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Introduction

Deadlocks is a fundamental problem in distributed
systems.

A process may request resources in any order, which may
not be known a priori and a process can request resource
while holding others.

If the sequence of the allocations of resources to the
processes is not controlled, deadlocks can occur.

A deadlock is a state where a set of processes request
resources that are held by other processes in the set.
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System Model

A distributed program is composed of a set of n
asynchronous processes p1, p2, . . . , pi , . . . , pn that
communicates by message passing over the
communication network.

Without loss of generality we assume that each process is
running on a different processor.

The processors do not share a common global memory
and communicate solely by passing messages over the
communication network.
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There is no physical global clock in the system to which
processes have instantaneous access.

The communication medium may deliver messages out of
order, messages may be lost garbled or duplicated due to
timeout and retransmission, processors may fail and
communication links may go down.
We make the following assumptions:

The systems have only reusable resources.
Processes are allowed to make only exclusive access to
resources.
There is only one copy of each resource.
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A process can be in two states: running or blocked.

In the running state (also called active state), a process
has all the needed resources and is either executing or is
ready for execution.

In the blocked state, a process is waiting to acquire some
resource.
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Wait-For-Graph (WFG)

The state of the system can be modeled by directed graph,
called a wait for graph (WFG).

In a WFG , nodes are processes and there is a directed
edge from node P1 to mode P2 if P1 is blocked and is
waiting for P2 to release some resource.

A system is deadlocked if and only if there exists a directed
cycle or knot in the WFG.
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Figure 1 shows a WFG, where process P11 of site 1 has an
edge to process P21 of site 1 and P32 of site 2 is waiting for
a resource which is currently held by process P21.

At the same time process P32 is waiting on process P33 to
release a resource.

If P21 is waiting on process P11, then processes P11, P32

and P21 form a cycle and all the four processes are
involved in a deadlock depending upon the request model.
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Figure 1: An Example of a WFG
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Preliminaries

Deadlock Handling Strategies

There are three strategies for handling deadlocks, viz.,
deadlock prevention, deadlock avoidance, and deadlock
detection.

Handling of deadlock becomes highly complicated in
distributed systems because no site has accurate
knowledge of the current state of the system and because
every inter-site communication involves a finite and
unpredictable delay.

Deadlock prevention is commonly achieved either by
having a process acquire all the needed resources
simultaneously before it begins executing or by preempting
a process which holds the needed resource.

This approach is highly inefficient and impractical in
distributed systems.
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In deadlock avoidance approach to distributed systems, a
resource is granted to a process if the resulting global
system state is safe (note that a global state includes all
the processes and resources of the distributed system).

However, due to several problems, deadlock avoidance is
impractical in distributed systems.

Deadlock detection requires examination of the status of
process-resource interactions for presence of cyclic wait.

Deadlock detection in distributed systems seems to be the
best approach to handle deadlocks in distributed systems.
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Issues in Deadlock Detection

Deadlock handling using the approach of deadlock
detection entails addressing two basic issues: First,
detection of existing deadlocks and second resolution of
detected deadlocks.

Detection of deadlocks involves addressing two issues:
Maintenance of the WFG and searching of the WFG for the
presence of cycles (or knots).
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Correctness Criteria: A deadlock detection algorithm must
satisfy the following two conditions:

(i) Progress (No undetected deadlocks):

The algorithm must detect all existing deadlocks in finite
time.

In other words, after all wait-for dependencies for a
deadlock have formed, the algorithm should not wait for
any more events to occur to detect the deadlock.

(ii) Safety (No false deadlocks):

The algorithm should not report deadlocks which do not
exist (called phantom or false deadlocks).
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Resolution of a Detected Deadlock

Deadlock resolution involves breaking existing wait-for
dependencies between the processes to resolve the
deadlock.

It involves rolling back one or more deadlocked processes
and assigning their resources to blocked processes so that
they can resume execution.
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Models of Deadlocks

Distributed systems allow several kinds of resource requests.

The Single Resource Model

In the single resource model, a process can have at most
one outstanding request for only one unit of a resource.

Since the maximum out-degree of a node in a WFG for the
single resource model can be 1, the presence of a cycle in
the WFG shall indicate that there is a deadlock.
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The AND Model

In the AND model, a process can request for more than
one resource simultaneously and the request is satisfied
only after all the requested resources are granted to the
process.

The out degree of a node in the WFG for AND model can
be more than 1.

The presence of a cycle in the WFG indicates a deadlock
in the AND model.

Since in the single-resource model, a process can have at
most one outstanding request, the AND model is more
general than the single-resource model.
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Consider the example WFG described in the Figure 1.

P11 has two outstanding resource requests. In case of the
AND model, P11shall become active from idle state only
after both the resources are granted.

There is a cycle P11->P21->P24->P54->P11 which
corresponds to a deadlock situation.

That is, a process may not be a part of a cycle, it can still
be deadlocked. Consider process P44 in Figure 1.

It is not a part of any cycle but is still deadlocked as it is
dependent on P24which is deadlocked.
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The OR Model

In the OR model, a process can make a request for
numerous resources simultaneously and the request is
satisfied if any one of the requested resources is granted.

Presence of a cycle in the WFG of an OR model does not
imply a deadlock in the OR model.

Consider example in Figure 1: If all nodes are OR nodes,
then process P11 is not deadlocked because once process
P33 releases its resources, P32 shall become active as one
of its requests is satisfied.

After P32 finishes execution and releases its resources,
process P11 can continue with its processing.

In the OR model, the presence of a knot indicates a
deadlock.
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The AND-OR Model

A generalization of the previous two models (OR model
and AND model) is the AND-OR model.

In the AND-OR model, a request may specify any
combination of and and or in the resource request.

For example, in the AND-OR model, a request for multiple
resources can be of the form x and (y or z).

To detect the presence of deadlocks in such a model, there
is no familiar construct of graph theory using WFG.

Since a deadlock is a stable property, a deadlock in the
AND-OR model can be detected by repeated application of
the test for OR-model deadlock.
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Unrestricted Model

In the unrestricted model, no assumptions are made
regarding the underlying structure of resource requests.

Only one assumption that the deadlock is stable is made
and hence it is the most general model.

This model helps separate concerns: Concerns about
properties of the problem (stability and deadlock) are
separated from underlying distributed systems
computations (e.g., message passing versus synchronous
communication).
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Knapp’s Classification

Distributed deadlock detection algorithms can be divided into
four classes:

path-pushing

edge-chasing

diffusion computation

global state detection.
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Path-Pushing Algorithms

In path-pushing algorithms, distributed deadlocks are
detected by maintaining an explicit global WFG.

The basic idea is to build a global WFG for each site of the
distributed system.

In this class of algorithms, at each site whenever deadlock
computation is performed, it sends its local WFG to all the
neighboring sites.

After the local data structure of each site is updated, this
updated WFG is then passed along to other sites, and the
procedure is repeated until some site has a sufficiently
complete picture of the global state to announce deadlock
or to establish that no deadlocks are present.

This feature of sending around the paths of global WFG
has led to the term path-pushing algorithms.
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Edge-Chasing Algorithms

In an edge-chasing algorithm, the presence of a cycle in a
distributed graph structure is be verified by propagating
special messages called probes, along the edges of the
graph.

These probe messages are different than the request and
reply messages.

The formation of cycle can be deleted by a site if it receives
the matching probe sent by it previously.

Whenever a process that is executing receives a probe
message, it discards this message and continues.

Only blocked processes propagate probe messages along
their outgoing edges.

Main advantage of edge-chasing algorithms is that probes
are fixed size messages which is normally very short.
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Diffusing Computations Based Algorithms

In diffusion computation based distributed deadlock
detection algorithms, deadlock detection computation is
diffused through the WFG of the system.

These algorithms make use of echo algorithms to detect
deadlocks.

This computation is superimposed on the underlying
distributed computation. If this computation terminates, the
initiator declares a deadlock.

To detect a deadlock, a process sends out query
messages along all the outgoing edges in the WFG.

These queries are successively propagated (i.e., diffused)
through the edges of the WFG.
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When a blocked process receives first query message for a
particular deadlock detection initiation, it does not send a
reply message until it has received a reply message for
every query it sent.

For all subsequent queries for this deadlock detection
initiation, it immediately sends back a reply message.

The initiator of a deadlock detection detects a deadlock
when it receives reply for every query it had sent out.
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Global State Detection Based Algorithms

Global state detection based deadlock detection
algorithms exploit the following facts:

1 A consistent snapshot of a distributed system can be
obtained without freezing the underlying computation and

2 If a stable property holds in the system before the snapshot
collection is initiated, this property will still hold in the
snapshot.

Therefore, distributed deadlocks can be detected by taking
a snapshot of the system and examining it for the condition
of a deadlock.
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Mitchell and Merritt’s Algorithm for the
Single-Resource Model

Belongs to the class of edge-chasing algorithms where
probes are sent in opposite direction of the edges of WFG.

When a probe initiated by a process comes back to it, the
process declares deadlock.

Only one process in a cycle detects the deadlock. This
simplifies the deadlock resolution – this process can abort
itself to resolve the deadlock.
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Each node of the WFG has two local variables, called
labels:

1 a private label, which is unique to the node at all times,
though it is not constant, and

2 a public label, which can be read by other processes and
which may not be unique.

Each process is represented as u/v where u and u are the
public and private labels, respectively.

Initially, private and public labels are equal for each
process.

A global WFG is maintained and it defines the entire state
of the system.
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The algorithm is defined by the four state transitions shown
in Figure 2, where z = inc(u, v), and inc(u, v) yields a
unique label greater than both u and v labels that are not
shown do not change.

Block creates an edge in the WFG.

Two messages are needed, one resource request and one
message back to the blocked process to inform it of the
public label of the process it is waiting for.

Activate denotes that a process has acquired the resource
from the process it was waiting for.

Transmit propagates larger labels in the opposite direction
of the edges by sending a probe message.
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Figure 2: The four possible state transitions
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Whenever a process receives a probe which is less then its
public label, then it simply ignores that probe.

Detect means that the probe with the private label of some
process has returned to it, indicating a deadlock.

The above algorithm can be easily extended to include
priorities where whenever a deadlock occurs, the lowest
priority process gets aborted.

Message Complexity:
If we assume that a deadlock persists long enough to be
detected, the worst-case complexity of the algorithm is s(s -
1)/2 Transmit steps, where s is the number of processes in the
cycle.
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Chandy-Misra-Haas Algorithm for the AND Model

Chandy-Misra-Haas’s distributed deadlock detection
algorithm for AND model is based on edge-chasing.

The algorithm uses a special message called probe, which
is a triplet (i, j, k), denoting that it belongs to a deadlock
detection initiated for process Pi and it is being sent by the
home site of process Pj to the home site of process Pk .

A probe message travels along the edges of the global
WFG graph, and a deadlock is detected when a probe
message returns to the process that initiated it.
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A process Pj is said to be dependent on another process
Pk if there exists a sequence of processes Pj , Pi1, Pi2, ...,
Pim, Pk such that each process except Pk in the sequence
is blocked and each process, except the Pj , holds a
resource for which the previous process in the sequence is
waiting.

Process Pj is said to be locally dependent upon process
Pk if Pj is dependent upon Pk and both the processes are
on the same site.

Data Structures

Each process Pi maintains a boolean array, dependenti,
where dependenti(j) is true only if Pi knows that Pj is
dependent on it.

Initially, dependenti(j) is false for all i and j.
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Algorithm

The following algorithm determines if a blocked process is
deadlocked:

if Pi is locally dependent on itself then declare a deadlock
else for all Pj and Pk such that

1 Pi is locally dependent upon Pj , and
2 Pj is waiting on Pk , and
3 Pj and Pk are on different sites,send a probe (i, j, k) to the

home site of Pk

On the receipt of a probe (i, j, k), the site takes the
following actions: if

1 Pk is blocked, and
2 dependentk (i) is false, and
3 Pk has not replied to all requests Pj ,
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then
begin
dependentk(i) = true;
if k=i

then declare that Pi is deadlocked
else for all Pm and Pn such that

(a’) Pk is locally dependent upon Pm,
and
(b’) Pm is waiting on Pn, and
(c’) Pm and Pn are on different sites,
send a probe (i, m, n) to the home site
of Pn

end.
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A probe message is continuously circulated along the
edges of the global WFG graph and a deadlock is detected
when a probe message returns to its initiating process.

Performance Analysis

One probe message (per deadlock detection initiation) is
sent on every edge of the WFG which that two sites.

Thus, the algorithm exchanges at most m(n − 1)/2
messages to detect a deadlock that involves m processes
and that spans over n sites.

The size of messages is fixed and is very small (only 3
integer words).

Delay in detecting a deadlock is O(n).
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Chandy-Misra-Haas Algorithm for the OR Model

Chandy-Misra-Haas distributed deadlock detection algorithm
for OR model is based on the approach of
diffusion-computation.

A blocked process determines if it is deadlocked by
initiating a diffusion computation.

Two types of messages are used in a diffusion
computation:

query(i, j, k) and reply(i, j, k), denoting that they belong to a
diffusion computation initiated by a process Pi and are
being sent from process Pj to process Pk .
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A blocked process initiates deadlock detection by sending
query messages to all processes in its dependent set.

If an active process receives a query or reply message, it
discards it.
When a blocked process Pk receives a query(i, j, k)
message, it takes the following actions:

1 If this is the first query message received by Pk for the
deadlock detection initiated by Pi (called the engaging
query), then it propagates the query to all the processes in
its dependent set and sets a local variable numk (i) to the
number of query messages sent.

2 If this is not the engaging query, then Pk returns a reply
message to it immediately provided Pk has been
continuously blocked since it received the corresponding
engaging query. Otherwise, it discards the query.
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Process Pk maintains a boolean variable waitk (i) that
denotes the fact that it has been continuously blocked
since it received the last engaging query from process Pi .

When a blocked process Pk receives a reply(i, j, k)
message, it decrements numk (i) only if waitk (i) holds.

A process sends a reply message in response to an
engaging query only after it has received a reply to every
query message it had sent out for this engaging query.

The initiator process detects a deadlock when it receives
reply messages to all the query messages it had sent out.
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Algorithm

The algorithm works as follows:
Initiate a diffusion computation for a blocked process Pi :

send query(i, i, j) to all processes Pj in the dependent set
DSi of Pi ;

numi (i):= |DSi |; waiti(i):= true;
When a blocked process Pk receives a query(i, j, k):

if this is the engaging query for process Pi

then send query(i, k, m) to all Pm in its dependent
set DSk ;
numk (i): = |DSk |; waitk (i):= true

else if waitk (i) then send a reply (i, k, j) to Pj .
When a process Pk receives a reply(i, j, k):

if waitk (i)
then begin

numk (i):= numk (i) − 1;

if numk (i)= 0
then if i=k then declare a deadlock
else send reply(i, k, m) to the process Pm

which sent the engaging query.
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In practice, several diffusion computations may be initiated
for a process (A diffusion computation is initiated every
time the process gets blocked), but, at any time only one
diffusion computation is current for any process.

However, messages for outdated diffusion computations
may still be in transit.

The current diffusion computation can be distinguished
from outdated ones by using sequence numbers.

Performance Analysis
For every deadlock detection, the algorithm exchanges e query
messages and e reply messages, where e=n(n-1) is the
number of edges.
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Kshemkalyani-Singhal Algorithm for P-out-of-Q Model

Kshemkalyani-Singhal algorithm detects deadlocks in the
P-out-of-Q model is based on the global state detection
approach.

It is a single phase algorithm, which consists of a fan-out
sweep of messages outwards from an initiator process and
a fan-in sweep of messages inwards to the initiator
process.

A sweep is a traversal of the WFG in which all messages
are sent in the direction of the WFG edges (outward
sweep) or all messages are sent against the direction of
the WFG edges (inward sweep).
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In the outward sweep, the algorithm records a snapshot of
a distributed WFG.

In the inward sweep, the recorded distributed WFG is
reduced to determine if the initiator is deadlocked.

Both the outward and the inward sweeps are executed
concurrently in the algorithm.

Complications are introduced because the two sweeps can
overlap in time at a process, i.e., the reduction of the WFG
at a process can begin before the WFG at that process has
been completely recorded.
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System Model

The system has n nodes, and every pair of nodes is
connected by a logical channel.

Events are assigned timestamps using Lamport’s clocks.

The computation messages can be either REQUEST,
REPLY or CANCEL messages.

To execute a p-out-of-q request, an active node i sends
REQUESTs to other nodes and remains blocked until it
receives sufficient number of REPLY messages.
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When node i blocks on node j, node j becomes a
successor of node i and node i becomes a predecessor of
node j in the WFG.

A REPLY message denotes the granting of a request.

A node i unblocks when p out of its q requests have been
granted.

When a node unblocks, it sends CANCEL messages to
withdraw the remaining q - p requests it had sent.

Sending and receiving of REQUEST, REPLY, and CANCEL
messages are computation events.

The sending and receiving of deadlock detection algorithm
messages are algorithmic or control events.
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Data Structures
A node i has the following local variables:

waiti : boolean (:= false); /*records the current status.*/

ti : integer (:= 0); /*denotes the current time.*/

t_blocki : real; /*denotes the local time when i blocked last.*/

in(i) : set of nodes whose requests are outstanding at node
i .

out(i) : set of nodes on which node i is waiting.

pi : integer (:= 0); /*the number of replies required for
unblocking.*/

wi : real (:= 1.0); /*keeps weight to detect the termination
of the algorithm.*/
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Computation Events

REQUEST_SEND(i)
/*Executed by node i when it blocks on a p-out-of-q request.*/
For every node j on which i is blocked do

out(i) ← out(i)
⋃

{j};
send REQUEST(i) to j;

set pi to the number of replies needed;
t_blocki := ti ;
waiti ← true;

REQUEST_RECEIVE(j)
/*Executed by node i when it receives a request made by j */
in(i) ← in(i)

⋃

{j}.

REPLY_SEND(j)
/*Executed by node i when it replies to a request by j.*/
in(i) ← in(i) − {j};
send REPLY(i) to j.
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REPLY_RECEIVE(j)
/*Executed by node i when it receives a reply from j to its
request.*/
if valid reply for the current request

then begin
out(i) ← out(i) − {j};
pi ← pi − 1;
pi = 0→

{waiti ← false;
∀k ∈ out(i), send CANCEL(i) to k ;
out(i) ← ∅.}

end

CANCEL_RECEIVE(j)
/*Executed by node i when it receives a cancel from j .*/
if j ∈ in(i) then in(i)← in(i) − {j}.
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Informal Description of the Algorithm

When a node init blocks on a P-out-of-Q request, it
initiates the deadlock detection algorithm.

The algorithm records part a of the WFG that is reachable
from init (henceforth, called the init ’s WFG) in a distributed
snapshot.

The distributed WFG is recorded using FLOOD messages
in the outward sweep and recorded WFG is examined for
deadlocks using ECHO messages in the inward sweep.

A. Kshemkalyani and M. Singhal Deadlock Detection in Distributed Systems



To detect a deadlock, the initiator init records its local state
and sends FLOOD messages along all of its outward
dependencies.

When node i receives the first FLOOD message along an
existing inward dependency, it records its local state.

If node i is blocked at this time, it sends out FLOOD
messages along all of its outward dependencies to
continue the recording of the WFG in the outward sweep.

If node i is active at this time, then it initiates reduction of
the WFG by returning an ECHO message along the
incoming dependency even before the states of all
incoming dependencies have been recorded in the WFG
snapshot at the leaf node.
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ECHO messages perform reduction of the recorded WFG
by simulating the granting of requests in the inward sweep.

A node i in the WFG is reduced if it receives ECHOs along
pi out of its qi outgoing edges indicating that pi of its
requests can be granted.

An edge is reduced if an ECHO is received on the edge
indicating that the request it represents can be granted.

The nodes that can be reduced do not form a deadlock
whereas the nodes that cannot be reduced are
deadlocked.

Node init detects the deadlock if it is not reduced when the
deadlock detection algorithm terminates.

A. Kshemkalyani and M. Singhal Deadlock Detection in Distributed Systems



The Problem of Termination Detection

The algorithm requires a termination detection technique
so that the initiator can determine that it will not receive
any more ECHO messages.

The algorithm uses a termination detection technique
based on weights in cojunction with SHORT messages to
detect the termination of the algorithm.

A weight of 1.0 at the initiator node, when the algorithm is
initiated, is distributed among all FLOOD messages sent
out by the initiator.

When the first FLOOD is received at a non-leaf node, the
weight of the received FLOOD is distributed among the
FLOODs sent out along outward edges at that node to
expand the WFG further.
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Since any subsequent FLOOD arriving at a non-leaf node
does not expand the WFG further, its weight is returned to
the initiator in a SHORT message.

When a FLOOD is received at a leaf node, its weight is
piggybacked to the ECHO sent by the leaf node to reduce
the WFG.

When an ECHO that arrives at a node unblocks the node,
the weight of the ECHO is distributed among the ECHOs
that are sent by that node along the incoming edges in its
WFG snapshot.

When an ECHO arriving at a node does not unblock the
node, its weight is sent directly to the initiator in a SHORT
message.
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The following invariant holds in an execution of the algorithm:

the sum of the weights in FLOOD, ECHO, and SHORT
messages plus the weight at the initiator (received in
SHORT and ECHO messages) is always 1.0.

The algorithm terminates when the weight at the initiator
becomes 1.0, signifying that all WFG recording and
reduction activity has completed.

FLOOD, ECHO, and SHORT messages carry weights for
termination detection. Variable w , a real number in the
range [0, 1], denotes the weight in a message.
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The Algorithm

A node i stores the local snapshot for snapshots initiated
by other nodes in a data structure LSi (Local Snapshot),
which is an array of records.
LSi : array [1..n] of record;
A record has several fields to record snapshot related
information and is defined below for an initiator init :
LSi [init].out : set of integers (:= ∅); /*nodes on which i is

waiting in the snapshot.*/
LSi [init].in : set of integers (:= ∅); /*nodes waiting on i in the

snapshot.*/
LSi [init].t : integer (:= 0); /*time when init initiated

snapshot.*/
LSi [init].s : boolean (:= false); /*local blocked state as seen

by snapshot.*/
LSi [init].p : integer; /*value of pi as seen in snapshot.*/
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The deadlock detection algorithm is defined by the following
procedures. The procedures are executed atomically.

SNAPSHOT_INITIATE
/*Executed by node i to detect whether it is deadlocked. */
init ← i ;
wi ← 0;
LSi [init].t ← ti ;
LSi [init].out ← out(i);
LSi [init].s ← true;
LSi [init].in ← ∅;
LSi [init].p ← pi ;
send FLOOD(i, i , ti , 1/|out(i)|) to each j in out(i). /*
1/|out(i)| is the fraction of weight sent in a FLOOD message. */

A. Kshemkalyani and M. Singhal Deadlock Detection in Distributed Systems



FLOOD_RECEIVE(j , init , t_init , w)
/*Executed by node i on receiving a FLOOD message from j. */
LSi [init].t < t_init

∧

j ∈ in(i)→ /*Valid FLOOD for a new snapshot.
*/

LSi [init].out ← out(i);
LSi [init].in ← {j};
LSi [init].t ← t_init ;
LSi [init].s ← waiti ;
waiti = true → /* Node is blocked. */

LSi [init].p ← pi ;
send FLOOD(i, init , t_init , w/|out(i)|) to each k ∈ out(i);

waiti = false→ /* Node is active. */
LSi [init].p ← 0;
send ECHO(i , init , t_init , w) to j;
LSi [init].in ← LSi [init].in − {j}.

�
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LSi [init].t < t_init
∧

j 6∈ in(i)→ /* Invalid FLOOD for a new snapshot. */

send ECHO(i , init , t_init , w) to j.

�

LSi [init].t = t_init
∧

j 6∈ in(i)→ /* Invalid FLOOD for current snapshot. */

send ECHO(i , init , t_init , w) to j.

�

LSi [init].t = t_init
∧

j ∈ in(i)→ /*Valid FLOOD for current snapshot. */

LSi [init].s = false→

send ECHO(i , init , t_init , w) to j;

LSi [init].s = true→

LSi [init].in ← LSi [init].in
⋃

{j};

send SHORT (init , t_init , w) to init .

LSi [init].t > t_init → discard the FLOOD message. /*Out-dated FLOOD. */
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ECHO_RECEIVE(j , init , t_init , w )
/*Executed by node i on receiving an ECHO from j. */
/*Echo for out-dated snapshot. */
LSi [init].t > t_init → discard the ECHO message.
LSi [init].t < t_init → cannot happen. /*ECHO for unseen snapshot.
*/
LSi [init].t = t_init → /*ECHO for current snapshot. */

LSi [init].out ← LSi [init].out − {j};
LSi [init].s = false→ send SHORT (init, t_init , w) to init .
LSi [init].s = true→

LSi [init].p ← LSi [init].p − 1;
LSi [init].p = 0→ /* getting reduced */

LSi [init].s ← false;
init = i → declare not deadlocked; exit.
send ECHO(i , init , t_init , w/|LSi [init].in|) to all

k ∈ LSi [init].in;
LSi [init].p 6= 0→

send SHORT (init , t_init , w) to init .
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SHORT_RECEIVE(init, t_init , w )
/*Executed by node i (which is always init) on receiving a SHORT. */
[
/*SHORT for out-dated snapshot. */
t_init < t_blocki → discard the message.
�

/*SHORT for uninitiated snapshot. */
t_init > t_blocki → not possible.
�

/*SHORT for currently initiated snapshot. */
t_init = t_blocki

∧

LSi [init].s = false→ discard. /* init is
active. */
t_init = t_blocki

∧

LSi [init].s = true→
wi ← w i +w ;
wi = 1→ declare a deadlock.

]
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An Example

We now illustrate the operation of the algorithm with the
help of an example shown in Figures 3 and 4.

Figure 3 shows initiation of deadlock detection by node A
and Figure 4 shows the state after node D is reduced.

The notation x/y beside a node in the figures indicates
that the node is blocked and needs replies to x out of the y
outstanding requests to unblock.
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Figure 3: An Example-run of the Algorithm.
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In Figure 3, node A sends out FLOOD messages to nodes
B and C. When node C receives FLOOD from node A, it
sends FLOODs to nodes D, E, and F.

If the node happens to be active when it receives a FLOOD
message, it initiates reduction of the incoming wait-for
edge by returning an ECHO message on it.

For example, in Figure 3, node H returns an ECHO to node
D in response to a FLOOD from it.

Note that node can initiate reduction even before the states
of all other incoming wait-for edges have been recorded in
the WFG snapshot at that node.
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For example, node F in Figure 3 starts reduction after
receiving a FLOOD from C even before it has received
FLOODs from D and E.

Note that when a node receives a FLOOD, it need not have
an incoming wait-for edge from the node that sent the
FLOOD because it may have already sent back a REPLY
to the node.

In this case, the node returns an ECHO in response to the
FLOOD.

For example, in Figure 3, when node I receives a FLOOD
from node D, it returns an ECHO to node D.
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ECHO messages perform reduction of the nodes and
edges in the WFG by simulating the granting of requests in
the inward sweep.

A node that is waiting a p-out-of-q request, gets reduced
after it has received p ECHOs.

When a node is reduced, it sends ECHOs along all the
incoming wait-for edges incident on it in the WFG snapshot
to continue the progress of the inward sweep.

In general, WFG reduction can begin at a non-leaf node
before recording of the WFG has been completed at that
node.
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This happens when ECHOs arrive and begin reduction at a
non-leaf node before FLOODs have arrived along all
incoming wait-for edges and recorded the complete local
WFG at that node.

For example, node D in Figure 3 starts reduction (by
sending an ECHO to node C) after it receives ECHOs from
H and G, even before FLOOD from B has arrived at D.

When a FLOOD on an incoming wait-for edge arrives at a
node which is already reduced, the node simply returns an
ECHO along that wait-for edge.

For example, in Figure 4, when a FLOOD from node B
arrives at node D, node D returns an ECHO to B.
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Figure 4: An Example-run of the Algorithm (continued).
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In Figure 3, node C receives a FLOOD from node A
followed by a FLOOD from node B.

When node C receives a FLOOD from B, it sends a
SHORT to the initiator node A.

When a FLOOD is received at a leaf node, its weight is
returned in the ECHO message sent by the leaf node to
the sender of the FLOOD.

Note that an ECHO is like a reply in the simulated
unblocking of processes.

When an ECHO arriving at a node does not reduce the
node, its weight is sent directly to the initiator through a
SHORT message.
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For example, in Figure 3, when node D receives an ECHO
from node H, it sends a SHORT to the initiator node A.

When an ECHO that arrives at a node reduces that node,
the weight of the ECHO is distributed among the ECHOs
that are sent by that node along the incoming edges in its
WFG snapshot.

For example, in Figure 4, at the time node C gets reduced
(after receiving ECHOs from nodes D and F), it sends
ECHOs to nodes A and B. (When node A receives an
ECHO from node C, it is reduced and it declares no
deadlock.)

When an ECHO arrives at a reduced node, its weight is
sent directly to the initiator through a SHORT message.
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For example, in Figure 4, when an ECHO from node E
arrives at node C after node C has been reduced (by
receiving ECHOs from nodes D and F), node C sends a
SHORT to initiator node A.

Correctness
Proving the correctness of the algorithm involves showing that it
satisfies the following conditions:

1 The execution of the algorithm terminates.
2 The entire WFG reachable from the initiator is recorded in

a consistent distributed snapshot in the outward sweep.
3 In the inward sweep, ECHO messages correctly reduce the

recorded snapshot of the WFG.
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The algorithm is initiated within a timeout period after a
node blocks on a P-out-of-Q request.

On the termination of the algorithm, only all the nodes that
are not reduced, are deadlocked.
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Complexity Analysis

The algorithm has a message complexity of 4e − 2n + 2l
and a time complexity1 of 2d hops, where e is the number
of edges, n the number of nodes, l the number of leaf
nodes, and d the diameter of the WFG.

This gives the best time complexity that can be achieved
by an algorithm that reduces a distributed WFG to detect
generalized deadlocks in distributed systems.

1Time complexity denotes the delay in detecting a deadlock after its
detection has been initiated.
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