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Deadlock-Free Adaptive Routing in 
Multicomputer Networks Using Virtual Channels 

William J. Dally and Hiromichi Aoki zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Abstmct- The use of adaptive routing in a multicomputer inter- 

connection network improves network performance by making use of 
all available paths and provides fault tolerance by allowing messages 
to be routed around failed channels and nodes. This paper describes 
two deadlock-free adaptive routing algorithms. Both algorithms allocate 
virtual channels using a count of the number of dimension reversals a 
packet has performed to eliminate cycles in resource dependency graphs. 
The zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAs t d c  algorithm eliminates cycles in the network channel dependency 
graph. The dynamic algorithm improves virtual channel utilization by 
permitting dependency cycles and instead eliminating cycles in the packet 
wail-for graph. We prove that these algorithms are deadlock-free and 
give experimental measurements of their performance. For nonuniform 
traffic patterns, these algorithms improve network throughput by a factor 
of three compared to deterministic routing. The dynamic algorithm gives 
better performance at moderate traffic rates but requires source throttling 
to remain stable at high traffic rates. Both algorithms allow the network 
to gracefully degrade in the presence of faulty channels. 

Index Terms-Communication networks, concurrent computing, flow 
control, interconnection networks, multicomputers, packet muting, par- 
allel processing. 

I. INTRODUCTION 

A. Interconnection Networks 

Interconnection networks are used to pass messages containing data 

and synchronization information between the nodes of concurrent 

computers [2 ] ,  [28], [42], 1161. The messages may be sent between the 

processing nodes of a message-passing multicomputer [2] or between 

the processors and memories of a shared-memory multiprocessor zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
[28]. The interconnection network is often the critical component 

of a large parallel computer because performance is very sensitive to 

network latency and throughput and because the network accounts for 

a large fraction of the cost and power dissipation of the machine. To 

be cost effective, a network should provide throughput approaching 

network capacity to keep the costly network wires and router pins 

productive. 

Multicomputer networks are characterized by regular topologies, 

large numbers (10’ to lo5) of nodes, small node size, and high speed. 

The speed and node size constraints limit buffer storage to a few 

flow-control digits (flits) per channel requiring the use of wormhole 

routing zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[ 141 rather than store-and-forward or virtual cut-through [29]. 

To achieve high-performance, the routing decision must be reduced 

to a combinational logic function so it can be made in a single clock 

cycle. Routing tables that result in quasi-static routing and grow 
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quadratically with machine size are unsuitable in this context. On 

the positive side, regular topology permits algorithmic routing and 

short link distances eliminate transmission errors and hence reduce 

protocol overhead. The algorithms described here are suitable for 

implementation in a multicomputer routing controller. They require 

minimal storage, can be used with wormhole routing, and are simple 

enough to be reduced to a few levels of combinational logic. 

An interconnection network is described by its topology, routing, 

and flow control. The topology of a network is the arrangement of its 

nodes and channels into a graph. Routing determines the path chosen 

by a message in this graph. Flow control deals with the allocation 

of channel and buffer resources to a message as it travels along this 

path. This paper deals with routing and flow control. It describes 

two deadlock-free, nonminimal adaptive routing algorithms that select 

paths in a network, N, using information about the current state of 
N .  These algorithms improve network throughput for nonuniform 

traffic pattems by balancing network load along altemate paths. The 

methods described here are applicable to any topology; however, the 

examples in this paper consider their application to k-ary n-cube 

interconnection networks [ 141. 

B. The Problem 

Most existing multicomputer routing networks [28], [42], [16] use 

deterministic routing. With deterministic routing, the path followed 

by a packet is determined solely by its source and destination. If 

any channel along this path is heavily loaded, the packet will be 

delayed. If any channel along this path is faulty the packet cannot be 

delivered. A common deterministic routing algorithm is dimension- 

order routing, where the packet is routed in one dimension at a time, 

arriving at the proper coordinate in each dimension before proceeding 

to the next dimension. 

Adaptive routing improves both the performance and fault toler- 

ance of an interconnection network. Fig. 1 shows a 8-ary 2-cube in 

which the node at zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(i, 0) sends a packet to the node at (7, i )  (for 

i E [O, 71). With dimension order deterministic routing [Fig. l(a)], 

seven of the eight packets must traverse the channel from (6, 0) 
to (7, 0). Thus only one of these seven packets can proceed at a 

time. With adaptive routing [Fig. l(b)] all of the packets can proceed 

simultaneously using alternate paths. For the traffic pattem shown in 

this example, adaptive routing increases throughput by a factor of 

seven. 

Fig. 2 shows the same network with a faulty channel from (3, 4) 

to (4, 4). With dimension-order deterministic routing, packets from 

node ( i ,  4) to node (j, k) where i zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 3 < j cannot be delivered. With 

adaptive routing, all messages can be delivered by routing around 

the faulty channel. To deliver a packet from (i, 4) to (j, 4) where 

i 5 3 < j ,  it is necessary for the packet to be misrouted away from 

the destination resulting in a nonminimal distance route. 

C. Adaptive Routing with Virtual Channels 

Adaptive routing must be performed in a manner that is deadlock- 

free. Deadlock in an interconnection network occurs whenever there 

is a cyclic dependency for resources: buffers or channels. Networks 

that use dimension order routing avoid deadlock by ordering channels 

so that messages travel along paths of strictly increasing channel 
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Fig. 1. Routing packets in an 8-ary 2-cube from zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( 1 ,  0) to zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(7, 1 )  (for 
z E [0,7]). (a) Using dimension order routing, seven packets must traverse the 
channel from (6, 0) to (7, 0). (b) Using adaptive routing, all packets proceed 
simultaneously increasing throughput by a factor of 7. 
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Fig. 2. An 8-ary 2-cube network with a faulty channel from (3, 4) to (4, 4). 
(a) With dimension order routing, packets from the shaded area on the left to 
the shaded area on the right cannot be delivered. (b) Using adaptive routing 
packets can be delivered between all pairs of nodes. 

numbers [18]. Channels are ordered so that all of the channels in 

each dimension are greater than all of the channels in the preceding 

dimension. This ordering eliminates cycles in the channel dependency 

graph and thus prevents deadlock. The ordering, however, results in 

a unique path from source to destination and thus does not allow 

adaptive routing. 

This paper presents two deadlock-free adaptive routing algorithms. 

Both algorithms permit misrouting (routing a packet along a non- 

shortest path), avoid deadlock using virtual channels to eliminate 

cyclic dependencies, and introduce the use of dimension reversal (OR) 
numbers to break dependency cycles. 

The static algorithm applies DR numbers to the method of [18] 
to eliminate cycles in the channel dependency graph by numbering 

virtual channels and routing packets to traverse virtual channels in 

increasing order. Each packet is labeled with a DR number that is 

initialized to zero. When a packet performs a dimension reversal, 

routing from a higher dimension to a lower dimension, its dimension 

reversal number is incremented and it is routed on a class of virtual 

channels used only by packets with the same dimension reversal 

number. The number of classes of virtual channels places an upper 

limit on the maximum number of dimension reversals permitted. Once 

a packet has made this number of dimension reversals, it is restricted 

to dimension-order routing. 

This static assignment of DR numbers to virtual channels restricts 

the number of DR’s permitted and makes inefficient use of virtual 

channels. A packet may be blocked waiting for a virtual channel in its 

DR class, while other virtual channels for the same physical channel 

remain idle. 

The dynamic algorithm overcomes these limitations by permitting 

packets to use any available virtual channel. Deadlock is avoided by 

eliminating cycles from the packet wait-for graph. Packets are labeled 

with their dimension reversal number and are not permitted to wait 

for a virtual channel held by a packet with a lower dimension reversal 

number. If all available virtual channels are occupied by packets with 

lower dimension reversal numbers, the packet reverts to dimension- 

order routing on an additional set of virtual channels reserved for this 

purpose. The dynamic algorithm places no restrictions on the number 

of dimension reversals permitted.’ 

D. Related Work 

Adaptive routing has been extensively studied in the context of 

wide-area networks (WAN’S) and local-area networks (LAN’s) [24], 
[5], [43], [4] and proposals have been made to apply these LAN” 
techniques to multicomputers [23], [41], [30]. However, as described 

above, LAN/WAN routing algorithms are not directly applicable to 

multicomputer networks for three reasons. First, most LAN and WAN 
routing algorithms are table driven making them impractical for large 

multicomputers as the total table storage grows as N Z .  The regular 

topology of multicomputer networks allows routing without tables. 

Second, most LAN/WAN routing algorithms (e.g., [24]) assume 

quasi-static network traffic while traffic in multicomputer networks 

changes rapidly. Finally, most WA”s /LA”s  use deadlock avoidance 

strategies based on packet buffer assignment [27], [35], [25] that use 

too much storage to be implemented in single-chip routers. 
Several algorithms have been developed for permutation routing 

[37], [38] in which the traffic pattern is fixed and known a priori. 
These algorithms are not applicable to a multicomputer network 

where a single routing algorithm must support many traffic patterns 

that are not known a priori and may not be permutations and where 

routing must be done on-line using only local information. 

Virtual channels were introduced in [18] for deadlock avoidance. 

Virtual channels have also been used to support multiple virtual 

circuits [6], and to increase network throughput [15]. Minimal, 

deadlock-free adaptive routing algorithms based on virtual channels 

are described in [12], [13], [34], and [31]. These algorithms do 

not permit misrouting and thus cannot route around certain network 

faults. An adaptive wormhole routing algorithm that permits misrout- 

ing is described in [36]; however, this algorithm is not deadlock-free. 

Store-and-forward adaptive routing algorithms have been developed 

based on packet exchange, [40], [39], promotion [l], and random- 

ization [33], [32]. These three algorithms require that entire packets 

be buffered and thus cannot be used with wormhole routing. Circuit- 

switched networks have used adaptive routing algorithms based on 

tree search [26], [lo]. Chen and Shin develop and analyze adaptive 

routing algorithms for hypercubes in [7], [8]. However, they consider 

only the problem of finding routes and do not address issues of 

deadlock, livelock, or contention. Duato has proposed a method for 

nonminimal adaptive routing using virtual channels by ensuring that 

a connected subset of the channels is acyclic [21], [20]. A random 

oblivious adaptive routing scheme is proposed in [44] and [45]; 
however this scheme destroys any locality present in communications 

and doubles average communication distances. 

E. Outline 

The next section introduces the notation, terminology, and assump- 

tions that will be used throughout this paper. Section I11 describes the 

two deadlock-free adaptive routing algorithms in more detail, proves 

that they are deadlock free, and discusses routing policy. These algo- 

rithms are evaluated experimentally in Section IV. The experiments 

measure network performance on uniform and nonuniform traffic 

patterns, evaluate the effect of selection functions and throttling, and 

determine how network performance degrades as network channels 

are failed. 

‘As a practical matter, the number of dimension reversals will be limited 
by the size of the packet header field used to hold the packet’s dimension 
reversal number. 
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11. PRELIMINARIES zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Topology: An interconnection network is a strong1 y-connected, 

directed graph, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= G(N, C). The vertices of I are a set of nodes, 
N .  The edges are a set of channels, C zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA,V x zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAS. Each channel is 

unidirectional and carries data from a source node to a destination 

node. A bidirectional network is one where (111. 112)  E C 3 
( n 2 , n l )  E C. 

Flow Control: Communication between nodes is performed by 

sending messages. A message may be broken into one or more 

packets for transmission. A packet is the smallest unit of information 

that contains routing and sequencing information. A packet contains 

one or more flow control digits or @its. A flit is the smallest unit 

on which flow control is performed. Information is transferred over 

physical channels in physical transfer units or phits. A phit is usually 

the same size or smaller than a flit. 

Each physical channel, c, E C. in the network is composed 

of one or more virtual channels, c,] E C'. The virtual channels 

associated with a single physical channel share physical channel 

bandwidth, allocated on a flit-by-flit basis. However, each virtual 

channel contains its own queue and is allocated on a packet-by-packet 

basis independently of the other virtual channels. For purposes of 

deadlock analysis, each virtual channel is logically a separate channel. 

Routing: A packet is assigned a route through the network ac- 

cording to a routing relation, R C' x S x C'. Given the virtual 

channel occupied by the head of the packet and the destination node 

of the packet, the routing relation specifies a (possibly singleton) set 

of virtual channels that may be used for the next step of the packet's 

route. 

A selection function, p(P(C ' ) ,a )  H C', is used to pick the 

next channel of the route from the elements of this set using some 

additional information, a. This additional information may include 

the occupancy and/or operational status of channels in the network. 

The next channel selected for a packet, p 2 ,  is denoted next(p,) .  
The channel dependency graph for an interconnection network, 

I ,  and routing relation, R, is a directed graph, D = G(C'.  E ) .  Its 

vertices are C', the virtual channels of I ,  and its edges are given by 

the projection of the routing relation onto C' zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx C': 

Consider a network, I ,  occupied by a set of packets, P,  where 

each packet, p ,  E P. occupies a particular set of virtual channels, 

occ(p,) C'. The wait-for graph of I is a directed graph, 

W = G(P, Ew) .  The vertices of W are P, the set of packets in the 

network at a given instance of time. There is an edge of IT'. e ,  E E n ,  
for each packet that is waiting on another packet to acquire a resource: 

Performance: The performance of a fault-free network is measured 

in terms of its latency, T ,  and its throughput, Asat .  The latency of a 

message is the elapsed time from when the message is initiated until 

the message is completely received. Network latency is the average 

message latency under specified conditions. Network throughput is 

the number of messages the network can deliver per unit of time. 

The latency and throughput of a network degrade as channels fail. 

The rate at which they degrade gives a figure of merit for the network. 

k-ary n-cube Networks: k-ary n-cube is a radix k cube with n 

dimensions, having N = k" nodes. The radix implies that there are 

k nodes in each dimension. The nodes in each dimension may be 

connected in a linear array giving a mesh network [Fig. 3(a)] or in 

a ring giving a torus network [Fig. 3(b)]. A k-ary 1-cube [Fig. 3(a), 

(b)] is a k-node ring or linear array. A k-ary 2-cube [Fig. 3(c)] is 

constructed by taking k k-ary 1-cubes and connecting like elements. 

Fig. 3. I;-ary n-cube is a cube of n dimensions with k. nodes in each 
dimension. (a) Meshes are cubes with each dimension connected in a linear 
array. (b) Connecting each dimension in a ring gives a Tori. (c) Higher 
dimensional cubes are constructed by combining like elements of lower 
dimensional cubes. 

In general, a k-ary n-cube is constructed from k k-ary ( n  - 1)-cubes 

by connecting like elements into rings or linear arrays. 

Every node has an address that is an n digit, radix k number, 

arz--l . . zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA.ao. Each address digit, ad, represents a node's coordinate in 

dimension d and can take on values in the range [O, k - I]. In a torus 

network, nodes are connected to all nodes with an address that differs 

in only one digit by f l  mod k .  In a mesh, nodes are connected to 

all nodes with an address that differs in one digit by f l  where the 

result is in the range [O. k - 11. 
The dimensions and directions of the cube partition the 

set of virtual channels, C', into subsets for each dimension: 

C'ho, C'h1 . . . . C;n-l)o, C;n-l)l. A channel, cz, with source, n,, and 
destination, nd, whose addresses differ in the dth position is said 

to be a channel in the dth dimension. If n ,  > nd,cz E CAo. If 
n s  < n,!,  c, E CAl. This definition partitions the two directions of a 

given dimension into distinct channel sets. 

Many networks are included in the family of k-ary n-cubes. At 

the extreme of k = 2 ,  we have a binary n-cube. At the extreme of 

n = 1 we have a ring or linear array. For n = 2 we have a torus 

or 2-D mesh. These networks have been used in several message- 

passing computers [42], [ll], [16]. For the remainder of this paper 

we consider only mesh-connected k-ary n-cubes. 

Ill. ADAPTIVE ROUTING ALGORITHMS 

This section describes two deadlock-free adaptive routing algo- 

rithms that use a packet's dimension reversal number to avoid cycles 

in resource dependency graphs. First, dimension reversals are defined, 

and the static and dynamic algorithms for assigning virtual channels 

to packets are presented and proved deadlock free. Finally, strategies 

for selecting among admissible channels that guarantee progress are 

described. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
A. Dimension Reversals 

The dimension reversal number of a packet is the count of the 

number of times a packet has been routed from a channel in one 

dimension, p ,  to a channel in a lower dimension, q < p .  Dimension 

reversal (DR) numbers are assigned to packets as follows: 

1) All packets are initialized with a DR of 0. 
2) Each time a packet routes from a channel c ,  E CL to a channel 

e, E Cf, where p > q the DR of a packet is incremented. 

B. The Static Algorithm 

The static algorithm divides the virtual channels of each physical 

channel into nonempty classes numbered zero to r ,  where r is the 

maximum number of dimension reversals permitted. Packets with 

DR < r may be routed in any direction but must use only virtual 

channels of class DR. Once a packet has DR = r ,  it must use 

dimension-order routing on the virtual channels of class r .  Thus, when 

a packet makes its final dimension reversal, it must start routing in 
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the lowest dimension in which its current node address differs from 

the destination address. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Assertion I :  The static algorithm is deadlock free. 

Proof: The channel dependency graph is acyclic. Assign a 

number, num(c,), to each channel, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAct, in each dimension, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBACdr, so 

channel numbers increase in the direction of routing.’ Now order 

all virtual channels according to their class, dimension, and number. 

With this ordering, packets using the static algorithm will always 

traverse channels in ascending order. Thus the channel dependency zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
0 graph is acyclic and the routing is deadlock free. 

C. The Dynamic Algorithm 

The dynamic algorithm divides the virtual channels of each phys- 

ical channel into two nonempty classes: adaptive and deterministic. 

Packets originate in the adaptive channels. While in these channels, 

they may be routed in any direction without a maximum limit on 

the number of dimension reversals a packet may make. Whenever 

a packet acquires a channel it labels the channel with its current 

DR number. To avoid deadlock, a packet with a DR of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp cannot 

wait on a channel labeled with a DR of q if p 2 q. A packet that 

reaches a node where all output channels are occupied by packets 

with equal or lower DR’s must switch to the deterministic class of 

virtual  channel^.^ When a packet enters the deterministic channels, 

it must be routed in the lowest dimension in which the current node 

address and the destination address differ. Once on the deterministic 

channels, the packet must be routed in dimension order and cannot 

reenter the adaptive channels. 

Assertion 2: The dynamic algorithm is deadlock free. 

Proof: By contradiction. If the network is deadlocked, then there 

is a set of packets, P, waiting on virtual channels held by other 

packets in P. There exists a packet, pmax, such that the DR(p,,,) 2 
DR(q)Vq E P. Let zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAT be the DR label of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAcn = nezt(p,,,). Then 

T 5 DR(p,)  where c, E occ(p,) .  However, p,,, is not permitted 

to wait on nezt(p,,,) since DR(pma,) 2 DR(p, )  2 ( T ) .  0 
The dynamic algorithm is deadlock free even though it permits 

cycles in the network’s channel dependency graph. This does not 

contradict Theorem 1 of [18] as that theorem assumes deterministic 

routing. In [18], R is a function, not a relation, so if a cycle exists 

in the channel dependency graph, a packet is required to follow the 

cycle. With adaptive routing, R is a relation. There may be many 

channels available to route a packet. Deadlock can be avoided by 

choosing a channel that does not create a cycle in the packet wait-for 

graph. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
D. Routing Policy 

Progress: The static and dynamic algorithms allow a packet to 

be routed deadlock-free along an arbitrary path in a k-ary n-cube 

network. These algorithms by themselves, however, give no guarantee 

that a packet will ever reach its destination. 

To guarantee progress toward a destination, misrouting is limited 

by placing an upper limit on the number of steps a message may 

take away from its destination. With this limit, a weighted sum of 

the distance to the destination and the number of misrouting steps 

remaining for all messages in the network is strictly decreasing. Thus 

the network is livelock free. A variant on this scheme is to limit the 

ratio of misrouting steps to progress steps-e.g., no more than one 

step back for each two steps forward. 

*This method can be extended to tori by using the method given in [18]. 
3Since any cycle contains at least one DR, it suffices to prohibit waits only 

4A packet may wait a finite amount of time before resorting to dimension- 
when p > q. 

order routing. 

Throttling: The adaptive virtual channel pool of the dynamic 

algorithm can be monopolized by eager sources unless some form of 

throttling [9] is used. If many sources attempt to inject messages into 

the network faster than the network is able to handle them, these new 

messages will consume all available virtual channels in the adaptive 

pool. Older messages will be forced to revert to deterministic routing 

using the deterministic pool. 

Throttling can be performed by using a hybrid of the static and 

dynamic algorithms. The virtual channels are divided into classes as 

in the static algorithm. A packet with a DR of p is permitted to 

select a channel of class q only if p 2 4. This method divides the 

adaptive virtual channel pool into classes to prevent new messages 

from consuming the entire pool. In practice, two classes, 0 and 1, are 

sufficient to limit the channels consumed by injected messages. 

Selection Functions: We denote the set of virtual channels that 

packet p l  is permitted to select for the next step of its route as 

q ( p ,  ) C’. This set is determined by the routing algorithm: static or 
dynamic to avoid deadlock. Also, any faulty channels are excluded 

from q .  The single deterministic channel that p ,  may route on is 

denoted 6 ( p , )  and is excluded from ~ ( p , ) .  The set of unoccupied 

channels in 71(pt) that move p ,  closer to its destination are denoted 

~ ( p ,  ). The selection function, next@,), chooses the next channel of 

the route as follows: 

The selection function reserves an unoccupied, productive channel 

if possible. If no such channels are available the function picks 

any legal adaptive channel. This channel may be occupied and/or 

unproductive. If the channel is occupied, the packet waits on the 

channel until it becomes free. Only if no legal adaptive channels are 

available does the packet resort to deterministic routing. 

The function pick, P(C’)  H C’, chooses a next channel from a 

set of productive or permitted channels. In Section IV the selection 

criteria listed below are evaluated. Other criteria, including random, 

are possible. 

Minimum congestion: Pick the direction with the most available 

virtual channels. 
Maximum flexibility: Pick the direction with the greatest dis- 

tance to travel to the destination. This is similar to the 2’ routing 

policy proposed in [3]. 
Straight lines: Pick the dimension closest to the current dimen- 

sion. 

IV. EXPERIMENTAL RESULTS 

To measure the performance of the adaptive routing algorithms 

described above, we have simulated a number of k-ary n-cube 

networks varying the routing relation, selection function, and traffic 

patterns. Faulty networks were simulated to measure performance 

degradation. 

The simulator is a 9000-line C program that simulates intercon- 

nection networks at the flit level. A flit transfer between two nodes 

is assumed to take place in one time unit. The network is simulated 

synchronously, moving all flits that have been granted channels in one 

time step and then advancing time to the next step. The simulator is 

programmable as to topology, routing algorithm, and traffic pattern. 

All of the results in this section are for 256-node 16-ary 2-cube 

mesh networks with 16 virtual channels per physical channel. This 

network was chosen because it is representative of existing machines. 

Simulations were run using dimension-order deterministic routing and 
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Fig. 4. Latency versus accepted traffic for a 16-ary 2-cube under random traffic. Deterministic, dimension-order routing is compared with static and dynamic 
adaptive routing. With random traffic, adaptive routing gives slightly lower latency with low traffic than deterministic routing but saturates first. 

both static and dynamic adaptive routing. For the adaptive routing 

cases, the selection functions described in Section 111-D are used. 

Livelock is avoided by placing an upper limit on DR numbers and 

hence misrouting steps. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
A. Latency 

Latency is measured by applying a constant rate source to each 

input and measuring the time from packet creation until the last flit 

of the packet is accepted at the destination. Source queueing time is 

included in the latency measurement. 

Fig. 4 compares the performance of deterministic dimension-order 

routing with static and dynamic adaptive routing under uniform 

random traffic. The figure shows latency as a function of throughput 

for the three routing strategies. Both adaptive routing strategies 

use a selection function that favors minimum congestion, and both 

permit misrouting. For deterministic routing, saturation occurs at 94% 

capacity. For static and dynamic routing, saturation occurs at 78% 

and 88%, respectively? 

Random traffic places a uniform load on the network channels 

and buffers. Thus, adaptive routing affects performance only slightly 

for this traffic pattern. For small loads, adaptive routing slightly 

reduces latency by moving packets that would otherwise be blocked. 

However, above 75% capacity, adaptive routing gives a higher 

latency than deterministic routing. This is because dimension-order 

routing concentrates traffic on the through channels of each switch. 

Collision probability and hence expected latency is proportional to the 

competing traffic rate [13]. Thus concentrating traffic on the through 

channels results in less contention and lower latency. With adaptive 

routing, the switch traffic is more uniform, resulting in higher latency. 

Dynamic adaptive routing outperforms static adaptive routing at 

high traffic levels. The dynamic algorithm allows more flexible buffer 

assignments allowing packets to make progress that would otherwise 

be blocked waiting on a particular buffer. 

Adaptive routing gives a significant performance advantage for 

traffic patterns that load channels nonuniformly. Fig. 5 shows latency 

as a function of throughput for three routing strategies under bit- 

reversal traffic. In this traffic pattern, each node, i ,  sends messages 

to node j where j is the bit-reversal of i .  For example, node 

'These saturation throughputs occur at much higher latencies than those 
included on the y-axis of Fig. 4 and thus are not shown in the figure. 

4316 sends messages to node C216. Deterministic routing gives 
very poor performance for this traffic pattern, saturating at 25% 

capacity. This saturation occurs because a few channels become 

bottlenecks as in Fig. l(a). With adaptive routing, packets are routed 

around bottleneck channels achieving three times the throughput of 

deterministic routing. The static algorithm saturates at 60% capacity 

while the dynamic algorithm saturates at 75% capacity. 

B. Throttling 

Fig. 6 shows the effect of throttling on network throughput. The 

figure shows throughput (accepted traffic) as a function of offered 

traffic for a network using dynamic adaptive routing. The simulations 

were run using random traffic. The curves correspond to no throttling 

and throttling by restricting packets with a DR of 0 (entry packets) 

to use only one, two, or four virtual channels (entry lanes) of each 

physical channel. Throughput values are shown after 10 000 network 

cycles. At traffic rates in excess of peak throughput, throughput 

degradation is affected by both the intensity and duration of the 

traffic burst. 

Table I shows the throughput and fraction of packets that are forced 

into deterministic routing for varying degrees of throttling under max- 

imum traffic, when each network node attempts to inject a message 

into the network on each cycle. For this network, maximum traffic 

corresponds to four times network capacity and quickly congests all 

network buffers if throttling is not employed. The table shows that 

the number of packets forced onto the deterministic virtual channels 

is reduced by throttling. This improves fault tolerance since once 

a packet begins deterministic routing, it is vulnerable to a single 

channel fault. 

Without throttling, a network using dynamic adaptive routing 

is unstable. As offered traffic is increased beyond 86% capacity, 

throughput decreases. At maximum traffic (all sources sending all 

the time), throughput is reduced to 11% capacity. Without throttling, 

the network can be pushed into this unstable state by a short burst 

of traffic in excess of capacity. Once overloaded in this manner, the 

network will not recover to normal operation until the offered traffic 

is reduced below the overload throughput (in this case 11% capacity). 

Throttling the network by restricting entry packets to use a single 

virtual channel increases the overload throughput from 11% to 66% 
of capacity. With high overload throughput, the network recovers 
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Fig. 5. Latency versus accepted traffic for a 16-ary 2-cube under bit reversal traffic. Deterministic dimension order routing is compared with static and 
dynamic adaptive routing. This nonuniform traffic pattern causes deterministic routing to perform very poorly, saturating at about 25% capacity. Static and 
dynamic adaptive routing achieve three times this performance (saturating at 60% and 75% capacity, respectively) by routing to distribute the network load. 
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Fig. 6. Throughput as a function of offered traffic for a 16-ary 2-cube network using dynamic adaptive routing with varying degrees of throttling. Throttling 
reduces peak throughput by restricting the entry of new packets into the network. 

TABLE I 
THRO~LING REDUCES THE NUMBER OF PACKETS FORCED TO ROUTE ON 

THE DETERMINISTIC SET OF VIRTUAL CHANNELS. THIS TAeLE SHOWS 

THE THROUGHPUT AND FRACTION OF DETERMINISTICALLY ROUTED 
PACKETS FOR VARIOUS DEGREES OF THRO~LING UNDER A MAXIMUM 
LOAD (ALL SOURCES INJECTING EACH CYCLE) OF RANDOM TRAFFIC 

Percent 
Entry Lanes Throughput Deterministic 

1 .662 0.09 
2 .716 1.35 
4 .339 13.0 

No Throttling .110 69.1 

quickly from a burst of high offered traffic. As soon as the offered 

traffic drops below 66% capacity the network returns to normal 

operation. Throttling, however does reduce peak throughput. With 

a single entry lane peak, throughput is reduced from 86% capacity 

(no throttling) to 71% capacity because some entry packets are forced 

to block or turn when they would otherwise be able to make progress. 

In an unthrottled (and hence unstable) network, however, the peak 

throughput cannot be sustained since a small variation in traffic would 

result in network overload and drastically reduced throughput. 

Fig. 7 shows the effect of throttling on latency. The figure 

shows the average packet latency as a function of accepted traffic 

for a network loaded with random traffic using dynamic adaptive 

routing. Curves are shown for no throttling and for throttling with 

1, 2, and 4 entry channels. The figure shows that throttling in- 

creases latency as the curves for throttling approach their lower 

throughput asymptotes. Most of this added latency is experienced 

in the queue at the source node as less traffic is allowed into the 

network. 

Figs. 6 and 7 show that throttling slightly degrades latency but 

stabilizes the network at high traffic rates. Another advantage of 

throttling is that it reduces the effect of high-traffic sources on low- 

traffic sources. By restricting the entry of packets from high-traffic 

sources into the network, throttling reduces congestion, giving the 

low-traffic sources lower and more predictable latency. The table 

and figures suggests that throttling with two entry lanes offers a good 

compromise between peak performance and stability. 
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Fig. 8. Latency as a function of offered traffic for three selection functions. Simulations were performed using dynamic adaptive routing and random traffic. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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Fig. 8 compares the performance of different selection functions 

in handling nonuniform traffic. The simulation was run with random 

traffic. The figure shows that minimum-congestion and straight-line 

selection functions give good performance for this traffic pattern. 

Straight-line routing gives higher latency than minimum-congestion 

routing for mid-range traffic levels. This selection function will not 

begin to adapt until all virtual channels in a given direction are 

full. Latency is introduced by filling these virtual channels rather 

than routing over idle physical channels. Maximum-flexibility routing 

results in much higher latency and saturates at a lower traffic level 

than the other two functions. The maximum flexibility selection 

function causes messages to alternate dimensions once a diagonal to 

the destination is reached. This dimension alternation results in high 

DR numbers and a large number of packets resorting to deterministic 

routing. Routing along diagonals also results in more uniform loading 

of switch inputs and hence higher contention [13]. 

D. Fault Tolerance 

Figs. 9 and 10 illustrate the graceful degradation of an adaptive 

network as channels fail. Fig. 9 shows the latency of the network at 

50% capacity for random traffic as a function of the percentage of 

faulty channels. For each percentage, 20 networks were simulated, 

each with a different randomly chosen fault set. The asterisks in the 

figure give the ensemble average latencies. The ends of the vertical 

error bars represent the 1u points of each latency distribution. Latency 

increases only by a factor of 2.3 from a fault-free network to a 

network with 8% faulty channels (38 faulty channels in a 16-ary 

2-cube). In contrast, in a network with deterministic routing, a single 

faulty channel renders the network inoperable. 

Fig. 10 shows network throughput as a function of faulty channels. 

Network throughput degrades gracefully, dropping from 66% capac- 

ity to 54% capacity when 8% of the channels are faulty. This 18% 
drop in throughput is larger than the 8% that could ideally be achieved 

but is far better than the 100% drop in throughput that would occur 

without adaptive routing. 

Network throughput falls off faster than the fraction of faulty 

channels because our algorithms use only local information in making 

routing decisions. Local routing may waste network capacity by 

directing many packets into the vicinity of faulty channels where they 

must then be rerouted around the faults. Traditional global routing 

methods using routing tables overcome this problem; however they 

are infeasible in large multicomputer networks because of the table 

size required. We are investigating the use of hierarchical routing 
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Fig. 10. Throughput versus percent faulty channels for a 16-ary 2-cube network with random traffic and throttling with a single entry lane. Each point gives 
the mean throughput of 20 randomly generated faulty networks. The error bars show the lo points of each distribution. 

tables (that store information about regions of the network) as a 

scalable approach to overcoming the limitations of strictly local 

routing. 

V. CONCLUSION 

Adaptive routing improves the performance and reliability of a 

multicomputer interconnection network by routing packets around 

congested or faulty channels. This paper has described two adaptive 

routing algorithms, proved that they are deadlock free, and evaluated 

their performance. Both algorithms permit misrouting and avoid 

deadlock by allocating virtual channels according to the number of 

dimension reversals a packet has made. 

In the static algorithm, there is a fixed mapping between number of 

dimension reversals and virtual channels. This fixed assignment gives 

an acyclic channel dependency graph. The dynamic algorithm allows 

more flexible channel allocation by allocating virtual channels based 

on occupation to prevent cycles in the packet wait-for graph. Cycles 

in this graph are eliminated by not allowing a packet to wait on a 

buffer held by a packet with a lower DR number. In this case, the 

channel dependency graph is cyclic and adaptive routing is required 

to avoid deadlock. 

These routing algorithms are ideally suited for implementation in 

a multicomputer network. They use only local information to make 

routing decisions and can be easily implemented in a small amount of 

combinational logic. Minimal control storage is required since they 

do not keep routing tables or global network information. They break 

deadlock by controlling the allocation of channels (rather than packet 

buffers [27]) and thus support wormhole routing which requires 

minimal data storage (one flit per virtual channel). The algorithms 

are scalable in the sense that their logic and storage requirements per 

node remain fixed as the size of a machine is increased.6 

Simulation experiments show that adaptive routing significantly 

improves throughput for nonuniform traffic patterns but has little 

effect on performance with random traffic. Adaptive routing improves 

throughput by a factor of three for bit-reversal traffic in a 16-ary 

2-cube network. This traffic pattern causes nonuniform channel loads 

6Node addresses and the logic to decode them grow logarithmically with 
the size of the machine; however, a fixed-sized node address (e.g., 32-bits) 
will handle all currently practical machine sizes. 
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when dimension-order deterministic routing is employed. Adaptive 

routing routes around congested channels to balance the load. With 

random traffic, channels are loaded uniformly, and load balancing is 

not required. 

Throttling is required to stabilize the dynamic algorithm at high 

traffic rates. Throttling is easily implemented by restricting new 

packets to route on a small number of virtual channels, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAentry 
lanes, until their first dimension reversal. Throttling slightly increases 

latency for uniform loads but reduces the effect of a hot-spot node on 

the network latency seen by other nodes. Throttling also reduces the 

fraction of messages that are forced by resource constraints to resort 

to deterministic routing. Simulations suggest that throttling with two 

entry lanes effectively stabilizes the network with only a small affect 

on latency. 

The adaptive routing algorithms presented here can be used in 

conjunction with many different selection functions. Simulations 

show that minimum-congestion and straight-line selection functions 

give good performance. The maximum-flexibility selection function 

results in higher latency and lower throughput because it forces 

packets onto network diagonals. 

The performance of networks using adaptive routing gracefully 

degrades as channels fail. Experiments show that with 8% of the 

channels faulty, latency increases by a factor of 2.3 and throughput 

is reduced to 81% of its normal level. 

With virtual channel flow control [15] and adaptive routing, mul- 

ticomputer networks achieve performance approaching 90% of their 

physical capacity. This performance is affected little by nonuniform 

traffic patterns and degrades gracefully with channel failures. 

The use of adaptive routing and virtual channels motivates the use 

of synchronous router design. Many early routers were asynchronous 

or self-timed to achieve maximum performance [17], [19], [22]. With 

deterministic routing, the design of such routers was straightforward, 

as each dimension could operate independently and no concept 

of global time was required. To make use of virtual channels, 

however, the router must maintain timers to distinguish between a 

blocked channel and one that is waiting for an acknowledgment. In a 

synchronous router, such timing is implicit. Adaptive routing requires 

that information from many output channels be collected together to 

make a routing decision. In an asynchronous router, collecting this 

information poses a high synchronization overhead. 

The application of these high-performance networks extends be- 

yond connecting the processing nodes of multicomputers. Low- 

dimensional k-ary n-cube networks can also be used as data switches 

in a local-area or long-haul network and as a general-purpose back- 

plane to connect components of digital systems. They offer a scalable 

alternative to buses for general-purpose interconnection in digital 

systems. 
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Optimal Resilient Distributed Algorithms for Ring Election 

M. Y. Chan and F. Y. L. Chin 

Abstract- This paper considers the problem of electing a leader in 
a dynamic ring in which processors are permitted to fail and recover 
during election. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAe( n log n + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI;, ) messages, when counting only messages 
sent by functional processors, are shown to be necessary and sufficient 
for dynamic ring election, where I;v is the number of processor recoveries 
experienced. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Index Terms-Distributed election, processor failures and recoveries, 
unidirectional rings. 
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I. INTRODUCTION 

One of the most studied problems in the area of distributed 

algorithms is distributed leader election. Many papers have been 

written about distributed leader election especially on rings. To cite 

just a few references, consider [12], [3], [2], [9], [lo], [4], [6], [15], 

[16], [7], [ l l ] ,  [17], [18], [ l] ,  [14], [8]. All of these papers deal with 

the static ring, with the exception of Goldreich and Shrira’s treatment 

of election in rings with communication linkfailures [8]. The problem 

of considering rings with processor failures and recoveries during 

election provides a complement to [8], and was first suggested by 

Filman and Friedman [5] as a problem worthy of research. One of the 

main assumptions of this problem is that, when a processor leaves 

the ring (fails), the ring is patched around its place. This property 

allows for some rather interesting solutions. 

This paper considers the problem of electing a leader in a dynamic 

ring in which processors are permitted to fail and recover during 

election. e (  rt log 71 + k , )  messages, when counting only messages 

sent by functional processors, are shown to be necessary and sufficient 

for dynamic ring election, where k ,  is the number of processor 

recoveries experienced. 

11. THE MODEL FOR DYNAMIC RINGS 

The objective is to devise an algorithm, to be run on each processor, 

which will distinguish one of the functional processors as leader. We 

outline in greater detail the assumptions of our model: 

We consider a system of n independent processors arranged 

and connected in a circular fashion by n point-to-point uni- 
directional communication links. Initially, they are all in the 

“sleep” state (Fig. 1). 

Each processor is distinguished by a unique identification 

number. Furthermore, we assume that only comparisons of 

identity numbers can be made, and the algorithm is not aware 

of the domain or range to which identities belong. 

As assumed in [3], [4], (71, and [9], processors may start, or 
“wakeup” to, the algorithm, i.e., get into the “active/relay” 

state (Fig. l), either spontaneously at any arbitrary time of 

its own free will, or upon receipt of a message of the algo- 

rithm. Election begins when at least one processor awakens 

spontaneously. 

The network is also assumed to provide both “sequential” and 

“guaranteed” communications, meaning messages sent across a 

link will be eventually received, and received in the order sent 

and received as sent. In other words, communication is reliable 

and only processors are faulty. 

When processors fail, they get into the “failed” state (Fig. 

1). We consider only “clean” failures, i.e., “failed” processors 

simply stop participating in the election protocol and do not 

behave maliciously. In fact, the “clean” failures also imply that 

the ring structure would not be disrupted by processor faults 

as messages simply pass through or around “failed” processors. 

This assumption is now common for ring networks and is made 

possible by providing a bypass switch for each processor [13]. 

For added flexibility we assume that processors may fail 

(“active/relay” state + “failed” state), or recover after failing 

(“failed” state -t “sleep” state), at any time, as long as 

eventually there is at least one functional processor in the ring. 

And there are no limits to the number of times a processor 

may fail and then recover during election. Thus, the number of 
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