
Deadtime Compensation for Nonlinear 
Processes 

Many industrially important processes feature both nonlinear system 
dynamics and a process deadtime. Powerful deadtime compensation 
methods, such as the Smith predictor, are available for linear systems 
represented by transfer functions. A Smith predictor structure in state 
space for linear systems is presented first and then directly extended to  
nonlinear systems. When combined with input /output linearizing state 
feedback, this Smith-like predictor makes a nonlinear system with 
deadtime behave like a linear system with deadtime. The control struc- 
ture is completed by adding an external linear controller, which provides 
integral action and compensates for the deadtime in the input/output 
linear system, and an open-loop state observer. Conditions for robust 
stability with respect to errors in the deadtime and more general linear 
unstructured multiplicative uncertainties are given. Computer simula- 
tions for an example system demonstrate the high controller perfor- 
mance that can be obtained using the proposed method. 
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Introduction 
The problem of constructing control algorithms that are capa- 

ble of handling deadtime is a key issue in process control, due to 
the large number of processes which possess deadtime. Powerful 
deadtime compensation methods are available in the literature 
for linear processes which are modeled with a transfer function 
of the form Go (s)e-’p, where GJs) is rational. These methods 
have been motivated by the pioneer work of 0. J. M. Smith 
( 1957), who developed the well-known Smith predictor. Since 
Smith (1957), there have been many modifications and exten- 
sions of the original form of the Smith predictor. Reviews of 
these are in Jerome and Ray (1986) and Wong and Seborg 
( 1  986). Deadtime compensation methods with closely related 
structures include the analytical predictor of Moore et al. 
(1970), the inferential controller of Brosilow (1979), the Inter- 
nal Model Control of Morari and coworkers (Garcia and 
Morari, 1982, Holt and Morari, 1985), the Generalized Analyt- 
ical Predictor of Wong and Seborg (1986), and Wellons and 
Edgar (1987). All these are mathematically equivalent to the 
classical Smith predictor structure; however, they give different 
interpretations to deadtime compensation and therefore provide 
more or less clear insights to the design problem. 

In this work, linear SISO systems of the form 

will be considered initially and the Smith predictor will be reex- 
amined in state space. It will then be shown that this state-space 
version of the Smith predictor carries over to SISO nonlinear 
systems of the form 

For both cases, two assumptions will be necessary: 
Assumption A. The process is open-loop stable 
Assumption B. The “deadtime-free” part of the process, i.e. 

= At + bu(t)  

Y = c t  (3) 

in the linear case, or 

in the nonlinear case, has stable zero dynamics. Alternatively 
stated, the system of Eq. 3 or 4 has a stable inverse. 

Assumption A is central in all Smith predictor approaches 
and cannot be avoided in nonlinear systems either. Assumption 
B is central in all available general approaches for nonlinear 
controller synthesis including input/output linearization tech- 
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niques (Kravaris and Chung 1987; Kravaris, 1988) and nonlin- 
ear Internal Model Control techniques (Economou et al., 1986; 
Parrish and Brosilow, 1988). 

The present paper first briefly reviews the classical Smith 
predictor for linear output feedback control of linear processes 
with deadtime. The Smith predictor idea will be subsequently 
extended to state space for a linear system. A Smith-like predic- 
tor for nonlinear systems with deadtime will then be developed 
along the same lines. This will lead to an extension of the Glob- 
ally Linearizing Control (GLC) structure to nonlinear processes 
with deadtime. Following that, robust stability conditions will be 
given with respect to errors in the deadtime and unstructured 
linear multiplicative uncertainties. Finally, a simulation exam- 
ple to test the performance of the proposed control methodology 
will be presented. 

X 

The Classical Smith Predictor 
Consider a linear process with transfer function Go(s)e-", 

where all zeros and poles of G,(s) are in the left half plane. The 
classical Smith predictor structure for this system is shown in 
Figure 1. The Smith predictor simulates the difference between 
the deadtime-free part of the process model and the (delayed) 
process model. This corrective signal is added to the measured 
output signal to predict what the output would have been if there 
were no deadtime. The prediction y* is fed to the controller 
G,(s). A straightforward calculation gives the closed-loop trans- 
fer function 

Y , c  

The form of the closed-loop transfer function as well as the 
interpretation of the feedback signaly" indicate that theparam- 
eterization of the controller GJs) should be chosen in accor- 
dance with the deadtime-free part of the model Go@).  For 
example, one can use the synthesis formula (Smith and Cor- 
ripio, 1985) 

where W(s)  is the polynomial of desirable closed-loop poles, of 
degree equal to the relative order, r, of Go($). Then, Eq. 5 
becomes 

(7) 

The particular choice W(s) = (0 + 1)' provides critically 
damped closed-loop response. 

It is important to mention a common misconception in many 
of the past applications of the Smith predictor idea, i.e., trying to 
design Gc(s) on the basis of the deadtime-free part of the model 
G,(s) regardless of the level of error in deadtime. This has, of 
course, led to poor designs. For a discussion on this subject, see 
Laughlin and Morari (1 987) and Morari and Doyle (1 986), who 
advocate the use of the Internal Model Control configuration as 
providing a more transparent controller design framework. 

A formal application of the Doyle-Stein robust stability crite- 
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Figure 1. Classical Smith Predictor structure. 

rion (Doyle and Stein, 1981) to the overall system of Figure 1 
gives the following condition for robust stability 

G, (iw) Go ( iw ) 

where h(w) is an upper bound of the multiplicative uncertainty 
of the overall process, including errors in the deadtime. For the 
particular controller parameterization of Eq. 6, condition 8 
becomes 

Extension of the Smith Predictor 
Idea to State Space 

In this section, the deadtime compensation problem for linear 
systems will be reexamined in state space. The aim of this sec- 
tion is not to develop another version of the Smith predictor for 
linear processes with deadtime, but rather to understand dead- 
time compensation in state space in a way which carries over to 
nonlinear systems. 

Consider a linear process with deadtime of the form 

where det (sl - A )  and c Adj ($1 - A ) b  have all roots in the 
open left-half plane. If the process is deadtime-free ( i d  = 0) and 
is subject to the static state feedback I( = u - Kx, the closed- 
loop transfer function is given by 

c Adj (sl - A ) b  
det (sl - A )  + K Adj (sl - A)b (10) 

Y O  
u(s) 

and a block diagram is shown in Figure 2. If the process has 
deadtime (td # 0), something similar to the classical Smith pre- 

I I  

Figure 2. State feedback for linear systems without 
deadtime. 
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Figure3. Smith Predictor structure In state space  for 

linear systems. 

dictor can be done in state space, i.e., predict what the states 
would have been if there were no deadtime. This can be achieved 
by adding a corrective signal to the state measurements 
obtained by simulating the difference between the delayed and 
nondelayed states (See Figure 3). The closed-loop transfer func- 
tion becomes 

(11) e-'# Y ( S )  

v (s)  
c Adj (sl - A ) b  

det (sZ - A )  + KAdj (sl- A)b 
-- 

which is the same as in the deadtime-free process except for the 
factor e-'". Nothing can be done about this factor, since it 
would require a noncausal state feedback for the delayed pro- 
cess to produce a nondelayed response. 

From the closed-loop transfer function (Eq. 11) it is clear that 
with this structure it is possible to select the closed-loop poles for 
the delayed process using some type of pole placement formula 
for the deadtime-free part of the process. For example, if it 
were desired to place the closed-loop poles at  the system zeros 
and at  the roots of the polynomial 

where r is the relative order of the process, then 

would be chosen. This would make the closed-loop transfer func- 
tion 

for a deadtime-free process, or 

for a process with deadtime. 
Thus, with the Smith predictor idea, the pole placement prob- 

lem for a process with deadtime reduces to the pole placement 
problem for the deadtime-free part of the process. Note also that 
the closed-loop system will be ISE-optimal for step changes in 
the limit as the roots of the denominator polynomial of Eq. 15 
tend to negative infinity. 

Remark 1. Any pole placement formula for K will depend on 
a number of tunable parameters (like Bo, PI,  . . . , j3, in the previ- 
ous example) which will have to be tuned taking into account the 
model uncertainty of the overall system, including errors in the 
deadtime. 

A Smith-Like Predictor for Nonlinear Processes 
with Deadtime 

Consider a nonlinear process without deadtime of the form 

that satisfies assumptions A and B stated in the introduction 
section. In Kravaris and Chung (1987), a static state feedback 
law is synthesized for input/output linearity with prespecified 
poles for the input/output system. This result is summarized 
below: 

If r is the relative order of the system of Eq. 16, i.e., the small- 
est integer for which 

then the static state feedback 

makes the input/output behavior of the system follow the equa- 
tion 

' d k y  
x @ k x = v  k-0 

The parameters & must be chosen so that all roots of Xk-* &sk 
are in the left half-plane; this guarantees input/output stability. 
Given assumption B, it guarantees internal stability as well 
(Kravaris, 1988). 

Consider now a nonlinear process with deadtime 

2 = f (x) + g(x )u ( t  - t d )  

Y = h(x) (2) 

that satisfies assumptions A and B of the introduction section. In 
the present section, input/output linearizing state feedback will 
be extended to systems with deadtime. 

First, it should be observed that, since the system of Eq. 2 has 
deadtime, it will be impossible to find a causal state feedback 
that would transform it to a deadtime-free linear system like the 
one of Eq. 18. The best that can be obtained is a linear v - y 
system with deadtime of the form 

In this direction, the restriction that the state feedback be static 
should be removed and a state feedback with predictive action 
similar to the Smith predictor should be sought. 

The state space Smith predictor of the previous section can 
easily be extended to the nonlinear process. The process model 
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Figure 4. Smith-like Predictor structure in state space for 
nonlinear systems. 

Y 

can be used to compute a corrective signal which can then be 
added to the states measurement signal to predict what the 
states would have been if there were no deadtime. The predicted 
states can then be fed to a static feedback controller 9. A block 
diagram of the resulting structure is shown in Figure 4. 

Result 1. When the Smith-like predictor simulates 

k = f ( 3 )  + g(k)u(t) 

i = f ( i )  + g(%)u(t - t d )  

bx = k(t) - i ( t )  (20) 

thus yielding the prediction 

x * ( t )  = x ( t )  + bx( t )  (21) 

and * is given by Eq. 17 with x = x*, then the inputfoutput 
behavior of the system is governed by 

A proof of Result 1 is given in the Appendix. 
Remark 2. The closed-loop response (Eq. 22) will be ISE- 

optimal for a step change in D (i.e., the response will be a delayed 
step) for B0 = 1 and in the limit as the roots of the polynomial 
Bksk + . . + &s + Po tend to negative infinity. 

The Globally Linearizing Control (GLC) Structure 
for Nonlinear Processes with Deadtime 

In the case of a deadtime-free process, the Globally Lineariz- 
ing Control structure (Kravaris and Chung, 1987) consists of 
applying the inputfoutput linearizing static state feedback 

in an inner loop and an external linear controller around the 
linear v - y system (See Figure 5 ) .  The external linear con- 
troller must possess integral action for "offsetless" control and 

I I 1  ! I  
I I 

Figure 5. GLC structure. 

at the same time must have parameters whose effect on perfor- 
mance and robustness is clearly understood. For example, one 
could use a classical PI 

K, 1 -I-- ( 4 
or, more conveniently, 

t 8ksk 
k-0 

(ts + 1)' - 1 

The latter arises from the synthesis formula (Smith and Corri- 
pio, 1985) with the requirement of critically damped response. 
The resulting overall closed-loop transfer function is 

The GLC structure can be extended to nonlinear processes 
with deadtime in a natural way in view of the nonlinear Smith- 
like predictor developed in the previous section (See Figure 6). 
It is important to note that since the linear z, - y system has 
deadtime, the external linear controller must compensate for 
deadtime as well. However, this is not a problem since the classi- 
cal Smith predictor can be used to obtain an appropriate param- 
eterization for the external controller: 

k-0 

(ts + 1)' - e-'p 

This external controller provides the overall closed-loop transfer 
function 

The effect o f t  on performance is clear; in the next section, its 
effect on robustness will be shown. 

In the case of unavailable state measurements, it will be nec- 
essary to use a state observer. The GLC structure is then modi- 
fied as shown in Figure 7 for a deadtime-free process and as 
shown in Figure 8 for a process with deqdtime. The construction 
of state observers is briefly reviewed in Kravaris and Chung 
(1987). It is important to mention a particular type of state 
observer applicable to open-loop stable processes: the full-order 

I I I 
c - - - - -  -...----...-.--------*----------, 

Figure 6. GLC structure for nonlinear processes with 
deadtime. 

1538 September 1989 Vol. 35, No. 9 AIChE Journal 



;pqJ I OBSERVER 

open-loop observer. This involves on-line simulation of the pro- 
cess model in parallel with the process 

i.e., an internal model of the process in the control system. The 
presence of an open-loop observer does not alter the closed-loop 
input/output behavior of the system, under the assumption, of 
course, of a perfect model. 

Finally, it should be pointed out that the Smith-like predictor, 
Eqs. 20 and 2 1, and the state observer of Eq. 27 can be combined 
as shown in Figure 9, where the overall state predictor simu- 
lates 

x* = f ( x * )  + g(x*)u( t )  (28) 

i.e., the deadtime-free part of the process. 

Robust Stability 
In this section, robust stability results for two cases will be 

presented. First, uncertainty in the value of the deadtime only 
will be considered, since this has the most critical effect on the 
closed-loop system. Secondly, the more general case of unstruc- 
tured linear multiplicative uncertainties will be considered. For 
both cases, the structure referred to will be that of Figure 9, 
where @ is given by Eq. 17 with x = x* and the overall state 
predictor simulates Eq. 28; the transfer function of the external 
controller will be denoted by C(s). 

Errors in the deadtime 
Denoting by 

Atd - uncertainty in the deadtime with upper bound (At,),, 

the following result is obtained. 

stable for all uncertainties 
Result 2. The overall closed-loop system of Figure 9 will be 

I I k-0  

In particular, for the external controller parameterization of Eq. 

I 

T 
Figure 8. Complete GLC structure for deadtime compen- 

sation in nonlinear processes. 

25, the condition becomes 

(C2w2 + 1)r'2 > kd(w) 

A proof of Result 2 is given in the Appendix. 

Unstructured linear multiplicative uncertainty 

description is of the form: 
Recall that, for linear systems, the multiplicative uncertainty 

where G;Ne(s) is the true transfer function of the process; G,(s) 
is the model transfer function; and I&) is the (linear) multipli- 
cative uncertainty. By letting y = w"'(u) represent the input/ 
output behavior of the true process and p(u) the input/output 
behavior of the model, it is natural for nonlinear systems to con- 
sider uncertainty descriptions of the form 

where A,,, is a linear time-invariant Volterra operator of the 
form 

A,,,(.) - $' /,( t - T )  - ( T )  d~ ( 3 4 )  
0 

This form of the above uncertainty description for nonlinear sys- 
tems is analogous to the multiplicative uncertainty description 
(Eq. 32)  for a linear system, since it is of the general form: 
(process/model mismatch) = (uncertainty operator) - (model). 
In nonlinear systems, the description must be in the time domain 
instead of the Laplace domain; hence, the convolution integral 
arises. Denoting by I&) the Laplace transform of Z,,,(t), the fol- 
lowing result is obtained. 

I 

~-------....-....-.---~--~------------~ 

Figure 9. Complete GLC structure with overall predictor 
for nonlinear processes with deadtime. 
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Result 3. The overall closed-loop system of Figure 9 will be 
stable for all uncertainties I, that satisfy 

Ii,(iw) 1 -= ~ ( w )  for all o (35) 

if 

In particular, for the external controller parameterization of Eiq. 
25, this condition becomes 

(2w' + 1y" > x ( w )  (37) 

A proof of Result 3 is given in the Appendix. 
Remark 3. Result 3 actually generalizes Result 2. Indeed, 

I,,,(t) - 6( t  - Atd) - 6(t) ,  where 6(-) is the delta function, cor- 
responds to error in the deadtime. 

The above robust stability results show that the method pro- 
posed in the previous sections will result in a robust control 
structure, a necessary feature for practical implementation. 

Example 
The control method of the previous sections will now be illus- 

trated through a simulation example. The system chosen for 
study was a nonisothermal CSTR with the consecutive reac- 
tions 

ki kz 
A - B - C  

taking place. The state equations for such a system are: 

dCA F - - - (CAi - C,) - klC: 
dt V 

(39) 

with 

kl - Aloe-ELtRT (41) 

Table 1. Values Used in Simulations I I 

"O' T 
160. 

h 

2 
2 

150. 

4 
F 

140. 

130. I 
.o 20. 40. 60. 80. 100. 

Time (s) 

Figure 10. Response with Bo - 1, B1 - 5, and c - 3.5. 

The controlled output of the system is the temperature of the 
reactor, T, and the manipulated input is the heat added to the 
reactor, Q, which is delayed by td. The relative order of the sys- 
tem is clearly 1 .  The required state feedback for this system is: 

It is assumed that the temperature is measured, but open-loop 
state observers must be used for the two concentrations. The 
control structure employed is that of Figure 9. The external con- 
troller parameterization of Eq. 25 was used, which for r - 1 
becomes 

In each simulation, a step change in the temperature setpoint 
was introduced at time t - 1 s. The specific numbers used for 
each of the parameters are given in Table 1. 

Figures 10 and 1 1  show the response of the system to an 
increase in the temperature setpoint for a perfect model. In Fig- 
ure 10, the controller parameters are Po - 1, & - 5, and c - 3.5. 

130. [/I 

.O 20. 40. 60. 80. 100. 
Time (s) 

Figure 11. Response with Bo - 1, B1 - 5, and c - 10. 
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T 
170. uncertainties. Computer simulations confirm theoretical re- 

sults. 
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Figure 12. Response with flo = 1, 8, = 5,  c = 3.5, and 
At, = 5. 

In Figure 1 1, the @’s have the same values and c = 10. Figures 12 
and 13 show the response of the system when a 5-second error in 
the deadtime is introduced in the controller. The same p’s as 
above were used; in Figure 12, t = 3.5 and in Figure 13, c = 10. 

From the robustness condition (Eq. 31), it follows that robust 
stability is guaranteed for c bigger than about 0.8Atd, where Atd 
is the error in deadtime. This is clearly in agreement with the 
simulation results. Furthermore, the simulated closed-loop re- 
sponse under perfect model conditions is in agreement with the 
theoretical results. Finally, the simulations confirm the intui- 
tively understood tradeoff between performance and robust- 
ness. 

Conclusion 
A novel approach for deadtime compensation for nonlinear 

processes has been developed. The approach structure consists 
of using a Smith-like predictor and linearizing state feedback 
which make the nonlinear system with deadtime behave like a 
linear system with deadtime. The control structure is completed 
by adding an open-loop state observer and a linear external con- 
troller which provides integral action and compensates for the 
deadtime of the input/output linear system. Conditions for 
robust stability are given with respect to errors in the deadtime 
and with respect to general linear unstructured multiplicative 

“O‘ T 

130. I 
.O 20. 40. 60. 80. 100. 

Time (s) 

Figure 13. Response with flo = I , @ ,  = 5, c = 10, and At, = 

5. 

Notation 
Adj M - adjugate of matrix M 
A, 6, c = matrices in the standard state space description of a linear 

system 
C.., - concentration of A in effluent stream 
C,, - inlet concentration of A 
C, = concentration of B in effluent stream 
C, = heat capacity of inlet stream 

C(s) - transfer function of external controller in GLC structure 
det M = determinant of matrix M 

F - flowrate through the CSTR 
f ( x ) ,  g(x) - vector fields characterizing the state model of a nonlinear 

process 
C&) - controller transfer function 
G,,(s) = deadtime-free part of process transfer function 
h ( x )  = scalar field determining the state/output map 

L$(x)  = kth-order Lie derivative of h with respect tof 
I, - linear multiplicative uncertainty 
K = gain vector in linear static state feedback 
k l  = reaction rate constant of first reaction in the example 
k2 = reaction rate constant of second reaction in the example 
Q - heat added to the reactor 
r = relative order 
s = Laplace transform variable 
T = temperature of the CSTR 
T, = temperature of inlet stream 
td - deadtime in the process 
t = time 
u = manipulated input 
Y - volume of the CSTR in the example 
v = GLC transformed control variable 
x = state vector 
y = process output 

i = imaginary unit 

y,, = set point value of process output 

Greek letters 
= coefficients of characteristic polynomial of the linear z) - y 

system 
-AH,  - heat of reaction of first reaction in the example 
-AH2 - heat of reaction of second reaction in the example 

X,(W) = upper bound on multiplicative uncertainty corresponding 
e = design parameter 

to errors in deadtime only 
A(@) = upper bound on linear multiplicative uncertainty 

A, = linear time-invariant Volterra operator characterizing lin- 
ear multiplicative uncertainty 

p = input/output behavior of the process 
p - density of inlet stream 
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Appendix: Proofs of Results 1, 2 and 3 

tor. 
Proof of Result 1. Under proper initialization of the predic- 

x ( t )  = % ( t )  and thus from Eq. 21 x * ( t )  = a(t). 

Hence, x * ( t )  = x ( t  + t d ) .  Thus, the state feedback law 

when substituted into Eq. 2, yields 

whose input/output behavior is governed by Eq. 22. QED 
Proof of Result 2. Let fLNe be the true deadtime, td the model 

deadtime, and Atd = tiNe - td. Due to the time invariance of the 
system, it is clear that 

Hence 

and therefore 

Combining Eqs. 44 and 45 yields 

or, in the Laplace domain, 

or 

k-0 k-0 

This means that the multiplicative uncertainty of the u - y sys- 
tem is e-A‘y - 1. A formal application of the Doyle-Stein theo- 
rem to the closed-loop system leads immediately to the result. 

Proof of Result 3. From the uncertainty description (Eq. 33), 
i.e., y - p(u)  = A,,,p(u), it follows that 

and, since A,,, is of the form of Eq. 34, 

But by construction of the compensator of the inner loop of Fig- 
ure 9 (Eqs. 17 and 28), 

and therefore 

or, in the Laplace domain, 

y ( t )  = c(”’[u(t)l = p[u( t  - At,)]  e-w - e-lds 

Y(S) - I V ( S )  = M S )  - 2 B f l k  ’(’) 
k-0 

E P f l k  
k-0 

’ dky ‘ dk This means that the multiplicative uncertainty of the u - y sys- & B k  = P k  dP p[u(t  - (44) tem is I,&). A formal application of the Doyle-Stein theorem to 
the closed-loop system leads immediately to the result. 

But by construction Of the compensator in the inner loop of Fig- Manuscript received Dec. 29,1988. and revision received June 14.1989. 
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