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Abstract—Several recent studies have proposed fine-grained,
hardware-level thread migration in multicores as a solution to
power, reliability, and memory coherence problems. The need for
fast thread migration has been well documented, however, a fast,
deadlock-free migration protocol is sorely lacking: existing solu-
tions either deadlock or are too slow and cumbersome to ensure
performance with frequent, fine-grained thread migrations.

In this study, we introduce the Exclusive Native Context (ENC)
protocol, a general, provably deadlock-free migration protocol
for instruction-level thread migration architectures. Simple to
implement, ENC does not require additional hardware beyond
common migration-based architectures. Our evaluation using
synthetic migrations and the SPLASH-2 application suite shows
that ENC offers performance within 11.7% of an idealized
deadlock-free migration protocol with infinite resources.

I. INTRODUCTION

In SMP multiprocessor systems and multicore processors,
process and thread migration has long been employed to
provide load and thermal balancing among the processor cores.
Typically, migration is a direct consequence of thread schedul-
ing and is performed by the operating system (OS) at timeslice
granularity; although this approach works well for achieving
long-term goals like load balancing, the relatively long periods,
expensive OS overheads, and high communication costs have
generally rendered fast thread migration impractical [16].

Recently, however, several proposals with various aims have
centered on thread migration too fine-grained to be effectively
handled via the OS. In the design-for-power domain, rapid
thread migration among cores in different voltage/frequency
domains has allowed less demanding computation phases to
execute on slower cores to improve overall power/performance
ratios [12]; in the area of reliability, migrating threads among
cores has allowed salvaging of cores which cannot execute
some instructions because of manufacturing faults [11]; fi-
nally, fast instruction-level thread migration has been used
in lieu of coherence protocols or remote accesses to provide
memory coherence among per-core caches [4] [5]. The very
fine-grained nature of the migrations contemplated in these
proposals—a thread must be able to migrate immediately if
its next instruction cannot be executed on the current core
because of hardware faults [11] or to access data cached
in another core [4]—demands fast, hardware-level migration
systems with decentralized control, where the decision to
migrate can be made autonomously by each thread.

The design of an efficient fine-grained thread migration
protocol has not, however, been addressed in detail. The
foremost concern is avoiding deadlock: if a thread context
can be blocked by other contexts during migration, there
is an additional resource dependency in the system which

may cause the system to deadlock. But most studies do not
even discuss this possibility: they implicitly rely on expensive,
centralized migration protocols to provide deadlock freedom,
with overheads that preclude frequent migrations [3], [10], or
limit migrations to a core’s local neighborhood [14]. Some
fine-grain thread migration architectures simply give up on
deadlock avoidance and rely on expensive recovery mecha-
nisms (e.g., [8]).

With this in mind, we introduce a novel thread migration
protocol called Exclusive Native Context (ENC). To the best
of our knowledge, ENC is the first on-chip network solution to
guarantee freedom from deadlock for general fine-grain thread
migration without requiring handshaking. Our scheme is sim-
ple to implement and does not require any hardware beyond
that required for hardware-level migrations; at the same time, it
decouples the performance considerations of on-chip network
designs from deadlock analysis, freeing architects to consider
a wide range of on-chip network designs.

In the remainder of this paper,
• we present ENC, a novel deadlock-free fine-grained

thread migration protocol;
• we show how deadlock arises in other migration schemes,

and argue that ENC is deadlock-free;
• we show that ENC performance on SPLASH-2 applica-

tion benchmarks [17] running under a thread-migration
architecture [4] is on par with an idealized deadlock-free
migration scheme that relies on infinite resources.

II. DEADLOCK IN THREAD MIGRATION

A. Protocol-level deadlock

Most studies on on-chip networks focus on the network
itself and assume that a network packet dies soon after it
reaches its destination core—for example, the result of a
memory load request might simply be written to its destination
register. This assumption simplifies deadlock analysis because
the dead packet no longer holds any resources that might be
needed by other packets, and only live packets are involved in
deadlock scenarios.

With thread migration, however, the packet carries an exe-
cution context, which moves to an execution unit in the core
and occupies it until it migrates again to a different core. Thus,
unless migrations are centrally scheduled so that the migrating
context always finds available space at its destination, execu-
tion contexts occupying a core can block contexts arriving
over the network, creating additional deadlock conditions
that conventional on-chip network deadlock analysis does not
consider.
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Fig. 1. Protocol-level Deadlock of Fine-grain, Autonomous Thread Migration

For example, suppose a migrating thread T1 in Figure 1(a)
is heading to core C1. Although T1 arrives at routing node
N1 directly attached to C1, all the execution units of C1 are
occupied by other threads (∼), and one of them must migrate
to another core for T1 to make progress. But at the same time,
thread T2 has the same problem at core C2, so the contexts
queued behind T2 are backed up all the way to C1 and prevent
a C1 thread from leaving. So T1 cannot make progress, and the
contexts queued behind it have backed up all the way to C2,
preventing any of C2’s threads from leaving, and completing
the deadlock cycle. Figure 1(b) illustrates this deadlock using a
channel dependency graph (CDG) [2] where nodes correspond
to channels of the on-chip network and edges to dependencies
associated with making progress on the network.

We call this type of deadlock a protocol-level deadlock,
because it is caused by the migration protocol itself rather than
the network routing scheme. Previous studies involving rapid
thread migration typically either do not discuss protocol-level
deadlock, implicitly relying on a centralized deadlock-free
migration scheduler [3], [10], [14], using deadlock detection

and recovery [8], employing a cache coherence protocol to
migrate contexts via the cache and memory hierarchy, effec-
tively providing a very large buffer to store contexts [12],
or employing slow handshake-based context swaps [11]. All
of these approaches have substantial overheads, motivating
the development of an efficient network-level deadlock-free
migration protocol.

B. Evaluation with synthetic migration benchmarks

As a non-deadlock-free migration protocol, we consider the
naturally arising SWAP scheme, implicitly assumed by several
works: whenever a migrating thread T1 arrives at a core, it
evicts the thread T2 currently executing there and sends it
back to the core where T1 originated. Although intuitively one
might expect that this scheme should not deadlock because
T2 can be evicted into the slot that T1 came from, this slot
is not reserved for T2 and another thread might migrate there
faster, preempting T2; it is therefore not guaranteed that T2
will exit the network and deadlock may arise. (Although
adding a handshake protocol with extra buffering can make
SWAP deadlock-free [11], the resulting scheme is too slow
for systems which require frequent migrations).

In order to examine how often the migration system might
deadlock in practice, we used a synthetic migration benchmark
where each thread keeps migrating between the initial core
where it was spawned and a hotspot core. (Since migration
typically occurs to access some resource at a core, be it a
functional unit or a set of memory locations, such hotspots
naturally arise in multithreaded applications). We used varying
numbers (one to four) of randomly assigned hotspots, and 64
randomly located threads that made a thousand migrations to
destinations randomly chosen among their originating core and
the various hotspots every 100 cycles. To stress the migartion
framework as in a fine-grain migration system, we chose the
migration interval of 100 cycles. We used the cycle-level
network-on-chip simulator DARSIM [6], suitably modified
with a migration system, to model a 64-core system connected
by a 2D mesh interconnect. Each on-chip network router had
enough network buffers to hold 4 thread contexts on each
link with either 2 or 4 virtual channels; we also examined
the case where each core has a context queue to hold arriving
thread contexts when there are no available execution units. We
assumed Intel Atom-like x86 cores with execution contexts of
2 Kbits [12] and enough network bandwidth to fit each context
in four or eight flits. Table I summarizes the simulation setup.

Figure 2 shows the percentage of runs (out of the 100)
that end with deadlock under the SWAP scheme. Without
an additional context queue, nearly all experiments end in
deadlock. Further, even though context buffering can reduce
deadlock, deadlock still occurs at a significant rate for the
tested configurations.

The synthetic benchmark results also illustrate that suscep-
tibility to deadlock depends on migration patterns: when there
is only one hotspot, the migration patterns across threads are
usually not cyclic because each thread just moves back and
forth between its own private core and only one shared core;



Core and Migration

Core architecture single-issue, two-way
multithreading

The size of a thread context 4 flits(relative to the size of network flit)
Number of threads 64
Number of hotspots 1, 2, 3 and 4
Migration interval 100 cycles

On-chip Network
Network topology 8-by-8 mesh

Routing algorithms Dimension-order
wormhole routing

Number of virtual channels 2 and 4
The size of network buffer 4 per link

(relative to the size of context) or 20 per node
The size of context queue 0, 4 and 8

(relative to the size of context) per core

TABLE I
THE SIMULATION SETUP FOR SYNTHETIC MIGRATION BENCHMARKS.
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Fig. 2. Deadlock scenarios with synthetic sequences of migrations. 2VC+4
for example corresponds to 2 virtual channels and a context queue of 4
contexts.

when there are two or more hotspots and threads have more
destinations, on the other hand, their paths intersect in more
complex ways, making the system more prone to deadlock.
Although small context buffers prevent deadlock with some
migration patterns, they do not ensure deadlock avoidance
because there are still a few deadlock cases.

III. EXCLUSIVE NATIVE CONTEXT PROTOCOL

ENC takes a network-based approach to provide deadlock
freedom. Unlike coarse-grain migration protocols, ENC allows
autonomous thread migrations. To enable this, the new thread
context may evict one of the thread contexts executing in the
destination core, and ENC provides the evicted thread context
a safe path to another core on which it will never be blocked
by other threads that are also in transit.

To provide the all-important safe path for evicted threads,
ENC uses a set of policies in core scheduling, routing, and
virtual channel allocation.

Each thread is set as a native context of one particular core,
which reserves a register file (and other associated context
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Fig. 4. The percentage of accesses to a threads native core (i.e., the core
where it started and that holds its stack) in various SPLASH-2 benchmarks.

state) for the thread. Other threads cannot use the reserved
resource even if it is not being used by the native context.
Therefore, a thread will always find an available resource every
time it arrives at the core where the thread is a native context.
We will refer to this core as the thread’s native core.

Dedicating resources to native contexts requires some rudi-
mentary multithreading support in the cores. If a thread may
migrate to an arbitrary core which may have a different thread
as its native context, the core needs to have an additional
register file (i.e., a guest context) to accept a non-native thread
because the first register file is only available to the native
context. Additionally, if a core has multiple native contexts,
there must be enough resources to hold all of its native contexts
simultaneously so no native thread is blocked by other native
threads. It is a reasonable assumption that an efficient fine-
grain, migration-based architecture will require some level of
multithreading, in order to prevent performance degradation
when multiple threads compete for the resources of the same
core.

If an arriving thread is not a native context of the core,
it may be temporarily blocked by other non-native threads
currently on the same core. The new thread evicts one of the
executing non-native threads and takes the released resource.
We repeat that a thread never evicts a native context of the
destination core because the resource is usable only by the
native context. To prevent livelock, however, a thread is not
evicted unless it has executed at least one instruction since it
arrived at the current core. That is, an existing thread will be
evicted by a new thread only if it has made some progress in its
current visit on the core. This is why we say the arriving thread
may be temporarily blocked by other non-native threads.

Where should the native core be? In the first-touch data
placement policy [7] we assume here, each thread’s stack and
private data are assigned to be cached in the core where the
thread originates. We reasoned, therefore, that most accesses
made by a thread will be to its originating core (indeed,
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Figure 4 shows that in the SPLASH-2 benchmarks we used,
about 60%–85% of a thread’s accesses are to its native core).
We therefore select each thread’s originating core as its native
core.

In what follows, we first describe a basic, straightforward
version of ENC, which we term ENC0, and then describe a
better-performing optimized version.

A. The basic ENC algorithm (ENC0)
Whenever a thread needs to move from a non-native core to

a destination core, ENC0 first sends the thread to its native core
which has a dedicated resource for the thread. If the destination
core is not the native core, the thread will then move from its
native core to the destination core. Therefore, from a network
standpoint, a thread movement either ends at its native core
or begins from its native core. Since a thread arriving at its
native core is guaranteed to be unloaded from the network,
any migration is fully unloaded (and therefore momentarily
occupies no network resources) somewhere along its path.

To keep the migrations deadlock-free, however, we must
also ensure that movements destined for a native core actually
get there without being blocked by any other movements;
otherwise the native-core movements might never arrive and
be unloaded from the network. The most straightforward
way of ensuring this is to use two sets of virtual channels,
one for to-native-core traffic and the other for from-native-
core traffic. If the baseline routing algorithm requires only
one virtual channel to prevent network-level deadlock like
dimension-order routing, ENC0 requires a minimum of two
virtual channels per link to provide protocol-level deadlock
avoidance. Note that ENC0 may work with any baseline
routing algorithm for a given source-destination pair, such as
Valiant [15] or O1TURN [13], both of which require two
virtual channels to avoid deadlock. In this case, ENC0 will
require four virtual channels.

B. The full ENC algorithm
Although ENC0 is simple and straightforward, it suffers the

potential overhead of introducing an intermediate destination

for each thread migration: if thread T wishes to move from
core A to B, it must first go to N, the native core for T . In
some cases, this overhead might be significant: if A and B are
close to each other, and N is far away, the move may take
much longer than if it had been a direct move.

To reduce this overhead, we can augment the ENC0 algo-
rithm by distinguishing migrating traffic and evicted traffic:
the former consists of threads that wish to migrate on their
own because, for example, they wish to access resources in a
remote core, while the latter corresponds to the threads that
are evicted from a core by another arriving thread.

Whenever a thread is evicted, ENC, like ENC0, sends the
thread to its native core, which is guaranteed to accept the
thread. We will not therefore have a chain of evictions: even
if the evicted thread wishes to go to a different core to make
progress (e.g., return to the core it was evicted from), it must
first visit its native core, get unloaded from the network, and
then move again to its desired destination. Unlike ENC0,
however, whenever a thread migrates on its own accord, it
may go directly to its destination without visiting the home
core. (Like ENC0, ENC must guarantee that evicted traffic is
never blocked by migrating traffic; as before, this requires two
sets of virtual channels).

Based on these policies, the ENC migration algorithm can
be described as follows. Note that network packets always
travel within the same set of virtual channels.

1) If a native context has arrived and is waiting on the
network, move it to a reserved register file and proceed
to Step 3.

2) a) If a non-native context is waiting on the network
and there is an available register file for non-native
contexts, move the context to the register file and
proceed to Step 3.

b) If a non-native context is waiting on the network
and all the register files for non-native contexts are
full, choose one among the threads that have fin-



ished executing an instruction on the core1 and the
threads that want to migrate to other cores. Send
the chosen thread to its native core on the virtual
channel set for evicted traffic. Then, advance to the
next cycle. (No need for Step 3).

3) Among the threads that want to migrate to other cores,
choose one and send it to the desired destination on the
virtual channel set for migrating traffic. Then, advance
to the next cycle.

This algorithm effectively breaks the cycle of dependency of
migrating traffic and evicted traffic. Figure 3 illustrates how
ENC breaks the cyclic dependency shown in Figure 1(b),
where Cn denotes the native core of the evicted thread, and
Nn its attached router node.

There is a subtlety when a migrating context consists of
multiple flits and the core cannot send out an entire context all
at once. For example, the core may find no incoming contexts
at cycle 0 and start sending out an executing context T1 to its
desired destination, but before T1 completely leaves the core,
a new migrating context, T2, arrives at the core and is blocked
by the remaining flits of T1. Because T1 and T2 are on the
same set of virtual channels for migration traffic, a cycle of
dependencies may cause a deadlock. To avoid this case, the
core must inject migration traffic only if the whole context
can be moved out from the execution unit so arriving contexts
will not be blocked by incomplete migrations; this can easily
be implemented by monitoring the available size of the first
buffer on the network for migration traffic or by adding an
additional outgoing buffer whose size is one context size.

Although both ENC0 and ENC are provably deadlock-
free under deadlock-free routing because they eliminate all
additional dependencies due to limited context space in cores,
we confirmed that they are deadlock-free with the same
synthetic benchmarks used in Section II-B. We also simulated
an incomplete version of ENC that does not consider the
aforementioned subtlety and sends out a migrating context if it
is possible to push out its first flit. While ENC0 and ENC had
no deadlocks, deadlocks occurred with the incomplete version
because it does not provide a safe path for evicted traffic in the
case when a migrating context is being sequentially injected
to the network; this illustrates that fine-grained migration is
very susceptible to deadlock and migration protocols need to
be carefully designed.

IV. PERFORMANCE EVALUATION

A. Baseline protocols and simulated migration patterns

We compared the performance overhead of ENC0 and ENC
to the baseline SWAP algorithm described in Section II-B.
However, as SWAP can deadlock, in some cases the execution
might not finish. Therefore, we also tested SWAPinf, a version
of SWAP with an infinite context queue to store migrating
thread contexts that arrive at the core; since an arriving
context can always be stored in the context queue, SWAPinf

1No instructions should be in flight.

never deadlocks. Although impractical to implement, SWAPinf
provides a useful baseline for performance comparison. We
compared SWAP and SWAPinf to ENC0 and ENC with two
virtual channels. The handshake version of SWAP was deemed
too slow to be a good baseline for performance comparison.

In order to see how ENC would perform with arbitrary
migration patterns, we first used a random sequence of mi-
grations in which each thread may migrate to any core at
a fixed interval of 100 cycles. In addition, we also wished
to evaluate real applications running under a fine-grained
thread-migration architecture. Of the three such architectures
described in Section I, we rejected core salvaging [11] and
ThreadMotion [12] because the thread’s migration patterns do
not depend on the application itself but rather on external
sources (core restrictions due to hard faults and the chip’s
thermal environment, respectively), and could conceivably be
addressed with synthetic benchmarks. We therefore selected
the EM2 architecture [4], which migrates threads to a given
core to access memory exclusively cached in that core; mi-
grations in EM2 depend intimately on the application’s access
patterns and are difficult to model using synthetic migration
patterns.

We used the same simulation framework as described in
Section II-B to examine how many cycles are spent on
migrating thread contexts.

B. Network-Independent Traces (NITs)

While software simulation provides the most flexibility in
the development of many-core architectures, it is severely
constrained by simulation time. For this reason, common
simulation methods do not faithfully simulate every detail
of target systems, to achieve reasonably accurate results in
an affordable time. For example, Graphite [9] provides very
efficient simulation of a many-core system based on the x86
architecture. However, it has yet to provide faithful simulation
of network buffers. Therefore, Graphite simulation does not
model the performance degradation due to head-of-line block-
ing, and moreover, deadlock cannot be observed even if the
application being simulated may actually end up in deadlock.

On the other hand, most on-chip network studies use a de-
tailed simulator that accurately emulates the effect of network
buffers. However, they use simple traffic generators rather than
simulating actual cores in detail. The traffic generator often
replays network traces captured from application profiling, in
order to mimic the traffic pattern of real-world applications.
It, however, fails to mimic complex dependency between op-
erations, because most communication in many-core systems
depends on the previous communication. For example, a core
may need to first receive data from a producer, before it
processes the data and sends it to a consumer. Obviously, if
the data from the producer arrives later than in profiling due to
network congestion, sending processed data to the consumer is
also delayed. However, network traces typically only give the
absolute time when packets are sent, so the core may send pro-
cessed data to the consumer prior to it even receiving the data
from its producer! In other words, the network-trace approach



fails to realistically evaluate application performance, because
the timing of packet generation, which depends on on-chip
network conditions, is assumed before the actual simulation
of the network.

It is very important to reflect the behavior of network
conditions, because it is critical not only for performance, but
also to verify that network conditions don’t cause deadlock.
Therefore, we use DARSIM [6], a highly configurable, cycle-
accurate on-chip network simulator. Instead of using net-
work traces, however, we generate network-independent traces
(NITs) from application profiling. Unlike standard application
traces, NITs keep inter-thread dependency information and
relative timings instead of absolute packet injection times;
the dependencies and relative timings are replayed by an
interpreter module added to the network simulator. By re-
placing absolute timestamps with dependencies and relative
timings, NITs allow cores to “respond” to messages from other
cores once they have arrived, and solve the consumer-before-
producer problem that occurs with network traces.

The NITs we use for EM2 migration traffic record memory
instruction traces of all threads, which indicate the home
core of each memory instruction and the number of cycles
it takes to execute all non-memory instructions between two
successive memory instructions. With these traces and the
current location of threads, a simple interpreter can determine
whether each memory instruction is accessing memory cached
on the current core or on a remote core; on an access to
memory cached in a remote core, the interpreter initiates a
migration of the corresponding thread. After the thread arrives
at the home core and spends the number of cycles specified
in the traces for non-memory operations, the interpreter does
the same check for the next memory instruction.

The interpreter does not, of course, behave exactly the same
as a real core does. For one, it does not consider lock/barrier
synchronization among threads; secondly, it ignores possible
dependencies of the actual memory addresses accessed on
network performance (consider, for example, a multithreaded
work-queue implemented via message passing: the memory
access patterns of the program will clearly depend on the order
in which the various tasks arrive in the work queue, which
in turn depends on network performance). Nevertheless, NITs
allow the system to be simulated in a much more realistic way
by using memory traces rather than network traces.

C. Simulation details

For the evaluation under arbitrary migration patterns, we
used a synthetic sequence of migrations for each number
of hotspots as in Section II-B. We also chose five appli-
cations from the SPLASH-2 benchmark suite to examine
application-specific migration patterns, namely FFT, RADIX,
LU (contiguous), WATER (nsquared), and OCEAN (contigu-
ous), which we configured to spawn 64 threads in parallel.
Then we ran those applications using Pin [1] and Graphite [9],
to generate memory instruction traces. Using the traces and the
interpreter as described in the previous section, we executed
the sequences of memory instructions on DARSIM.

Protocols and Migration Patterns

Migration Protocols SWAP, SWAPinf
ENC0 and ENC

Migration Patterns

a random migration sequence &
5 applications from SPLASH-2:
FFT, RADIX, LU (contiguous)

WATER (nsquared)
OCEAN (contiguous)

Core

Core architecture single-issue, two-way
multithreading EM2

The size of a thread context 4, 8 flits(relative to the size of network flit)
Number of threads 64

On-chip Network
Network topology 8-by-8 mesh

Routing algorithms Dimension-order
wormhole routing

Number of virtual channels 2
The size of network buffer 4 per link

(relative to the size of context) (20 per node)
The size of context queue ∞ for SWAPinf, 0 otherwise

TABLE II
THE SIMULATION SETUP FOR SYNTHETIC SEQUENCES OF MIGRATIONS.
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Fig. 5. Total migration cost (4 flits per context)

As in Section II-B, we first assumed the context size is
4 flits. However, we also used the context size of 8 flits, to
examine how ENC’s performance overhead would change if
used with an on-chip network with less bandwidth, or a base-
line architecture which has very large thread context size. The
remaining simulation setup is similar to Section II-B. Table II
summarizes the simulation setup used for the performance
evaluation.

D. Simulation results

Figure 5 shows the total migration cost in each migration
pattern normalized to the cost in SWAPinf when the context
size is equivalent to four network flits. Total migration cost
is the sum of the number of cycles that each thread spends
between when it moves out of a core and when it enters
another. First of all, the SWAP algorithm causes deadlock in
FFT and RADIX, as well as in RANDOM, when each thread
context migrates in 4 network flits. As we will see in Figure 8,



RANDOM FFT RADIX LU OCEAN WATER
8 61 60 61 61 61

TABLE III
THE MAXIMUM SIZE OF CONTEXT QUEUES IN SWAPINF RELATIVE TO

THE SIZE OF A THREAD CONTEXT

LU and OCEAN also end up with deadlock with the context
size of 8 flits. Our results illustrate that real applications are
also prone to deadlock if they are not supported by a deadlock-
free migration protocol, as mentioned in Section II-B.

Deadlock does not occur when SWAPinf is used due to the
infinite context queue. The maximum number of contexts at
any moment in a context queue is smaller in RANDOM than
in the application benchmarks because the random migration
evenly distributes threads across the cores so there is no
heavily congested core (cf. Table III). However, the maximum
number of contexts is over 60 for all application benchmarks,
which is more than 95% of all threads on the system. This
discourages the use of context buffers to avoid deadlock.2

Despite the potential overhead of ENC described earlier
in this section, both ENC and ENC0 have comparable per-
formance, and are overall 11.7% and 15.5% worse than
SWAPinf, respectively. Although ENC0 has relatively large
overhead of 30% in total migration cost under the random
migration pattern, ENC reduces the overhead to only 0.8%.
Under application-specific migration patterns, the performance
largely depends on the characteristics of the patterns; while
ENC and ENC0 have significantly greater migration costs than
SWAPinf under RADIX, they perform much more compteti-
tively in most applications, sometimes better as in applications
such as WATER and OCEAN. This is because each thread in
these applications mostly works on its private data; provided
a thread’s private data is assigned to its native core, the
thread will mostly migrate to the native core (cf. Figure 4).
Therefore, the native core is not only a safe place to move
a context, but also the place where the context most likely
makes progress. This is why ENC0 usually has less cost for
autonomous migration, but higher eviction costs. Whenever a
thread migrates, it needs to be “evicted” to its native core.
After eviction, however, the thread need not migrate again if
its native core was its migration destination.

The effect of the portion of native cores in total migration
destinations can be seen in Figure 6, showing total migration
distances in hop counts normalized to the SWAPinf case.
When the destinations of most migrations are native cores,
such as in FFT, ENC has not much different total migration
distance from SWAPinf. When the ratio is lower, such as in
LU, the migration distance for ENC is longer because it is
more likely for a thread to migrate to non-native cores after it
is evicted to its native core. This also explains why ENC has
the most overhead in total migration distance under random
migrations because the least number of migrations are going
to native cores.

2Note that, however, the maximum size of context buffers from the
simulation results is not a necessary condition, but a sufficient condition to
prevent deadlock.
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Fig. 6. Total migration distance in hop counts for various SPLASH-2
benchmarks.
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Fig. 7. Part of migration cost due to congestion

Even in the case where the destination of the migration is
often not the native core of a migrating thread, ENC may
have an overall migration cost similar to SWAPinf as shown
in LU, because it is less affected by network congestion than
SWAPinf. This is because ENC effectively distributes network
traffic over the entire network, by sending out threads to their
native cores. Figure 7 shows how many cycles are spent on
migration due to congestion, normalized to the SWAPinf case.
ENC and ENC0 have less congestion costs under RANDOM,
LU, OCEAN, and WATER. This is analogous to the motivation
behind the Valiant algorithm [15]. One very distinguish-
able exception is RADIX; while the migration distances of
ENC/ENC0 are similar to SWAPinf because the native-core
ratio is relatively high in RADIX, they are penalized to a
greater degree by congestion than SWAPinf. This is because
other applications either do not cause migrations as frequently
as RADIX, or their migration traffic is well distributed because
threads usually migrate to nearby destinations only.

If the baseline architecture has a large thread context or an
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eviction autonomous migration

Fig. 8. Total migration cost (8 flits per context)

on-chip network has limited bandwidth to support thread mi-
gration, each context migrates in more network flits which may
affect the network behavior. Figure 8 shows the total migration
costs when a thread context is the size of eight network flits.
As the number of flits for a single migration increases, the
system sees more congestion. As a result, the migration costs
increase by 39.2% across the migration patterns and migration
protocols. While the relative performance of ENC/ENC0 to
SWAPinf does not change much for most migration patterns,
the increase in the total migration cost under RADIX is greater
with SWAPinf than with ENC/ENC0 as the network becomes
saturated with SWAPinf too. Consequently, the overall over-
head of ENC and ENC0 with the context size of 8 flits is 6%
and 11.1%, respectively. The trends shown in Figure 6 and
Figure 7 also hold with the increased size of thread context.

V. CONCLUSIONS

ENC is a deadlock-free migration protocol for general
fine-grain thread migration. Using ENC, threads can make
autonomous decisions on when and where to migrate; a thread
may just start traveling when it needs to migrate, without
being scheduled by any global or local arbiter. Therefore, the
migration cost is only due to the network latencies in moving
thread contexts to destination cores, possibly via native cores.

Compared to a baseline SWAPinf protocol which assumes
infinite queues, ENC has an average of 11.7% overhead
for overall migration costs under various types of migration
patterns. The performance overhead depends on migration
patterns, and under most of the synthetic and application-
specific migration patterns used in our evaluation ENC shows
negligible overhead, or even performs better; although ENC
may potentially increase the total distance that threads migrate
by evicting threads to their native cores, it did not result in
higher migration cost in many cases because evicted threads
often need to go to the native core anyway, and intermediate
destinations can reduce network congestion.

While the performance overhead of ENC remains low in
most migration patterns, a baseline SWAP protocol actually
ends up with deadlock, not only for synthetic migration
sequences but also for real applications. Considering this, ENC
is a very compelling mechanism for any architecture that
exploits very fine-grain thread migrations and which cannot
afford conventional, expensive migration protocols.

Finally, ENC is a flexible protocol that can work with
various on-chip networks with different routing algorithms
and virtual channel allocation schemes. One can imagine
developing various ENC-based on-chip networks optimized for
performance under a specific thread migration architecture.
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