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The problem of deadlock detection in distributed systems has undergone extensive study. 

An important application relates to distributed database systems. A uniform model in 

which published algorithms can be cast is given, and the fundamental principles on which 

distributed deadlock detection schemes are based are presented. These principles 

represent mechanisms for developing distributed algorithms in general and deadlock 

detection schemes in particular. In addition, a hierarchy of deadlock models is presented; 

each model is characterized by the restrictions that are imposed upon the form resource 

requests can assume. The hierarchy includes the well-known models of resource and 

communication deadlock. Algorithms are classified according to both the underlying 

principles and the generality of resource requests they permit. A number of algorithms are 

discussed in detail, and their complexity in terms of the number of messages employed is 

compared. The point is made that correctness proofs for such algorithms using 

operational arguments are cumbersome and error prone and, therefore, that only 

completely formal proofs are sufficient for demonstrating correctness. 
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INTRODUCTION 

Deadlock detection is an important prob- 
lem in database systems (DBSs), and much 
attention has been devoted to it in the 
research community. Generally speaking, a 
deadlock situation is the possible result of 
competition for resources, such as multiple 
database transactions requesting exclusive 
access to data items. 

The deadlock problem has several inter- 
esting components. Among these are dead- 
lock prevention, deadlock avoidance, and- 
in connection with deadlock detection-the 

selection of a so-called victim whose roll- 
back or abortion breaks the deadlock, and 
finally, deadlock resolution itself. This pa- 
per is concerned only with the aspect of 
deadlock detection. Recent developments 
in the area of distributed deadlock detec- 
tion algorithms are surveyed, with a special 
emphasis on their relation to distributed 
DBSs. The paper introduces a uniform 
framework for the discussion of these al- 
gorithms. The abstraction achieved this 
way allows us to talk about the algorithms 
in terms of the underlying theoretical con- 
cepts, instead of just giving a phenomeno- 
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logical description of the workings of the 
algorithms (cf. Elmagarmid [1986]). 

The paper is organized as follows. Sec- 
tion 1 focuses on the relationship between 
the deadlock problem and DBSs. For the 
benefit of those readers not familiar with 
the necessary database terminology, a brief 
outline of the relevant concepts is given. 
For a more thorough treatment of this ma- 
terial, the reader is referred to recent 
texts on concurrency control, for example, 
Bernstein et al. [1987] and Papadimitriou 
[1987]. Next, a database model is pre- 
sented, and a specification of the deadlock 
detection problem in terms of this model is 

developed. Section 2 gives a systematic 
classification of the models of deadlock as 
they appear in database applications. A 
hierarchy of models that gives rise to one 
way of classifying most of the distributed 
deadlock detection procedures found in the 
literature is introduced. Another classifi- 
cation, focusing on the theoretical princi- 
ples underlying the work in distributed 
deadlock detection schemes, is given in Sec- 
tion 3. A survey of a number of algorithms 
can be found in Section 4, with examples 
from each of the classes introduced in the 
two previous sections. In the final section 
the relative merits of the algorithms pre- 
sented are discussed. The references con- 
tain an exhaustive list on the work done in 
the field of distributed deadlock detection 
after 1980. Earlier papers included consti- 
tute “classical articles” related to the 
subject. 

1. THE DEADLOCK PROBLEM 

1.1 A Brief Introduction to Concurrency 

Control 

The deadlock problem in DBSs is part of 
the area of concurrency control.’ Concur- 
rency control deals with the problem of 
coordinating the actions of processes that 
operate in parallel, access shared data, and 
therefore potentially interfere with each 
other. The object of study is an abstraction 
(model) of many different types of infor- 
mation systems. The main component of 
this model is the transaction. Informally, a 
transaction is an execution of a program 
that accesses a shared database. In our 
model transactions are characterized by a 
sequence of operations, for example, R(x) 
denoting the operation of reading some 
data item x from the database and W(X) 
standing for the operation of assigning a 
new value to data item x in the database. 
When two or more transactions execute 
concurrently, their database operations ex- 
ecute in an interleaved fashion. That is, 
operations from one transaction may exe- 
cute in between two operations of another 
transaction. This interleaving can cause 

1 Part of Section 1.1 follows the introductory chapter 
of Bernstein et al. 11987 1. 
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transactions to behave incorrectly or inter- 
fere, thereby leading to an inconsistent 
database state. 

The part of the DBS that controls the 
relative order in which database operations 
requested by transactions execute is called 
the scheduler. The scheduler determines 
the interleaving of database operations 
such that the consistency of the database 
is preserved. A particular such interleaving 
of database operations is called a schedule. 

As an example, consider the schedule 
given below involving two transactions tl 

and t2 and two entities x and y (the notation 
follows Bernstein et al. [1987] and Papa- 
dimitriou [ 19871): 

t1: R(x) W(Y) 
tz : R(Y) W(x) 

This schedule formalizes the following se- 
quence of database operations: transaction 
tl first reads database item x, then t2 reads 
y, followed by tl writing y, and finally t2 

writing x. 

1.2 Deadlock in Centralized Systems 

There are many different known strategies 
for schedulers for solving the problem of 
concurrent accesses without compromising 
database consistency. A detailed discussion 
of these strategies is beyond the scope of 
this paper. The interested reader is referred 
to Bernstein et al. [1987] and Papadimi- 
triou [ 1987 1. 

The most popular of these strategies is 
so-called locking. Locking is the strategy of 
reserving access rights (locks) that prevent 
other transactions from obtaining certain 
other (conflicting) locks. 

As an example, consider a protocol called 
basic two-phase locking (2PL), which is 
widely in used in commercial systems. In 
this protocol’ a transaction that has re- 
leased a lock may not subsequently obtain 
any more locks. If this strategy is applied 
to the example schedule given above, the 
following scenario is bound to happen: 

tl locks x, 
tz locks y, 
tl waits for t2 to release the lock on y, 
t2 waits for tl to release the lock on x. 

* Also called dynamic 2PL in Papadimitriou [1987]. 

Hence both transactions are blocked, wait- 
ing for each other: a deadlock situation. 

Informally, deadlock in a DBS can be 
defined as “a situation in which each trans- 
action in a set of transactions is blocked 
waiting for another transaction in the set, 
and therefore none will become unblocked 
unless there is external intervention” (cf. 
Bernstein et al. [1987]). 

Even though some concurrency control 
protocols are provably deadlock free (e.g., 
conservative 2PL,3 tree locking), most 
known protocols are vulnerable to dead- 
lock. We next look at a number of other 
ways in which deadlock can arise in a DBS. 

Let us consider the case of multiversion 
schedulers, where each write operation on 
some data item produces a new version of 
this item, and each read operation of an 
item is mapped to some version of this item 
that was written previously. In the proto- 
col for a multiversion-view-serializability 
(MV-VSR) scheduler, the last step of a 
transaction is treated in a special way to 
ensure that at most one uncommitted 
version exists for any data item in the 
database. If such a scheduler is given the 
schedule of the previous example, the 
following happens: 

tl reads x, 
t:! reads y, 
tl waits for t2 to finish (commit), 
t2 waits for tl to finish (commit), 

and, again, the result is deadlock. 
Lock conversion is a concurrency control 

technique that allows upgrading of a lock 
to a stronger lock type, such as converting 
a read lock on a data item into a write lock 
on the same item. Schedulers that allow for 
lock conversion are prone to deadlock sit- 
uations for yet another reason. To see this, 
consider the following example: 

tl: R(x) W(x) 
tz : R(x) W(x) 

After both reads have been performed, with 
tl and t2 holding read locks on x, neither 
transaction can convert its read lock into a 
write lock; hence they are blocked forever. 

3 Also called static 2PL in Papadimitriou [1987]. 
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Multigranularity locking is a method 
whereby transactions can lock different 
granularities of data items, such as a record, 
a disk page, or an entire file. In multigran- 
ularity locking protocols, deadlock can oc- 
cur for more than one reason. First, we 
have the problems due to the already men- 
tioned two-phase rule and lock conversion, 
especially in conjunction with lock escala- 
tion, a technique in which a transaction 
that obtains too many locks on data items 
of small granularity can increase the gran- 
ularity of its subsequent lock requests. An- 
other problem arises when granules are 
structured hierarchically in a rooted di- 
rected acyclic graph. In this case a locking 
protocol may require a transaction that 
wants to lock some set of granules to lock 
a majority of parents of these granules first. 
If two transactions happen to try locking 
the same set of granules, they may get to a 
point at which they both hold locks on 
exactly half of the parents of the set so that 
neither of them will succeed. If more than 
two transactions are competing for an in- 
tersecting set of granules, then deadlock is 
even more likely to result. 

Notice that there is a fundamental dif- 
ference between deadlocks due to majority 
locking and the other schemes mentioned 
above. The former has been termed com- 
munication deadlock, since it was first stud- 
ied in systems of communicating processes, 
where a process waits to communicate with 
any one from a set of neighbors. The same 
principle underlies majority locking, in 
which a transaction that is blocked can 
proceed after some other transaction re- 
leases its lock on a parent of the granule in 
question. 

The other examples demonstrate what 
has been called a resource deadlock, which 
assumes that a process becomes unblocked 
only after it receives all the resources for 
which it is waiting. In the case of a database 
model in which a transaction is either ac- 
tive or waiting for exactly one resource, the 
distinction between resource and commu- 
nication deadlock is irrelevant since they 
reduce to the same concept. 

As we shall see in Section 2, there is a 
whole hierarchy of deadlock models that 

subsumes-among others-the traditional 
resource and communication models. 

1.3 Deadlock in Distributed Databases 

In general, a distributed DBS consists of a 
number of sites, each of which constitutes 
a centralized system. Hence all problems of 
the previous section plus additional ones 
due to the distributed nature of the data- 
base (e.g., replication of data, single trans- 
actions executing in parallel at different 
sites) are present. Also, distributed dead- 
lock is harder to detect, since each site has 
only a local view of the whole system, and 
hence collaboration of the sites is required 
to detect deadlocks involving more than 
one site. 

Both resource and communication dead- 
locks can be distributed. In distributed 
DBSs, transactions that access nonlocal 
data migrate to other sites by invoking 
subtransactions that may run concurrently 
with each other. So the originating trans- 
action is blocked until all subtransactions 
terminate, an indication of the resource 
model. 

Communication deadlock can occur if 
in a replicated database a transaction re- 
quests the value of some nonlocal data 
item and is blocked until one of the sites 
that hold a copy of this item responds. 
Furthermore, one can conceive of subtrans- 
actions running in parallel on a repli- 
cated database, resulting in situations 
in which resource and communication 
models are interwoven. 

As an example of such an interplay be- 
tween both models, consider a distributed 
DBS with replicated data. Gifford [1979] 
has shown that in order to preserve data- 
base consistency, a transaction that wants 
to read (write) a replicated data item, must 
read (write) r (w) copies out of the n copies 
of the data item such that r + w > n and 
2w > n. This is to ensure that at most one 
writer has access to a replicated data item 
at a time. To read or write some copy of a 
data item, a transaction must request and 
obtain a lock on this copy. Therefore, the 
reading and writing of a data item generate 
so-called (:) and (Z) resource requests, re- 
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spectively. These requests require essen- 
tially a combination of the resource and 
communication models. 

A uniform model of a distributed DBS 
underlying most of the algorithms found in 
the literature is made precise in the follow- 
ing section. 

1.4 The Database Model 

We introduce a model due to Menasce and 
Muntz [1979] for studying deadlock detec- 
tion algorithms for distributed DBSs. A 
distributed DBS consists of a collection of 
N sites, S1, Sz, . . . , SN, connected by a 
communication network. The network is 
assumed to be reliable and fully connected. 
Each site is a centralized DBS that stores 
some portion of the database. There are M 
transactions, TI, T,, . . . , TM running on 
the distributed database. A transaction pre- 
sents resource requests to a transaction 
manager (TM), also called controller. 
There is one controller Ci per site Si. A 
resource request may be a request to lock 
some data item or may have a more abstract 
meaning. A transaction is blocked from the 
time it presents a request to a TM until the 
TM grants the request and the transaction 
becomes active. A resource request can be 
local or can refer to a resource at another 
site, in which case the transaction is dis- 
tributed. A distributed transaction Ti is 
implemented by transaction agents tij , each 
of which is the local agent for transaction 
Ti at site Sj. In case a transaction agent tij 
requests a nonlocal resource that is man- 
aged by some controller C,, controller Cj 
transmits the request to agent ti, via con- 
troller C,. When ti, acquires the requested 
resource from C,, it sends a message to tij 
(via C, and Cj) stating that the resource 
has been acquired. Hence intersite requests 
are always between two agents of the same 
transaction. 

When agents in a transaction Ti no 
longer need a resource managed by con- 
troller C,, they communicate with agent 
tim, which is responsible for releasing the 
resource to C,. We assume that messages 
sent by any controller Ci to Cj arrive se- 
quentially and in finite time. We assume 

further that if a single transaction runs by 
itself in the distributed DBS, it will termi- 
nate in finite time and release all resources. 
When two or more transactions run in par- 
allel, deadlock may arise. 

A transaction agent is said to be idle if it 
is waiting to acquire a resource; it is said to 
be executing if it is not idle. Thus, if an 
agent never acquires a requested resource, 
it is permanently idle. For notational sim- 
plicity, we may assign a single identifying 
subscript (rather than a double subscript) 
to an agent. Hence ti denotes the ith agent. 

In subsequent sections we often refer to 
processes instead of transaction agents. 
Processes are more powerful than transac- 
tion agents. They are assumed to know the 
identities of all the processes they are wait- 
ing for, for example, by having access to 
their controller’s tables. Besides sending 
request and release messages like transac- 
tion agents, they can also exchange other 
messages. This means that, with respect to 
deadlock computations, transactions are 
passive objects, whereas processes are ac- 
tive participants in deadlock detection. In 
our database model, processes can be 
thought of as belonging in part to the 
controller and in part to the transaction. 
Although there can be at most one trans- 
action agent per transaction at each 
site, there is no such restriction for pro- 
cesses. As for controllers, message passing 
between processes is assumed to be first in, 
first out. 

At any time a process is in one of two 
states: blocked or executing. A process is 
blocked from the time it issues a resource 
request until it receives a grant message for 
the requested resource. If a process never 
receives a grant message for which it is 
waiting, it is permanently blocked. While a 
process is blocked it may not send any 
request or grant messages. It may, however, 
send and receive other messages or perform 
other tasks (e.g., related to deadlock detec- 
tion). Examples of this behavior are given 
in later sections. 

Henceforth we refer to either transaction 
agents or processes, depending on which 
variant of the model is more appropriate 
for our discussion. 
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1.5 A Specification of the Deadlock Problem 

A transaction wait-for-graph (WFG) is a 
mathematical model of resource requests. 
The vertices of the graph are associated 
with transaction agents (or processes, de- 
pending on the context). Directed edges in 
the graph represent blocking relations be- 
tween transaction agents (processes). A 
vertex with outgoing edges corresponds to 
an idle transaction agent (blocked process). 
More precisely, there is an edge in the WFG 
from transaction agent tij to tkj if controller 
Cj has a request from tij for resources held 
by tkj; such an edge is called an intracon- 
troller edge. There is an edge from tij to tin 
if tij is waiting for a grant message from ti, 
(that it has acquired a resource managed 
by C,,,); such an edge is called an intercon- 
troller edge. 

A cyclic structure in this graph indicates 
a deadlock. The precise definition of the 
term cyclic structure depends on the dead- 
lock model we are considering. An example 
is given in Figure 1. There are five trans- 
actions Z’,-Z’,, implemented by eight trans- 
action agents. The directed edge from node 
tll to node tzl indicates that transaction 
agent tll is blocked. This edge is an intra- 
controller edge, whereas edge (tzl, tzz) is an 
intercontroller edge. Node tzz has no out- 
going edges and is therefore active (non- 
blocked). Node tll has two outgoing edges, 
which means that it has two outstanding 
resource requests. Note the presence of the 
cycle tll + tsl + t33 + t43 + & + tll in the 
WFG. This cycle may or may not indicate 
a deadlock, depending on which deadlock 
model we adopt. The relationship between 
deadlocks and WFGs is made more precise 
in Section 2, when we talk about specific 
deadlock models. 

The correctness of a deadlock algorithm 
depends on two conditions. First, every 
deadlock must be detected eventually. This 
constitutes the basic progress property any 
solution must have. Second, if a deadlock 
is detected, it must indeed exist (safety 
property). Incorrectly detected deadlocks 
due to message delays and out-of-date 
WFGs have been termed phantom dead- 
locks. In the presence of spontaneous aborts 
no deadlock scheme can guarantee to detect 
only genuine deadlocks. For global dead- 

lock detection, Bernstein et al. [1987] show 
that as long as transactions follow a 2PL 
protocol, a phantom deadlock can occur 
only if some transaction spontaneously 
aborts. In accordance with most of the ar- 
ticles on the subject, for the purpose of our 
discussion we assume that the DBS is free 
of spontaneous abortions. 

1.6 Centralized versus Distributed Deadlock 
Detection 

There are a number of reasons why distrib- 
uted deadlock detection seems more attrac- 
tive than a centralized scheme, that is, one 
in which a single agent is responsible for 
deadlock detection. First, a centralized 
deadlock detection algorithm is vulnerable 
to failures of the central detector. Hence 
special provisions for this kind of faults 
have to be made, resulting in long delays 
until a new central agent is determined and 
supplied with up-to-date wait-for informa- 
tion. Distributed algorithms deal with these 
kinds of problems in a much more natural 
way. Furthermore, because of the heavy 
traffic to and from the central agent, this 
agent can constitute a performance bottle- 
neck, limiting the overall performance of 
the DBS. 

More evidence for the superiority of dis- 
tributed schemes is supplied by the obser- 
vation that for typical applications most 
WFG cycles are very short. Bernstein et al. 
[1987] give theoretical reasons for the pre- 
dominance of short paths in WFGs. In par- 
ticular, for most applications over 90% of 
WFG cycles can be expected to be of length 
2. The same figure also appears in an em- 
pirical study [Gray et al. 19811. 

The observation that deadlock cycles are 
short makes centralized deadlock detection 
an even less attractive choice. With a global 
algorithm there may be a significant time 
and message overhead in assembling all the 
local WFGs at the global detector. Thus, a 
distributed deadlock might go undetected 
for quite a while. Since most deadlocks 
involve only two sites, they can detect the 
deadlock more efficiently by communicat- 
ing directly. 

Mitchell and Merritt [1984] present a 
fully distributed deadlock detection algo- 

ACM Computing Surveys, Vol. 19, No. 4, December 1987 



Deadlock Detection in Distributed Databases l 309 

I Site 1 

Figure 1. Example of a WFG. 

I I 

rithm that has a very simple and appealing is given in the next section. The model is 
correctness proof and that, according to the widely used in theoretical studies of data- 
authors, had been implemented in a DBS base systems (cf. Bernstein et al. [1987] 
in less than an hour. This dissents from the and Papadimitriou [1987]). A very simple 
widely held opinion that distributed algo- and elegant algorithm for deadlock detec- 
rithms are necessarily more complex and tion in the one-resource model appears in 
harder to prove and implement than cen- Mitchell and Merritt [1984] and is de- 
tralized schemes. scribed in Section 4.2. 

2. MODELS OF DEADLOCK 
2.2 AND Model 

Depending on the application, database 
systems allow a number of different kinds 
of resource requests. For example, a trans- 
action might need to acquire a combination 
of resources like (resource a and resource 
b) or resource c. This section introduces a 
hierarchy of request models used in the 
literature, starting from very restricted 
forms and going to models with no restric- 
tions whatsoever. This hierarchy can then 
be used to classify deadlock detection al- 
gorithms according to the complexity of the 
resource requests they permit. 

2.1 One-Resource Model 

In the AND model, transactions are per- 
mitted to request a set of resources. A 
transaction is blocked until it is granted all 
the resources it has requested. Therefore, 
requests of this type are called AND re- 
quests. The AND model is identical to the 
resource model mentioned in Section 1.2. 
We prefer the term AND model for system- 
atic reasons. The AND model has been the 
traditional view of resource requests in dis- 
tributed DBSs. The nodes of the WFG are 
called AND nodes and may have outdegree 
greater than 1. The problem of detecting 
deadlocks again reduces to finding cycles 
in the WFG. 

The simplest possible model is one in which 
a transaction can have at most one out- 
standing resource request at a time. Hence 
the maximum outdegree of the WFG is 1. 
Finding deadlocks in this model corre- 
sponds to finding a cycle in the WFG. A 
formal justification for this correspondence 

As an example, again consider the WFG 
given in Figure 1. Node tll has two out- 
standing resource requests, and in the case 
of the AND model both must be satisfied 
before tll becomes active. The example de- 
picts a deadlock situation, corresponding to 
the cycle tll + h1 + t33 ---, t43 + t41 --, hl. 
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More precisely, we define deadlock in the 
AND model along the lines of Chandy and 
Misra [1982] as follows: A transaction 
agent ti is said to be dependent on agent tj 
if there is a sequence seq = ti, ti,, . . . , ti,, tj 
of transaction agents such that each agent 
in seq is idle and each agent except the first 
holds a resource for which the previous 
agent in seq is waiting. We define ti to be 
locally dependent on tj if all the agents in 
seq belong to the same controller. Observe 
that, if ti is dependent on tj , then ti remains 
idle at least as long as tj does. Furthermore, 
ti is deadlocked if it is dependent on itself 
or an agent that is dependent on itself. In 
either case, deadlock exists only if there is 
a cycle of idle agents, each dependent on 
the next one in the cycle. 

Deadlock detection algorithms for the 
AND model declare that deadlock exists if 
and only if such cycles exist. Note that this 
condition does not imply that, if an agent 
ti is deadlocked, the detection algorithm 
will detect that ti is deadlocked. In fact, if 
ti is deadlocked but not part of a cycle of 
deadlocked agents, ti might never be de- 
clared deadlocked. As an example, consider 
transaction agent ts3 in Figure 1, which is 
deadlocked even though it is not part of a 
cycle. 

Deadlock in the one-resource model is 
conveniently defined the same way, with 
the additional restriction that a transaction 
agent can have at most one outstanding 
request (i.e., one outgoing edge) at a time. 
From this it is immediate that the AND 
model is strictly more general than the one- 
resource model. 

In the literature a number of algorithms 
have been proposed for the AND model 
[Chandy and Misra 1982; Chandy et al. 
1983; Gligor and Shattuck 1980; Haas 1981; 
Haas and Mohan 1983; Menasce and 
Muntz 1979; Obermarck 1980, 19821. We 
take a closer look at two of them [Ober- 
marck 1982; Chandy and Misra 19821 in 
Sections 4.1 and 4.3, respectively. 

2.3 OR Model 

An alternative model of resource requests 
is the OR model. A request for numerous 
resources is satisfied by granting any re- 

quested resource, such as satisfying a read 
request for a replicated data item by read- 
ing any copy of it. This model was referred 
to as communication model in Section 1.2. 
In the OR model, discovery of a cycle is 
insufficient for deadlock detection. To see 
this, suppose all requests in Figure 1 are 
OR requests; the nodes are then called OR 
nodes. In this case, transaction T1 is not 
deadlocked because tzz has no outgoing 
edges, and after Tz releases the resources it 
holds, T, can continue. 

In terms of the WFG, a knot will indicate 
a deadlock [Holt 19721. By definition, a 
vertex IJ is in a knot if (VW :: w is reachable 
from UJ u is reachable from w ). Intui- 
tively, no paths originating from a knot 
have “dead ends.” 

Formally, we define deadlock in the OR 
model in terms of processes as follows (cf. 
Chandy et al. [1983]): A process is blocked 
if it has an outstanding OR request. Asso- 
ciated with each blocked process is a set of 
processes, called its dependent set. A 
blocked process starts executing upon re- 
ceiving any grant message from a process 
in its dependent set. Otherwise it does not 
change state or its dependent set. Intui- 
tively, a set S of processes is deadlocked if 
all processes in S are permanently blocked. 
A process is permanently blocked if it never 
receives a grant message from any process 
in its dependent set. More precisely, a set 
S of processes is deadlocked if 

(1) all processes in S are blocked, 

(2) the dependent set of every process in S 
is a subset of S, and 

(3) there are no grant messages in transit 
between processes in S. 

A process is deadlocked if it belongs to 
some deadlocked set. A set S of processes 
satisfying the above three conditions re- 
mains permanently blocked because (1) a 
blocked process pi in S can start executing 
only after receiving a grant message from 
some process pj in its dependent set, 
(2) every process pj in pi’s dependent set is 
also in S and cannot send a grant message 
while remaining blocked, and (3) there are 
no grant messages in transit from pj to pi, 
which implies that pi will never receive a 
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message from any process in its dependent 
set. 

Presence of a deadlocked sei of processes 
is equivalent to the existence of a knot in 
the WFG. Hence, deadlock detection in the 
OR model can be reduced to finding knots 
in a graph. Note, however, that a process 
can be deadlocked without being in a knot. 
Rather, a necessary and sufficient criterion 
for deadlock of some process p is the follow- 
ing: A blocked process p is deadlocked if p 
is in a knot or p can reach only deadlocked 
processes. The algorithm for the OR model 
we discuss in Section 5.4 detects deadlock 
for any process belonging to some dead- 
locked set. 

AND-model deadlock detection can be 
simulated by repeated applications of OR- 
model deadlock computations, where each 
invocation operates on a subgraph of the 
AND-model WFG. This method, however, 
is hopelessly inefficient, so it is only of 
theoretical interest. In this sense, OR- 
model deadlock is a more general notion 
than AND-model deadlock. 

An algorithm for distributed knot detec- 
tion appears in Misra and Chandy [1982a]. 
Termination detection of diffusing compu- 
tations in the OR model, which is also the 
model of deadlock in CSP, is discussed in 
Misra and Chandy [1982b]. The algorithm 
presented in Section 5.4 is taken from 
Chandy et al. [1983]. Other algorithms for 
the OR model are given in Haas [1981], 
Natarajan [1986], and Rauchle and Toueg 
[1983]. 

2.4 AND-OR Model 

The AND-OR model is a generalization of 
the two previous models. AND-OR re- 
quests may specify any combination of and 
and or in the resource request. For example, 
a request for (a and (b or c)) or d is possible, 
and a, b, c, and d may exist at different 
sites. There does not appear to be a familiar 
construct of graph theory to describe a 
deadlock situation in the AND-OR model 
in terms of the WFG. In principle, deadlock 
in the AND-OR model can be detected by 
repeated application of the test for OR- 
model deadlock, exploiting the fact that 
deadlock is a stable property; that is, it does 
not go away by itself. But this strategy is, 

in general, not very efficient. A more effi- 
cient algorithm that was developed in 
Hermann and Chandy [1983] is the topic 
of Section 5.5. This section also includes a 
formalization of deadlock in the AND-OR 
model. Since this definition does not cap- 
ture the notion of deadlock exclusively, it 
has been omitted from the more general 
discussion here. 

2.5 (;) Model 

The (Z) model allows the specification of 
requests to obtain any k available resources 
out of a pool of size n. The (E) model is a 
generalization of the AND-OR model. 
Even though it turns out that both models 
are equivalent in expressive power, the 
length of an AND-OR formula correspond- 
ing to an (;) request is k(Z), which is of 
exponential size for n = 212, since 

2n 

0 

def 2n(2n - 1) . . . (n + 1) = 
n n(n - 1) ... 1 

2n 2n - 2 2 
>-- . . . - - 

n n-l 1 

Y 

n factors 

= 2”. 

So every request in the (E) model can be 
expressed in the AND-OR model. To see 
that the converse is also true, observe that 
any AND or OR requests for n resources 
can be stated as an (“n) or (7) request, re- 
spectively. The only definition of deadlock 
in the (E) model we know was given by 
Bracha and Toueg [1983] and suffers 
from the same deficiencies as that of the 
AND-OR model. It is, therefore, not dis- 
cussed here. An algorithm for deadlock 
detection in the (E) model was published in 
Bracha and Toueg [1983] and is presented 
in Section 5.6. 

2.6 Unrestricted Model 

In the most general model no underlying 
structure of resource requests is assumed. 
Instead, the stability of deadlock is the only 
assumption made. The advantage of look- 
ing at the deadlock problem in this way is 
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that it helps in the separation of concerns: 
Properties of the underlying database com- 
putations (e.g., degree of concurrency, i.e., 
single locus of control for each transaction 
versus parallelism of individual transac- 
tions, and message passing versus syn- 
chronous communication) are rigorously 
abstracted and separated from concerns 
about properties of the problem (stability 
of deadlock). Therefore, all the algorithms 
dealing with this general model can be used 
to detect other stable properties as well. 
However, in the context of deadlock detec- 
tion in distributed databases, these algo- 
rithms seem to be of more theoretical value, 
since the very fact that no further assump- 
tions are made about the underlying struc- 
ture of the database computation leads to 
a great deal of overhead that can be avoided 
in algorithms for the simpler models. In 
Section 3.4 we present a general theory due 
to Chandy and Lamport [1985], which can 
be applied to both the previous and the 
unrestricted models. For more details on 
the subject, the interested reader is referred 
to Awerbuch and Micali [1986], Chandy 
and Lamport [ 19851, Chandy and Misra 
[1986], Chang [1982], Helary et al. [1987], 
and Misra [ 19831. 

3. CLASSES OF DISTRIBUTED DEADLOCK 
DETECTION ALGORITHMS 

The distributed deadlock detection algo- 
rithms that are found in the literature de- 
veloped basically from four different roots: 
path-pushing, edge-chasing, diffusing com- 
putations, and global state detection. This 
observation gives rise to another way of 
classification, which will be developed in 
the next four sections. 

3.1 Path-Pushing Algorithms 

The first distributed algorithms for the 
deadlock problem maintained the notion of 
an explicit global WFG, which had worked 
so well in the centralized case. One influ- 
ential algorithm appeared in Menasce and 
Muntz [ 19791. The basic idea underlying 
this class of algorithms is to build some 
simplified form of global WFG at each site. 
For this purpose each site sends its local 

WFG to a number of neighboring sites 
every time a deadlock computation is per- 
formed. After the local data structure of 
each site is updated, this updated WFG is 
then passed along, and the procedure is 
repeated until some site has a sufficiently 
complete picture of the global situation to 
announce deadlock or to establish that no 
deadlocks are present. The main feature of 
this scheme, namely, to send around paths 
of the global WFG, has led to the term 
path-pushing algorithms. 

One noteworthy point about path- 
pushing algorithms is that many of them 
were found to be incorrect, either by not 
detecting true deadlocks, by discovering 
phantom deadlocks, or both. For example, 
Gligor and Shattuck [1980] show that the 
algorithm of Menasce and Muntz [1979] 
is defective; a counterexample to the algo- 
rithm of Ho and Ramamoorthy [1982] 
was presented by Jagannathan and 
Vasudevan [1982]; in Section 4.1 we 
give reasons why Obermarck’s algorithm 
[Obermarck 19821 is incorrect. This is even 
more surprising as these algorithms had all 
been “proved” correct. 

Looking back, the failure of many of 
these algorithms is not so astonishing as 
might first appear, since at that time the 
notion of snapshots and consistent global 
states in asynchronous systems was not 
well understood. Another consequence of 
this lack of understanding was the fact that 
most of the algorithms had to depend on 
“ freezing” the underlying (database) com- 
putation for the time the deadlock detec- 
tion was going on. This guaranteed in most 
cases that the picture of the assembled 
global WFG was consistent. 

For historical reasons, an example of a 
path-pushing algorithm [Obermarck 19821, 
which has been implemented in System R, 
is presented in Section 4.1. 

3.2 Edge-Chasing Algorithms 

The presence of a cycle in a distributed 
graph structure can be verified by propa- 
gating special messages called probes along 
the edges of the graph. Probes are assumed 
to be distinct from resource request and 
grant messages. When the initiator of such 
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a probe computation receives a matching 
probe, it knows that it is on a cycle in the 
graph. 

A nice feature of this approach in con- 
nection with deadlock detection is that ex- 
ecuting processes can simply discard any 
probes they receive. Blocked processes 
propagate the probe along their outgoing 
edges. An interesting variation of this 
method can be found in Mitchell and Mer- 
ritt [ 19841, where probes are sent upon 
request and in the opposite direction of the 
edge. We look at this algorithm more 
closely in Section 4.2. 

Another example for this approach is 
Chandy and Misra’s algorithm [Chandy 
and Misra 19821, which is discussed in 
Section 4.3. 

3.3 Diffusing Computations 

The second category of algorithms was in- 
spired by the work of Chang [1982] and 
Dijkstra and Scholten [1980]. Here the 
basic idea is that a diffusing computation is 
activated, for example, by a transaction 
manager that suspects a deadlock. This 
computation is superimposed on the under- 
lying database computation. If this com- 
putation terminates, the initiator declares 
deadlock. The characteristic feature of the 
superposed computation in the case of dis- 
tributed deadlock detection is that the 
global WFG is implicitly reflected in the 
structure of the computation. The actual 
WFG, however, is never built explicitly. 
The diffusing computation grows by 
sending query messages and shrinks by re- 
ceiving replies. In our case query and reply 
messages are concerned exclusively with 
deadlock detection and are distinct from 
resource request and grant messages. When 
a diffusing computation shrinks back to its 
root, it terminates. 

More precisely, nodes different from the 
root are called internal nodes. Each node in 
the diffusing computation has an initial 
state called the neutral state. The root (also 
called initiator) sends queries to its succes- 
sors to start a diffusing computation. After 
receipt of its first query, a node leaves the 
neutral state and becomes active. The first 
query received by node pi is called the en- 

gaging query for pi. The process that sent 
the engaging query is called the engager of 
pi. The edge along which the engaging 
query was sent is called the engagement 
edge of pi. 

After receipt of the engaging query, an 
internal node is free to send queries to its 
successors. Besides its ability to receive 
queries from its predecessors and send 
queries to its successors, a node is also able 
to receive replies from its successors and 
send replies to its predecessors. Notice that 
queries always travel in the direction of the 
edges, whereas replies always travel the 
opposite way. 

We require that the number of queries 
received along an edge always be at least 
the number of replies sent in the opposite 
direction. The difference between the num- 
ber of queries and replies sent over an edge 
is called the deficit of this edge. Hence, from 
the above we have the following: The deficit 
of all edges is at least zero. 

The neutral state of a node can now be 
defined to be the state in which the deficits 
of all incoming and outgoing edges are zero. 
The diffusing computation terminates if 
the root returns to its neutral state. When 
should a node reply to a query? We stipu- 
late that an active node reply to all queries 
it receives immediately. The crucial ques- 
tion is: When should a node reply to its 
engaging query? This reply is called the 
engaging reply. We require that a node send 
back its engaging reply only after it has 
received replies for each query it sent. 

With these stipulations it is not hard to 
show that (1) each engagement edge con- 
nects two active nodes, (2) engagement 
edges do not form cycles, and (3) each ac- 
tive internal node has exactly one incoming 
engagement edge. We say that the diffusing 
computation has terminated if and only if 
all internal nodes are in their neutral state. 
From what has been said above, it now 
follows that (cf. [Dijkstra and Scholten 
19801) 

(1) when the root returns to the neutral 
state, the diffusing computation has 
terminated; 

(2) a bounded number of steps after the 
diffusing computation has terminated, 
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the root will have returned to the neu- 
tral state. 

Algorithms using the paradigm of diffus- 
ing computations are presented in Sec- 
tions 4.4 [Chandy and Misra 19821 and 4.5 
[Hermann and Chandy 19831. In general, 
this approach results in shorter messages 
and less deadlock detection overhead as 
compared with path-pushing algorithms. 
Besides the work mentioned above, there 
are other variations on this theme [Chandy 
and Misra 1986; Chang 1982; Dijkstra et al. 
1983; Haas 1981; Haas and Mohan 1983; 
Misra 1983; Misra and Chandy 1982a; 
Misra and Chandy 1982b]. 

3.4 Global State Detection 

The work that has been done in the area of 
global state detection is largely based on 
results by Chandy and Lamport [1985]. 
The key notion here is a consistent global 
state that can be determined without tem- 
porarily suspending (“ freezing”) the under- 
lying (database) computation. Below we 
give a condensed presentation of the results 
of Chandy and Lamport, that are relevant 
to our context. The discussion follows 
Bracha and Toueg [ 19831. 

The underlying computation, henceforth 
referred to as the system, is a collection of 
processes, that can be thought of as trans- 
action managers and transaction agents. 
Processes communicate by sending mes- 
sages (e.g., resource requests or grants) ac- 
cording to some underlying protocol (2PL, 
e.g.). Events in the system are the sending 
and receipt of messages. We denote the set 
of events in a system by E. The local state 
of a process p consists of the history of all 
events that occurred on p. Along the lines 
of Lamport [ 19781 we define a partial order 
5 G E x E as follows: 

Definition 3.1 

Let el, e2 E E. Then el 5 e2 (el happened 
before e2) if either 

(1) el and e2 are both on the same process 
p, and el occurred earlier in p then e2; 

(2) el is a send event and e2 is the corre- 
sponding receive; 

(3) (3e’: e’ E E:el 5 e’ A e’ 5 e2). 

Part (1) of the definition says that the 
events of a single process are totally or- 
dered. Part (2) expresses the fact that mes- 
sages are received after they are sent. Part 
(3) essentially states that 5 is transitive. 

We can represent the history of a system 
and its happened-before relation by a dia- 
gram like that in Figure 2. The dots repre- 
sent events, the horizontal lines are the 
time axes of the processes, and the arrows 
link corresponding sends and receives. 

The following formalization is due to 
Chandy and Lamport [ 19851. A cut c of E 
is a partition of E into two sets PC and F,, 
standing for past and future, respectively. 
A cut is consistent if F, is closed under 5. 
A consistent cut defines a consistent state. 
Hence we use consistent cut and consistent 
state interchangeably. Intuitively, consist- 
ent cuts are those that do not contain a 
send event in F, with the corresponding 
receive event in PC. 

Looking again at the example in Figure 
2, we see that PC = (elf e3, e4, e7, es, es, elo] 
and F, = ( e2, e5, e6 ). Furthermore, since F, 
is closed under 5, c is a consistent cut. 

A special type of consistent state is S,, 
the global state at time t that is the collec- 
tion of all the local states of the processes 
at time t. Note that S, is a purely theoretical 
construct that cannot be observed, since 
this would require an outside observer to 
record the local states of the processes 
instantaneously, an impossible task in 
practice. In contrast, consistent states 
can be obtained from within the system. 
We now extend the relation 5 to consistent 
states. 

Definition 3.2 

Let S1, S2 be consistent states. Then S1 5 

S2, if Ps, C PSA. 
We define a relation l- between states, 

called reachability relation. 

Definition 3.3 

Let S be a consistent state and e E E, such 
that Ps U (e) defines a consistent state S ‘. 
Then S I-” 5” (S’ is reachable from S). 
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Figure 2. A cut of a distributed system. 

A sequence of events (r = (el, e2, . . . , e,) 
is a schedule, if S l--“I SI l--“z . . . l-en-1 Snel 
I-“n S I. We then write S l--” S ’ for short. 
One can show [Chandy and Lamport 19851 
that 

Lemma 3.1 

S 5 S’ implies (3schedule a::S P’S’). 

In the context of deadlock detection, the 
state of the system is a WFG, and schedules 
are sequences of WFG transformations. We 
say that a transaction is deadlocked if it is 
deadlocked in WFGt, the WFG at time t. 
Given a definition of deadlock in terms of 
a WFGt, the following lemma of Bracha 
and Toueg [1983] allows us to apply a dis- 
tributed deadlock detection algorithm to 
consistent WFGs instead of WFG, s: 

Lemma 3.2 

( WFG 5 WFG ’ and v is deadlocked 
WFG) implies v is deadlocked in WFG I. 

in 

This is the fundamental result on which 
deadlock detection algorithms can be 
based. Chandy and Lamport [1985] show 
how to obtain a consistent global state of a 
distributed system by propagating markers 
along the channels of the system. A con- 
sistent global state obtained in this fashion 
is also called a snapshot of the system. 
Such a snapshot can then be examined for 
deadlock off-line. Since this snapshot is by 
definition a static object, there are no prob- 
lems in conjunction with message delays, 
and deadlock detection becomes much eas- 
ier. In Section 4.6 we see an example of the 
application of this result. 

4. A SURVEY OF SELECTED ALGORITHMS 

4.1 Obermarck’s Path-Pushing Algorithm 

In this section we discuss an algorithm that 
appeared in Obermarck [ 19821. The under- 
lying deadlock model is the AND model; 
hence the algorithm looks for cycles in the 
global WFG. First, the author makes some 
simplifying assumptions: 

0) 

(2) 

(3) 

(4) 

Transactions have a single locus of con- 
trol; that is, at most one transaction 
agent of each transaction can be active 
at any time. 

Communication between transaction 
agents is logically synchronous. 

The transactions are totally ordered, 
which is useful in reducing deadlock 
detection overhead and ensuring that 
exactly one transaction in each cycle 
detects deadlock. 

The portion of the local WFG sent from 
one site to another does not change 
until the information has been received 
and processed by some final site. The 
final site is defined as 

(a) the site at which a deadlock cycle 
is completed, or 

(b) the most distant site at which 
global deadlock can be proved not 
to exist. 

Points (1) and (2) imply that in each trans- 
action only one agent may be active or in 
resource-wait. This agent is expected to 
send a message to other agents of the same 
transaction, which are waiting to receive a 
message. 

Obermarck [1982] admits that point (4) 
is a fairly unrealistic assumption. It turns 
out that even with this assumption the 
algorithm is still vulnerable to detecting 
phantom deadlocks. He suggests that, if the 
occurrence of deadlock is rare, the assump- 
tion be dropped and cycles found by the 
algorithm be validated. 

Each controller cj at site Sj runs a copy 
of the deadlock detection algorithm. The 
basic structure of the algorithm is an iter- 
ation of the following steps: 

(1) Receive deadlock information from 
some other sites that was produced 
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(2) 

(3) 

(4) 

by the previous deadlock detection 
iteration. 

Build part of the global WFG using 
local wait-for information and the 
information received from other sites 
in step 1. A special node in the WFG 
called External is used to represent 
intersite wait-for relations. 

Find all elementary cycles in the WFG. 
Break all cycles that do not contain EX 
by aborting suitable transactions. 

Consider each elementary cycle con- 
taining EX. Such a cycle constitutes a 
potential global deadlock. For each 
such cycle EX + T1 + . . . + T, + 
EX compare Tl with T,. If Tl > T,,, 
send the cycle to each site, where an 
agent of T,, is waiting to receive a mes- 
sage from the agent of T,, at this site. 

In Obermarck [1982, sect. 61, an attempt 
is made to prove the algorithm correct. 
That the algorithm and proof are incorrect 
(in the sense that false deadlocks may be 
detected) can easily be seen from the fol- 
lowing observation [Elmagarmid 19861: 
The portions of the WFG that are shipped 
around may not represent a consistent view 
of the global WFG, since each site takes its 
snapshot asynchronously. 

As far as the performance of the algo- 
rithm is concerned, Obermarck shows that, 
ifs sites are involved in a deadlock, at most 
s(s - 1)/2 messages are sent, where each 
message may be of length O(s). Under cer- 
tain assumptions the expected case per- 
formance is shown to be roughly linear in 
s, with a small constant factor. 

For more details, the reader may consult 
Obermarck [ 19821. In our opinion, however, 
this algorithm has been rendered obsolete 
by more recent developments. 

4.2 Mitchell and Merritt’s Algorithm for the 
Single-Resource Model 

The algorithm by Mitchell and Merritt 
[ 19841 presented in this section is as simple 
as the deadlock model for which it was 
defined. It is an edge-chasing algorithm in 
which probes are sent in the opposite direc- 
tions of the edges of the WFG. In the 

simplest case, a probe consists of a single 
natural number that is unique to the nodes 
in the WFG. When the probe comes back 
to its initiator, the initiator declares dead- 
lock. 

The algorithm will be stated in terms of 
processes. It has a number of nice features: 

(1) 

(2) 

(3) 

It is very simple, making the proofs 
elegant and fun to read (and write), and 
the task of implementing a matter of 
hours. 

Exactly one process in the cycle will 
detect deadlock, which simplifies dead- 
lock resolution since this process could 
simply abort. By including priorities in 
the algorithm, the lowest priority pro- 
cess in a cycle detects deadlock and 
aborts. 

Spontaneous aborts are allowed, even 
though under this assumption phantom 
deadlocks cannot be excluded. It can be 
shown, however, that only genuine 
deadlocks will be detected in the ab- 
sence of spontaneous aborts. 

In this discussion, only the first version 
of the algorithm (without priorities) is 
given. The extension to priority handling 
can be found in Mitchell and Merritt 
[1984]. 

Each node of the (virtual) WFG has two 
local variables, called labels: a private label, 
which is unique to the node at all times, 
though not constant, and a public label, 
which can be read by other processes and 
need not be unique. A process is repre- 
sented as 8 where u and u are the public 
and private labels, respectively. Initially, 
private and public labels are equal for each 
process. 

The state of the system is given by the 
global WFG. The WFG is maintained by 
the four state transitions shown in Fig- 
ure 3, where z = inc(u, v), and inc(u, u) 
yields a unique label greater than both 
u and u. Labels not mentioned explicitly 
remain unchanged. 

Block creates an edge in the WFG. Two 
messages are needed, one resource request 
and one message back to the blocked pro- 
cess to inform it of the public label of the 
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Block 8 8 ==+ 8-8 

Activate e-e -8 8 

Transmit 
eiise a 8-8 

Figure 3. The four possible state transitions. 

process it is waiting for. Activate means 
that a process acquired the resource from 
the process it was waiting for. Transmit 
propagates larger labels in the opposite di- 
rection of the edges by sending a probe 
message. A process that receives a probe 
with a number smaller than its own public 
label can simply ignore the probe. Detect 
means that the probe with the private label 
of some process has made a whole round in 
a circle, indicating a deadlock. 

Note that the requirement for unique- 
ness of the public label does not cause any 
problems at all in the Block step of the 
algorithm. Assuming that we can assign a 
unique name to each process, labels can be 
represented as pairs of sequence numbers 
and process names, and < can be chosen to 
be lexicographical ordering. Then to Block, 
only sequence numbers have to be com- 
pared; to Transmit, the whole pair is sent. 

The proof of the correctness of the algo- 
rithm is quite simple. Mitchell and Merritt 
show that every deadlock is detected. Since 
they did not exclude spontaneous aborts, 
they did not worry about phantom dead- 
locks. Below we prove that in the absence 
of spontaneous aborts only genuine dead- 
locks are detected. 

Assume for now that there are no spon- 
taneous aborts. The following is an inuar- 
iant : 

For all processes 8 : u I U. 

Proof. Initially u = u for all processes. 
The only transactions that change u or u 
are 

(1) Block: u and u are set such that u = u. 

(2) Transmit: u is increased. Cl 

From the invariant the following lemma 
is immediate: 

Lemma 4.1 

For any process 8, if u > u, then u was set 

by a Transmit step. 

Now we are ready to prove the following 
theorem: 

Theorem 4.1 

If a deadlock is detected, a cycle of blocked 
nodes exists. 

Proof. Deadlock is detected if the fol- 
lowing edge p + p’ exists: 

@---+@ 

We will prove the following claims: 

(1) u has been propagated from p to p’ via 
a sequence of Transmits. 

(2) p has been continuously blocked, since 
it “transmitted” u (i.e., engaged in a 
Transmit event with some process 4, 

Q+-P)* 
(3) For all intermediate nodes q in the 

transmit path of(l), includingp’, q has 
been continuously blocked since it 
transmitted u. 

The result then follows immediately. 

Ad 1. By the invariant and the unique- 
ness of private labels, we have for the pri- 
vate label u of p ’ : u < u. By Lemma 4.1, u 
was set by a Transmit step. By the seman- 
tics of Transmit, there is some p” with 
private label u, public label w. 

If w = u, then p” = p, and we are done. 
Otherwise, w < u, and we repeat the argu- 
ment. Since there are only finitely many 
processes, one of them is p. 

Ad 2. Assume that p was active since it 
transmitted u. It is blocked when it detects 
deadlock; hence upon Blocking it incre- 
mented its private label. But then private 
and public labels cannot be equal. 

Ad3. Assume that there is a process 
that has been active since it transmitted 
u. Its predecessor has been active since 
its transmission, too, because Transmits 
migrate in the opposite direction of the 
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edges. By repeating this argument, we find gorithm for handling processes with more 
that p has been active since it transmitted than one outgoing edge (AND requests). 
u. 0 

The algorithm given can be easily ex- 
tended to include priorities such that the 
lowest priority process in a deadlock cycle 
aborts itself. The extended algorithm has 
two phases. The first phase is almost iden- 
tical to the simple algorithm. In the second 
phase the smallest priority is propagated 
around the circle, as the largest public label 
was propagated before. The propagation 
stops when one process recognizes the 
propagated priority as its own. The full 
algorithm is given in Mitchell and Merritt 
[1984]. 

The performance of this algorithm is not 
studied in Mitchell and Merritt [ 19841. It 
is, however, not hard to obtain the follow- 
ing complexity results. Assuming that a 
deadlock persists long enough to be de- 
tected, the worst-case complexity of the 
simple algorithm is s(s - 1)/2 Transmit 
steps, where s is the number of processes 
in the cycle. After this many steps, every 
process in the cycle will have compared its 
public label with every other one. That this 
bound is tight can be seen from an example 
in which the public labels of the processes 
are ordered increasingly around the cycle, 
with the detecting process having the great- 
est label and the process for which the 
detecting process is waiting having the 
smallest label. A similar argument shows 
that for the priority algorithm the largest 
number of Transmit steps for detecting 
deadlock is twice as large: s(s - 1). We 
conjecture that the expected-case complex- 
ity is linear for both algorithms. 

Interestingly, the algorithm does not re- 
main correct if public labels are transmitted 
in the same direction as the edges instead 
of the other way round. The reason for this 
is exactly the point we were making when 
we defined AND- and OR-model deadlock 
in Section 3: If a deadlocked process that 
is not part of a cycle has the largest public 
label among the deadlocked processes, this 
label might enter the cycle and circulate 
once without any process in the cycle de- 
tecting the deadlock. Also, there seems to 
be no straightforward extension of the al- 

4.3 Chandy and Misra’s Algorithm for the 

AND Model 

In the approach developed by Chandy and 
Misra [ 19821, each controller runs a copy 
of the deadlock detection algorithm. In 
order to determine whether an idle trans- 
action agent is deadlocked, its controller 
initiates a probe computation. In a probe 
computation, controllers send probes to 
each other. Probe computations may be 
initiated for several transactions, and the 
same transaction agent may have several 
probe computations initiated for it in se- 
quence. A probe consists of a triple (i, j, k), 
denoting that it belongs to a probe compu- 
tation for ti4 and that this probe was sent 
along intercontroller edge (tj, tk). A con- 
troller sends a probe (i, j, k) if the following 
conditions hold: (1) tj is idle, (2) tj is waiting 
for tk, and (3) ti is dependent on tj. We call 
an intercontroller edge (tj , tk) that meets 
these three conditions an outgoing edge 
Ofti. 

Probes received by a controller may be 
discarded or accepted; probes that are ac- 
cepted are called meaningful. Formally, a 
probe (i, j, lz) is meaningful if (1) tk is idle 
and (2) the controller of tk did not know 
that ti was dependent on tk and can now 
deduce that t; is dependent on tk. It is 
immediate that, if the controller of ti re- 
ceives a meaningful probe (i, j, i) for any j, 
then ti is deadlocked. The formulation of 
these observations in terms of an algorithm 
can be found in Figure 4. 

Observe that in a subsequent refinement 
step, the test of whether a probe is mean- 
ingful can be implemented by a Boolean 
array dependentk, where dependentk(i) = 
tk’s controller knows that ti is dependent 
on tk. Local dependence and outgoing edges 
can be determined by a standard marking 
algorithm, like the one used for reachability 
problems in graphs. 

The algorithm is proved correct by col- 
oring the edges of the WFG in the following 

4 Note, that we make use of the fact that double 
subscripts can be replaced by a single subscript. 
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For initiation of a probe computation by the controller of ti: 

if ti is locally dependent on itself 

then declare deadlock for ti 

else send probes (i, j, Jz) on all outgoing edges (tj,th) of ti. 

For a controller on receiving a probe (i, j, k): 

if the probe is meaningful 

thenifk=i 

then declare deadlock for ti 

else send probes (i, p, q) on all outgoing edges (tp, te) of th. 

Figure 4. Algorithm for the AND model. 

manner. An edge (tip tj ) is 

l gray if ti has sent a request to tj that tj 
has not yet received; 

l black if tj has received a request from 
ti but has not yet sent a grant message 
t0 ti; 

l white if tj has sent a grant message to ti 
but ti has not yet received it. 

Hence edge colors represent the state of 
a “channel” between processes. This ap- 
proach is also used in Bracha and Toueg 
[1984], Chandy et al. [1983], and Hermann 
and Chandy [1983]. 

Gray and black edges are called dark 
edges. It is easy to see that in our model of 
message passing, a dark cycle, that is, a 
cycle in which all edges are dark, will persist 
forever. Hence the existence of a dark cycle 
is equivalent to deadlock. In order to prove 
the algorithm correct, one must show the 
following: 

(1) [Safety] If the initiator of a probe com- 
putation for ti receives a meaningful 
probe (i, j, i), then ti is on a black cycle 
when this probe is received. 

(2) [Progress] If ti is on a dark cycle at the 
time its controller initiates a probe 
computation for it, then the controller 
of ti will eventually get a meaningful 
probe (i,j, i). 

Site 1 

Site 2 

Site 3 

Figure 5. A counterexample to the algorithm in Sec- 
tion 6.6 of Chandy and Misra [1982]. 

Incidentally, the algorithm given in 
Chandy and Misra [1982, sect. 6.61 is not 
correct, as can be observed by applying it 
to the counterexample of Figure 5. If the 
controller at site 1 initiates a probe com- 
putation for tll, tll will not be marked in 
the process of finding a local deadlock at 
site 1 (because tll is not part of a local 
deadlock). Since the set of outgoing edges 
is determined starting from marked trans- 
action agents only, the set of outgoing edges 
will be found empty, and no probes will be 
sent. Therefore, deadlock will never be de- 
tected by the controller of site 1, even 
though tll is part of a deadlock cycle. A 
subsequent version of the algorithm that 
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appeared in Chandy et al. [1983, sect. 3.11 
introduced the notion of dependence and is 
(to our knowledge) correct. The formula- 
tion of this algorithm given above both 
retains the notational simplicity of the 
first-incorrect-solution and is free of 
errors. 

Below, the performance analysis of the 
algorithm is summarized. Each probe sent 
is of fixed length. Deadlock detection over- 
head is introduced primarily when trans- 
action agents are idle (i.e., have nothing to 
do and nothing to send). Furthermore, if 
transaction agents that are referred to in a 
probe are executing, the controller simply 
discards that probe. Every single deadlock 
detection computation involves no more 
than e probes, where e is the number of 
communicating pairs of controllers in 
the network. Hence in the worst case e = 
N(N - 1). Normally, however, e will be 
much less, depending on the locality behav- 
ior of the transactions. 

Some optimizations regarding questions 
of when and how often probe computations 
should be initiated are given in Chandy and 
Misra [ 19821. 

4.4 Chandy, Misra, and Haas’s Algorithm for 

the OR Model 

The algorithm for the OR model [Chandy 
et al. 1983, sect. 41 is an application of the 
technique of diffusing computations. A 
blocked process can determine whether it 
is deadlocked by initiating a diffusing com- 
putation. Several processes may initiate 
diffusing computations at the same time. 
However, for the time being we restrict 
ourselves to the case in which each process 
initiates at most one diffusing computation. 
The extension to the same process initiat- 
ing diffusing computations several times in 
a row is then quite straightforward. 

The messages in the deadlock compu- 
tation have the form query (i, j, k) and 
repZy(i, j, k), denoting that these messages 
belong to the diffusing computation initi- 
ated by process pi and are being sent 
from pj to pk; pi, pi, pk are called the ini- 
tiator, sender, receiver, respectively. There 
will be at most one message of the form 
query(i, j, K); there will be at most one reply 

message of the form reply (i, k, j ) to the 
query message query(i, j, k). A blocked 
process initiates a deadlock computation 
by sending queries to processes in its de- 
pendent set (cf. Section 2.3). The basic idea 
is that a blocked process, on receiving a 
query, should propagate the query to its 
dependent set if it has not done so already. 
Thus, if there is a sequence of permanently 
blocked processes pi, . . . , pj such that each 
process in the sequence (except the first) is 
in the dependent set of the previous process 
in the sequence, a query initiated by pi will 
be propagated to pj . 

Next we discuss the action taken by a 
process pk on receiving a query or reply 
with fixed initiator i and some sender j. If 
pk is active, it ignores all queries and replies. 
If it is blocked, there are several possibili- 
ties: If pk receives an engaging query, it 
propagates the query to all processes in its 
dependent set and remembers the number 
of queries sent in a local variable nun(i). 
Let the local variable wait(i) denote the 
fact that pk has been continuously blocked 
since it received its engaging query. If pk 
receives subsequent queries, it replies to 
them immediately, if wait(i) holds. If it has 
been executing since then, that is, -I wait(i) 
holds, it discards the query. 

If pk receives a reply and wait(i) holds, 
it decrements num(i). When should pk re- 
ply to its engaging query? From our dis- 
cussion in Section 3.3 it should be clear 
that pk replies to its engager only if it has 
received a reply for each query it has 
propagated, that is, if num(i) = 0. 

When pk initiates a deadlock computa- 
tion, it does so by sending query (k, k, j ) to 
each process j in its dependent set and 
setting rum(k) to the number of queries 
sent. If the initiator receives replies to all 
the queries sent, then the initiator is dead- 
locked. 

These observations lead to the algorithm 
in Figure 6. S denotes the dependent set of 
pk, wait(i) = fake initially, for all i. 

To guarantee that every deadlock will be 
detected by some deadlocked process, we 
now relax the restriction that only one 
deadlock computation can be initiated by 
some particular process. We require that a 
process initiate a diffusing computation 
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For a blocked process PI: to initiate a diffusing computation: 

send query(k, k,j) to all pj in S. 

set num(i) := ISI; wail(i) := true. 

For a blocked process ~1: upon receiving query(i,j, k): 

if the query is the engaging query for initiator i 

then send query(i, k, m) to all p,,, in S. 

set num(i) := ISI; wait(i) := true. 

else if wait(i) then send reply(i, k,i) to pj. 

Upon receiving reply(i, k, j): 

if wait(i) 

then num(i) := num(i) - 1. 

if num(i) = 0 

then if i = k then declare deadlock for pk. 

else send reply(i, k,j) to the engager of pk. 

For a blocked process upon becoming executing: 

wait(i) := false, for all i. 

each time it becomes blocked. To distin- 
guish several diffusing computations initi- 
ated by the same process pi, queries and 
replies are endowed with an additional pa- 
rameter denoting the sequence number of 
the diffusing computation initiated by pi. 
The generalized algorithm can be found in 
Chandy et al. [1983], together with a cor- 
rectness proof. In particular, the following 
theorems are proved: 

Theorem 4.2 

If the initiator of a diffusing computation is 
deadlocked when it initiates the computa- 
tion, it will (eventually) declare itself dead- 
locked. 

Theorem 4.3 

If the initiator of a diffusing computation 
declares itself deadlocked, then it belongs to 
a deadlocked set. 

Theorem 4.4 

At least one process in every deadlocked set 
will report deadlock if every process initiates 

Fit1~6. Simplified algorithm for the OR 

a new diffusing computation whenever it 
becomes blocked. 

The analysis of the algorithm’s perform- 
ance is similar to that for the AND-model 
algorithm in the previous section. There is 
a maximum number of e queries and e 
replies per diffusing computation, where 
e=N(N-1). 

4.5 Hermann and Chandy’s Algorithm for the 
AND-OR Model 

The basis of the algorithm for the AND- 
OR model [Hermann and Chandy 19831 is 
a so-called tree computation. A tree com- 
putation consists of a hierarchy of diffusing 
computations along the lines of Section 3.3. 
Below we will make this idea more precise. 
Transaction agents are mapped to proc- 
esses in the following manner: A process 
may have an AND request or an OR re- 
quest; an AND-OR request issued by some 
transaction agent is mapped to a tree of 
processes. The mapping is a representation 
of the AND-OR request in a regular form, 
such as disjunctive normal form (DNF). 
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u 

Figure 7. Mapping transaction agents 
to processes. 

Figure 7 gives an example of this mapping. 
Transaction agent tl waits for (tz and t3) or 
t4 or t5; a line connecting edges denotes an 
AND request. We call processes like p; 
AND processes; consequently, p1 is called 
an OR process. 

The behavior of individual processes 
with respect to the underlying computation 
is a refinement of the process behavior 
defined in Section 1.3. Upon receiving a 
grant message an edge in the WFG disap- 
pears, and there are several possibilities for 
the receiving blocked process: 

(1) No outgoing edges remain, that is, the 
process is active. 

(2) If outgoing edges remain, there are two 
cases: 

(a) An AND process remains blocked. 

(b) For an OR process, all outgoing 
edges disappear instantaneously 
and the process is active. 

The central idea underlying the algo- 
rithm is that any time a diffusing compu- 
tation reaches a blocked OR process, the 
diffusing computation is propagated to the 
dependent set of this process; if the engaged 
process is a blocked AND process, it initi- 
ates a separate tree computation for each 
outgoing edge. So a tree computation con- 
sists of either a diffusing computation or a 
set of tree computations. In order to start 
a deadlock computation, an initiating pro- 
cess sends a query to the process that is 
suspected of deadlock. From there queries 
are propagated according to the rules ex- 
plained later. A tree computation termi- 
nates when its initiator receives a reply 
from the suspected process. Deadlock in 
the process model is defined in the follow- 
ing obvious way: 

Definition 4.1 

A blocked process p is deadlocked, if either 

(1) p is an AND process and will never 
receive a grant for at least one of the 
resources requested, or 

(2) p is an OR process, but will never re- 
ceive a grant message. 

Note, that in order to use this definition 
to define the correctness of a deadlock 
detection algorithm, we have to exclude 
permanent blocking of processes due to 
individual starvation or infinite loops. 
For this reason, Hermann and Chandy 
call this a local definition of deadlock. 

Next we discuss process behavior with 
respect to the deadlock computation 
proper. Let us assume for now that only 
one deadlock computation is performed at 
a time. We shall see later how to extend 
the scheme to many concurrent deadlock 
computations. 

Queries have the form query(seq, k), 
where seq = ( iI, . . . , in) is a sequence of 
processes and k is the sender of the query. 
The initiator i of a deadlock computation 
sends query ( ( i ) , i ). A query is propagated 
in the following manner: If an engaging 
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query(seq, m) arrives at a blocked AND 
process pk, a new set of tree computations 
is initiated by pk. For this purpose, pk sends 
out a query of the form query (seq 0 1, k) to 
pI for all outgoing edges (pk, pi ) of the WFG 
(0 denotes concatenation). If a blocked OR 
process receives an engaging query(seq, m), 
it propagates query (seq, k) to all processes 
in its dependent set. These actions are re- 
ferred to as extension. 

If query(seq, m) is not engaging and the 
receiving process pk has been blocked con- 
tinuously from the time it received its en- 
gaging query, a reply(seq, k), is sent to pm. 
This action is called reflection. 

If a reply (seq, m) is received by an AND 
process, it sends back its engaging reply if 
it has been continuously blocked from the 
time it received its engaging query. An OR 
process sends back its engaging reply only 
if it has received all the replies from pro- 
cesses in its dependent set and has not been 
executing from the time it was engaged. 
These actions are called collation. In all 
other cases messages received are dis- 
carded. 

To distinguish among many different 
concurrent deadlock computations, proc- 
esses use the information in seq. Two mes- 
sages M(s, k) and M’(s’, k’) received by 
some process in this order relate to the 
same deadlock computation if and only if 
s 5 s’, where I means “is prefix of.” 
This observation and the rule for sequence 
extension by AND processes enables us to 
identify tree computations with sequences, 
which plays an important role in the proof 
of the algorithm. To keep track of the quer- 
ies sent and replies received by each pro- 
cess, two lists of messages are used: an 
incoming query list IQ-list and an outgoing 
query list OQ-list. Those lists are updated 
in a straightforward manner. Care has to 
be taken only in the case in which a grant 
is received. For details the reader is referred 
to Hermann and Chandy’s paper [ 19831. 

A deadlock computation is started by 
some controller, creating a process called 
the initiator; the initiator then sends a 
query to the process that is checked for 
deadlock. Several deadlock computations 
can be initiated concurrently and for the 
same process. The only constraints are that 

each time a new initiator be created and 
that the names of the initiators be unique. 

Verification of the algorithm proceeds by 
proving the following claims: 

(1) [Safety] If an initiator i detects dead- 
lock for some process p, then p is truly 
deadlocked. 

(2) [Progress] If a process p is deadlocked 
when a deadlock computation is initi- 
ated by some initiator i, then i will 
detect deadlock for p in finite time. 

The proof employs invariants and the 
so-called “tree computation termination 
lemma” given below: 

Lemma 4.2 

A tree computation T terminates iff for every 
i and j such that query(T, i) is sent to pj , 
reply(T, j) arrives at pi with no intervening 
grants. 

The details of the very well-written proof 
can be found in the paper by Hermann and 
Chandy [1983]. A performance analysis is 
not provided by the authors, but it is not 
hard to see that in the worst case one single 
deadlock computation will take at most e = 
N2(N - 1) queries and e replies, where N 
is the number of processes. Messages are of 
variable length with a maximum size of N. 
However, N can be exponential in the num- 
ber of transactions if a normal form like 
DNF is used for the transaction-to-process 
mapping, as suggested in the paper. On the 
other hand, we do not see the necessity for 
converting an arbitrary AND-OR request 
into normal form: AND-OR requests can 
be mapped directly to a tree of processes 
without an exponential blowup. Hints for 
efficiency improvements and implementa- 
tion considerations are again given in Her- 
mann and Chandy’s paper. 

4.6 Bracha and Toueg’s Algorithm for the (;) 
Model 

The algorithm for the (E) model presented 
in this section [Bracha and Toueg 19831 is 
an application of the global state detection 
technique described in Section 3.4. We 
shall discuss in some detail only the first of 
the three versions of the algorithm given 
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by Bracha and Toueg, which assumes syn- 
chronous communication between pro- 
cesses and a static WFG. The second 
algorithm is supposed to relax the con- 
straint of synchrony, but this is the case 
only to a very limited extent. The state of 
an edge (channel) incident on a process 
must still be known to that process in order 
for the algorithm to be correct. Hence the 
second algorithm is basically synchronous 
as well; it is just one more scheme to sim- 
ulate synchrony by sending status messages 
back and forth, which is a fairly standard 
scheme and not new at all. The third algo- 
rithm first determines a global snapshot of 
the WFG by using the technique introduced 
in Chandy and Lamport [ 19851. This snap- 
shot can then be used to run one of the first 
two algorithms on to detect whether there 
is a deadlock. 

The underlying resource model is the 
(;) model. A transaction can have as a 
request an arbitrary and-or combination of 
(2) requests. This combination is mapped 
to a tree of processes by using a scheme 
similar to the one discussed in the previous 
section, with each process having a single 
(;) request. 

A process becomes blocked upon issuing 
an (E) request. It does so by sending out n 
request messages. It becomes executing 
again when it receives k grant messages. In 
this case it sends relinquish messages to the 
remaining n - iz processes, informing them 
that the edge created by sending the request 
no longer exists. Relinquish messages are 
necessary because each process must know 
both its set of outgoing edges and its set of 
incoming edges. 

Deadlock in this model is defined in 
terms of the WFG, using the terminology 
of Section 3.4. 

Definition 4.2 

the computation due to individual starva- 
tion or infinite loops, then the definition of 
deadlock is not quite correct. 

Bracha and Toueg’s first algorithm is a 
nested invocation of diffusing computa- 
tions, with a slight twist. The twist is that 
a process leaving its neutral state remem- 
bers that it did so. Only the first query it 
ever receives will be engaging. All subse- 
quent queries are answered immediately 
with a reply, even if the process has re- 
turned to its neutral state. One conse- 
quence of this behavior is that the number 
of messages exchanged during an invoca- 
tion of the algorithm is reduced. Another 
consequence, however, is that many of the 
nice properties of diffusing computations 
are lost and the proofs of correctness be- 
come messy and almost incomprehensible. 

A novel feature of the algorithm in com- 
parison with the others we have seen so far 
is that a diffusing computation always ter- 
minates, and when it terminates, every 
process knows whether or not it is dead- 
locked. Every process p employs a local 
variable free,, whose value upon termina- 
tion satisfies free, = p is not deadlocked in 
the static WFG. The value of free is estab- 
lished by simulating the propagation of 
grant messages through the WFG. 

With these remarks, the algorithm can 
be described as a nesting of two instances 
of an algorithm similar to a diffusing com- 
putation, which Bracha and Toueg call 
CLOSURE. So the deadlock detection al- 
gorithm looks like the following: 

l [Outer invocation of CLOSURE] Find 
the set S of all reachable executing proc- 
esses by propagating queries, starting at 
some initiator i. 

-Each p E S simulates granting all the 
resources it holds and the other pro- 
cesses are waiting for. A separate in- 
stance of CLOSURE is invoked by 
each p. 

-The grants are propagated and the 
number g of simulated grants received 
at each reachable process q is com- 

A process p is deadlocked in a WFG G if 
there is a schedule (r such that (G l--” G’ 
and p is executing in G ’ ). 

The same problem as with the definition pared with the number r of resources 
of Hermann and Chandy [ 19831 arises here, needed by q to become executing 
even though Bracha and Toueg seem to fail again. If g < r, then q will never get 
to recognize this. If there is no extension of enough grants; hence it is deadlocked. 
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Observe that all the inner instances of 
CLOSURE will terminate before the outer 
one does. That the algorithm always ter- 
minates and that at termination each pro- 
cess knows whether or not it is deadlocked 
are proved by Bracha and Toueg [1983]. 
The proof uses purely operational argu- 
ments, and no invariants are given. The 
algorithm itself is stated in a Pascal-like 
language and uses global side effects, which 
make both the understanding of the algo- 
rithm and its proof unusually hard. 

Moreover, the second version of the al- 
gorithm cannot be correct. Bracha and 
Toueg claim that “if an initiator i starts the 
deadlock detection algorithm in a colored 
WFG G then the algorithm terminates.5 
Moreover, when i terminates, the local vari- 
able freei = true if and only if i is not 
deadlocked in G.” Deadlock is defined as in 
Definition 4.2, with G containing black 
edges only. A counterexample to the above 
claim is a simple cycle of gray edges in G. 
These edges will turn black after a finite 
amount of time. Hence, there is no schedule 
u such that (G l-” G’ and any of the pro- 
cesses in the cycle are active in G’). There- 
fore, by Definition 4.2, all the processes in 
the cycle are deadlocked. But since Bracha 
and Toueg chose to consider gray edges as 
nonexistent in the WFG, if the initiator is 
among the processes in the cycle, it will 
erroneously claim that it is not deadlocked. 
It is true, however, that this deadlock will 
be detected eventually. But this does not 
save the algorithm from not meeting its 
specification. 

The performance analysis is summarized 
below. In the synchronous case at most 
4N(N - 1) message are needed. In the 
asynchronous version more messages have 
to be exchanged to determine the state of 
the edges between processes. In the worst 
case an additional overhead of O(N2) mes- 
sages suffices. Since the algorithm proceeds 
by taking a snapshot first and then running 
deadlock detection, the time between the 
occurrence of deadlock and its detection 
may be significant. Also, situations that 
will inevitably lead to deadlock, but cannot 

’ The notion of a colored WFG used here is similar to 
the one we introduced in Section 4.4. 

be detected yet, lead to further delays. A 
number of optimizations are suggested and 
can be found in Bracha and Toueg’s paper 
[1983]. 

Compared with many other deadlock de- 
tection schemes, this algorithm employs 
very little concurrency. First, since snap- 
shooting is used and the WFG is processed 
off-line, there is no true concurrency be- 
tween deadlock detection and underlying 
computation. Second, the algorithm pro- 
ceeds in phases (up to three, when space- 
saving optimizations are used), which 
sequentialize the deadlock computation. 

To conclude the discussion of Bracha and 
Toueg’s paper, we want to point out that a 
study of the algorithms revealed a number 
of errors. One of the more severe ones 
was the fact that the instantiation of the 
CLOSURE algorithm for the first phase 
of detecting all reachable executing nodes 
is incorrect. Recently, Gafni [ 19861 
suggested improvements to Bracha and 
Toueg’s algorithm but without giving a cor- 
rectness proof. 

5. DISCUSSION 

The large number of errors in published 
algorithms addressing the problem of dis- 
tributed deadlock detection [Bracha and 
Toueg 1983; Chandy and Misra 1982; Ho 
and Ramamoorthy 1982; Menasce and 
Muntz 1979; Obermarck 19821 shows that 
only rigorous proofs, using as little opera- 
tional argumentation as possible, suffice to 
show the correctness of these algorithms. 
By falling back on well-known and com- 
pletely general principles like diffusing 
computations and global state detection, it 
seems possible to achieve both elegance and 
correctness, even for more advanced models 
of resource requests, without introducing 
unnecessary complexity. 

We believe that recent developments in 
the area of distributed deadlock detection 
algorithms has rendered much of the older 
work obsolete. This paper has focused on a 
small number of concepts and does not 
claim completeness in the sense that all 
known approaches have been covered. 
Among recent publications that have not 
been considered here are Chandy and Misra 
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[1986], Elmagarmid [1985], Helary et al. 
[1987], Natarajan [ 19861, and Sinha and 
Natarajan [ 19841. An annotated bibliog- 
raphy on distributed deadlock detection al- 
gorithms appeared in Zobel [ 19831. 

The differences in message complexity of 
the algorithms presented have turned out 
to be less significant than expected. The 
one-resource, AND-, and OR-model algo- 
rithms all had a worst-case complexity of 
O(N’), where N was the number of nodes 
in the WFG. The AND-OR algorithm 
needed at most O(N3) messages but was 
vulnerable to an exponential blowup if (;) 
requests are cast into AND-OR form. The 
algorithm for the (z) model itself used 
O(N2) messages in the worst case, but this 
could only be achieved by performing the 
deadlock detection proper off-line from the 
database computations. There are no clear 
winners among the algorithms: Mitchell 
and Merritt’s algorithm excels by its ele- 
gance and simplicity, Chandy and Misra’s 
AND-model algorithm by its streamlined 
proof, and Hermann and Chandy’s tech- 
nique by the idea of applying diffusing com- 
putations to several levels of hierarchy. 
Each of the algorithms presented has its 
merits, but many of them achieve simplicity 
by severely restricting the forms of resource 
requests permitted. In selecting a deadlock 
detection scheme to be embedded into a 
particular application, it is therefore 
advisable-in order to avoid unnecessary 
complexity-to choose the least general 
technique that is still general enough to 
solve the problem at hand. 
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