
IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBASYSTEMS, VOL. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4, NO. 4, APRIL 1993 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA466

Short Notes

Deadlock-Free Adaptive Routing in
Multicomputer Networks Using Virtual Channels

William J. Dally and Hiromichi Aoki zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Abstmct- The use of adaptive routing in a multicomputer inter-

connection network improves network performance by making use of
all available paths and provides fault tolerance by allowing messages
to be routed around failed channels and nodes. This paper describes
two deadlock-free adaptive routing algorithms. Both algorithms allocate
virtual channels using a count of the number of dimension reversals a
packet has performed to eliminate cycles in resource dependency graphs.
The zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAs t d c algorithm eliminates cycles in the network channel dependency
graph. The dynamic algorithm improves virtual channel utilization by
permitting dependency cycles and instead eliminating cycles in the packet
wail-for graph. We prove that these algorithms are deadlock-free and
give experimental measurements of their performance. For nonuniform
traffic patterns, these algorithms improve network throughput by a factor
of three compared to deterministic routing. The dynamic algorithm gives
better performance at moderate traffic rates but requires source throttling
to remain stable at high traffic rates. Both algorithms allow the network
to gracefully degrade in the presence of faulty channels.

Index Terms-Communication networks, concurrent computing, flow
control, interconnection networks, multicomputers, packet muting, par-
allel processing.

I. INTRODUCTION

A. Interconnection Networks

Interconnection networks are used to pass messages containing data

and synchronization information between the nodes of concurrent

computers [2] , [28], [42], 1161. The messages may be sent between the

processing nodes of a message-passing multicomputer [2] or between

the processors and memories of a shared-memory multiprocessor zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
[28]. The interconnection network is often the critical component

of a large parallel computer because performance is very sensitive to

network latency and throughput and because the network accounts for

a large fraction of the cost and power dissipation of the machine. To

be cost effective, a network should provide throughput approaching

network capacity to keep the costly network wires and router pins

productive.

Multicomputer networks are characterized by regular topologies,

large numbers (10’ to lo5) of nodes, small node size, and high speed.

The speed and node size constraints limit buffer storage to a few

flow-control digits (flits) per channel requiring the use of wormhole

routing zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[141 rather than store-and-forward or virtual cut-through [29].

To achieve high-performance, the routing decision must be reduced

to a combinational logic function so it can be made in a single clock

cycle. Routing tables that result in quasi-static routing and grow

Manuscript received October 30, 1990; revised June 30, 1991 and Novem-
ber 20, 1991. This work was supported in part by the Defense Advanced
Research Projects Agency under Contracts N00014-88K-0738 and N00014-
87K-0825 and in part by a National Science Foundation Presidential Young
Investigator Award, Grant MIP-8657531, with matching funds from General
Electric Corporation and IBM Corporation.

The authors are with the Artificial Intelligence Laboratory and Laboratory
for Computer Science, Massachusetts Institute of Technology, Cambridge,
MA 02139.

IEEE Log Number 9206275.

quadratically with machine size are unsuitable in this context. On

the positive side, regular topology permits algorithmic routing and

short link distances eliminate transmission errors and hence reduce

protocol overhead. The algorithms described here are suitable for

implementation in a multicomputer routing controller. They require

minimal storage, can be used with wormhole routing, and are simple

enough to be reduced to a few levels of combinational logic.

An interconnection network is described by its topology, routing,

and flow control. The topology of a network is the arrangement of its

nodes and channels into a graph. Routing determines the path chosen

by a message in this graph. Flow control deals with the allocation

of channel and buffer resources to a message as it travels along this

path. This paper deals with routing and flow control. It describes

two deadlock-free, nonminimal adaptive routing algorithms that select

paths in a network, N, using information about the current state of
N . These algorithms improve network throughput for nonuniform

traffic pattems by balancing network load along altemate paths. The

methods described here are applicable to any topology; however, the

examples in this paper consider their application to k-ary n-cube

interconnection networks [141.

B. The Problem

Most existing multicomputer routing networks [28], [42], [16] use

deterministic routing. With deterministic routing, the path followed

by a packet is determined solely by its source and destination. If

any channel along this path is heavily loaded, the packet will be

delayed. If any channel along this path is faulty the packet cannot be

delivered. A common deterministic routing algorithm is dimension-

order routing, where the packet is routed in one dimension at a time,

arriving at the proper coordinate in each dimension before proceeding

to the next dimension.

Adaptive routing improves both the performance and fault toler-

ance of an interconnection network. Fig. 1 shows a 8-ary 2-cube in

which the node at zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(i, 0) sends a packet to the node at (7, i) (for

i E [O, 71). With dimension order deterministic routing [Fig. l(a)],

seven of the eight packets must traverse the channel from (6, 0)
to (7, 0). Thus only one of these seven packets can proceed at a

time. With adaptive routing [Fig. l(b)] all of the packets can proceed

simultaneously using alternate paths. For the traffic pattem shown in

this example, adaptive routing increases throughput by a factor of

seven.

Fig. 2 shows the same network with a faulty channel from (3, 4)

to (4, 4). With dimension-order deterministic routing, packets from

node (i , 4) to node (j, k) where i zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 3 < j cannot be delivered. With

adaptive routing, all messages can be delivered by routing around

the faulty channel. To deliver a packet from (i, 4) to (j, 4) where

i 5 3 < j , it is necessary for the packet to be misrouted away from

the destination resulting in a nonminimal distance route.

C. Adaptive Routing with Virtual Channels

Adaptive routing must be performed in a manner that is deadlock-

free. Deadlock in an interconnection network occurs whenever there

is a cyclic dependency for resources: buffers or channels. Networks

that use dimension order routing avoid deadlock by ordering channels

so that messages travel along paths of strictly increasing channel

1045-9219/93$03.00 0 1993 IEEE

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 4, NO. 4, APRIL 1993 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA467 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
0 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
1
2
3
4
5
6
7

0 1 2 3 4 5 6 7

0
1
2
3
4
5
6
7

0 1 2 3 4 5 6 7

(a) (b)

Fig. 1. Routing packets in an 8-ary 2-cube from zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(1 , 0) to zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(7, 1) (for
z E [0,7]). (a) Using dimension order routing, seven packets must traverse the
channel from (6, 0) to (7, 0). (b) Using adaptive routing, all packets proceed
simultaneously increasing throughput by a factor of 7.

0
1
2
3
4
5
6
7

0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

(a) (b)

Fig. 2. An 8-ary 2-cube network with a faulty channel from (3, 4) to (4, 4).
(a) With dimension order routing, packets from the shaded area on the left to
the shaded area on the right cannot be delivered. (b) Using adaptive routing
packets can be delivered between all pairs of nodes.

numbers [18]. Channels are ordered so that all of the channels in

each dimension are greater than all of the channels in the preceding

dimension. This ordering eliminates cycles in the channel dependency

graph and thus prevents deadlock. The ordering, however, results in

a unique path from source to destination and thus does not allow

adaptive routing.

This paper presents two deadlock-free adaptive routing algorithms.

Both algorithms permit misrouting (routing a packet along a non-

shortest path), avoid deadlock using virtual channels to eliminate

cyclic dependencies, and introduce the use of dimension reversal (OR)
numbers to break dependency cycles.

The static algorithm applies DR numbers to the method of [18]
to eliminate cycles in the channel dependency graph by numbering

virtual channels and routing packets to traverse virtual channels in

increasing order. Each packet is labeled with a DR number that is

initialized to zero. When a packet performs a dimension reversal,

routing from a higher dimension to a lower dimension, its dimension

reversal number is incremented and it is routed on a class of virtual

channels used only by packets with the same dimension reversal

number. The number of classes of virtual channels places an upper

limit on the maximum number of dimension reversals permitted. Once

a packet has made this number of dimension reversals, it is restricted

to dimension-order routing.

This static assignment of DR numbers to virtual channels restricts

the number of DR’s permitted and makes inefficient use of virtual

channels. A packet may be blocked waiting for a virtual channel in its

DR class, while other virtual channels for the same physical channel

remain idle.

The dynamic algorithm overcomes these limitations by permitting

packets to use any available virtual channel. Deadlock is avoided by

eliminating cycles from the packet wait-for graph. Packets are labeled

with their dimension reversal number and are not permitted to wait

for a virtual channel held by a packet with a lower dimension reversal

number. If all available virtual channels are occupied by packets with

lower dimension reversal numbers, the packet reverts to dimension-

order routing on an additional set of virtual channels reserved for this

purpose. The dynamic algorithm places no restrictions on the number

of dimension reversals permitted.’

D. Related Work

Adaptive routing has been extensively studied in the context of

wide-area networks (WAN’S) and local-area networks (LAN’s) [24],
[5], [43], [4] and proposals have been made to apply these LAN”
techniques to multicomputers [23], [41], [30]. However, as described

above, LAN/WAN routing algorithms are not directly applicable to

multicomputer networks for three reasons. First, most LAN and WAN
routing algorithms are table driven making them impractical for large

multicomputers as the total table storage grows as N Z . The regular

topology of multicomputer networks allows routing without tables.

Second, most LAN/WAN routing algorithms (e.g., [24]) assume

quasi-static network traffic while traffic in multicomputer networks

changes rapidly. Finally, most WA”s /LA”s use deadlock avoidance

strategies based on packet buffer assignment [27], [35], [25] that use

too much storage to be implemented in single-chip routers.
Several algorithms have been developed for permutation routing

[37], [38] in which the traffic pattern is fixed and known a priori.
These algorithms are not applicable to a multicomputer network

where a single routing algorithm must support many traffic patterns

that are not known a priori and may not be permutations and where

routing must be done on-line using only local information.

Virtual channels were introduced in [18] for deadlock avoidance.

Virtual channels have also been used to support multiple virtual

circuits [6], and to increase network throughput [15]. Minimal,

deadlock-free adaptive routing algorithms based on virtual channels

are described in [12], [13], [34], and [31]. These algorithms do

not permit misrouting and thus cannot route around certain network

faults. An adaptive wormhole routing algorithm that permits misrout-

ing is described in [36]; however, this algorithm is not deadlock-free.

Store-and-forward adaptive routing algorithms have been developed

based on packet exchange, [40], [39], promotion [l], and random-

ization [33], [32]. These three algorithms require that entire packets

be buffered and thus cannot be used with wormhole routing. Circuit-

switched networks have used adaptive routing algorithms based on

tree search [26], [lo]. Chen and Shin develop and analyze adaptive

routing algorithms for hypercubes in [7], [8]. However, they consider

only the problem of finding routes and do not address issues of

deadlock, livelock, or contention. Duato has proposed a method for

nonminimal adaptive routing using virtual channels by ensuring that

a connected subset of the channels is acyclic [21], [20]. A random

oblivious adaptive routing scheme is proposed in [44] and [45];
however this scheme destroys any locality present in communications

and doubles average communication distances.

E. Outline

The next section introduces the notation, terminology, and assump-

tions that will be used throughout this paper. Section I11 describes the

two deadlock-free adaptive routing algorithms in more detail, proves

that they are deadlock free, and discusses routing policy. These algo-

rithms are evaluated experimentally in Section IV. The experiments

measure network performance on uniform and nonuniform traffic

patterns, evaluate the effect of selection functions and throttling, and

determine how network performance degrades as network channels

are failed.

‘As a practical matter, the number of dimension reversals will be limited
by the size of the packet header field used to hold the packet’s dimension
reversal number.

468 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4, NO. 4, APRIL 1993

11. PRELIMINARIES zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Topology: An interconnection network is a strong1 y-connected,

directed graph, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= G(N, C). The vertices of I are a set of nodes,
N . The edges are a set of channels, C zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA,V x zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAS. Each channel is

unidirectional and carries data from a source node to a destination

node. A bidirectional network is one where (111. 112) E C 3
(n 2 , n l) E C.

Flow Control: Communication between nodes is performed by

sending messages. A message may be broken into one or more

packets for transmission. A packet is the smallest unit of information

that contains routing and sequencing information. A packet contains

one or more flow control digits or @its. A flit is the smallest unit

on which flow control is performed. Information is transferred over

physical channels in physical transfer units or phits. A phit is usually

the same size or smaller than a flit.

Each physical channel, c, E C. in the network is composed

of one or more virtual channels, c,] E C'. The virtual channels

associated with a single physical channel share physical channel

bandwidth, allocated on a flit-by-flit basis. However, each virtual

channel contains its own queue and is allocated on a packet-by-packet

basis independently of the other virtual channels. For purposes of

deadlock analysis, each virtual channel is logically a separate channel.

Routing: A packet is assigned a route through the network ac-

cording to a routing relation, R C' x S x C'. Given the virtual

channel occupied by the head of the packet and the destination node

of the packet, the routing relation specifies a (possibly singleton) set

of virtual channels that may be used for the next step of the packet's

route.

A selection function, p(P(C ') ,a) H C', is used to pick the

next channel of the route from the elements of this set using some

additional information, a. This additional information may include

the occupancy and/or operational status of channels in the network.

The next channel selected for a packet, p 2 , is denoted next(p,) .
The channel dependency graph for an interconnection network,

I , and routing relation, R, is a directed graph, D = G(C'. E) . Its

vertices are C', the virtual channels of I , and its edges are given by

the projection of the routing relation onto C' zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx C':

Consider a network, I , occupied by a set of packets, P, where

each packet, p , E P. occupies a particular set of virtual channels,

occ(p,) C'. The wait-for graph of I is a directed graph,

W = G(P, Ew) . The vertices of W are P, the set of packets in the

network at a given instance of time. There is an edge of IT'. e , E E n ,
for each packet that is waiting on another packet to acquire a resource:

Performance: The performance of a fault-free network is measured

in terms of its latency, T , and its throughput, Asat . The latency of a

message is the elapsed time from when the message is initiated until

the message is completely received. Network latency is the average

message latency under specified conditions. Network throughput is

the number of messages the network can deliver per unit of time.

The latency and throughput of a network degrade as channels fail.

The rate at which they degrade gives a figure of merit for the network.

k-ary n-cube Networks: k-ary n-cube is a radix k cube with n

dimensions, having N = k" nodes. The radix implies that there are

k nodes in each dimension. The nodes in each dimension may be

connected in a linear array giving a mesh network [Fig. 3(a)] or in

a ring giving a torus network [Fig. 3(b)]. A k-ary 1-cube [Fig. 3(a),

(b)] is a k-node ring or linear array. A k-ary 2-cube [Fig. 3(c)] is

constructed by taking k k-ary 1-cubes and connecting like elements.

Fig. 3. I;-ary n-cube is a cube of n dimensions with k. nodes in each
dimension. (a) Meshes are cubes with each dimension connected in a linear
array. (b) Connecting each dimension in a ring gives a Tori. (c) Higher
dimensional cubes are constructed by combining like elements of lower
dimensional cubes.

In general, a k-ary n-cube is constructed from k k-ary (n - 1)-cubes

by connecting like elements into rings or linear arrays.

Every node has an address that is an n digit, radix k number,

arz--l . . zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA.ao. Each address digit, ad, represents a node's coordinate in

dimension d and can take on values in the range [O, k - I]. In a torus

network, nodes are connected to all nodes with an address that differs

in only one digit by f l mod k . In a mesh, nodes are connected to

all nodes with an address that differs in one digit by f l where the

result is in the range [O. k - 11.
The dimensions and directions of the cube partition the

set of virtual channels, C', into subsets for each dimension:

C'ho, C'h1 C;n-l)o, C;n-l)l. A channel, cz, with source, n,, and
destination, nd, whose addresses differ in the dth position is said

to be a channel in the dth dimension. If n , > nd,cz E CAo. If
n s < n,!, c, E CAl. This definition partitions the two directions of a

given dimension into distinct channel sets.

Many networks are included in the family of k-ary n-cubes. At

the extreme of k = 2 , we have a binary n-cube. At the extreme of

n = 1 we have a ring or linear array. For n = 2 we have a torus

or 2-D mesh. These networks have been used in several message-

passing computers [42], [ll], [16]. For the remainder of this paper

we consider only mesh-connected k-ary n-cubes.

Ill. ADAPTIVE ROUTING ALGORITHMS

This section describes two deadlock-free adaptive routing algo-

rithms that use a packet's dimension reversal number to avoid cycles

in resource dependency graphs. First, dimension reversals are defined,

and the static and dynamic algorithms for assigning virtual channels

to packets are presented and proved deadlock free. Finally, strategies

for selecting among admissible channels that guarantee progress are

described. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
A. Dimension Reversals

The dimension reversal number of a packet is the count of the

number of times a packet has been routed from a channel in one

dimension, p , to a channel in a lower dimension, q < p . Dimension

reversal (DR) numbers are assigned to packets as follows:

1) All packets are initialized with a DR of 0.
2) Each time a packet routes from a channel c , E CL to a channel

e, E Cf, where p > q the DR of a packet is incremented.

B. The Static Algorithm

The static algorithm divides the virtual channels of each physical

channel into nonempty classes numbered zero to r , where r is the

maximum number of dimension reversals permitted. Packets with

DR < r may be routed in any direction but must use only virtual

channels of class DR. Once a packet has DR = r , it must use

dimension-order routing on the virtual channels of class r . Thus, when

a packet makes its final dimension reversal, it must start routing in

IEEE zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBATRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 4, NO. 4. APRIL 1993 469

the lowest dimension in which its current node address differs from

the destination address. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Assertion I : The static algorithm is deadlock free.

Proof: The channel dependency graph is acyclic. Assign a

number, num(c,), to each channel, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAct, in each dimension, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBACdr, so

channel numbers increase in the direction of routing.’ Now order

all virtual channels according to their class, dimension, and number.

With this ordering, packets using the static algorithm will always

traverse channels in ascending order. Thus the channel dependency zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
0 graph is acyclic and the routing is deadlock free.

C. The Dynamic Algorithm

The dynamic algorithm divides the virtual channels of each phys-

ical channel into two nonempty classes: adaptive and deterministic.

Packets originate in the adaptive channels. While in these channels,

they may be routed in any direction without a maximum limit on

the number of dimension reversals a packet may make. Whenever

a packet acquires a channel it labels the channel with its current

DR number. To avoid deadlock, a packet with a DR of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp cannot

wait on a channel labeled with a DR of q if p 2 q. A packet that

reaches a node where all output channels are occupied by packets

with equal or lower DR’s must switch to the deterministic class of

virtual channel^.^ When a packet enters the deterministic channels,

it must be routed in the lowest dimension in which the current node

address and the destination address differ. Once on the deterministic

channels, the packet must be routed in dimension order and cannot

reenter the adaptive channels.

Assertion 2: The dynamic algorithm is deadlock free.

Proof: By contradiction. If the network is deadlocked, then there

is a set of packets, P, waiting on virtual channels held by other

packets in P. There exists a packet, pmax, such that the DR(p,,,) 2
DR(q)Vq E P. Let zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAT be the DR label of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAcn = nezt(p,,,). Then

T 5 DR(p,) where c, E occ(p,) . However, p,,, is not permitted

to wait on nezt(p,,,) since DR(pma,) 2 DR(p,) 2 (T) . 0
The dynamic algorithm is deadlock free even though it permits

cycles in the network’s channel dependency graph. This does not

contradict Theorem 1 of [18] as that theorem assumes deterministic

routing. In [18], R is a function, not a relation, so if a cycle exists

in the channel dependency graph, a packet is required to follow the

cycle. With adaptive routing, R is a relation. There may be many

channels available to route a packet. Deadlock can be avoided by

choosing a channel that does not create a cycle in the packet wait-for

graph. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
D. Routing Policy

Progress: The static and dynamic algorithms allow a packet to

be routed deadlock-free along an arbitrary path in a k-ary n-cube

network. These algorithms by themselves, however, give no guarantee

that a packet will ever reach its destination.

To guarantee progress toward a destination, misrouting is limited

by placing an upper limit on the number of steps a message may

take away from its destination. With this limit, a weighted sum of

the distance to the destination and the number of misrouting steps

remaining for all messages in the network is strictly decreasing. Thus

the network is livelock free. A variant on this scheme is to limit the

ratio of misrouting steps to progress steps-e.g., no more than one

step back for each two steps forward.

*This method can be extended to tori by using the method given in [18].
3Since any cycle contains at least one DR, it suffices to prohibit waits only

4A packet may wait a finite amount of time before resorting to dimension-
when p > q.

order routing.

Throttling: The adaptive virtual channel pool of the dynamic

algorithm can be monopolized by eager sources unless some form of

throttling [9] is used. If many sources attempt to inject messages into

the network faster than the network is able to handle them, these new

messages will consume all available virtual channels in the adaptive

pool. Older messages will be forced to revert to deterministic routing

using the deterministic pool.

Throttling can be performed by using a hybrid of the static and

dynamic algorithms. The virtual channels are divided into classes as

in the static algorithm. A packet with a DR of p is permitted to

select a channel of class q only if p 2 4. This method divides the

adaptive virtual channel pool into classes to prevent new messages

from consuming the entire pool. In practice, two classes, 0 and 1, are

sufficient to limit the channels consumed by injected messages.

Selection Functions: We denote the set of virtual channels that

packet p l is permitted to select for the next step of its route as

q (p ,) C’. This set is determined by the routing algorithm: static or
dynamic to avoid deadlock. Also, any faulty channels are excluded

from q . The single deterministic channel that p , may route on is

denoted 6 (p ,) and is excluded from ~ (p ,) . The set of unoccupied

channels in 71(pt) that move p , closer to its destination are denoted

~ (p ,). The selection function, next@,), chooses the next channel of

the route as follows:

The selection function reserves an unoccupied, productive channel

if possible. If no such channels are available the function picks

any legal adaptive channel. This channel may be occupied and/or

unproductive. If the channel is occupied, the packet waits on the

channel until it becomes free. Only if no legal adaptive channels are

available does the packet resort to deterministic routing.

The function pick, P(C’) H C’, chooses a next channel from a

set of productive or permitted channels. In Section IV the selection

criteria listed below are evaluated. Other criteria, including random,

are possible.

Minimum congestion: Pick the direction with the most available

virtual channels.
Maximum flexibility: Pick the direction with the greatest dis-

tance to travel to the destination. This is similar to the 2’ routing

policy proposed in [3].
Straight lines: Pick the dimension closest to the current dimen-

sion.

IV. EXPERIMENTAL RESULTS

To measure the performance of the adaptive routing algorithms

described above, we have simulated a number of k-ary n-cube

networks varying the routing relation, selection function, and traffic

patterns. Faulty networks were simulated to measure performance

degradation.

The simulator is a 9000-line C program that simulates intercon-

nection networks at the flit level. A flit transfer between two nodes

is assumed to take place in one time unit. The network is simulated

synchronously, moving all flits that have been granted channels in one

time step and then advancing time to the next step. The simulator is

programmable as to topology, routing algorithm, and traffic pattern.

All of the results in this section are for 256-node 16-ary 2-cube

mesh networks with 16 virtual channels per physical channel. This

network was chosen because it is representative of existing machines.

Simulations were run using dimension-order deterministic routing and

470 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAlEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 4, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBANO. 4, APRIL 1993 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

"t
200 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
100 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA.i

I
I
I
I

50

Fig. 4. Latency versus accepted traffic for a 16-ary 2-cube under random traffic. Deterministic, dimension-order routing is compared with static and dynamic
adaptive routing. With random traffic, adaptive routing gives slightly lower latency with low traffic than deterministic routing but saturates first.

both static and dynamic adaptive routing. For the adaptive routing

cases, the selection functions described in Section 111-D are used.

Livelock is avoided by placing an upper limit on DR numbers and

hence misrouting steps. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
A. Latency

Latency is measured by applying a constant rate source to each

input and measuring the time from packet creation until the last flit

of the packet is accepted at the destination. Source queueing time is

included in the latency measurement.

Fig. 4 compares the performance of deterministic dimension-order

routing with static and dynamic adaptive routing under uniform

random traffic. The figure shows latency as a function of throughput

for the three routing strategies. Both adaptive routing strategies

use a selection function that favors minimum congestion, and both

permit misrouting. For deterministic routing, saturation occurs at 94%

capacity. For static and dynamic routing, saturation occurs at 78%

and 88%, respectively?

Random traffic places a uniform load on the network channels

and buffers. Thus, adaptive routing affects performance only slightly

for this traffic pattern. For small loads, adaptive routing slightly

reduces latency by moving packets that would otherwise be blocked.

However, above 75% capacity, adaptive routing gives a higher

latency than deterministic routing. This is because dimension-order

routing concentrates traffic on the through channels of each switch.

Collision probability and hence expected latency is proportional to the

competing traffic rate [13]. Thus concentrating traffic on the through

channels results in less contention and lower latency. With adaptive

routing, the switch traffic is more uniform, resulting in higher latency.

Dynamic adaptive routing outperforms static adaptive routing at

high traffic levels. The dynamic algorithm allows more flexible buffer

assignments allowing packets to make progress that would otherwise

be blocked waiting on a particular buffer.

Adaptive routing gives a significant performance advantage for

traffic patterns that load channels nonuniformly. Fig. 5 shows latency

as a function of throughput for three routing strategies under bit-

reversal traffic. In this traffic pattern, each node, i , sends messages

to node j where j is the bit-reversal of i . For example, node

'These saturation throughputs occur at much higher latencies than those
included on the y-axis of Fig. 4 and thus are not shown in the figure.

4316 sends messages to node C216. Deterministic routing gives
very poor performance for this traffic pattern, saturating at 25%

capacity. This saturation occurs because a few channels become

bottlenecks as in Fig. l(a). With adaptive routing, packets are routed

around bottleneck channels achieving three times the throughput of

deterministic routing. The static algorithm saturates at 60% capacity

while the dynamic algorithm saturates at 75% capacity.

B. Throttling

Fig. 6 shows the effect of throttling on network throughput. The

figure shows throughput (accepted traffic) as a function of offered

traffic for a network using dynamic adaptive routing. The simulations

were run using random traffic. The curves correspond to no throttling

and throttling by restricting packets with a DR of 0 (entry packets)

to use only one, two, or four virtual channels (entry lanes) of each

physical channel. Throughput values are shown after 10 000 network

cycles. At traffic rates in excess of peak throughput, throughput

degradation is affected by both the intensity and duration of the

traffic burst.

Table I shows the throughput and fraction of packets that are forced

into deterministic routing for varying degrees of throttling under max-

imum traffic, when each network node attempts to inject a message

into the network on each cycle. For this network, maximum traffic

corresponds to four times network capacity and quickly congests all

network buffers if throttling is not employed. The table shows that

the number of packets forced onto the deterministic virtual channels

is reduced by throttling. This improves fault tolerance since once

a packet begins deterministic routing, it is vulnerable to a single

channel fault.

Without throttling, a network using dynamic adaptive routing

is unstable. As offered traffic is increased beyond 86% capacity,

throughput decreases. At maximum traffic (all sources sending all

the time), throughput is reduced to 11% capacity. Without throttling,

the network can be pushed into this unstable state by a short burst

of traffic in excess of capacity. Once overloaded in this manner, the

network will not recover to normal operation until the offered traffic

is reduced below the overload throughput (in this case 11% capacity).

Throttling the network by restricting entry packets to use a single

virtual channel increases the overload throughput from 11% to 66%
of capacity. With high overload throughput, the network recovers

IEEE TRANSACTIONS ON PARALLEL zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAND DISTRIBUTED zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBASYSTEMS, VOL. 4, NO. 4, APRIL 1993 471 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

+o o!l zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAL ;s b zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAO L zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAo!7 L o!@ 20
Tmffic(fraction of capacity)

Fig. 5. Latency versus accepted traffic for a 16-ary 2-cube under bit reversal traffic. Deterministic dimension order routing is compared with static and
dynamic adaptive routing. This nonuniform traffic pattern causes deterministic routing to perform very poorly, saturating at about 25% capacity. Static and
dynamic adaptive routing achieve three times this performance (saturating at 60% and 75% capacity, respectively) by routing to distribute the network load.

F

I
8

z zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAc

E

e

s
I-
U

f

x-x

0.5

0.4 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
0.3 o-21L+--+ 0.0 0.1

ao ai a2 as a4 a5 as a7 as 1.0
Offered Traffic(fraction of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAcapacity)

Fig. 6. Throughput as a function of offered traffic for a 16-ary 2-cube network using dynamic adaptive routing with varying degrees of throttling. Throttling
reduces peak throughput by restricting the entry of new packets into the network.

TABLE I
THRO~LING REDUCES THE NUMBER OF PACKETS FORCED TO ROUTE ON

THE DETERMINISTIC SET OF VIRTUAL CHANNELS. THIS TAeLE SHOWS

THE THROUGHPUT AND FRACTION OF DETERMINISTICALLY ROUTED
PACKETS FOR VARIOUS DEGREES OF THRO~LING UNDER A MAXIMUM
LOAD (ALL SOURCES INJECTING EACH CYCLE) OF RANDOM TRAFFIC

Percent
Entry Lanes Throughput Deterministic

1 .662 0.09
2 .716 1.35
4 .339 13.0

No Throttling .110 69.1

quickly from a burst of high offered traffic. As soon as the offered

traffic drops below 66% capacity the network returns to normal

operation. Throttling, however does reduce peak throughput. With

a single entry lane peak, throughput is reduced from 86% capacity

(no throttling) to 71% capacity because some entry packets are forced

to block or turn when they would otherwise be able to make progress.

In an unthrottled (and hence unstable) network, however, the peak

throughput cannot be sustained since a small variation in traffic would

result in network overload and drastically reduced throughput.

Fig. 7 shows the effect of throttling on latency. The figure

shows the average packet latency as a function of accepted traffic

for a network loaded with random traffic using dynamic adaptive

routing. Curves are shown for no throttling and for throttling with

1, 2, and 4 entry channels. The figure shows that throttling in-

creases latency as the curves for throttling approach their lower

throughput asymptotes. Most of this added latency is experienced

in the queue at the source node as less traffic is allowed into the

network.

Figs. 6 and 7 show that throttling slightly degrades latency but

stabilizes the network at high traffic rates. Another advantage of

throttling is that it reduces the effect of high-traffic sources on low-

traffic sources. By restricting the entry of packets from high-traffic

sources into the network, throttling reduces congestion, giving the

low-traffic sources lower and more predictable latency. The table

and figures suggests that throttling with two entry lanes offers a good

compromise between peak performance and stability.

472 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 4, NO. 4, APRIL 1993

loot zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
$0 d:l 22 d.9 d l O!S 0!6 d:7 d:B d:9 l!O

Traffic:Random(fraction of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAcapacity)

Fig. 7. Latency as a function of accepted traffic for A 16-ary 2-cube network using dynamic adaptive routing with varying degrees of throttling. Throttling
increases latency by restricting the entry of new packets into the network. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

J I

7 200

150

A

250

200

150

100

50

100

50

Traffii(fraclion of capacity)

Fig. 8. Latency as a function of offered traffic for three selection functions. Simulations were performed using dynamic adaptive routing and random traffic. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
C. Selection Function zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Fig. 8 compares the performance of different selection functions

in handling nonuniform traffic. The simulation was run with random

traffic. The figure shows that minimum-congestion and straight-line

selection functions give good performance for this traffic pattern.

Straight-line routing gives higher latency than minimum-congestion

routing for mid-range traffic levels. This selection function will not

begin to adapt until all virtual channels in a given direction are

full. Latency is introduced by filling these virtual channels rather

than routing over idle physical channels. Maximum-flexibility routing

results in much higher latency and saturates at a lower traffic level

than the other two functions. The maximum flexibility selection

function causes messages to alternate dimensions once a diagonal to

the destination is reached. This dimension alternation results in high

DR numbers and a large number of packets resorting to deterministic

routing. Routing along diagonals also results in more uniform loading

of switch inputs and hence higher contention [13].

D. Fault Tolerance

Figs. 9 and 10 illustrate the graceful degradation of an adaptive

network as channels fail. Fig. 9 shows the latency of the network at

50% capacity for random traffic as a function of the percentage of

faulty channels. For each percentage, 20 networks were simulated,

each with a different randomly chosen fault set. The asterisks in the

figure give the ensemble average latencies. The ends of the vertical

error bars represent the 1u points of each latency distribution. Latency

increases only by a factor of 2.3 from a fault-free network to a

network with 8% faulty channels (38 faulty channels in a 16-ary

2-cube). In contrast, in a network with deterministic routing, a single

faulty channel renders the network inoperable.

Fig. 10 shows network throughput as a function of faulty channels.

Network throughput degrades gracefully, dropping from 66% capac-

ity to 54% capacity when 8% of the channels are faulty. This 18%
drop in throughput is larger than the 8% that could ideally be achieved

but is far better than the 100% drop in throughput that would occur

without adaptive routing.

Network throughput falls off faster than the fraction of faulty

channels because our algorithms use only local information in making

routing decisions. Local routing may waste network capacity by

directing many packets into the vicinity of faulty channels where they

must then be rerouted around the faults. Traditional global routing

methods using routing tables overcome this problem; however they

are infeasible in large multicomputer networks because of the table

size required. We are investigating the use of hierarchical routing

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 4, NO. 4, APRIL 1993 473 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
c zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

0 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI I I I I I I I
1 2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3 4 5 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA8 7 8

Faulty channels(%) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Fig. 9. Latency versus percent faulty channels for a 16-ary 2-cube network operating at 50% capacity with random traffic. Each asterisk gives the mean latency

of 20 randomly generated faulty networks. The ends of the vertical error bars represent the lo points of each latency distribution.

'3 0.9

0.8 "E

' : f ! ! ! ~ ! ~, 0.0
1 2 3 5 8

Faulty Channels(%)

Fig. 10. Throughput versus percent faulty channels for a 16-ary 2-cube network with random traffic and throttling with a single entry lane. Each point gives
the mean throughput of 20 randomly generated faulty networks. The error bars show the lo points of each distribution.

tables (that store information about regions of the network) as a

scalable approach to overcoming the limitations of strictly local

routing.

V. CONCLUSION

Adaptive routing improves the performance and reliability of a

multicomputer interconnection network by routing packets around

congested or faulty channels. This paper has described two adaptive

routing algorithms, proved that they are deadlock free, and evaluated

their performance. Both algorithms permit misrouting and avoid

deadlock by allocating virtual channels according to the number of

dimension reversals a packet has made.

In the static algorithm, there is a fixed mapping between number of

dimension reversals and virtual channels. This fixed assignment gives

an acyclic channel dependency graph. The dynamic algorithm allows

more flexible channel allocation by allocating virtual channels based

on occupation to prevent cycles in the packet wait-for graph. Cycles

in this graph are eliminated by not allowing a packet to wait on a

buffer held by a packet with a lower DR number. In this case, the

channel dependency graph is cyclic and adaptive routing is required

to avoid deadlock.

These routing algorithms are ideally suited for implementation in

a multicomputer network. They use only local information to make

routing decisions and can be easily implemented in a small amount of

combinational logic. Minimal control storage is required since they

do not keep routing tables or global network information. They break

deadlock by controlling the allocation of channels (rather than packet

buffers [27]) and thus support wormhole routing which requires

minimal data storage (one flit per virtual channel). The algorithms

are scalable in the sense that their logic and storage requirements per

node remain fixed as the size of a machine is increased.6

Simulation experiments show that adaptive routing significantly

improves throughput for nonuniform traffic patterns but has little

effect on performance with random traffic. Adaptive routing improves

throughput by a factor of three for bit-reversal traffic in a 16-ary

2-cube network. This traffic pattern causes nonuniform channel loads

6Node addresses and the logic to decode them grow logarithmically with
the size of the machine; however, a fixed-sized node address (e.g., 32-bits)
will handle all currently practical machine sizes.

474 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 4, NO. 4, APRIL 1993 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
when dimension-order deterministic routing is employed. Adaptive

routing routes around congested channels to balance the load. With

random traffic, channels are loaded uniformly, and load balancing is

not required.

Throttling is required to stabilize the dynamic algorithm at high

traffic rates. Throttling is easily implemented by restricting new

packets to route on a small number of virtual channels, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAentry
lanes, until their first dimension reversal. Throttling slightly increases

latency for uniform loads but reduces the effect of a hot-spot node on

the network latency seen by other nodes. Throttling also reduces the

fraction of messages that are forced by resource constraints to resort

to deterministic routing. Simulations suggest that throttling with two

entry lanes effectively stabilizes the network with only a small affect

on latency.

The adaptive routing algorithms presented here can be used in

conjunction with many different selection functions. Simulations

show that minimum-congestion and straight-line selection functions

give good performance. The maximum-flexibility selection function

results in higher latency and lower throughput because it forces

packets onto network diagonals.

The performance of networks using adaptive routing gracefully

degrades as channels fail. Experiments show that with 8% of the

channels faulty, latency increases by a factor of 2.3 and throughput

is reduced to 81% of its normal level.

With virtual channel flow control [15] and adaptive routing, mul-

ticomputer networks achieve performance approaching 90% of their

physical capacity. This performance is affected little by nonuniform

traffic patterns and degrades gracefully with channel failures.

The use of adaptive routing and virtual channels motivates the use

of synchronous router design. Many early routers were asynchronous

or self-timed to achieve maximum performance [17], [19], [22]. With

deterministic routing, the design of such routers was straightforward,

as each dimension could operate independently and no concept

of global time was required. To make use of virtual channels,

however, the router must maintain timers to distinguish between a

blocked channel and one that is waiting for an acknowledgment. In a

synchronous router, such timing is implicit. Adaptive routing requires

that information from many output channels be collected together to

make a routing decision. In an asynchronous router, collecting this

information poses a high synchronization overhead.

The application of these high-performance networks extends be-

yond connecting the processing nodes of multicomputers. Low-

dimensional k-ary n-cube networks can also be used as data switches

in a local-area or long-haul network and as a general-purpose back-

plane to connect components of digital systems. They offer a scalable

alternative to buses for general-purpose interconnection in digital

systems.

ACKNOWLEDGMENT

We thank the members of the MIT Concurrent VLSI Architecture

group for their help with and contributions to this paper. Special

thanks go to E. Spertus and L. Sardegna for proofreading this

manuscript, to J. Keen and D. Wallach for assistance with the network

simulations, and to R. Lethin for suggesting the use of hierarchical

routing tables. H. Aoki thanks his wife Kuniko for her support during

this work.

REFERENCES

[I] J. K. Annot and R. A. H. van Twist, “A novel deadlock free and
starvation free packet switching communication processor,” in Parallel
Architecfures and Languages Europe 1987, 1987, pp. 68-85.

[2] W. C. Athas and C. L. Seitz, “Multicomputers: Message-passing con-
current computers,” IEEE Compuf. Mag., vol. 21, no. 8, pp. 9-24, Aug.
1988.

[3] H. G. Badr and S. Podar, “An optimal shortest-path routing policy
for network computers with regular mesh-connected topologies,” IEEE
Trans. Compuf., vol. 38, no. 10, pp. 1362-1371, Oct. 1989.

[4] P. R. Bell and K. Jabbour, “Review of point-to-point network routing
alorithms,” IEEE Commun. Mag., vol. 24, no. 1, pp. 34-38, Jan. 1986.

[5] D. Bertsekas and R. Gallager, Data Networks. Englewood Cliffs, NJ:
Prentice-Hall, 1987.

[6] S . Borkar er al., ‘?WARP: An integrated solution to high-speed par-
allel computing,” in Proc. Supercomput. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBACon& IEEE, Nov. 1988, pp.
330-338.

[7] M.-S. Chen and K. G. Shin, “Adaptive fault-tolerant routing in hy-
percube multicomputers,” IEEE Trans. Comput., vol. 39, no. 12, pp.
1406-1416, Dec. 1990. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

[8] zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA-, “Depth-first search approach for fault-tolerant routing in hyper-
cube multicomputers,” IEEE Trans. Parallel Distributed Sysf., vol. 1,
no. 2, pp. 152-159, Apr. 1990.

[9] A. Andai Chien, “Congestion control in routing networks,” Master’s
thesis, Massachusetts Instit. Technol., Cambridge, MA, Oct. 1986.

101 E. Chow, H. Madan, and J. Peterson, “A real-time adaptive message
routing network for the hypercube computer,” in Proc. 8th Real Time
Syst. Symp., IEEE, 1987, pp. 88-96.

111 Ametek Corp., Ametek 2010 Product Announcement, 1987.
121 W. J. Dally, “Fine-grain message passing concurrent computers,” in

Proc. Third Conf Hypercube Concurrent Comput., vol. 1, Pasadena, CA,
Jan. 1988, pp. 2-12. VLSI memo 88-454.

[131 __, “Network and processor architecture for message-driven comput-
ers,” in VLSI and Parallel Computation, Suaya and Birtwhistle, Eds.
Palo, Alto, CA: Morgan Kaufmann, 1990.

[141 -, “Performance analysis of k-ary n-cube interconnection net-
works,” IEEE Trans. Comput., vol. 39, no. 6, June 1990. Also appears as
a chapter in Artificial Intelligence at MIT, Expanding Frontiers, edited
by P. H. Winston, with S . A. Shellard, MIT Press, 1990, vol. 1, pp.
548-581.

[15] -, “Virtual-channel flow control,” in Proc. I7fh Annu. Int. Symp.
Comput. Architecture, May 1990, pp. 60-68.

116) W. J . Dally et al., “The J-Machine: A fine-grain concurrent computer,”
in Proc. IFIP Congress, G. X . Ritter, Ed., North-Holland, Aug. 1989,
pp. 1147-1153.

[17] W. J. Dally and C. L. Seitz, “The torus routing chip,” Distributed
Comput., vol. 1, pp. 187-196, 1986.

[I81 -, “Deadlock free message routing in multiprocessor interconnection
networks,” IEEE Trans. Compuf., vol. C-36, no. 5, pp. 547-553, May
1987.

[19] W. J. Dally and P. Song, “Design of a self-timed VLSI multicomputer
communication controller,” in Proc. Inf. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAConf Compuf. Design, IEEE,
Computer Society Press, Oct. 1987, pp. 230-234.

[Z O] J . Duato, “On the design of deadlock-free adaptive routing algorithms
for multicomputers: Design methodologies,” in Parallel Architectures
and Languages Europe, 1991.

[21] - “On the design of deadlock-free adaptive routing algorithms for
multicomputers: Theoretical aspects,” in Proc. 2nd European Distribufed
Memory Comput. Conf, 1991.

[22] C. M. Flaig, “VLSI mesh routing systems,” Master’s thesis, California
Instit. Technol., 1987.

(231 R. M. Fujimoto, “VLSI communication components for multicomputer
networks,” Tech. Rep. UCB/CSD/83/137, Comput. Sci. Div., Univ.
California at Berkeley, Berkeley, CA 94720, Sept. 1983.

[24] R. G. Gallager, “A minimum delay routing algorithm using distributed
computation,” IEEE Trans. Commun., vol. COM-25, no. 1, pp. 73-85,
Jan. 1977.

[25] D. Gelernter, “A DAG-based algorithm for prevention of store-and-
forward deadlock in packet networks,” IEEE Trans. Compuf., vol. C-30,
no. 10, pp. 709-715, Oct. 1981.

[26] D. C. Grunwald, “Circuit switched multicomputer and heuristic load
placement,” Tech. Rep. UIUCDCS-R-89-1514, Dep. Comput. Sci.,
Univ. Illinois, Dep. Comput. Sci., Univ. Illinois at Urbana-Champaign
Urbana, IL 61801-2987, Sept. 1989.

[27] K. D. Gunther, “Prevention of deadlocks in packet-switched data trans-
port systems,” IEEE Trans. Commun., vol. COM-29, no. 4, pp. 512-524,
Apr. 1981.

[28] BBN Advanced Computers Inc., “Butterfly parallel processor overview,”
BBN Rep. 6148, Mar. 1986.

[29] P. Kermani and L. Kleinrock, “Virtual cut through: A new computer
communication switching technique,” Compuf. Networks, vol. 3, pp.

475 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIKANSACIIUNS UN YAKALLEL HNU U I S I K I B U I E L J S l b l E M d . zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAV U L . 4, NU. Lt, fl\TRIL 1 Y Y 3 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
267-286, 1979.
C.-k. Kim and D. A. Reed, “Adaptive packet routing in a hypercube,”
in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAProc. Third Conf: Hypercube Concurrent Comput. Appl., ACM Press,
Jan. 1988, pp. 625-630.
S. Konstantinidou, “Adaptive minimal routing in hypercubes,” in Proc.
6th MIT Conf: Advanced Res. VLSI, 1990, pp. 139-153.
S. Konstantinidou and L. Snyder, “Chaos router: A practical appli-
cation of randomization in network routing,” in Proc. Symp. Parallel
Architectures Algorithms, 1990, pp. 21 -30. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
-, “Chaos router: Architecture and performance,” in Proc. 18th
Annu. Symp. Comput. Architecture, 1991, pp. 212-221.
J. N. Mailhot, “Routing and flow control strategies in multiprocessor
networks,” S.B. thesis, May 1988.
P. M. Merlin and P. J. Schweitzer, “Deadlock avoidance-store-and-
forward deadlock,” IEEE Trans. Commun., vol. COM-28, no. 3, pp.
345-354, Mar. 1980.
W. G. P. Mooij and A. Ligtenberg, “Architecture of a communication
network processor,” in Proc. Parallel Architectures and Languages
Europe 1989, Springer-Verlag, 1989, pp. 238-250.
D. Nassimi and S. Sahni, “An optimal routing algorithm for mesh-
connected parallel computers,” J . ACM, vol. 27, no. 1, pp. 6-29, Jan.
1980.
-, “Optimal BPC permutations on a cube connected SIMD com-
puter,” IEEE Trans. Comput., vol. C-31, no. 4, pp. 338-341, Apr.
1982.
J. Y. Ngai, “A framework for adaptive routing in multicomputer
networks,” Ph.D. dissertation, Caltech, 1989.
J. Y. Ngai and C. L. Seitz, “A framework for adaptive routing in
multicomputer networks,” in Proc. ACM Symp. Parallel Algorithms and
Architectures, 1989.
D. A. Reed and R. M. Fujimoto, Multicomputer Networks: Message-
Based Parallel Processing.
C. L. Seitz, “The Cosmic cube,” Commun. ACM, vol. 28, no. 1, pp.
22-33, Jan. 1985.
A. S. Tanenbaum, Computer Networks, second ed. Englewood Cliffs,
NJ: Prentice-Hall, 1988.
L. G. Valiant, “A scheme for fast parallel communication,” SIAM zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAJ .
Comput., vol. 11, no. 2, pp. 350-361, May 1982.
-, “Optimality of a two-phase strategy for routing in interconnection
networks,” IEEE Trans. Comput., vol. C-32, no. 9, pp. 861 -863, Sept.
1983.

Cambridge, MA: MIT Press, 1987.

Optimal Resilient Distributed Algorithms for Ring Election

M. Y. Chan and F. Y. L. Chin

Abstract- This paper considers the problem of electing a leader in
a dynamic ring in which processors are permitted to fail and recover
during election. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAe(n log n + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI;,) messages, when counting only messages
sent by functional processors, are shown to be necessary and sufficient
for dynamic ring election, where I;v is the number of processor recoveries
experienced. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Index Terms-Distributed election, processor failures and recoveries,
unidirectional rings.

Manuscript received June 26, 1989; revised June 20, 1991 and August 2,

The authors are with the Department of Computer Science, The University

IEEE Log Number 9206276.

1992.

of Hong Kong, Hong Kong.

I. INTRODUCTION

One of the most studied problems in the area of distributed

algorithms is distributed leader election. Many papers have been

written about distributed leader election especially on rings. To cite

just a few references, consider [12], [3], [2], [9], [lo], [4], [6], [15],

[16], [7], [l l] , [17], [18], [l] , [14], [8]. All of these papers deal with

the static ring, with the exception of Goldreich and Shrira’s treatment

of election in rings with communication linkfailures [8]. The problem

of considering rings with processor failures and recoveries during

election provides a complement to [8], and was first suggested by

Filman and Friedman [5] as a problem worthy of research. One of the

main assumptions of this problem is that, when a processor leaves

the ring (fails), the ring is patched around its place. This property

allows for some rather interesting solutions.

This paper considers the problem of electing a leader in a dynamic

ring in which processors are permitted to fail and recover during

election. e (rt log 71 + k ,) messages, when counting only messages

sent by functional processors, are shown to be necessary and sufficient

for dynamic ring election, where k , is the number of processor

recoveries experienced.

11. THE MODEL FOR DYNAMIC RINGS

The objective is to devise an algorithm, to be run on each processor,

which will distinguish one of the functional processors as leader. We

outline in greater detail the assumptions of our model:

We consider a system of n independent processors arranged

and connected in a circular fashion by n point-to-point uni-
directional communication links. Initially, they are all in the

“sleep” state (Fig. 1).

Each processor is distinguished by a unique identification

number. Furthermore, we assume that only comparisons of

identity numbers can be made, and the algorithm is not aware

of the domain or range to which identities belong.

As assumed in [3], [4], (71, and [9], processors may start, or
“wakeup” to, the algorithm, i.e., get into the “active/relay”

state (Fig. l), either spontaneously at any arbitrary time of

its own free will, or upon receipt of a message of the algo-

rithm. Election begins when at least one processor awakens

spontaneously.

The network is also assumed to provide both “sequential” and

“guaranteed” communications, meaning messages sent across a

link will be eventually received, and received in the order sent

and received as sent. In other words, communication is reliable

and only processors are faulty.

When processors fail, they get into the “failed” state (Fig.

1). We consider only “clean” failures, i.e., “failed” processors

simply stop participating in the election protocol and do not

behave maliciously. In fact, the “clean” failures also imply that

the ring structure would not be disrupted by processor faults

as messages simply pass through or around “failed” processors.

This assumption is now common for ring networks and is made

possible by providing a bypass switch for each processor [13].

For added flexibility we assume that processors may fail

(“active/relay” state + “failed” state), or recover after failing

(“failed” state -t “sleep” state), at any time, as long as

eventually there is at least one functional processor in the ring.

And there are no limits to the number of times a processor

may fail and then recover during election. Thus, the number of

1045-9219/93$03.00 0 1993 IEEE

