards the query.

If pk receives a reply and wait(i) holds,
it decrements num(i). When should pk re-
ply to its engaging query? From our dis-
cussion in Section 3.3 it should be clear
that pk replies to its engager only if it has
received a reply for each query it has
propagated, that is, if num(i) = 0.

When pk initiates a deadlock computa-
tion, it does so by sending query (k, k, j) to
each process j in its dependent set and
setting rum(k) to the number of queries
sent. If the initiator receives replies to all
the queries sent, then the initiator is dead-
locked.

These observations lead to the algorithm
in Figure 6. S denotes the dependent set of
pk, wait(i) = fake initially, for all i.

To guarantee that every deadlock will be
detected by some deadlocked process, we
now relax the restriction that only one
deadlock computation can be initiated by
some particular process. We require that a
process initiate a diffusing computation

ACM Computing Surveys, Vol. 19, No. 4, December 1987

Deadlock Detection in Distributed Databases l 321

For a blocked process PI: to initiate a diffusing computation:

send query(k, k,j) to all pj in S.

set num(i) := ISI; wail(i) := true.

For a blocked process ~1: upon receiving query(i,j, k):

if the query is the engaging query for initiator i

then send query(i, k, m) to all p,,, in S.

set num(i) := ISI; wait(i) := true.

else if wait(i) then send reply(i, k,i) to pj.

Upon receiving reply(i, k, j):

if wait(i)

then num(i) := num(i) - 1.

if num(i) = 0

then if i = k then declare deadlock for pk.

else send reply(i, k,j) to the engager of pk.

For a blocked process upon becoming executing:

wait(i) := false, for all i.

each time it becomes blocked. To distin-
guish several diffusing computations initi-
ated by the same process pi, queries and
replies are endowed with an additional pa-
rameter denoting the sequence number of
the diffusing computation initiated by pi.
The generalized algorithm can be found in
Chandy et al. [1983], together with a cor-
rectness proof. In particular, the following
theorems are proved:

Theorem 4.2

If the initiator of a diffusing computation is
deadlocked when it initiates the computa-
tion, it will (eventually) declare itself dead-
locked.

Theorem 4.3

If the initiator of a diffusing computation
declares itself deadlocked, then it belongs to
a deadlocked set.

Theorem 4.4

At least one process in every deadlocked set
will report deadlock if every process initiates

Fit1~6. Simplified algorithm for the OR

a new diffusing computation whenever it
becomes blocked.

The analysis of the algorithm’s perform-
ance is similar to that for the AND-model
algorithm in the previous section. There is
a maximum number of e queries and e
replies per diffusing computation, where
e=N(N-1).

4.5 Hermann and Chandy’s Algorithm for the
AND-OR Model

The basis of the algorithm for the AND-
OR model [Hermann and Chandy 19831 is
a so-called tree computation. A tree com-
putation consists of a hierarchy of diffusing
computations along the lines of Section 3.3.
Below we will make this idea more precise.
Transaction agents are mapped to proc-
esses in the following manner: A process
may have an AND request or an OR re-
quest; an AND-OR request issued by some
transaction agent is mapped to a tree of
processes. The mapping is a representation
of the AND-OR request in a regular form,
such as disjunctive normal form (DNF).

ACM Computing Surveys, Vol. 19, No. 4, December 1987

322 . Edgar Knapp

u

Figure 7. Mapping transaction agents
to processes.

Figure 7 gives an example of this mapping.
Transaction agent tl waits for (tz and t3) or
t4 or t5; a line connecting edges denotes an
AND request. We call processes like p;
AND processes; consequently, p1 is called
an OR process.

The behavior of individual processes
with respect to the underlying computation
is a refinement of the process behavior
defined in Section 1.3. Upon receiving a
grant message an edge in the WFG disap-
pears, and there are several possibilities for
the receiving blocked process:

(1) No outgoing edges remain, that is, the
process is active.

(2) If outgoing edges remain, there are two
cases:

(a) An AND process remains blocked.

(b) For an OR process, all outgoing
edges disappear instantaneously
and the process is active.

The central idea underlying the algo-
rithm is that any time a diffusing compu-
tation reaches a blocked OR process, the
diffusing computation is propagated to the
dependent set of this process; if the engaged
process is a blocked AND process, it initi-
ates a separate tree computation for each
outgoing edge. So a tree computation con-
sists of either a diffusing computation or a
set of tree computations. In order to start
a deadlock computation, an initiating pro-
cess sends a query to the process that is
suspected of deadlock. From there queries
are propagated according to the rules ex-
plained later. A tree computation termi-
nates when its initiator receives a reply
from the suspected process. Deadlock in
the process model is defined in the follow-
ing obvious way:

Definition 4.1

A blocked process p is deadlocked, if either

(1) p is an AND process and will never
receive a grant for at least one of the
resources requested, or

(2) p is an OR process, but will never re-
ceive a grant message.

Note, that in order to use this definition
to define the correctness of a deadlock
detection algorithm, we have to exclude
permanent blocking of processes due to
individual starvation or infinite loops.
For this reason, Hermann and Chandy
call this a local definition of deadlock.

Next we discuss process behavior with
respect to the deadlock computation
proper. Let us assume for now that only
one deadlock computation is performed at
a time. We shall see later how to extend
the scheme to many concurrent deadlock
computations.

Queries have the form query(seq, k),
where seq = (iI, . . . , in) is a sequence of
processes and k is the sender of the query.
The initiator i of a deadlock computation
sends query ((i) , i). A query is propagated
in the following manner: If an engaging

ACM Computing Surveys, Vol. 19, No. 4, December 1987

Deadlock Detection in Distributed Databases 323

query(seq, m) arrives at a blocked AND
process pk, a new set of tree computations
is initiated by pk. For this purpose, pk sends
out a query of the form query (seq 0 1, k) to
pI for all outgoing edges (pk, pi) of the WFG
(0 denotes concatenation). If a blocked OR
process receives an engaging query(seq, m),
it propagates query (seq, k) to all processes
in its dependent set. These actions are re-
ferred to as extension.

If query(seq, m) is not engaging and the
receiving process pk has been blocked con-
tinuously from the time it received its en-
gaging query, a reply(seq, k), is sent to pm.
This action is called reflection.

If a reply (seq, m) is received by an AND
process, it sends back its engaging reply if
it has been continuously blocked from the
time it received its engaging query. An OR
process sends back its engaging reply only
if it has received all the replies from pro-
cesses in its dependent set and has not been
executing from the time it was engaged.
These actions are called collation. In all
other cases messages received are dis-
carded.

To distinguish among many different
concurrent deadlock computations, proc-
esses use the information in seq. Two mes-
sages M(s, k) and M’(s’, k’) received by
some process in this order relate to the
same deadlock computation if and only if
s 5 s’, where I means “is prefix of.”
This observation and the rule for sequence
extension by AND processes enables us to
identify tree computations with sequences,
which plays an important role in the proof
of the algorithm. To keep track of the quer-
ies sent and replies received by each pro-
cess, two lists of messages are used: an
incoming query list IQ-list and an outgoing
query list OQ-list. Those lists are updated
in a straightforward manner. Care has to
be taken only in the case in which a grant
is received. For details the reader is referred
to Hermann and Chandy’s paper [19831.

A deadlock computation is started by
some controller, creating a process called
the initiator; the initiator then sends a
query to the process that is checked for
deadlock. Several deadlock computations
can be initiated concurrently and for the
same process. The only constraints are that

each time a new initiator be created and
that the names of the initiators be unique.

Verification of the algorithm proceeds by
proving the following claims:

(1) [Safety] If an initiator i detects dead-
lock for some process p, then p is truly
deadlocked.

(2) [Progress] If a process p is deadlocked
when a deadlock computation is initi-
ated by some initiator i, then i will
detect deadlock for p in finite time.

The proof employs invariants and the
so-called “tree computation termination
lemma” given below:

Lemma 4.2

A tree computation T terminates iff for every
i and j such that query(T, i) is sent to pj ,
reply(T, j) arrives at pi with no intervening
grants.

The details of the very well-written proof
can be found in the paper by Hermann and
Chandy [1983]. A performance analysis is
not provided by the authors, but it is not
hard to see that in the worst case one single
deadlock computation will take at most e =
N2(N - 1) queries and e replies, where N
is the number of processes. Messages are of
variable length with a maximum size of N.
However, N can be exponential in the num-
ber of transactions if a normal form like
DNF is used for the transaction-to-process
mapping, as suggested in the paper. On the
other hand, we do not see the necessity for
converting an arbitrary AND-OR request
into normal form: AND-OR requests can
be mapped directly to a tree of processes
without an exponential blowup. Hints for
efficiency improvements and implementa-
tion considerations are again given in Her-
mann and Chandy’s paper.

4.6 Bracha and Toueg’s Algorithm for the (;)
Model

The algorithm for the (E) model presented
in this section [Bracha and Toueg 19831 is
an application of the global state detection
technique described in Section 3.4. We
shall discuss in some detail only the first of
the three versions of the algorithm given

ACM Computing Surveys, Vol. 19, No. 4, December 1987

324 9 Edgar Knapp

by Bracha and Toueg, which assumes syn-
chronous communication between pro-
cesses and a static WFG. The second
algorithm is supposed to relax the con-
straint of synchrony, but this is the case
only to a very limited extent. The state of
an edge (channel) incident on a process
must still be known to that process in order
for the algorithm to be correct. Hence the
second algorithm is basically synchronous
as well; it is just one more scheme to sim-
ulate synchrony by sending status messages
back and forth, which is a fairly standard
scheme and not new at all. The third algo-
rithm first determines a global snapshot of
the WFG by using the technique introduced
in Chandy and Lamport [19851. This snap-
shot can then be used to run one of the first
two algorithms on to detect whether there
is a deadlock.

The underlying resource model is the
(;) model. A transaction can have as a
request an arbitrary and-or combination of
(2) requests. This combination is mapped
to a tree of processes by using a scheme
similar to the one discussed in the previous
section, with each process having a single
(;) request.

A process becomes blocked upon issuing
an (E) request. It does so by sending out n
request messages. It becomes executing
again when it receives k grant messages. In
this case it sends relinquish messages to the
remaining n - iz processes, informing them
that the edge created by sending the request
no longer exists. Relinquish messages are
necessary because each process must know
both its set of outgoing edges and its set of
incoming edges.

Deadlock in this model is defined in
terms of the WFG, using the terminology
of Section 3.4.

Definition 4.2

the computation due to individual starva-
tion or infinite loops, then the definition of
deadlock is not quite correct.

Bracha and Toueg’s first algorithm is a
nested invocation of diffusing computa-
tions, with a slight twist. The twist is that
a process leaving its neutral state remem-
bers that it did so. Only the first query it
ever receives will be engaging. All subse-
quent queries are answered immediately
with a reply, even if the process has re-
turned to its neutral state. One conse-
quence of this behavior is that the number
of messages exchanged during an invoca-
tion of the algorithm is reduced. Another
consequence, however, is that many of the
nice properties of diffusing computations
are lost and the proofs of correctness be-
come messy and almost incomprehensible.

A novel feature of the algorithm in com-
parison with the others we have seen so far
is that a diffusing computation always ter-
minates, and when it terminates, every
process knows whether or not it is dead-
locked. Every process p employs a local
variable free,, whose value upon termina-
tion satisfies free, = p is not deadlocked in
the static WFG. The value of free is estab-
lished by simulating the propagation of
grant messages through the WFG.

With these remarks, the algorithm can
be described as a nesting of two instances
of an algorithm similar to a diffusing com-
putation, which Bracha and Toueg call
CLOSURE. So the deadlock detection al-
gorithm looks like the following:

l [Outer invocation of CLOSURE] Find
the set S of all reachable executing proc-
esses by propagating queries, starting at
some initiator i.

-Each p E S simulates granting all the
resources it holds and the other pro-
cesses are waiting for. A separate in-
stance of CLOSURE is invoked by
each p.

-The grants are propagated and the
number g of simulated grants received
at each reachable process q is com-

A process p is deadlocked in a WFG G if
there is a schedule (r such that (G l--” G’
and p is executing in G ’).

The same problem as with the definition pared with the number r of resources
of Hermann and Chandy [19831 arises here, needed by q to become executing
even though Bracha and Toueg seem to fail again. If g < r, then q will never get
to recognize this. If there is no extension of enough grants; hence it is deadlocked.

ACM Computing Surveys, Vol. 19, No. 4, December 1987

Deadlock Detection in Distributed Databases 325

Observe that all the inner instances of
CLOSURE will terminate before the outer
one does. That the algorithm always ter-
minates and that at termination each pro-
cess knows whether or not it is deadlocked
are proved by Bracha and Toueg [1983].
The proof uses purely operational argu-
ments, and no invariants are given. The
algorithm itself is stated in a Pascal-like
language and uses global side effects, which
make both the understanding of the algo-
rithm and its proof unusually hard.

Moreover, the second version of the al-
gorithm cannot be correct. Bracha and
Toueg claim that “if an initiator i starts the
deadlock detection algorithm in a colored
WFG G then the algorithm terminates.5
Moreover, when i terminates, the local vari-
able freei = true if and only if i is not
deadlocked in G.” Deadlock is defined as in
Definition 4.2, with G containing black
edges only. A counterexample to the above
claim is a simple cycle of gray edges in G.
These edges will turn black after a finite
amount of time. Hence, there is no schedule
u such that (G l-” G’ and any of the pro-
cesses in the cycle are active in G’). There-
fore, by Definition 4.2, all the processes in
the cycle are deadlocked. But since Bracha
and Toueg chose to consider gray edges as
nonexistent in the WFG, if the initiator is
among the processes in the cycle, it will
erroneously claim that it is not deadlocked.
It is true, however, that this deadlock will
be detected eventually. But this does not
save the algorithm from not meeting its
specification.

The performance analysis is summarized
below. In the synchronous case at most
4N(N - 1) message are needed. In the
asynchronous version more messages have
to be exchanged to determine the state of
the edges between processes. In the worst
case an additional overhead of O(N2) mes-
sages suffices. Since the algorithm proceeds
by taking a snapshot first and then running
deadlock detection, the time between the
occurrence of deadlock and its detection
may be significant. Also, situations that
will inevitably lead to deadlock, but cannot

’ The notion of a colored WFG used here is similar to
the one we introduced in Section 4.4.

be detected yet, lead to further delays. A
number of optimizations are suggested and
can be found in Bracha and Toueg’s paper
[1983].

Compared with many other deadlock de-
tection schemes, this algorithm employs
very little concurrency. First, since snap-
shooting is used and the WFG is processed
off-line, there is no true concurrency be-
tween deadlock detection and underlying
computation. Second, the algorithm pro-
ceeds in phases (up to three, when space-
saving optimizations are used), which
sequentialize the deadlock computation.

To conclude the discussion of Bracha and
Toueg’s paper, we want to point out that a
study of the algorithms revealed a number
of errors. One of the more severe ones
was the fact that the instantiation of the
CLOSURE algorithm for the first phase
of detecting all reachable executing nodes
is incorrect. Recently, Gafni [19861
suggested improvements to Bracha and
Toueg’s algorithm but without giving a cor-
rectness proof.

5. DISCUSSION

The large number of errors in published
algorithms addressing the problem of dis-
tributed deadlock detection [Bracha and
Toueg 1983; Chandy and Misra 1982; Ho
and Ramamoorthy 1982; Menasce and
Muntz 1979; Obermarck 19821 shows that
only rigorous proofs, using as little opera-
tional argumentation as possible, suffice to
show the correctness of these algorithms.
By falling back on well-known and com-
pletely general principles like diffusing
computations and global state detection, it
seems possible to achieve both elegance and
correctness, even for more advanced models
of resource requests, without introducing
unnecessary complexity.

We believe that recent developments in
the area of distributed deadlock detection
algorithms has rendered much of the older
work obsolete. This paper has focused on a
small number of concepts and does not
claim completeness in the sense that all
known approaches have been covered.
Among recent publications that have not
been considered here are Chandy and Misra

ACM Computing Surveys, Vol. 19, No. 4, December 1987

326 l Edgar Knapp

[1986], Elmagarmid [1985], Helary et al.
[1987], Natarajan [19861, and Sinha and
Natarajan [19841. An annotated bibliog-
raphy on distributed deadlock detection al-
gorithms appeared in Zobel [19831.

The differences in message complexity of
the algorithms presented have turned out
to be less significant than expected. The
one-resource, AND-, and OR-model algo-
rithms all had a worst-case complexity of
O(N’), where N was the number of nodes
in the WFG. The AND-OR algorithm
needed at most O(N3) messages but was
vulnerable to an exponential blowup if (;)
requests are cast into AND-OR form. The
algorithm for the (z) model itself used
O(N2) messages in the worst case, but this
could only be achieved by performing the
deadlock detection proper off-line from the
database computations. There are no clear
winners among the algorithms: Mitchell
and Merritt’s algorithm excels by its ele-
gance and simplicity, Chandy and Misra’s
AND-model algorithm by its streamlined
proof, and Hermann and Chandy’s tech-
nique by the idea of applying diffusing com-
putations to several levels of hierarchy.
Each of the algorithms presented has its
merits, but many of them achieve simplicity
by severely restricting the forms of resource
requests permitted. In selecting a deadlock
detection scheme to be embedded into a
particular application, it is therefore
advisable-in order to avoid unnecessary
complexity-to choose the least general
technique that is still general enough to
solve the problem at hand.

ACKNOWLEDGMENTS

We are grateful to Hank Korth for his help and

encouragement and to Salvatore March and the ref-

erees for their comments and suggestion. The work
was partially supported by Office of Naval Research

contract N00014-86-K-0182.

REFERENCES

AWERBUCH, B., AND MICALI, S. 1986. Dynamic
deadlock resolution protocols. In Proceedings of
the Foundations of Computer Science (Toronto,
Canada). IEEE, New York, pp. 196-207.

BERNSTEIN, P. A., HADZILACOS, V., AND GOODMAN,
N. 1987. Concurrency Control and Recovery in

Database Systems. Addison Wesley, Reading,
Mass.

BRACHA, G., AND TOUEG, S. 1983. A distributed
algorithm for generalized deadlock detection.
Tech. Rep. TR 83-558, Cornell Univ., Ithaca,
N.Y. -

BRACHA, G., AND TOUEG, S. 1984. A distributed
algorithm for generalized deadlock detection. In
Proceedings of the ACM Symposium on Principles
of Distributed Computing (Vancouver, Canada,
Aug.). ACM, New York, pp. 285-301.

CHANDY, K. M., AND LAMPORT, L. 1985. Distributed
snapshots: Determining global states of distrib-
uted systems. ACM Trans. Program. Lang. Syst.
3, 1 (Feb.), 63-75.

CHANDY, K. M., AND MISRA, J. 1982. A distributed
algorithm for detecting resource deadlocks in dis-
tributed systems. In Proceedings of the ACM
Symposium on Principles of Distributed Comput-
ing (Ottawa, Canada, Aug.). ACM, New York,
pp. 157-164.

CHANDY, K. M., AND MISRA, J. 1986. An example of
stepwise refinement of distributed programs: Qui-
escence detection. ACM Trans. Program. Lang.
Syst. 8, 3 (July), 326-343.

CHANDY, K. M., MISRA, J., AND HAAS, L. M. 1983.
Distributed deadlock detection. ACM Trans.
Comput. Syst. 1,2 (May), 144-156.

CHANG, E. 1982. Echo algorithms: Depth parallel
operations on general graphs. IEEE Trans. Softw.
Eng. SE-&4 (July), 391-401.

DIJKSTRA, E. W., AND SCHOLTEN, C. S. 1980.
Termination detection for diffusing computa-
tions. Znf. Process. Lett. 11, 1 (Aug.).

DIJKSTRA, E. W., FEIJEN, W., AND VAN GASTEREN,
A. J. M. 1983. Derivation of a termination de-
tection algorithm for distributed computations.
Znf. Process. Lett. 16, 5 (June), 217-219.

ELMAGARMID, A. K. 1985. Deadlock detection and
resolution in distributed processing systems.
Ph.D. dissertation, Dept. of Electrical Engineer-
ing, Ohio State Univ., Columbus, Ohio.

ELMAGARMID, A. K. 1986. A survey of distributed
deadlock detection algorithms. ACM SZGMOD
Rec. 15, 3 (Sept.).

GAFNI, E. 1986. Perspectives on distributed network
protocols: A case for building blocks. In IEEE
Military Communications Conference (Monterey,
Calif.). IEEE, New York, pp. 1.1.1-1.1.5.

GIFFORD, D. G. 1979. Weighted voting for replicated
data. In Proceedings of the 7th ACM Symposium
on Operating Systems Principles (Pacific Grove,
Calif., Dec.). ACM, New York, pp. 150-163.

GLIGOR, V., AND SHATTUCK, S. 1980. On deadlock
detection in distributed databases. IEEE Trans.
Softw. Eng. SE-6, 5 (Sept.).

GRAY, J. N., HOMAN, P., KORTH, H. F., AND OBER-
MARCK, R. L. 1981. A straw man analysis of the
probability of waiting and deadlock in a database
system. Tech. Rep. RJ 3066, IBM Research Lab-
oratory, San Jose, Calif.

ACM Computing Surveys, Vol. 19, No. 4, December 1987

Deadlock Detection in Distributed Databases l 327

HAAS, L. M. 1981. Two approaches to deadlock de- OBERMARCK, R. 1982. Distributed deadlock detec-

tection in distributed systems. Ph.D. dissertation, tion algorithm. ACM Trans. Database Syst. 7, 2
Dept. of Computer Sciences, Univ. of Texas, Aus- (June), 187-208.
tin, Tex. PAPADIMITRIOU, C. 1987. The Theory of Database

HAAS, L. M., AND MOHAN, C. 1983. A distributed
deadlock detection algorithm for a resource-based
system. Res. Rep. RJ 3765, IBM Research Labo-
ratory, San Jose, Calif.

H~LARY, J., JARD, C., PLOUZEAU, N., AND RAYNAL,
M. 1987. Detection of stable properties in dis-
tributed applications. In Proceedings of the ACM
Symposium on Principles of Distributed Comput-
ing (Vancouver, Canada, Aug.). ACM, New York,
pp. 125-136.

HERMANN, T., AND CHANDY, K. M. 1983. A distrib-
uted procedure to detect AND/OR deadlock.
Tech. Rep. TR LCS-8301, Dept. of Computer
Sciences, Univ. of Texas, Austin, Tex.

Ho, G. S., AND RAMAMOORTHY, C. V. 1982.
Protocols for deadlock detection in distributed
database systems. IEEE Trans. Softw. Eng. SE-
8, 6 (Nov.), 554-557.

HOLT, R. C. 1972. Some deadlock properties on com-
puter systems. ACM Comput. Surv. 4, 3 (Sept.),
179-196.

JAGANNATHAN, J. R., AND VASUDEVAN, R. 1982. A
distributed deadlock detection and resolution
scheme; performance study. In Proceedings of the
Third International Conference on Distributed
Computing Systems (Miami, Fla.). IEEE, New
York, pp. 496-501.

LAMPORT, L. 1978. Time, clocks, and the ordering
of events in distributed systems. Commun. ACM
21, 7 (July), 558-565.

MENASCE, D., AND MUNTZ, R. 1979. Locking and
deadlock detection in distributed databases.
IEEE Trans. Softw. Eng. SE-5,3 (May).

MISRA, J. 1983. Detecting termination of distributed
computations using markers. In Proceedings of
the ACM Symposium on Principles of Distributed
Computing (Montreal, Canada, Aug.). ACM, New
York, pp. 290-294.

MISRA, J., AND CHANDY, K. M. 1982a. A distributed
graph algorithm: Knot detection. ACM Trans.
Program. Lang. Syst. 4,4 (Oct.), 678-686.

MISRA, J., AND CHANDY, K. M. 1982b. Termination
detection of diffusing computations in com-
municating sequential processes. ACM Trans.
Program. Lang. Syst. 4, 1 (Jan.), 37-43.

MITCHELL, D. P., AND MERRITT, M. J. 1984. A
distributed algorithm for deadlock detection and
resolution. In-Proceedings of the ACM Symposium
on Principles of Distributed Computing. ACM,
New York, pp. 282-284.

Concurrency Control. Computer Science Press,
Rockville, Md.

RAUCHLE, T., AND TOUEG, S. 1983. Exposure to
deadlock for communicating processes is hard to
detect. Tech. Rep. TR 83-555, Cornell Univ.,
Ithaca, N.Y.

SINHA, M. K., AND NATARAJAN, N. 1984. A distrib-
uted deadlock detection algorithm based on
timestamps. In Proceedings of the 4th Interna-
tional Conference on Distributed Computing Sys-
tems. IEEE, New York, pp. 546-556.

ZOBEL, D. 1983. The deadlock problem: A classifying
bibliography. Operat. Syst. Rev. 17, 2 (Oct.),
6-15.

BIBLIOGRAPHY

BADAL, D. Z., AND GEHL, M. T. 1983. On deadlock
detection in distributed computing systems. In
IEEE INFOCOM. IEEE, New York.

BRACHA, G. 1985. Randomized agreement protocols
and distributed deadlock detection algorithms.
Ph.D. dissertation, Cornell Univ., Ithaca, N.Y.

COHEN, S., AND LEHMANN, D. 1982. Dynamic sys-
tems and their distributed termination. In Pro-
ceedings of the ACM Symposium on Principles of
Distributed Computing (Ottawa, Canada, Aug.).
ACM, New York, pp. 29-33.

DIJKSTRA, E. W. 1982. Distributed termination
detection revisited. EWD 828, Plataanstraat 5,
5671 Al Nuenen, The Netherlands.

FRANCEZ, N. 1980. Distributed termination. ACM
Trans. Program. Lang. Syst. 2, 1 (Jan.), 42-55.

FRANCEZ, N., AND RODEH, M. 1982. Achieving dis-
tributed termination without freezing. IEEE
Trans. Softw. Eng. SE-8, 3 (May), 287-292.

FRANCEZ, N., RODEH, M., AND SINTZOFF, M. 1981.
Distributed termination with interval assertions.
In Proceedings of Formalization of Programming
Concepts (Peninsula, Spain). Springer Verlag,
New York.

GOLDMAN, B. 1985. Deadlock detection in computer
networks. Tech. Rep. LCS TR-185, Massachu-
setts Institute of Technology, Cambridge, Mass.

GOUDA, M. 1981. Distributed state exploration
for protocol validation. Tech. Rep. TR-185, Dept.
of Comnuter Sciences, Univ. of Texas, Austin,
Tex. -

ISLOOR, S. S., AND MARSLAND, T. A. 1980. The
NATARAJAN, N. 1986. A distributed scheme for de- deadlock problem: An overview. Computer

tecting communication deadlock. IEEE Trans. (Sept.), 58-70.
Softw. Eng. SE-12, 4 (Apr.), 531-537. JAGANNATHAN, J. R., AND VASUDEVAN, R. 1982.

OBERMARCK, R. 1980. Deadlock detection for all re- Detection and resolution of deadlocks in distrib-
source classes. Res. Rep. RJ2955, IBM Research uted systems. Tech. Rep. 82-108-27, Univ. of Cal-
Laboratory, San Jose, Calif. gary, Calgary, Alta., Canada.

ACM Computing Surveys, Vol. 19, No. 4, December 1987

328 . Edgar Knapp

KORTH, H. F., KRISHNAMURTHY, R., NIGAM, A., AND
ROBINSON, J. T. 1983. A framework for under-
standing distributed (deadlock detection) algo-
rithms. In Proceedings of the Second ACM
Symposium on Principles of Database Systems
(Atlanta, Ga., Mar.). ACM, New York, pp.
192-201.

MARSLAND, T. A., AND ISLOOR, S. S. 1980.
Detection of deadlocks in distributed database
systems. ZNFOR 18, 1 (Feb.), l-20.

Received May 1987; final revision accepted January 1988.

TSAI, W. 1982. Distributed deadlock detection in
distributed database systems. Ph.D. dissertation,
Univ. of Illinois at Urbana-Champaign, Urbana,
Ill.

TSAI, W., AND BELFORD, G. 1982. Detecting dead-
lock in distributed svstems. In IEEE ZNFOCOM.
IEEE, New York, pp. 89-95.

Wuu, G. T., AND BERNSTEIN, A. J. 1985. False
deadlock detection in distributed systems. IEEE
Tram. Softw. Erg. SE-11,8 (Aug.), 820-821.

ACM Computing Surveys, Vol. 19, No. 4, December 1987

