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Abstract

Much of human dialogue occurs in semi-

cooperative settings, where agents with

different goals attempt to agree on com-

mon decisions. Negotiations require com-

plex communication and reasoning skills,

but success is easy to measure, making

this an interesting task for AI. We gather

a large dataset of human-human negoti-

ations on a multi-issue bargaining task,

where agents who cannot observe each

other’s reward functions must reach an

agreement (or a deal) via natural language

dialogue. For the first time, we show it is

possible to train end-to-end models for ne-

gotiation, which must learn both linguistic

and reasoning skills with no annotated di-

alogue states. We also introduce dialogue

rollouts, in which the model plans ahead

by simulating possible complete continu-

ations of the conversation, and find that

this technique dramatically improves per-

formance. Our code and dataset are pub-

licly available.1

1 Introduction

Intelligent agents often need to cooperate with oth-

ers who have different goals, and typically use

natural language to agree on decisions. Negotia-

tion is simultaneously a linguistic and a reasoning

problem, in which an intent must be formulated

and then verbally realised. Such dialogues contain

both cooperative and adversarial elements, and re-

quire agents to understand, plan, and generate ut-

terances to achieve their goals (Traum et al., 2008;

Asher et al., 2012).

1https://github.com/facebookresearch/

end-to-end-negotiator

We collect the first large dataset of natural lan-

guage negotiations between two people, and show

that end-to-end neural models can be trained to

negotiate by maximizing the likelihood of human

actions. This approach is scalable and domain-

independent, but does not model the strategic

skills required for negotiating well. We fur-

ther show that models can be improved by train-

ing and decoding to maximize reward instead of

likelihood—by training with self-play reinforce-

ment learning, and using rollouts to estimate the

expected reward of utterances during decoding.

To study semi-cooperative dialogue, we gather

a dataset of 5808 dialogues between humans on a

negotiation task. Users were shown a set of items

with a value for each, and asked to agree how to

divide the items with another user who has a dif-

ferent, unseen, value function (Figure 1).

We first train recurrent neural networks to imi-

tate human actions. We find that models trained to

maximise the likelihood of human utterances can

generate fluent language, but make comparatively

poor negotiators, which are overly willing to com-

promise. We therefore explore two methods for

improving the model’s strategic reasoning skills—

both of which attempt to optimise for the agent’s

goals, rather than simply imitating humans:

Firstly, instead of training to optimise likeli-

hood, we show that our agents can be consider-

ably improved using self play, in which pre-trained

models practice negotiating with each other in or-

der to optimise performance. To avoid the models

diverging from human language, we interleave re-

inforcement learning updates with supervised up-

dates. For the first time, we show that end-to-

end dialogue agents trained using reinforcement

learning outperform their supervised counterparts

in negotiations with humans.

Secondly, we introduce a new form of planning

for dialogue called dialogue rollouts, in which an
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Figure 1: A dialogue in our Mechanical Turk interface, which we used to collect a negotiation dataset.

agent simulates complete dialogues during decod-

ing to estimate the reward of utterances. We show

that decoding to maximise the reward function

(rather than likelihood) significantly improves per-

formance against both humans and machines.

Analysing the performance of our agents, we

find evidence of sophisticated negotiation strate-

gies. For example, we find instances of the model

feigning interest in a valueless issue, so that it can

later ‘compromise’ by conceding it. Deceit is a

complex skill that requires hypothesising the other

agent’s beliefs, and is learnt relatively late in child

development (Talwar and Lee, 2002). Our agents

have learnt to deceive without any explicit human

design, simply by trying to achieve their goals.

The rest of the paper proceeds as follows: §2 de-

scribes the collection of a large dataset of human-

human negotiation dialogues. §3 describes a base-

line supervised model, which we then show can

be improved by goal-based training (§4) and de-

coding (§5). §6 measures the performance of our

models and humans on this task, and §7 gives a

detailed analysis and suggests future directions.

2 Data Collection

2.1 Overview

To enable end-to-end training of negotiation

agents, we first develop a novel negotiation task

and curate a dataset of human-human dialogues

for this task. This task and dataset follow our

proposed general framework for studying semi-

cooperative dialogue. Initially, each agent is

shown an input specifying a space of possible ac-

tions and a reward function which will score the

outcome of the negotiation. Agents then sequen-

tially take turns of either sending natural language

messages, or selecting that a final decision has

been reached. When one agent selects that an

agreement has been made, both agents indepen-

dently output what they think the agreed decision

was. If conflicting decisions are made, both agents

are given zero reward.

2.2 Task

Our task is an instance of multi issue bargaining

(Fershtman, 1990), and is based on DeVault et al.

(2015). Two agents are both shown the same col-

lection of items, and instructed to divide them so

that each item assigned to one agent.

Each agent is given a different randomly gen-

erated value function, which gives a non-negative

value for each item. The value functions are con-

strained so that: (1) the total value for a user of

all items is 10; (2) each item has non-zero value

to at least one user; and (3) some items have non-

zero value to both users. These constraints enforce

that it is not possible for both agents to receive a

maximum score, and that no item is worthless to

both agents, so the negotiation will be competitive.

After 10 turns, we allow agents the option to com-

plete the negotiation with no agreement, which is

worth 0 points to both users. We use 3 item types

(books, hats, balls), and between 5 and 7 total

items in the pool. Figure 1 shows our interface.

2.3 Data Collection

We collected a set of human-human dialogues us-

ing Amazon Mechanical Turk. Workers were paid

$0.15 per dialogue, with a $0.05 bonus for max-

imal scores. We only used workers based in the

United States with a 95% approval rating and at

least 5000 previous HITs. Our data collection in-

terface was adapted from that of Das et al. (2016).
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Crowd Sourced Dialogue

Agent 1 Input

3xbook value=1
2xhat value=3
1xball value=1

Agent 2 Input

3xbook value=2
2xhat value=1
1xball value=2

Dialogue

Agent 1: I want the books and the hats,
you get the ball
Agent 2: Give me a book too and we
have a deal
Agent 1: Ok, deal
Agent 2: <choose>

Agent 1 Output

2xbook 2xhat

Agent 2 Output

1xbook 1xball

Perspective: Agent 1

Perspective: Agent 2

Input

3xbook value=1
2xhat value=3
1xball value=1

Output

2xbook 2xhat

Dialogue

write: I want the books
and the hats, you get
the ball read: Give me
a book too and we have
a deal write: Ok, deal
read: <choose>

Input

3xbook value=2
2xhat value=1
1xball value=2

Dialogue

read: I want the books
and the hats, you get
the ball write: Give me
a book too and we have
a deal read: Ok, deal
write: <choose>

Output

1xbook 1xball

Figure 2: Converting a crowd-sourced dialogue (left) into two training examples (right), from the per-

spective of each user. The perspectives differ on their input goals, output choice, and in special tokens

marking whether a statement was read or written. We train conditional language models to predict the

dialogue given the input, and additional models to predict the output given the dialogue.

We collected a total of 5808 dialogues, based

on 2236 unique scenarios (where a scenario is the

available items and values for the two users). We

held out a test set of 252 scenarios (526 dialogues).

Holding out test scenarios means that models must

generalise to new situations.

3 Likelihood Model

We propose a simple but effective baseline model

for the conversational agent, in which a sequence-

to-sequence model is trained to produce the com-

plete dialogue, conditioned on an agent’s input.

3.1 Data Representation

Each dialogue is converted into two training ex-

amples, showing the complete conversation from

the perspective of each agent. The examples differ

on their input goals, output choice, and whether

utterances were read or written.

Training examples contain an input goal g,

specifying the available items and their values, a

dialogue x, and an output decision o specifying

which items each agent will receive. Specifically,

we represent g as a list of six integers correspond-

ing to the count and value of each of the three item

types. Dialogue x is a list of tokens x0..T contain-

ing the turns of each agent interleaved with sym-

bols marking whether a turn was written by the

agent or their partner, terminating in a special to-

ken indicating one agent has marked that an agree-

ment has been made. Output o is six integers de-

scribing how many of each of the three item types

are assigned to each agent. See Figure 2.

3.2 Supervised Learning

We train a sequence-to-sequence network to gen-

erate an agent’s perspective of the dialogue condi-

tioned on the agent’s input goals (Figure 3a).

The model uses 4 recurrent neural networks,

implemented as GRUs (Cho et al., 2014): GRUw,

GRUg, GRU−→o , and GRU←−o .

The agent’s input goals g are encoded using

GRUg. We refer to the final hidden state as hg.

The model then predicts each token xt from left to

right, conditioned on the previous tokens and hg.

At each time step t, GRUw takes as input the pre-

vious hidden state ht−1, previous token xt−1 (em-

bedded with a matrix E), and input encoding hg.

Conditioning on the input at each time step helps

the model learn dependencies between language

and goals.

ht = GRUw(ht−1, [Ext−1, h
g]) (1)

The token at each time step is predicted with a

softmax, which uses weight tying with the embed-
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Input Encoder Output Decoder

write: Take one hat read: I need two write: deal . . .

(a) Supervised Training

Input Encoder Output Decoder

write: Take one hat read: I need two write: deal . . .

(b) Decoding, and Reinforcement Learning

Figure 3: Our model: tokens are predicted conditioned on previous words and the input, then the output

is predicted using attention over the complete dialogue. In supervised training (3a), we train the model

to predict the tokens of both agents. During decoding and reinforcement learning (3b) some tokens are

sampled from the model, but some are generated by the other agent and are only encoded by the model.

ding matrix E (Mao et al., 2015):

pθ(xt|x0..t−1, g) ∝ exp(ET ht) (2)

Note that the model predicts both agent’s words,

enabling its use as a forward model in Section 5.

At the end of the dialogue, the agent outputs a

set of tokens o representing the decision. We gen-

erate each output conditionally independently, us-

ing a separate classifier for each. The classifiers

share bidirectional GRUs and an attention mech-

anism (Bahdanau et al., 2014) over the dialogue,

and additionally condition on the input goals.

h
−→o
t = GRU−→o (h

−→o
t−1, [Ext, ht]) (3)

h
←−o
t = GRU←−o (h

←−o
t+1, [Ext, ht]) (4)

ho
t = [h

←−o
t , h

−→o
t ] (5)

ha
t = W a[tanh(W hho

t )] (6)

αt =
exp(w · ha

t )
∑

t′ exp(w · ha
t′)

(7)

hs = tanh(W s[hg,
∑

t

αtht]) (8)

The output tokens are predicted using softmax:

pθ(oi|x0..t, g) ∝ exp(W oihs) (9)

The model is trained to minimize the negative

log likelihood of the token sequence x0..T con-

ditioned on the input goals g, and of the outputs

o conditioned on x and g. The two terms are

weighted with a hyperparameter α.

L(θ) =−
∑

x,g

∑

t

log pθ(xt|x0..t−1, g)

︸ ︷︷ ︸

Token prediction loss

− α
∑

x,g,o

∑

j

log pθ(oj |x0..T , g)

︸ ︷︷ ︸

Output choice prediction loss

(10)

Unlike the Neural Conversational Model

(Vinyals and Le, 2015), our approach shares all

parameters for reading and generating tokens.

3.3 Decoding

During decoding, the model must generate an

output token xt conditioned on dialogue history

x0..t−1 and input goals g, by sampling from pθ:

xt ∼ pθ(xt|x0..t−1, g) (11)

If the model generates a special end-of-turn to-

ken, it then encodes a series of tokens output by

the other agent, until its next turn (Figure 3b).

The dialogue ends when either agent outputs a

special end-of-dialogue token. The model then

outputs a set of choices o. We choose each item

independently, but enforce consistency by check-

ing the solution is in a feasible set O:

o∗ = argmax
o∈O

∏

i

pθ(oi|x0..T , g) (12)

In our task, a solution is feasible if each item is as-

signed to exactly one agent. The space of solutions

is small enough to be tractably enumerated.

4 Goal-based Training

Supervised learning aims to imitate the actions of

human users, but does not explicitly attempt to

maximise an agent’s goals. Instead, we explore

pre-training with supervised learning, and then

fine-tuning against the evaluation metric using re-

inforcement learning. Similar two-stage learning

strategies have been used previously (e.g. Li et al.

(2016); Das et al. (2017)).

During reinforcement learning, an agent A at-

tempts to improve its parameters from conversa-

tions with another agent B. While the other agent

B could be a human, in our experiments we used
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read: You get

one book and

I’ll take every-

thing else.

write: Great deal,

thanks!

write: No way, I

need all 3 hats read: Ok, fine

read: I’ll give you 2

read: No problem

read: Any time

choose: 3x hat

choose: 2x hat

choose: 1x book

choose: 1x book

9

6

1

1

Dialogue history Candidate responses Simulation of rest of dialogue Score

Figure 4: Decoding through rollouts: The model first generates a small set of candidate responses. For

each candidate, it then simulates a number of possible complete future conversations by sampling, and

estimates the expected future reward by averaging the scores. The system outputs the candidate with the

highest expected reward.

our fixed supervised model that was trained to im-

itate humans. The second model is fixed as we

found that updating the parameters of both agents

led to divergence from human language. In effect,

agent A learns to improve by simulating conversa-

tions with the help of a surrogate forward model.

Agent A reads its goals g and then generates

tokens x0..n by sampling from pθ. When x gener-

ates an end-of-turn marker, it then reads in tokens

xn+1..m generated by agent B. These turns alter-

nate until one agent emits a token ending the di-

alogue. Both agents then output a decision o and

collect a reward from the environment (which will

be 0 if they output different decisions). We denote

the subset of tokens generated by A as XA (e.g.

tokens with incoming arrows in Figure 3b).

After a complete dialogue has been generated,

we update agent A’s parameters based on the out-

come of the negotiation. Let rA be the score agent

A achieved in the completed dialogue, T be the

length of the dialogue, γ be a discount factor that

rewards actions at the end of the dialogue more

strongly, and µ be a running average of completed

dialogue rewards so far2. We define the future re-

ward R for an action xt ∈ XA as follows:

R(xt) =
∑

xt∈XA

γT−t(rA(o)− µ) (13)

We then optimise the expected reward of each

action xt ∈ XA:

LRL
θ = Ext∼pθ(xt|x0..t−1,g)[R(xt)] (14)

2As all rewards are non-negative, we instead re-scale them
by subtracting the mean reward found during self play. Shift-
ing in this way can reduce the variance of our estimator.

The gradient of LRL
θ is calculated as in REIN-

FORCE (Williams, 1992):

∇θL
RL
θ =

∑

xt∈XA

Ext
[R(xt)∇θ log(pθ(xt|x0..t−1, g))]

(15)

5 Goal-based Decoding

Likelihood-based decoding (§3.3) may not be op-

timal. For instance, an agent may be choosing be-

tween accepting an offer, or making a counter of-

fer. The former will often have a higher likelihood

under our model, as there are fewer ways to agree

than to make another offer, but the latter may lead

to a better outcome. Goal-based decoding also al-

lows more complex dialogue strategies. For exam-

ple, a deceptive utterance is likely to have a low

model score (as users were generally honest in the

supervised data), but may achieve high reward.

We instead explore decoding by maximising ex-

pected reward. We achieve this by using pθ as a

forward model for the complete dialogue, and then

deterministically computing the reward. Rewards

for an utterance are averaged over samples to cal-

culate expected future reward (Figure 4).

We use a two stage process: First, we gener-

ate c candidate utterances U = u0..c, represent-

ing possible complete turns that the agent could

make, which are generated by sampling from pθ

until the end-of-turn token is reached. Let x0..n−1

be current dialogue history. We then calculate

the expected reward R(u) of candidate utterance

u = xn,n+k by repeatedly sampling xn+k+1,T

from pθ, then choosing the best output o using

Equation 12, and finally deterministically comput-

ing the reward r(o). The reward is scaled by the

probability of the output given the dialogue, be-
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Algorithm 1 Dialogue Rollouts algorithm.

1: procedure ROLLOUT(x0..i, g)

2: u∗ ← ∅

3: for c ∈ {1..C} do ⊲ C candidate moves

4: j ← i
5: do ⊲ Rollout to end of turn

6: j ← j + 1
7: xj ∼ pθ(xj |x0..j−1, g)
8: while xk /∈ {read:, choose:}
9: u← xi+1..xj ⊲ u is candidate move

10: for s ∈ {1..S} do ⊲ S samples per move

11: k ← j ⊲ Start rollout from end of u
12: while xk 6= choose: do

⊲ Rollout to end of dialogue

13: k ← k + 1
14: xk ∼ pθ(xk|x0..k−1, g)

⊲ Calculate rollout output and reward

15: o← argmaxo′∈O p(o′|x0..k, g)
16: R(u)← R(u) + r(o)p(o′|x0..k, g)

17: if R(u) > R(u∗) then

18: u∗ ← u

19: return u∗ ⊲ Return best move

cause if the agents select different outputs then

they both receive 0 reward.

R(xn..n+k) = Ex(n+k+1..T ;o)∼pθ
[r(o)pθ(o|x0..T )]

(16)

We then return the utterance maximizing R.

u∗ = argmax
u∈U

R(u) (17)

We use 5 rollouts for each of 10 candidate turns.

6 Experiments

6.1 Training Details

We implement our models using PyTorch. All

hyper-parameters were chosen on a development

dataset. The input tokens are embedded into a

64-dimensional space, while the dialogue tokens

are embedded with 256-dimensional embeddings

(with no pre-training). The input GRUg has a

hidden layer of size 64 and the dialogue GRUw

is of size 128. The output GRU−→o and GRU←−o
both have a hidden state of size 256, the size of

hs is 256 as well. During supervised training, we

optimise using stochastic gradient descent with a

minibatch size of 16, an initial learning rate of

1.0, Nesterov momentum with µ=0.1 (Nesterov,

1983), and clipping gradients whose L2 norm ex-

ceeds 0.5. We train the model for 30 epochs and

pick the snapshot of the model with the best val-

idation perplexity. We then annealed the learn-

ing rate by a factor of 5 each epoch. We weight

the terms in the loss function (Equation 10) using

α=0.5. We do not train against output decisions

where humans selected different agreements. To-

kens occurring fewer than 20 times are replaced

with an ‘unknown’ token.

During reinforcement learning, we use a learn-

ing rate of 0.1, clip gradients above 1.0, and use

a discount factor of γ=0.95. After every 4 rein-

forcement learning updates, we make a supervised

update with mini-batch size 16 and learning rate

0.5, and we clip gradients at 1.0. We used 4086

simulated conversations.

When sampling words from pθ, we reduce the

variance by doubling the values of logits (i.e. us-

ing temperature of 0.5).

6.2 Comparison Systems

We compare the performance of the following:

LIKELIHOOD uses supervised training and decod-

ing (§3), RL is fine-tuned with goal-based self-

play (§4), ROLLOUTS uses supervised training

combined with goal-based decoding using rollouts

(§5), and RL+ROLLOUTS uses rollouts with a base

model trained with reinforcement learning.

6.3 Intrinsic Evaluation

For development, we use measured the perplexity

of user generated utterances, conditioned on the

input and previous dialogue.

Results are shown in Table 3, and show that

the simple LIKELIHOOD model produces the most

human-like responses, and the alternative training

and decoding strategies cause a divergence from

human language. Note however, that this diver-

gence may not necessarily correspond to lower

quality language—it may also indicate different

strategic decisions about what to say. Results in

§6.4 show all models could converse with humans.

6.4 End-to-End Evaluation

We measure end-to-end performance in dialogues

both with the likelihood-based agent and with hu-

mans on Mechanical Turk, on held out scenarios.

Humans were told that they were interacting

with other humans, as they had been during the

collection of our dataset (and few appeared to re-

alize they were in conversation with machines).
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vs. LIKELIHOOD vs. Human

Model
Score

(all)

Score

(agreed)

%

Agreed

% Pareto

Optimal

Score

(all)

Score

(agreed)

%

Agreed

% Pareto

Optimal

LIKELIHOOD 5.4 vs. 5.5 6.2 vs. 6.2 87.9 49.6 4.7 vs. 5.8 6.2 vs. 7.6 76.5 66.2

RL 7.1 vs. 4.2 7.9 vs. 4.7 89.9 58.6 4.3 vs. 5.0 6.4 vs. 7.5 67.3 69.1

ROLLOUTS 7.3 vs. 5.1 7.9 vs. 5.5 92.9 63.7 5.2 vs. 5.4 7.1 vs. 7.4 72.1 78.3

RL+ROLLOUTS 8.3 vs. 4.2 8.8 vs. 4.5 94.4 74.8 4.6 vs. 4.2 8.0 vs. 7.1 57.2 82.4

Table 1: End task evaluation on heldout scenarios, against the LIKELIHOOD model and humans from

Mechanical Turk. The maximum score is 10. Score (all) gives 0 points when agents failed to agree.

Metric Dataset

Number of Dialogues 5808

Average Turns per Dialogue 6.6

Average Words per Turn 7.6

% Agreed 80.1

Average Score (/10) 6.0

% Pareto Optimal 76.9

Table 2: Statistics on our dataset of crowd-

sourced dialogues between humans.

Model Valid PPL Test PPL Test Avg. Rank

LIKELIHOOD 5.62 5.47 521.8

RL 6.03 5.86 517.6

ROLLOUTS - - 844.1

RL+ROLLOUTS - - 859.8

Table 3: Intrinsic evaluation showing the average

perplexity of tokens and rank of complete turns

(out of 2083 unique human messages from the test

set). Lower is more human-like for both.

We measure the following statistics:

Score: The average score for each agent (which

could be a human or model), out of 10.

Agreement: The percentage of dialogues where

both agents agreed on the same decision.

Pareto Optimality: The percentage of Pareto

optimal solutions for agreed deals (a solution is

Pareto optimal if neither agent’s score can be im-

proved without lowering the other’s score). Lower

scores indicate inefficient negotiations.

Results are shown in Table 1. Firstly,

we see that the RL and ROLLOUTS models

achieve significantly better results when negotiat-

ing with the LIKELIHOOD model, particularly the

RL+ROLLOUTS model. The percentage of Pareto

optimal solutions also increases, showing a bet-

ter exploration of the solution space. Compared

to human-human negotiations (Table 2), the best

models achieve a higher agreement rate, better

scores, and similar Pareto efficiency. This result

confirms that attempting to maximise reward can

outperform simply imitating humans.

Similar trends hold in dialogues with humans,

with goal-based reasoning outperforming imita-

tion learning. The ROLLOUTS model achieves

comparable scores to its human partners, and the

RL+ROLLOUTS model actually achieves higher

scores. However, we also find significantly more

cases of the goal-based models failing to agree a

deal with humans—largely a consequence of their

more aggressive negotiation tactics (see §7).

7 Analysis

Table 1 shows large gains from goal-based meth-

ods. In this section, we explore the strengths and

weaknesses of our models.

Goal-based models negotiate harder. The

RL+ROLLOUTS model has much longer dialogues

with humans than LIKELIHOOD (7.2 turns vs. 5.3

on average), indicating that the model is accepting

deals less quickly, and negotiating harder.

A negative consequence of more aggressive

negotiation strategies is that humans were more

likely to walk away with no deal, resulting in

lower agreement rates. Even though failing to

agree was worth 0 points, people often preferred

this course over capitulating to an uncompromis-

ing opponent—a factor not well captured by the

simulated partner in reinforcement learning train-

ing or rollouts (as reflected by the larger gains

from goal-based models in dialogues with the

LIKELIHOOD model). In particular, the goal-based

models are prone to simply rephrasing the same

demand each turn, which is a more effective strat-

egy against the LIKELIHOOD model than humans.

One approach to mitigating this issue would

be to learn the impact of uncooperative strategies

across multiple rounds of negotiation (Lerer and

Peysakhovich, 2017). In single dialogues, failing

to agree is never better than reaching some agree-

ment. However, across multiple rounds, learning

to walk away without a deal may incentivize part-

ners to cooperate more in future.

Figure 5 shows an example of our goal-based
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Input

Human 1xbook value=3 1xhat value=1 3xball value=2

RL+ROLLOUTS 1xbook value=6 1xhat value=4 3xball value=0

RL+ROLLOUTS You can have the balls if i can have the hat and book

Human Nope, give me the books and you can have

everything else

RL+ROLLOUTS Ok. I will take the book and one hat

Human I get all the balls?

RL+ROLLOUTS Yes. I can do that.

Human Ok, deal

Output Reward

RL+ROLLOUTS 1xbook 1xhat 10/10

Human 3xball 6/10

Figure 5: Example of a model stubbornly holding

out for maximum points in a dialogue.

Input

Human 3xbook value=2 3xhat value=1 1xball value=1

RL+ROLLOUTS 3xbook value=1 3xhat value=2 1xball value=1

Human I’d like the books and the hats.

RL+ROLLOUTS I will take the books and hats

Human I really need the books and at least one other object.

RL+ROLLOUTS Ok, you can have one book and one ball

Human If I can have all the books, I can leave you the rest.

RL+ROLLOUTS Deal

Output Reward

RL+ROLLOUTS 3xhat 1xball 7/10

Human 3xbook 6/10

Figure 6: Example of model compromising.

model stubbornly negotiating until it achieves a

good outcome.

Models learn to be deceptive. Deception can be

an effective negotiation tactic. We found numer-

ous cases of our models initially feigning interest

in a valueless item, only to later ‘compromise’ by

conceding it. Figure 7 shows an example. This

strategy has previously been coded into negotia-

tion agents by Gratch et al. (2016), whereas our

agents have learned it from data.

Models produce meaningful novel sentences.

One interesting question is whether our models are

capable of generating novel sentences in the new

circumstances they find themselves in, or if they

simply repeat messages from the training data ver-

batim. We find that 76% of messages produced by

the LIKELIHOOD model in self-play were found in

the training data. We manually examined the novel

utterances produced by our model, and found that

the overwhelming majority were fluent English

sentences in isolation—showing that the model

has learnt a good language model for the domain

(in addition to results that show it uses language

effectively to achieve its goals). These results sug-

gest that although neural models are prone to the

safer option of repeating sentences from training

data, they are capable of generalising when nec-

Input

RL+ROLLOUTS 4xbook value=0 2xhat value=5 1xball value=0

Human 4xbook value=1 2xhat value=2 1xball value=2

RL+ROLLOUTS You can have the ball if I can have everything else.

Human No can’t do that the ball is not going to give

me anything

RL+ROLLOUTS I need the hats and you can have the rest

Human Deal

RL+ROLLOUTS Great! Thank you!

Output Reward

RL+ROLLOUTS 2xhat 10/10

Human 4xbook 1xball 6/10

Figure 7: Dialogue in which the model’s initial in-

terest in the valueless books allows it to compro-

mise while achieving a maximum score.

essary. Future work should choose domains that

force a higher degree of diversity in utterances.

Maintaining multi-sentence coherence is chal-

lenging. One common linguistic error we see

RL+ROLLOUTS make is to start a message by in-

dicating agreement (e.g. I agree or Deal), but then

going on to propose a counter offer—a behaviour

that human partners found frustrating. One ex-

planation is that the model has learnt that in the

supervised data, messages beginning with I agree

are often at the end of the dialogue, and partners

rarely reply with further negotiation—so the mod-

els using rollouts and reinforcement learning be-

lieve this tactic will help their offer to be accepted.

8 Related Work

Most work on goal orientated dialogue systems

has assumed that state representations are anno-

tated in the training data (Williams and Young,

2007; Henderson et al., 2014; Wen et al., 2016).

The use of state annotations allows a cleaner sep-

aration of the reasoning and natural language as-

pects of dialogues, but our end-to-end approach

makes data collection cheaper and allows tasks

where it is unclear how to annotate state. Bordes

and Weston (2016) explore end-to-end goal orien-

tated dialogue with a supervised model—we show

improvements over supervised learning with goal-

based training and decoding. Recently, He et al.

(2017) use task-specific rules to combine the task

input and dialogue history into a more structured

state representation than ours.

Reinforcement learning (RL) has been applied

in many dialogue settings. RL has been widely

used to improve dialogue managers, which man-

age transitions between dialogue states (Singh

et al., 2002; Pietquin et al., 2011; Rieser and

Lemon, 2011; Gašic et al., 2013; Fatemi et al.,
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2016). In contrast, our end-to-end approach has

no explicit dialogue manager that can be updated

in isolation, and we found it necessary to inter-

leave RL and supervised learning to avoid RL re-

ducing the quality of language generation. Li et al.

(2016) improve metrics such as diversity for non-

goal-orientated dialogue using RL, which would

make an interesting extension to our work. Das

et al. (2017) use reinforcement learning to improve

cooperative bot-bot dialogues. RL has also been

used to allow agents to invent new languages (Das

et al., 2017; Mordatch and Abbeel, 2017). To our

knowledge, our model is the first to use RL to im-

prove the performance of an end-to-end goal ori-

entated dialogue system in dialogues with humans.

Work on learning end-to-end dialogues has con-

centrated on ‘chat’ settings, without explicit goals

(Ritter et al., 2011; Vinyals and Le, 2015; Li et al.,

2015). These dialogues contain a much greater di-

versity of vocabulary than our domain, but do not

have the challenging adversarial elements. Such

models are notoriously hard to evaluate (Liu et al.,

2016), because the huge diversity of reasonable

responses, whereas our task has a clear objec-

tive. Our end-to-end approach would also be much

more straightforward to integrate into a general-

purpose dialogue agent than one that relied on an-

notated dialogue states (Dodge et al., 2016).

There is a substantial literature on multi-agent

bargaining in game-theory, e.g. Nash Jr (1950).

There has also been computational work on mod-

elling negotiations (Baarslag et al., 2013)—our

work differs in that agents communicate in unre-

stricted natural language, rather than pre-specified

symbolic actions, and our focus on improving per-

formance relative to humans rather than other au-

tomated systems. Our task is based on that of De-

Vault et al. (2015), who study natural language

negotiations for pedagogical purposes—their ver-

sion includes speech rather than textual dialogue,

and embodied agents, which would make inter-

esting extensions to our work. The only au-

tomated natural language negotiations systems

we are aware of have first mapped language to

domain-specific logical forms, and then focused

on choosing the next dialogue act (Rosenfeld et al.,

2014; Cuayáhuitl et al., 2015; Keizer et al., 2017).

Our end-to-end approach is the first to learn com-

prehension, reasoning and generation skills in a

domain-independent data driven way.

Our use of a combination of supervised and re-

inforcement learning for training, and stochastic

rollouts for decoding, builds on strategies used

in game playing agents such as AlphaGo (Silver

et al., 2016). Our work is a step towards real-

world applications for these techniques. Our use

of rollouts could be extended by choosing the

other agent’s responses based on sampling, us-

ing Monte Carlo Tree Search (MCTS) (Kocsis and

Szepesvári, 2006). However, our setting has a

higher branching factor than in domains where

MCTS has been successfully applied, such as Go

(Silver et al., 2016)—future work should explore

scaling tree search to dialogue modelling.

9 Conclusion

We have introduced end-to-end learning of natu-

ral language negotiations as a task for AI, argu-

ing that it challenges both linguistic and reason-

ing skills while having robust evaluation metrics.

We gathered a large dataset of human-human ne-

gotiations, which contain a variety of interesting

tactics. We have shown that it is possible to train

dialogue agents end-to-end, but that their ability

can be much improved by training and decoding

to maximise their goals, rather than likelihood.

There remains much potential for future work,

particularly in exploring other reasoning strate-

gies, and in improving the diversity of utterances

without diverging from human language. We will

also explore other negotiation tasks, to investi-

gate whether models can learn to share negotiation

strategies across domains.
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