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Abstract
Alias analysis is a critical component in many compiler optimiza-
tions. A promising approach to reduce the complexity of alias anal-
ysis is to use speculation. The approach consists of performing op-
timizations assuming the alias relationships that are true most of
the time, and repairing the code when such relationships are found
not to hold through runtime checks.

This paper proposes a general alias speculation scheme that
leverages upcoming hardware support for transactions with the help
of some ISA extensions. The ability of transactions to checkpoint
and roll back frees the compiler to pursue aggressive optimizations
without having to worry about recovery code. Also, exposing the
memory conflict detection hardware in transactions to software
allows runtime checking of aliases with little or no overhead. We
test the potential of the novel alias speculation approach with Loop
Invariant Code Motion (LICM), Global Value Numbering (GVN),
and Partial Redundancy Elimination (PRE) optimization passes. On
average, they are shown to reduce program execution time by 9% in
SPEC FP2006 applications and 3% in SPEC INT2006 applications
over the alias analysis of a state-of-the-art compiler.

Categories and Subject Descriptors C.1.2 [Processor Architec-
tures]: Multiple Data Stream Architectures — MIMD processors;
D.3.4 [Programming Languages]: Processors — Compilers, Opti-
mization
General Terms Algorithms, Design, Performance.
Keywords Alias Analysis, Atomic Region, Transactional Mem-
ory, Compiler Optimization.

1. Introduction
Recently, there has been a flurry of activity in the industry to in-
tegrate support for transactional memory into processors, in the
hopes of making parallel programming more tractable. Several
mechanisms or machines now provide architectural support for
transactions, such as Intel’s Transactional Synchronization Ex-
tensions [2], IBM’s Bluegene/Q [1], IBM’s POWER architec-
ture [3], AMD’s Advanced Synchronization Facility [10], and
Azul’s Vega [11].

Interestingly, transactions can be leveraged for a completely dif-
ferent purpose — to aid the compiler generate better code. In par-
ticular, they can enable more aggressive code motion transforma-
tions. Code motion forms the basis of most redundancy elimina-
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tion optimizations, such as Loop Invariant Code Motion (LICM),
Global Value Numbering (GVN), Dead Store Elimination (DSE),
and Partial Redundancy Elimination (PRE). In these optimizations,
the compiler attempts to move a computation to a location where it
is less frequently executed, or to a location where it can be elimi-
nated by proving redundancy. However, code motion is prevented
when there is an intervening memory access in its span that poten-
tially aliases with the computation.

Unfortunately, proving that such intervening memory accesses
do not alias is a notoriously difficult problem, especially in the
presence of pointers. The general problem of proving the aliasing
properties of a program, or alias analysis, has been of much interest.
Many researchers have worked on it over the years [6, 16, 17,
24, 37, 42], making important progress. However, the difficulty
has been that there is a trade-off between precision and efficiency,
and the most accurate algorithms have too high space and time
complexity to gain general use [18]. Indeed, alias analysis is hard
even from a theoretical point of view [9, 19, 22, 34, 36].

Luckily, the use of transactions, or atomic regions, can be a
game-changer in the field of alias analysis. There are two rea-
sons for this. First, transactions provide the ability to checkpoint
and buffer modified memory state — since they have to guaran-
tee commit atomicity. Second, they provide the ability to perform
alias checks of memory state accessed by the transaction against
other memory accesses — since they have to guarantee isolation.
The former allows the compiler to perform code motion specula-
tively, based on assumptions about aliasing and without having to
worry about recovery. The latter allows the compiler to check these
assumptions at runtime with little or no overhead. For this to be fea-
sible, however, we need to extend the hardware-software interface
for transactions, making them more permeable to software.

In this work, we apply these insights to build a form of alias
speculation that can be used by the compiler to perform aggressive
optimizations that were not previously possible. Unlike conven-
tional alias analyses, which need to prove aliasing properties, we
only need to determine that the aliasing properties are true “most
of the time”. We can detect the cases when they are incorrect at
runtime, and just roll back the execution in those rare cases.

Admittedly, this is not the first time that speculation has been
adopted for alias analysis. Speculation has been used in the past
in a purely software setting [31], or with the help of hardware in
the Itanium Advanced Load Address Table (ALAT) [14, 25, 26]
and the Transmeta data speculation support [15, 21]. However,
past work has not fully taken advantage of what transactions can
potentially offer, including the ability to (i) move store accesses (in
addition to load accesses) and (ii) perform multiple optimizations
with differing code motion spans in the same atomic region.

Specifically, the ALAT does not use atomic regions, and is only
used to speculatively hoist loads across aliasing stores. Moreover,
the compiler must place a check instruction at each location in the
code where the original load was. Equally important, the compiler



is in charge of generating the recovery code, which is complex and
hampers subsequent optimization and code generation passes.

Transmeta is closest to our proposal in that it supports check-
pointing hardware. It provides alias detection hardware to hoist
loads to hide load latencies. However, its Code Morphing Software
(CMS) x86 binary translator is also limited in that it does not sup-
port the movement of store accesses. Moreover, the existing liter-
ature on CMS does not explain how multiple optimizations with
differing code motion spans could be performed within a single
atomic region. In fact, there is only a cursory introduction of the
alias-checking instructions in the literature. The specifics of what
optimizations are performed and how they are realized is not dis-
cussed.

In this paper, we propose a more powerful and flexible environ-
ment for alias speculation. The main contributions of this work are
as follows:
• It proposes, for the first time, to expose the alias checking capa-
bilities present in upcoming transactional memory systems for the
purpose of alias speculation. It also proposes a set of novel ISA
extensions to enable this.
• It shows how to do speculative code motion in two new ways.
The first one involves moving stores. The second one performs
multiple optimizations with differing code motion spans inside the
same atomic region.
• It is the first paper to evaluate the benefits of alias speculation us-
ing atomic regions in the context of a source-level compiler and not
a binary translator. It evaluates LICM, GVN, and PRE optimiza-
tions enhanced with alias speculation on the LLVM compiler [23].
They result in an average speedup of 9% in SPEC FP2006 programs
and 3% in SPEC INT2006 programs over the baseline LLVM alias
analysis.

This paper is organized as follows: Section 2 gives a back-
ground; Section 3 presents our alias speculation approach; Sec-
tion 4 describes our compiler implementation; Section 5 presents
examples of optimizations and experimental results; Section 6 dis-
cusses applying the approach to other environments; and Section 7
lists related work.

2. Background: Code Motion & Atomic Regions
2.1 Code Motion
Code motion involves moving a piece of code from its original loca-
tion to a more desirable one, often to minimize the frequency of ex-
ecution at runtime. Code motion is crucial for many compiler opti-
mizations. A popular example of code motion optimization is Loop
Invariant Code Motion (LICM). Other optimizations such as Partial
Redundancy Elimination (PRE), Global Value Numbering (GVN),
Common Subexpression Elimination (CSE), and Dead Store Elimi-
nation (DSE) implicitly involve code motion. For example, in CSE,
the compiler moves the redundant expression to the site of the orig-
inal expression to perform the elimination. If there are any aliasing
accesses in the code motion span, the optimization is denied.

The aliasing properties that need to be followed by code motion
can be summarized in a few correctness rules. In the following, we
describe these rules and apply them to a few optimizations, namely
LICM, GVN, and PRE.

2.1.1 Correctness Rules
If code motion M is to be performed on expression E, the follow-
ing rules need to be followed between the set of addresses read and
written by E (RE and WE), and the set of address read and written
by loads and stores in the code motion span (RM and WM ).
• Read Motion Rule (RE ∩ WM = ∅). The values read by E

must remain invariant. If a location read by E is updated in the

code motion span, E may generate a wrong value in its moved
location.

• Write Motion Rule (WE ∩RM = ∅ ∧WE ∩WM = ∅). The
value written by E must not be used by any load in the code
motion span. Otherwise, the load may produce a wrong value.
Also, the code motion must not cause E or any store in its span
to write a stale value. If E is moved before an aliasing store,
that will cause that store to write a stale value. If E is moved
after an aliasing store, that will cause E to write a stale value.

2.1.2 LICM
LICM involves either hoisting an expression in the body of a loop
to the preheader of the loop, or sinking an expression in the body
of a loop to the exit block of the loop [41]. If there is a load that
repeatedly loads from the same location, the load is hoisted. If there
is a load that loads from different locations but the loaded value is
not used inside the loop, the load is sunk and only the last load is
executed. In both cases, the loaded location should not be modified
by any store in the loop (Read Motion Rule).

If there is a store instruction in the loop that repeatedly stores
to the same location, LICM attempts to promote that location to a
register. In effect, this sinks the store to the exit block of the loop.
For this to be legal, the stored value must not be accessed by any
load in the loop and must not be overwritten by any store in the
loop (Write Motion Rule).

2.1.3 GVN/PRE
GVN attempts to eliminate redundant expressions by assigning a
value number to each expression, which is stored in a map, and re-
placing an expression with a value if it can find one with the same
number [5]. PRE also attempts to eliminate redundant expressions
but it can eliminate them even when they are partially redundant,
meaning that they are redundant only on certain paths to the expres-
sion. In this case, PRE makes those expressions fully redundant by
performing code motion across the control flow graph [20]. LLVM
utilizes a PRE algorithm based on static single assignment (SSA)
form that performs GVN simultaneously [40].

Both GVN and PRE are subject to the Read Motion Rule in
that the value of the expression that is being moved must not change
in the course of code motion.

2.2 Hardware Support for Atomic Regions
There are several recent examples of mechanisms or machines that
support atomic regions, namely Intel’s Transactional Synchroniza-
tion Extensions [2], IBM’s Bluegene/Q [1], IBM’s POWER archi-
tecture [3], AMD’s Advanced Synchronization Facility [10], and
Azul’s Vega [11]. Atomic regions allow programmers to demarcate
a region of code that is guaranteed to execute in isolation with re-
spect to other threads and commit its outcome atomically. Its goal
is to help parallel programming. We wish to use the same hardware
support for the purpose of alias speculation.

All atomic region implementations incorporate two primitives
that are necessary to guarantee atomicity and isolation: checkpoint-
ing with speculative buffering and conflict detection. The first prim-
itive takes a register checkpoint at the beginning of an atomic region
and buffers all writes to memory. If isolation is compromised be-
fore the end of the atomic region, the buffered writes are discarded
and the register checkpoint restored. If isolation is successful, the
buffered writes are made visible to other threads all at once when
the atomic region commits.

The conflict detection primitive guarantees isolation by keeping
track of addresses read in the atomic region (the read-set) and
written in the atomic region (the write-set). All remote memory
accesses check the read-set and the write-set for memory conflicts
that compromise the isolation of the atomic region. The read-set



and write-set are typically recorded by setting speculatively read
(SR) bits and speculatively written (SW) bits in a cache. There is
one SR bit and one SW bit per each cache line to record whether
that line belongs to the read-set and/or write-set of an atomic
region. Besides conflict detection, SW bits are also used to mark
cache lines that need to be buffered for rollback purposes. This type
of cache organization is called a speculative cache.

In this paper, we assume an atomic region implementation using
a speculative cache. However, our proposal can be applied to any
hardware-based atomic region implementation.

3. Proposed Alias Speculation Approach
3.1 Overview
We propose to make hardware support for atomic regions more
permeable to software through ISA extensions for the purposes
of alias speculation. Specifically, we want to expose to software
the memory conflict detection facility of atomic region hardware
that is hidden under the covers in current transactional memory
systems. Currently, the conflict detection hardware is only used
to guarantee the isolation of a transaction with respect to remote
accesses. We wish to repurpose this hardware to detect memory
conflicts, or aliases, between accesses of the same thread, and
expose this hardware to the software to perform alias checks.

To leverage this new capability, pairs of references that do not
alias “most of the time” are speculated upon during compile time
as not aliasing. The compiler communicates its assumptions to the
hardware using our new ISA extensions. After the assumptions
have been communicated, the alias detection hardware is in charge
of automatically verifying them at runtime. Verification failure re-
sults in the atomic region being rolled back and a version of the
code without speculation being executed in place of the atomic re-
gion. This approach allows the compiler to perform code move-
ments and optimizations that were previously impossible.

In designing the new ISA extensions and compiler algorithms,
we want to achieve four goals:

• The movement of both loads and stores should be supported.
• All optimizations that can be improved through alias specula-

tion should be enabled to their fullest extent possible.
• The optimizations should be achieved with as little instrumen-

tation overhead as possible.
• The ISA extensions should only expose pre-existing hardware

structures and functionality that is required for transactions, and
not add significant complexity to the hardware.

A key design decision is where to place the atomic regions,
since it dictates which pairs of aliased accesses can be speculated
upon. Note that placing atomic regions carelessly results in perfor-
mance degradation due to frequent rollbacks or the overhead of the
atomic region instructions themselves. Hence, we decide to place
atomic regions around loops. Wrapping loops in atomic regions
provides ample range for optimizations such as LICM and PRE to
perform large-scale redundancy elimination. Also, the benefit from
optimizations performed inside loops accumulates at each iteration,
and can easily offset the overhead of atomic region instrumentation.
This is hard to attain in straight-line code.

Once we place an atomic region around a given loop, we want to
enable as many code motions as possible. The code motions might
span the entire loop, as in the case of LICM, or they might span
a subset of instructions in the loop, as in the case of GVN and
PRE. For each code motion, we need to make sure that the moved
expression does not alias with any intervening loads or stores that
can compromise the correctness rules laid out in Section 2.1.1.
Specifically, for each code motion span M , ideally we need to know

the read (RM ) and write (WM ) sets, to check that they do not alias
illegally with the RE and WE of the moved expression E.

In reality, existing transactional memory hardware keeps track
of just two sets of addresses for an atomic region: the set of ad-
dresses read (RAR) and those written (WAR) in the atomic region
(AR). Alias checking against RAR and WAR instead of against
RM and WM always guarantees correctness, since RM ⊆ RAR

and WM ⊆ WAR always holds. However, the imprecision of the
check can result in extraneous failures at runtime and frequent roll-
backs of the atomic region. In the end, the cost of rollbacks can
prevent some optimizations from being performed.

We propose to mitigate the problem of imprecision by manip-
ulating the Speculative Read (SR) bits of a transaction at will, so
that they constitute read address sets other than RAR. However, we
must be prepared to give up on isolation guarantees for the atomic
region. RAR is only needed for conflict detection and isolation of
the atomic region. Since we are not using the atomic region for syn-
chronization purposes like in transactional memory, we can give up
on isolation and repurpose the SR bits to mark only read addresses
that we want to monitor for alias checking.

Note that we still need the transaction’s atomicity guarantees,
since we must be able to roll back the atomic region on alias specu-
lation failure. Hence, we are forbidden from manipulating the Spec-
ulative Written (SW) bits because we still need to buffer writes for
checkpointing and rollback. The implications of forfeiting isolation
on the rest of the system are discussed later in Section 6.2.

In the next sections, we discuss how to reduce conservatism by
manipulating the SR bits and using special check instructions.

3.2 DeAliaser ISA Extensions
Table 1 shows the new Instruction Set Architecture (ISA) exten-
sions that we add for DeAliaser. The instructions are categorized
into three types: those that control the placement of atomic regions,
those that control what memory locations are monitored for alias
checking, and those that check the monitored locations.
Controlling Atomic Regions. The instructions begin atomic opt
and end atomic opt begin and end an atomic region for optimiza-
tion. The atomic region created by these instructions is exactly the
same as a regular atomic region in transactional memory, except
that the operation of the SR bits is changed. Now, regular loads do
not set SR bits; only the special loads described below do so.

A rollback of the atomic region triggers a jump to a program
counter (PC) given as an operand to begin atomic opt. It is the PC
of the safe version: a conservative replica of the code in the atomic
region that does not assume any speculation, and is always safe to
execute. This safe version support is standard in all transactional
systems.
Controlling Monitored Locations. The set of cache lines with the
SR bit set and the set of cache lines with the SW bit set are the
set of monitored read and write locations, respectively. The load.r
instruction loads data into a register and sets the SR bit of the line
in the cache containing the data. The clear.r instruction takes an
address and clears the SR bit of the line in the cache corresponding
to that address. Therefore, the load.r and clear.r instructions start
and end the monitoring of a loaded location. With them, we can
flexibly expand and shrink the set of read-monitored locations as
the need arises for alias checking. This gives us the freedom to
alias check multiple spans of code motion.

We do not have the corresponding operations for SW bits.
DeAliaser cannot manipulate them because they are used for deter-
mining what to roll back if the atomic region fails. Thus, we cannot
control the set of write-monitored locations, which is always the
entire set of locations written by the atomic region so far. This can
be a source of imprecision when doing alias checks.



Checking Monitored Locations. The storechk.(r/w/rw) and load-
chk.(r/w/rw) instructions, in addition to storing to a location or
loading from it, perform a check of the speculative bits in the cache
line containing the location. The instruction postfix indicates which
speculative bit is checked: r checks the SR, w checks the SW, and
rw checks both. If the checked bit is set (or at least one of the
two checked bits is), the hardware signals an alias check failure.
A check failure means that this store or load access does alias with
a monitored location, violating a no alias assumption made by the
compiler. This results in a rollback of the atomic region and a jump
to the safe version.

The storechk.(r/w/rw) instructions set the SW bit as is required
of all store instructions, and they do so after performing the checks.
Notably, the loadchk.r and loadchk.rw instructions also set the SR
bit after the checks, and this is by design. They are designed in
this way because the SR bit only needs to be checked by a load
instruction when it also wants to set it immediately afterwards, as
will be seen later.

Instruction Description

begin atomic opt PC

Begins an atomic region for optimization.
It creates a new register checkpoint and
starts buffering memory accesses. PC is
the program counter of the beginning of
the safe version.

end atomic opt Ends an atomic region for optimization.
It commits all buffered accesses.

(a)

Instruction Description

load.r r1, addr

Loads location addr into register r1 just
like a regular load. In addition, it sets the
SR bit in the cache line containing addr
for monitoring.

clear.r addr
Clears the SR bit in the cache line con-
taining addr, hence ending monitoring.

(b)

Instruction Description

storechk.(r/w/rw) r1, addr

Stores register r1 into location addr just
like a regular store. In addition, it checks
the SR bit, the SW bit, or both in the
cache line containing addr, depending on
whether the postfix of the opcode is r, w,
or rw. If the checked bit (or at least one of
the two checked) is set, the atomic region
is rolled back and execution jumps to the
safe version.

loadchk.(r/w/rw) r1, addr

Loads location addr into register r1 just
like a regular load. In addition, it checks
the SR bit, the SW bit, or both in the
cache line containing addr, depending on
the postfix of the opcode. If the checked
bit (or at least one of the two checked)
is set, the atomic region is rolled back
and execution jumps to the safe version.
Lastly, loadchk.r and loadchk.rw set the
SR bit after it is checked.

(c)

Table 1. Extensions to the ISA to control atomic regions (a), con-
trol monitored locations (b), and check monitored locations (c).

3.3 Alias Speculation and Code Motion
The way a conventional compiler applies the code motion rules of
Section 2.1.1 is necessarily conservative because of two reasons.
First, even if the rules hold “most of the time”, the compiler must
guarantee correct execution for the corner cases. Secondly, even if
the rules hold all the time, static analyses are fundamentally limited
in what they can prove.

We use DeAliaser to circumvent having to prove the rules. In-
stead, we check them at runtime, thereby enabling more code mo-
tion at compile time. DeAliaser checks a modified version of the
set of rules which, while sometimes more conservative, is still suf-
ficient to guarantee the original set of rules. We explain how the
rules are modified and checked for four types of code motion op-
timizations that are allowed by DeAliaser: hoisting loads, sinking
loads, hoisting stores, and sinking stores. We also describe how to
sink the clear.r instructions introduced by DeAliaser itself, in or-
der to minimize overhead. Refer to Figure 1 while we go over each
case.

Figure 1(a) illustrates how each code motion optimization is
performed by example. For each case, the left hand side shows
the code in its original state and the right hand side shows it after
transformation. The moved instruction itself is marked in bold, and
the register operands for all instructions are omitted for brevity. In
each example, the loads and stores in grey denote the instructions
that are checked by DeAliaser for aliasing against the instruction
moved. Of these, the light grey ones are those checks that are
performed and are necessary for correctness, while the dark grey
ones are those checks that are performed as a side effect because of
the imprecision in the DeAliaser hardware, and are not necessary
for correctness. The table in Figure 1(b) describes each motion
optimization in more general terms. Column 2 in the table lists
the compiler actions that need to be performed after each motion.
Column 3 describes how the alias checks guarantee the correctness
of the motion. Finally, Column 4 states whether the alias checks are
precise.

For the purposes of explanation, we adopt the following termi-
nology. As before, M is the set of instructions in the span of the
code motion performed on expression E, which are loads and stores
that may alias with E. RE is the address read by the moved load
and WE is the address written by the moved store. RM and WM

are the set of addresses read and written, respectively, by accesses
in M . RMonitored and WMonitored are the set of read and written
addresses, respectively, currently being monitored in the atomic re-
gion. As mentioned before, RMonitored can be expanded or shrunk
using the load.r, loadchk.r, loadchk.rw, and clear.r instructions.
However, WMonitored is always the entire set of addresses writ-
ten in the atomic region so far. Finally, we refer to a load or a store
that sets the SR or SW bits as a monitored load or store; a load or a
store that checks the bits is a checking load or store.

3.3.1 Hoisting Loads
In the top left example of Figure 1(a), we hoist load A above
store X. After hoisting a load, we must monitor all the stores
that may-alias in the span M of the motion. Our transformation
involves: changing the hoisted load to loadchk.r, changing all the
store instructions in M that may alias with the load to storechk.r,
and placing a clear.r at the end of M to stop monitoring the load.
We use loadchk.r instead of load.r to detect any interference with
another unrelated code motion optimization. Specifically, if that
other optimization had a monitored load that aliased with our load,
both loads would set the same bit. Then, the first clear.r operation
found would clear the SR bit, incorrectly turning off monitoring for
both loads. With loadchk.r, we ensure that we detect this problem
when we start monitoring, and roll back the atomic region.

The Read Motion Rule for moving loads (RE ∩WM ) is triv-
ially guaranteed, as shown in Figure 1(b). This is because checking
against the set of addresses written by M using storechk.r instruc-
tions, referred to as W (chk.r)M in the table, is equivalent by con-
struction to checking against WM . The checks are not only correct
but precise, since a storechk.r check failure always means that the
rule was violated. The only potential source of extraneous rollbacks
comes from the use of the loadchk.r instruction. We will see that



 

Sink  Clear Motion Sink  Store Motion 

Hoist Load Motion Sink Load Motion 

begin_atomic_opt 
… 
 
store  X 
load  A 
 
… 
end_atomic_opt 

begin_atomic_opt 
… 
loadchk.r  A 
storechk.r  X 
 
clear.r  A 
… 
end_atomic_opt 

begin_atomic_opt 
… 
store  X 
load  A 
store  Y 
 
… 
end_atomic_opt 

begin_atomic_opt 
… 
store  X 
 
store  Y 
loadchk.w  A 
… 
end_atomic_opt 

begin_atomic_opt 
… 
loadchk.r  W 
store  X 
store  A 
load  Y 
store  Z 
 
 
… 
end_atomic_opt 

begin_atomic_opt 
… 
loadchk.r  W 
store  X 
 
loadchk.r  Y 
store  Z 
storechk.rw  A 
clear.r  Y 
… 
end_atomic_opt 

begin_atomic_opt 
… 
loadchk.r  W 
loadchk.r  A 
storechk.r  X 
clear.r  A 
store  Y 
storechk.r  Z 
… 
 
end_atomic_opt 

begin_atomic_opt 
… 
loadchk.r  W 
loadchk.r  A 
storechk.r  X 
 
store  Y 
storechk.r  Z 
… 
clear.r  A 
end_atomic_opt 

begin_atomic_opt 
… 
loadchk.r  W 
load.r  A 
storechk.r  X 
 
store  Y 
storechk.r  Z 
… 
 
end_atomic_opt 

       = Alias check performed 

          and required 

       = Alias check performed 

          but not required 

(a)

Code Motion Action Correctness Guarantee Precise?

Hoist Load Change load to loadchk.r. Change all may-alias stores in M to
storechk.r. Insert clear.r at end of span to stop monitoring. RE ∩WM = RE ∩W (chk.r)M = ∅ Yes

Sink Load Change load to loadchk.w. RE ∩WMonitored = ∅, WMonitored ⊇ WM No

Hoist Store Change all may-alias loads in M to loadchk.w. Change all may-
alias stores in M to storechk.w.

WMonitored ∩R(chk.w)AR = ∅ ∧WMonitored ∩
W (chk.w)AR = ∅,
WMonitored ⊇ WE , R(chk.w)AR ⊇ RM ,
W (chk.w)AR ⊇ WM

No

Sink Store

Change store to storechk.r/w/rw depending on whether you are
speculating on load aliases, store aliases, or both. If speculating
on load aliases, change all may-alias loads in M to loadchk.r
(unless they are already loadchk.r/rw). For all newly monitored
loads, insert clear.r to stop monitoring after the store.

WE ∩RMonitored = ∅∧WE ∩WMonitored = ∅,
RMonitored ⊇ RM , WMonitored ⊇ WM

No

Sink Clear If clear.r is sunk to end of atomic region, remove it. Change
loadchk.r to load.r or vice versa for affected monitored loads.

Expanding a monitoring span never compromises cor-
rectness.

No

(b)

Figure 1. Code motions supported by DeAliaser shown through examples (a) and explained in general terms (b).

the loadchk.r can often be converted to a check-less load.r when
sinking clear instructions.

3.3.2 Sinking Loads
In the top right example of Figure 1(a), we sink load A below
store Y. The initial code also includes an earlier store X. Our
transformation involves changing the sunk load to loadchk.w. This
load now checks that it does not alias with any of the writes
executed in the atomic region so far. This includes the store Y,
but it also includes all the previous stores in the atomic region
such as store X. As shown in Figure 1(b), since M covers a subset
of the instructions in the atomic region, the Read Motion Rule
(RE ∩ WM ) is trivially guaranteed to be enforced. However, the
check is not precise, potentially leading to extraneous rollbacks.

3.3.3 Hoisting Stores
We do not show an example of hoisting stores because of space lim-
itations, but we still describe the actions performed and correctness
guarantees in Figure 1(b). After hoisting the store, all may-alias
loads in M are changed to loadchk.w instructions and all may-alias
stores in M are changed to storechk.w instructions.

These transformations guarantee the Write Motion Rule (WE∩
RM ∧WE∩WM ) for stores, but with potentially significant impre-
cision. In Section 3.3.1, we could selectively monitor hoisted loads

by changing the load to load.r or loadchk.r and setting the SR bit.
The same cannot be done with stores and SW bits, however, and
we have no choice but to check all written locations since the be-
ginning of the atomic region (WMonitored) — instead of just WE .
Also, since SW bits cannot be cleared, we cannot stop monitoring
at the end of M . If there are any loadchk.w, loadchk.rw, storechk.w,
or storechk.rw instructions after the end of M , DeAliaser still per-
forms the checks. Hence, we check against the entire set of lo-
cations accessed with loadchk.w/rw (called R(chk.w)AR in the
table), or storechk.w/rw (called W (chk.w)AR in the table) in the
atomic region following the hoisted store.

Hoisting stores is the code motion that suffers the most from
imprecision. Fortunately, most compiler optimizations in use today
do not use it.

3.3.4 Sinking Stores
In the bottom left example of Figure 1(a), we sink store A below
load Y and store Z. The initial code also includes two earlier
instructions: a loadchk.r and a store. Our transformation involves
three parts. First, we change the sunk store to the appropriate flavor
of storechk.r/w/rw instruction, depending on whether the motion is
speculating on load aliases, store aliases, or both. Second, if we are
speculating on load aliases, we change all the may-alias loads in M
to loadchk.r. If some of these loads are already loadchk.r/rw, we do



not change them. Third, we place clear.r instructions immediately
after the storechk.r/w/rw for all the newly monitored loads, to stop
monitoring after the store.

Figure 1(b) shows the correctness guarantee for this motion
speculating on both load and store aliases. The ones for speculating
on either only loads or only stores are obtained by simply removing
one term. We see that the Write Motion Rule (WE ∩RM ∧WE ∩
WM ) is trivially guaranteed because the set of addresses accessed
in M is a subset of monitored addresses.

This check is not precise. The monitored stores are all the writes
before the sunk store. The monitored loads are all the loadchk.r/rw
ones before the sunk store, including those that were in the original
code before the transformation. In Figure 1(a), we see that there are
unnecessary checks against loadchk.r W and store X.

3.3.5 Sinking Clears
After all the movement of loads and stores is done, the last step
is to remove overhead by sinking the clear.r instructions that have
been added in the process. They are either sunk to a less frequently
executed location or to the end of the atomic region, where they
can be trivially eliminated. As we sink a clear.r, we are expanding
the monitoring span of a load.r or loadchk.r/rw and this is always
correct.

As the clear.r instructions are moved and eliminated, some
loadchk.r instructions that used to interfere with each other no
longer do. In this case, the loadchk.r instructions can be safely con-
verted to load.r instructions. For example, consider the bottom right
example of Figure 1(a). Initially, loadchk.r A had to be checked
against loadchk.r W to make sure clear.r A does not clear the SR
bit set by the latter erroneously. Once clear.r A is eliminated, load-
chk.r A can safely be converted to load.r A. Now load.r A no longer
checks against loadchk.r W and, therefore, can no longer cause ex-
traneous rollbacks.

Vice versa, movement of clear.r instructions can cause load.r
instructions that used to not interfere with each other to do so and in
these cases, they have to be reverted back to loadchk.r instructions.

3.3.6 Discussion
Even though having only a single set of SR and SW bits in the
atomic region leads to some imprecision, the imprecision is con-
trolled by manipulating the SR bits and also by checking only rele-
vant memory accesses. Importantly, correctness is still guaranteed
even when there are multiple code motions. For the optimizations
and applications that we studied, our experience is that this impreci-
sion does not significantly restrict code motion or cause extraneous
failures.

Also, having just one SR and SW bit per cache line leads to
another type of imprecision — that due to false sharing. But false
sharing does not compromise the correctness of our transforma-
tions; at worst, it causes extraneous rollbacks. The only case that
needs special attention is when a loadchk.r instruction is converted
to a load.r instruction because it does not interfere anymore with
other loadchk.r/rw or load.r instructions. One might mistakenly
think that proving a no alias relationship between two loads is suf-
ficient to guarantee non-interference. But even if two loads do not
alias per se, they might alias through false sharing. Hence, convert-
ing loadchk.r instructions based on the no alias assumption may
still cause a problem when the clear.r is executed. Therefore, the
compiler needs to either take false sharing into account when per-
forming the conversion or not perform the conversion.

The only case where instructions are added for instrumenta-
tion purposes (other than begin atomic opt and end atomic opt) is
when clear.r instructions are needed. In addition, even these can
often be eliminated by sinking them to the end of the atomic re-

gion. Consequently, DeAliaser introduces negligible instrumenta-
tion overhead.

Overall, the DeAliaser design successfully allows multiple code
motions inside an atomic region while minimizing instrumentation
overhead. At the same time, the added hardware complexity over
transactions is kept very small.

3.4 Application of Code Motion to Optimizations
While there are numerous compiler optimizations that can benefit
from DeAliaser, we focus on LICM, GVN, and PRE to demonstrate
its usefulness. These optimizations are already implemented as op-
timization passes in the LLVM compiler that we use for evaluating
our scheme. GVN and PRE are performed simultaneously, as part
of a single GVN/PRE pass. Hence, from here on, we use GVN to
refer to the GVN/PRE pass with both optimizations.

LICM involves the hoisting and sinking of loads, and the sink-
ing of stores, as described in Section 2.1.2. Hoists are moved to
the preheader of the loop and sinks to the exit block of the loop.
Since atomic regions are instrumented around loops, the span of
code motion and the span of the atomic region are often identical,
namely the loop. In this case, RM and WM are simply the entire
set of memory locations read or written in the atomic region, and
RMonitored and WMonitored are equivalent to these. According to
the Hoist Load, Sink Load, and Sink Store rows of Figure 1(b), this
means that no imprecision is introduced due to the alias checks.
Also, since monitoring always ends at the end of the atomic region,
clear.r instructions can always be eliminated.

GVN/PRE involves the hoisting and sinking of loads in order
to eliminate computation of identical expressions, or to find the
location where an expression can be computed less frequently.
Unlike LICM, the code motion done by GVN might not span
the entire loop if the redundancy is found within the body of the
loop. Hence, imprecision in the alias checks may lead to some
conservatism. However, in the applications studied, we find that
this conservatism does not lead to any significant restriction in
optimizations. Also, like in LICM, we are almost always able to
eliminate the clear.r.

3.5 Transforming a Loop for Optimization
Before a loop can be optimized using DeAliaser, it needs to be
instrumented with an atomic region. For this, begin atomic opt
is inserted at the preheader of the loop and an end atomic opt is
inserted at the exit block of the loop, so that the loop is enwrapped
completely in an atomic region. Also, a safe version replica of the
loop is created before any speculative optimizations are done. The
safe version has no speculation, and no atomic regions are required.
The failure of alias checks at any point in the atomic region triggers
a rollback and a jump to the safe version. Once the safe version
completes, execution jumps to the code after the loop.

The failure of an atomic region can also come from the overflow
of the hardware resources that buffer the speculative writes and the
read-monitored locations. To prevent overflows, we perform loop
blocking, which reduces the footprint of an atomic region. After
blocking, an atomic region is placed around the inner blocked loop.
In the rare case where an atomic region still overflows, it can roll
back and execute the safe version just like in the case of check
failure.

3.6 Illustrative Example of LICM and GVN
We finish with an example of DeAliaser using LICM and GVN
to optimize a loop. Figure 2(a) shows the initial loop. To see the
capabilities of DeAliaser, assume that (i) a and b may alias with
*p and *s; and (ii) *p, *q, and *s may alias with each other.
Ideally, we would like to perform three code motion optimizations:
1) use LICM to hoist b + 10 to the beginning of the loop; 2) use



 

begin_atomic_opt  PC 
for(i = 0; i < 100; i++) { 
  a = b + 10; 
  *p = *q + 20; 
  *s = *q + 20; 
} 
end_atomic_opt 

(a) Original loop 

       = Alias check performed 

          and required 

       = Alias check performed  

          but not required 

begin_atomic_opt  PC 
for(i = 0; i < 100; i++) { 
  load  r1, b 
  r2 = r1 + 10 
  store  r2, a 
  load  r3, *q 
  r4 = r3 + 20 
  store  r4, *p 
  load  r5, *q 
  r6 = r5 + 20 
  store  r6, *s 
} 
end_atomic_opt 

begin_atomic_opt  PC 
load.r  r1, b 
r2 = r1 + 10 
for(i = 0; i < 100; i++) { 
  store  r2, a 
  load  r3, *q 
  r4 = r3 + 20 
  storechk.r  r4, *p 
  load  r5, *q 
  r6 = r5 + 20 
  storechk.r  r6, *s 
} 
end_atomic_opt 

begin_atomic_opt  PC 
load.r  r1, b 
r2 = r1 + 10 
for(i = 0; i < 100; i++) { 
  store  r2, a 
  loadchk.r  r3, *q 
  r4 = r3 + 20 
  storechk.r  r4, *p 
  clear.r  *q 
 
  storechk.r  r4, *s 
} 
end_atomic_opt 

begin_atomic_opt  PC 
load.r  r1, b 
r2 = r1 + 10 
for(i = 0; i < 100; i++) { 
  load.r  r3, *q 
  r4 = r3 + 20 
  storechk.r  r4, *p 
 
 
  storechk.r  r4, *s 
} 
storechk.w  r2, a 
end_atomic_opt 

begin_atomic_opt  PC 
load.r  r1, b 
r2 = r1 + 10 
for(i = 0; i < 100; i++) { 
  loadchk.r  r3, *q 
  r4 = r3 + 20 
  storechk.r  r4, *p 
  clear.r  *q 
 
  storechk.r  r4, *s 
} 
storechk.w  r2, a 
end_atomic_opt 

(b) Loop in assembly (c) LICM on  b + 10 (d) GVN on *q + 20 (f) Sink of clear.r *q (e)  LICM on store r2, a 

Figure 2. Example of a loop optimized with LICM and GVN using alias speculation through DeAliaser. Assume that (i) a and b may alias
with *p and *s; and (ii) *p, *q, and *s may alias with each other.

GVN to remove the second redundant computation of ∗q + 20;
and 3) use LICM to sink the store to a to the end of the loop.
Unfortunately, without DeAliaser, the compiler cannot perform any
of these optimizations because of potential aliasing.

With DeAliaser, the compiler can do them all. To see how, we
start with the original loop in assembly, as shown in Figure 2(b).
The next few charts show each of the steps of the transformation
in sequence. At each step, we show the moved memory access in
bold, and the memory accesses checked by DeAliaser against the
moved access in gray, using the same conventions as in Figure 1(a).

Figure 2(c) uses LICM to hoist b + 10 to the beginning of the
loop. As per Section 3.3.1, we change all the store instructions
in the loop that may alias to load b to storechk.r. This includes
store *p and store *s. We change load b to load.r b rather than
loadchk.r b because there is no other code motion optimization that
can interfere. Also, we do not place a clear.r because it would go
to the end of the loop.

Figure 2(d) uses GVN to remove the second, redundant ∗q +
20. We hoist the second load *q and its computation above the
storechk.r *p. The two hoisted instructions are combined with the
ones that generated the same expression. In this load hoist, we do
not change any stores because the one in the code motion span was
already storechk.r *p. However, we need to replace the hoisted,
combined load *q with loadchk.r *q. We use loadchk.r instead of
load.r since it may alias with load.r b through false sharing (even if
the compiler alias analysis thinks otherwise). In addition, we place
the clear.r *q at the end of the code motion span.

Figure 2(e) uses LICM to sink store a to the end of the loop.
Based on our assumptions in the example, we only need to specu-
late on store aliases. Hence, as per Section 3.3.4, the store a is sunk
and replaced with storechk.w a. This instruction will be checked
against all the stores in the loop.

Finally, Figure 2(f) reduces overhead by sinking and then elim-
inating the clear.r *q instruction. As per Section 3.3.5, we need to
consider all the relevant new instructions added to the monitoring
span of loadchk.r *q. We are including storechk.r *s, which may
now produce extraneous failures. We are also adding storechk.r *p
from other iterations, which may also create extraneous failures. Fi-
nally, because we have removed the clear.r, we can again use load.r
*q rather than loadchk.r *q. The reason we had used loadchk.r *q
was to ensure that the clear.r did not reset the SR bit set by load.r
b. Retaining loadchk.r *q can only generate extraneous failures.

Beyond the false sharing issue with load.r b, the sinking and
removal of clear.r is the only motion that adds imprecision to the
checks. This motion is performed in the hope that the two stores
will not alias with the load of ∗q at runtime. However, if this does
not turn out to be so, the clear.r must stay where it is.

Overall, the example shows how the compiler can leverage
DeAliaser to perform multiple code motions in a single atomic
region. A loop iteration started with 9 instructions and ended up
with 4. Not a single instrumentation instruction was added.

4. Compiler Implementation
4.1 The Cost-Benefit Model
Until now, we have focused on how DeAliaser enables optimiza-
tions. But an equally important question is when are these optimiza-
tions beneficial. One can use heuristics for this purpose [12], but a
more precise method is to profile the application. Fortunately, we
can leverage the same hardware support that we use for DeAliaser
to collect a profile with high efficiency. To decide whether to opti-
mize a particular loop using DeAliaser, we estimate the following
measures, in number of dynamic instructions for the average exe-
cution of the AR:
D: Number of instructions in the AR after applying DeAliaser.
I: Number of DeAliaser instrumentation instructions in the AR.
r: AR rollback rate.
R: Reduction in AR instructions through DeAliaser application.

For DeAliaser to be desirable, it should be that R > I +D× r.
It means that the benefit of the optimizations enabled by DeAliaser
should outweigh the overhead due to instrumentation and rollbacks
due to failures.

The number of dynamic instructions in an atomic region and
the number of dynamic instructions reduced by optimizations can
be obtained by branch profiling [43] or by taking measurements
using hardware performance counters while profiling. DeAliaser
instruction overhead is the two instructions begin atomic opt and
end atomic opt at the beginning and end of the loop, plus any
clear.r instructions that could not be eliminated.

There are two reasons why an atomic region can roll back:
buffer overflows and alias speculation failures. We can eliminate
virtually all of the buffer overflows through loop blocking. We
measure the rate of remaining rollbacks due to speculation failures
by maintaining two counters per atomic region while profiling: a
success counter that is incremented at each successful commit and a
failure counter that is incremented at every jump to the safe version.

We perform the optimizations incrementally for each code mo-
tion that requires speculation, and take profiling measurements to
decide whether the motion was beneficial. All loops in an appli-
cation can be profiled simultaneously in a single run. Hence, the
number of profiling runs needed is the maximum number of spec-
ulative optimizations performed for a single loop.



4.2 Compiler Support
We modified the LLVM compiler [23] release 2.8 to implement
DeAliaser. Considering how much effort it takes to correctly im-
plement a complex alias analysis, the modifications that we did
are quite straightforward. We performed four tasks in the compiler.
One was to write a blocking pass for loops. We also wrote a pass
that inserts loops in atomic regions, and creates the safe versions
for the loops. Next, we modified the optimization passes to per-
form speculative code motions within the atomic regions and in-
sert DeAliaser alias checking instructions appropriately. Lastly, we
wrote a simple profiler pass that adds success and failure counters
for each atomic region and generates a profile.

5. Evaluation
5.1 Experimental Setup
For our experiments, we use the applications in the SPEC INT2006
and SPEC FP2006 suites, except for 416.gamess and 481.wrf,
which are in Fortran and our infrastructure does not handle well.
We compile the applications using the modified LLVM compiler
and, for each of the applications, produce three types of binaries:
BaselineAA, DSAA, and DeAliaser.

BaselineAA is built by running LICM and GVN in sequence,
using the default Basic Alias Analysis provided with the LLVM
compiler, after running the standard -O3 set of optimizations. Ba-
sic Alias Analysis is what most applications compiled by LLVM
use today. It is an aggressive, yet scalable alias analysis that uses
knowledge about heap, stack, and global memory allocations, and
structure field information.

DSAA is built by running LICM and GVN using the Data Struc-
ture Alias Analysis, which was first proposed by Lattner et al. [24].
Data Structure Alias Analysis is the most advanced alias analy-
sis that has been implemented on LLVM and is shown to be more
precise [24] than either Steensgaard’s [37] or Andersen’s [6] alias
analyses. It is a heap-cloning algorithm that is flow-insensitive but
context-sensitive and field-sensitive. It does unification to reduce
memory usage, but we find that it is still not able to compile cer-
tain programs due to memory overflows. In fact, it fails to compile
four benchmarks, namely 400.perlbench, 403.gcc, 483.xalancbmk,
and 445.gobmk, with 4 GB of memory (the limit on our systems).
Hence, we are not able to show results using DSAA for these four
codes.

DeAliaser is built by running LICM and GVN using DeAliaser
support to speculate on aliases. The Basic Alias Analysis is run
before speculating using DeAliaser, to filter out the easily-provable
alias relationships. Only the remaining may-aliases after running
the Basic Alias Analysis are candidates for speculation. Also, loops
with many iterations are blocked appropriately so that they do not
overflow the speculative cache.

We run the applications on a cycle-level architecture simula-
tor based on SESC [35], and built on top of Pin [27]. We model
a uniprocessor desktop with an out-of-order core extended with
DeAliaser instructions, and two levels of caches. The simulator
simulates all latencies in detail, including memory latencies. It sim-
ulates the speculation resources needed to enable atomic regions.
We use SR and SW bits at the granularity of cache lines, which is
64 bytes. Table 2 shows the parameters of the hardware.

The speculative L1 cache buffers all the speculatively-written
data within an atomic region, as well as all the read-monitored
cache lines (those with SR=1). The SR bit and SW bit in each
cache line can be accessed and controlled by the DeAliaser ISA
extensions. If the L1 cache overflows or an alias check fails, the
atomic region is rolled back and the safe version is executed. Specu-
latively written cache lines are either marked non-speculative when
the atomic region commits or are invalidated if the atomic region

Processor:
2-issue wide, out-of-order superscalar
Functional units: 2 Int, 1 Ld/St, 1 Br, 2 FP
I-window: 44 entries; Ld/St queue: 26 entries

Speculative L1 Cache:
Round trip: 2 cycles
Size, line, assoc.: 32KB, 64B, 8-way
Speculative Rd/Wr bits: line granularity

L2 Cache:
Round trip: 10 cycles
Size, line, assoc.: 512KB, 64B, 8-way

Memory round trip: 300 cycles; Bus with: 32B

Table 2. Parameters of the hardware simulated.

aborts. Read-monitored cache lines are unmarked when the atomic
region either commits or aborts, or when a clear.r instruction is ex-
ecuted. In one of the experiments, we also use word-granularity SR
and SW bits.

We also use the simulator mentioned above to run the alias
profiling phase for DeAliaser. We use the train input set provided in
SPEC CPU2006 for profiling, and the ref input set for performance
measurement. For the programs we tested, we find that the results
of alias analysis profiling are not very sensitive to the input set.

5.2 Optimization Examples

We start the evaluation by showing two examples of real code
where DeAliaser produces more efficient code than BaselineAA or
DSAA. Figure 3 shows one loop in 433.milc optimized using LICM,
and Figure 4 shows another loop in 410.bzip2 optimized using a
combination of LICM and GVN. In both cases, we show the loop
before and after applying DeAliaser.

f o r ( i =0 ; i <3; i ++) {
f o r ( j =0 ; j <3; j ++) {

. . .
b r =b−>e [ j ] [ 0 ] . r e a l ;
. . .
c−>e [ i ] [ j ] . r e a l = c r ;

}
}

(a)

f o r ( i =0 ; i <3; i ++) {
. . .
b r0 =b−>e [ 0 ] [ 0 ] . r e a l ;
b r1 =b−>e [ 1 ] [ 0 ] . r e a l ;
b r2 =b−>e [ 2 ] [ 0 ] . r e a l ;
. . .
c−>e [ i ] [ 0 ] . r e a l = c r 0 ;
c−>e [ i ] [ 1 ] . r e a l = c r 1 ;
c−>e [ i ] [ 2 ] . r e a l = c r 2 ;

}

(b)

b e g i n a t o m i c o p t ( Safe Loop PC )
l o a d . r r e a l 0 , b−>e [ 0 ] [ 0 ] . r e a l ;
l o a d . r r e a l 1 , b−>e [ 1 ] [ 0 ] . r e a l ;
l o a d . r r e a l 2 , b−>e [ 2 ] [ 0 ] . r e a l ;
f o r ( i =0 ; i <3; i ++) {

. . .
b r0 = r e a l 0 ;
b r1 = r e a l 1 ;
b r2 = r e a l 2 ;
. . .
s t o r e c h k . r cr0 , c−>e [ i ] [ 0 ] . r e a l
s t o r e cr1 , c−>e [ i ] [ 1 ] . r e a l
s t o r e cr2 , c−>e [ i ] [ 2 ] . r e a l

}
end atomic opt

(c)

Figure 3. Loop in function mult su3 na(...) of 433.milc before
transformation (a), after loop unrolling (b), and after applying
DeAliaser with LICM (c).

BaselineAA, DSAA, and DeAliaser unroll the loop in Figure 3(a)
three times, to produce the singly-nested loop in Figure 3(b). After



Benchmark
Dynamic Instructions Code Optimized Inside Loop

BaselineAA or DSAA DeAliaser Reduction
(%)

BaselineAA or DSAA DeAliaserTotal Overhead

433.milc 448 343 2 23
Calculations of addresses
for field real in b→e[0][0],
b→e[1][0], b→e[2][0] hoisted.

All hoists in BaselineAA.
Loads of field real in b→e[0][0],
b→e[1][0], b→e[2][0] hoisted.

401.bzip2 950 905 5 5 None.
Load of address for s→tt hoisted.
Redundant load of field s→cftab[uc]
removed.

Table 3. Analysis of the examples shown in Figure 3 and Figure 4.

this, BaselineAA and DSAA are able to hoist out the address com-
putations for the fields in b→e[0][0], b→e[1][0], and b→e[2][0],
but not the loads of the fields themselves. The address compu-
tations can be hoisted because the dimensions of b are statically
defined, but the loads cannot be hoisted because BaselineAA and
DSAA cannot prove that they do not alias with the updates to the
fields in c→e[i][0]. DeAliaser places an atomic region around the
entire loop and speculatively hoists the loads. We show the code in
Figure 3(c). There is a single storechk.r to c→e[i][0]. It turns out
that b and c are always distinct locations.

f o r ( i = 0 ; i < nb lo ck ; i ++) {
uc = ( UChar ) ( s−> t t [ i ] & 0 x f f ) ;
s−> t t [ s−>c f t a b [ uc ] ] |= ( i << 8) ;
s−>c f t a b [ uc ] + + ;

}

(a)

f o r ( i = 0 ; i < nb lo ck ; i +=50) {
b e g i n a t o m i c o p t ( Safe Loop PC )
l o a d . r r1 , &(s−> t t [ 0 ] ) ;
f o r ( i i = i ; i i < i +50 && i i < nb lo ck ; i i ++) {

uc = ( UChar ) ( r1 [ i i ] & 0 x f f ) ;
l o a d . r r2 , s−>c f t a b [ uc ] ;
r3 = r1 [ r2 ] ;
r3 |= ( i i << 8) ;
s t o r e c h k . r r3 , r1 [ r2 ] ;
r2 ++;
s t o r e r2 , s−>c f t a b [ uc ] ;

}
end atomic opt

}

(b)

Figure 4. Loop in subroutine BZ2 decompress() of 401.bzip2 be-
fore (a) and after (b) applying DeAliaser with LICM and GVN.

For 401.bzip2 in Figure 4(a), there is not much that BaselineAA
or DSAA can do in terms of LICM or GVN, in spite of the visibly-
redundant computations s→tt and s→cftab[uc]. Neither analysis
can prove that the store to s→tt[s→cftab[uc]] does not alias with
the loads for either of these expressions. However, in Figure 4(b),
DeAliaser can perform both LICM and GVN after blocking the
loop and placing an atomic region around the inner loop.

Through LICM, DeAliaser hoists the load of s→tt out of the
loop and stores the value into r1, which gets reused across itera-
tions. Also, through GVN, it stores the value of the first load of
s→cftab[uc] into r2 and reuses it in place of the second redundant
load. In the process, the aliasing store to s→tt[s→cftab[uc]] is
replaced with a storechk.r and the moved loads are replaced with
load.r instructions. The store to s→cftab[uc], which is in the span
of LICM for the load of s→tt, is proven not to alias with that load
by the Basic Alias Analysis. Therefore, it is left as is. Also, clear.r
instructions are introduced for each monitored load to mark when
the monitoring ends, and they are eventually eliminated.

Specifically, the clear.r for s→tt is placed at the end of the loop,
where the monitoring ends, and is trivially removed. The clear.r for
s→cftab[uc] is originally placed at the location where the redun-
dant load used to be, which is right before r2++, but is also sunk
out of the loop and eliminated. This is possible because even though
the monitored load always aliases with store r2, s→cftab[uc], the
latter instruction is a regular store and does not check the SR bit. As
mentioned, the instruction could remain a regular store and not get
converted to a storechk.r thanks to the Basic Alias Analysis. This is
a good example of cooperation between runtime alias speculation
and static alias analysis to achieve the best outcome.

Table 3 presents an analysis of the optimizations performed on
these two loops. Columns 2-5 show what effect optimizations have
on the average dynamic instruction count of each atomic region.
Column 2 refers to the dynamic instruction count when compiled
using the BaselineAA or DSAA configurations (they do not actu-
ally contain atomic regions, but we count the corresponding region
of code). Column 3 refers to the dynamic instruction count when
compiled using the DeAliaser configuration. Column 4 shows how
many instructions in Column 3 are for the purposes of enabling the
DeAliaser optimization, such as begin atomic opt, end atomic opt,
clear.r, and instructions needed to block the loop. Column 5 shows
the percentage of instruction reduction for DeAliaser when com-
pared to BaselineAA/DSAA. For both loops, applying DeAliaser re-
sults in a reduction in the number of instructions, namely 23% for
433.milc and 5% for 401.bzip2. Columns 6-7 show the actual code
movements that occur for the BaselineAA/DSAA and DeAliaser
configurations.

5.3 Alias Analysis Results
Figure 6 measures the quality of alias analysis responses generated
by each alias analysis configuration, when paired with the LICM
pass. The results shown are the percentage of queries that return a
may alias, no alias, or must alias response among the total set of
queries thrown by the LICM client pass. In the figure, B, D, and
A refer to the BaselineAA, DSAA, and DeAliaser configurations,
respectively. For DeAliaser, no alias means that the profiler recom-
mended a speculation be performed, although during the execution,
we may suffer occasional aborts.

We are unable to show bars for 400.perlbench, 403.gcc,
443.gobmk, and 483.xalancbmk for DSAA due to reasons men-
tioned in Section 5.1. For these benchmarks, we use the Baselin-
eAA results when calculating the averages. This methodology is
used throughout the evaluation.

Alias analyses return a may alias response when they can nei-
ther prove that a pair of references must alias nor not alias. Hence,
the fraction of may alias responses is a measure of their impreci-
sion. In the figure, we see that DeAliaser leads to a drastic reduction
in the fraction of may alias responses in all of the benchmarks. All
of the may alias responses eliminated are translated into no alias
responses, thereby recommending code motion for LICM. We also
see that DeAliaser is not able to eliminate all of the may alias re-
sponses. This is because some pairs of references actually do may
alias during execution — that is, they reference the same location
a noticeable number of times. Finally, recall that DeAliaser is un-
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Figure 5. Speedups of DSAA (D), DeAliaser (A), and word-granularity DeAliaser (W) over BaselineAA for SPEC INT2006 (a) and SPEC
FP2006 (b).
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Figure 6. Fraction of alias queries performed by LICM that return
a may alias, no alias, or must alias response for SPEC INT2006
(a) and SPEC FP2006 (b). In the figure, B, D, and A stand for
BaselineAA, DSAA, and DeAliaser.

able to conclude for sure that two references alias with each other.
Hence, some of the remaining may aliases in the DeAliaser bars
may correspond to pairs of references that must alias.

The results for GVN are omitted in the interest of space, but
follow the same trend.

5.4 Performance
To assess the impact of DeAliaser, we report the execution speedups
(Figure 5) and the reduction in dynamic instruction count (Fig-
ure 7). Figure 5 shows the benchmark execution speedups mea-
sured using our architectural simulator. We show the speedups of
DSAA (D), DeAliaser (A), and word-granularity DeAliaser (W)
over BaselineAA. Word-granularity DeAliaser is like DeAliaser ex-
cept that, to detect aliased accesses, caches keep speculative read
and write bits per word. The speedups are broken down into the
contribution of LICM and GVN.

The figure shows that DeAliaser enables significant speedups in
multiple benchmarks, beyond what can be provided using DSAA.
On average, DeAliaser speeds-up SPEC FP2006 benchmarks by
9% and SPEC INT2006 benchmarks by about 3% over Baselin-
eAA. On the other hand, DSAA manages an average of 4% for SPEC
FP2006 and 2% for SPEC INT2006. In both configurations, most
of the speedups come from LICM, although GVN also has a signifi-
cant impact in benchmarks such as 401.bzip2 and 459.GemsFDTD.

There is barely any difference between the speedups achieved
using word-granularity SR and SW bits and those using line-
granularity bits. The granularity of access bits determines the accu-
racy of alias checks performed by hardware; larger granularity can
cause them to return an aliased result due to false sharing. This can
potentially stifle optimizations by returning less accurate informa-
tion. However, the results show that having one SR and SW bit per
word is unnecessary, when using 64-byte cache lines.

In general, better alias analysis may not necessarily translate
into better performance. This is because even a single alias inside a
loop can prevent code optimization. In addition, even if the analysis
can prove that none of the references alias with each other, there
simply might not be opportunities for optimization in that loop.

Figure 7 shows the reduction in the dynamic instruction count
of the benchmarks categorized by non-memory, load, and store
instructions. B, D, and A again refer to the BaselineAA, DSAA, and
DeAliaser configurations. We can see that, across the benchmarks,
the reduction in the instruction count is loosely correlated with the
speedups. On average, DeAliaser reduces the instruction count by
9% in the SPEC FP2006 benchmarks and by about 3% in the SPEC
INT2006 benchmarks over BaselineAA.

The most marked reduction is in the number of load instruc-
tions. The hoisting of load instructions that read loop-invariant val-
ues from memory is responsible for the majority of the reduction.
There is also some reduction in non-memory instructions, espe-
cially in 437.leslie3d. This is due to the movement of the address
calculation for matrix element accesses.

Store instructions show some reduction in 437.leslie3d and
433.milc. This is due to two reasons. The first one is the sink-
ing of stores to the exit of the loop. The second one is the reduction
in register pressure due to having computation moved out of the
loop, leading to fewer spills. However, register spills can also be
increased with LICM, by increasing the live ranges of the regis-
ters that contain the values of hoisted loads. This was the case in
459.GemsFDTD, but the reduction in load instructions more than
made up for it.

5.5 Atomic Region Aborts
In our DeAliaser experiments so far, the use of the cost-benefit
model of Section 4.1 has resulted in very few atomic region aborts.
To study a more aggressive environment, we scrap the model and
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Figure 7. Dynamic instruction count of BaselineAA (B), DSAA
(D), and DeAliaser (A) after LICM and GVN for SPEC INT2006
(a) and SPEC FP2006 (b). The bars are broken down by category
and normalized to BaselineAA.

speculate on all alias pairs that may alias, regardless of the cost. We
call this configuration DeAliaser Aggressive.

The resulting execution time is shown in Figure 8, alongside
that of the original DeAliaser, normalized to BaselineAA. The
Useful component of each bar is the time spent making forward
progress, while the Squashed component is the time spent execut-
ing instructions that are aborted due to aliasing. We see that the
Useful component does not show any change from DeAliaser to
DeAliaser Aggressive, meaning that barely any new optimizations
were enabled. This was expected, given that there was preciously
little remaining may alias results to speculate upon (Figure 6).
However, the few new optimizations that are enabled sometimes
do cause abort overhead in 401.bzip2, 403.gcc, and 433.milc. For
some benchmarks, it is important for the compiler to have a cost
model in order to avoid slowdowns.

5.6 Commit Latency Sensitivity
For our performance results in Section 5.4, we assumed that both
begin atomic opt and end atomic opt take just a single cycle to
complete. In different systems, these instructions may take different
times and, in particular, the end atomic opt that commits an atomic
region, could take significantly more time. In Figure 9, we do a
sensitivity study on how much our speedups depend on commit
latency. In the figure, (A), (B), and (C) show the speedups of
DeAliaser over BaselineAA when assuming commit latencies of 1,
10, and 100 cycles, respectively. The figure shows that the speedups
for SPEC FP2006 benchmarks barely change even as we increase
the commit latency to 100 cycles, but SPEC INT2006 benchmarks
are more sensitive. At 100 cycles, the average speedup for SPEC
INT2006 is halved. This is because SPEC FP2006 benchmarks
have much larger atomic regions, which are better able to amortize
commit overhead, as can be seen next.
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Figure 8. Execution time of DeAliaser (A) and
DeAliaser Aggressive (G) for SPEC INT2006 (a) and SPEC
FP2006 (b). The bars are broken down by category and normalized
to BaselineAA.
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Figure 9. Speedups of DeAliaser with commit latencies 1 cycle
(A), 10 cycles (B), and 100 cycles (C) over BaselineAA for SPEC
INT2006 (a) and SPEC FP2006 (b).



Benchmark Coverage(%)
Dynamic Instructions per Atomic Region L1 Occ.

(%)BaselineAA DSAA DeAliaser ALAT
Insts Reduc.(%) Insts Reduc.(%) Insts Reduc.(%)

401.bzip2 9 933 933 0 734 21 930 0 2
403.gcc 23 439 439 0 337 23 440 0 2
429.mcf 9 1228 1228 0 1053 14 1207 2 0
445.gobmk 12 1229 1229 0 1082 12 1218 1 2
456.hmmer 8 8580 8535 1 6935 19 7787 9 1
462.libquantum 69 1401 1122 20 1124 20 1405 0 2
464.h264ref 8 848 843 1 549 35 811 4 1
471.omnetpp 73 3185 3185 0 3014 5 3028 5 5
473.astar 4 528 528 0 426 19 623 -18 19
483.xalancbmk 1 1171 1171 0 1073 8 1171 0 4
INT Average 18 1702 1674 2 1434 16 1628 4 4
410.bwaves 72 6261 6259 0 5941 5 6101 3 1
433.milc 54 16027 13150 18 11113 31 14620 9 6
434.zeusmp 5 9005 8811 2 8415 7 8879 1 7
435.gromacs 3 2592 2514 3 2257 13 2566 1 4
436.cactusADM 0 3072 3072 0 1228 60 2282 26 1
437.leslie3d 58 5331 5113 4 1853 65 3739 30 4
444.namd 38 24907 24757 1 24574 1 24915 0 14
447.dealII 36 2713 2607 4 1957 28 2362 13 2
450.soplex 25 1377 1121 19 1104 20 1395 -1 5
454.calculix 0 1002 995 1 882 12 995 1 3
459.GemsFDTD 64 28270 20054 29 15571 45 26776 5 21
FP Average 29 8379 7371 12 6241 26 7885 6 6

Table 4. Average dynamic instruction statistics per atomic region for each benchmark.

5.7 Characterization
In this section, we characterize the runtime behavior of the atomic
regions instrumented by DeAliaser. Dynamic atomic regions are
characterized in terms of coverage, instruction count, and hardware
speculation and conflict detection resources needed. The data is
shown in Table 4. In the table, there are three benchmarks missing
(400.perlbench, 458.sjeng, and 470.lbm) because DeAliaser does
not instrument any atomic regions.

Column 2 of the table shows the percentage of dynamic instruc-
tions that were covered with atomic regions. We can see that the
average is 18% for SPEC INT2006 and 29% for SPEC FP2006.
Column 3 shows the dynamic instruction count per atomic region
for BaselineAA after performing LICM and GVN. As mentioned
before, BaselineAA does not actually contain atomic regions, but
we count the number of instructions in the corresponding loop. We
can see that we start with sizable atomic regions. The average size
is 1702 instructions for SPEC INT2006 and 8379 instructions for
SPEC FP2006. This is desirable, to amortize atomic region instru-
mentation overhead.

Columns 4-5 show information pertaining to the average atomic
region in DSAA: Column 4 shows the dynamic instruction count,
and Column 5 shows the percentage of instruction reduction com-
pared to BaselineAA. Columns 6-7 shows the same information for
DeAliaser. The dynamic instruction count for DeAliaser includes
overhead for DeAliaser instrumentation and loop blocking. For the
vast majority of cases, the only DeAliaser instrumentation required
was the begin atomic opt and end atomic opt instructions. With
DeAliaser, we obtain average instruction reductions of 16% for
SPEC INT2006 and 26% for SPEC FP2006. For DeAliaser to show
good speedups, both the instruction reduction percentage and the
coverage have to be high. This occurs in 462.libquantum, 433.milc,
437.leslie3d, and 459.GemsFDTD.

Columns 8-9 show, for comparison, dynamic instruction count
and percentage of instruction reduction had we used an ALAT. Al-
though the ALAT can perform all the load hoisting optimizations

done by DeAliaser, it also requires lots of extra alias check instruc-
tions such as ld.c or chk.a to be performed, which cancel out much
of the instruction reduction from optimization. This results from the
fact that a ld.c or chk.a check instruction must be placed at the orig-
inal location of every hoisted load. Sometimes, this even leads to a
net increase in the total number of instructions. It occurs because
the hoisting induces register spills.

Column 10 shows the average fraction of the 32KB specula-
tive L1 cache that is used per atomic region to buffer speculatively
written lines and read-monitored lines. In many cases, the L1 occu-
pancy rate is very small compared to the size of the atomic region.
For example, 456.hmmer has 6935 instructions per atomic region,
but the occupancy rate is just 1%. In a typical transaction used in
transactional memory, most of the lines that need to be buffered
are speculatively read lines, since usually loads are more prevalent
than stores. In the case of DeAliaser, read-monitored lines are only
a small fraction of the lines read in the atomic region, which helps
reduce the footprint.

6. Discussion
6.1 Limitations due to Imprecision
In Section 3.3, we discussed the potential limitations of DeAliaser
due to having just a single set of SR and SW bits to monitor
memory locations, and not being able to manipulate SW bits due
to rollback requirements. These limitations make the alias checks
more imprecise by stifling optimizations.

Adding extra hardware to the upcoming transactional memory
systems can help in easing some of these limitations. One addition
with significant impact would be to add support for one extra
monitored write set, decoupled from rollback requirements, that
the compiler can freely manipulate. This can be easily done by
adding one extra SW bit per cache line to mark monitored write
locations. With this, the precision of alias checks for load sinking,
store hoisting, and store sinking that use the WMonitored set would
be dramatically improved (refer to Figure 1(b)).



Beyond this, adding more hardware to increase the number
of monitored read or write sets can progressively increase the
precision of alias checks. Ideally, we would like as many monitored
sets as the number of code motions. This can be accomplished
with one SR and SW bit-pair in cache lines for each code motion.
However, a more efficient implementation may be to use hardware
signatures that encode addresses (e.g., [28, 38, 39]).

6.2 Isolation Issues
Repurposing the SR bits for load monitoring means forfeiting the
isolation semantics of atomic regions. Let us refer to the atomic
regions created using DeAliaser’s begin atomic opt instruction as
opt atomic regions, and those created using the conventional Trans-
actional Memory (TM) begin atomic instruction as sync atomic re-
gions. The issue arises when a remote processor’s write conflicts
with an address read by a local opt atomic region with a non-
monitored load. Since the local SR bit is not set, the local opt
atomic region would still commit, compromising isolation.

The simple solution to this problem is not to use opt atomic
regions for the synchronization purposes that sync atomic regions
serve in TM. An atomic region should be used for either optimiza-
tion or synchronization, but not both.

But what if an opt atomic region is nested inside a sync atomic
region? If nested atomic regions are flattened, as is done in many
current systems, manipulation of the SR bits in the inner atomic
region would compromise the isolation of the outer sync atomic
region. To avoid this problem, nested opt atomic regions should
automatically trigger a jump to the safe version with no DeAliaser
instrumentation.

What if a sync atomic region is nested inside an opt atomic
region? To avoid compromising the isolation of the inner sync
atomic region, all the loads in the inner atomic region should set
the SR bit. This would make sure that any read memory conflict in
the inner atomic region would trigger a rollback. While this may
increase the chances of alias speculation failure in the outer opt
atomic region, correctness is guaranteed. If the increase in failure
rate is too high, it would be detected in the profiling phase and the
opt atomic region would not be instrumented.

Adding hardware support for maintaining a monitored read set
separate from the speculative read set (e.g., by adding one extra bit
in each cache line separate from the SR bit) solves this issue.

6.3 Applying to Dynamic Compilation
Although our discussion has focused on the LLVM static compiler,
we believe that there is fertile ground for applying alias speculation
to dynamic compilers. Dynamic compilers have largely avoided
complex alias analyses such as Data Structure Alias Analysis be-
cause of the unacceptable compilation overhead. However, a dy-
namic analysis such as the one in DeAliaser that leverages profil-
ing information is a perfect fit for application to dynamic compilers.
Moreover, as discussed in Section 4.1, DeAliaser profiling imposes
only a very small overhead.

7. Related Work
7.1 Optimizations using Atomic Regions
Speculative code optimizations in atomic regions have been applied
to control speculation over a hot trace of code [15, 29, 30, 32].
When these traces of code are generated to enable on-the-fly op-
timization of uops translated from machine instructions [7, 8, 15,
29], the atomic regions are also used to support precise exceptions
at the machine level. In addition, atomic regions are a good way
of hiding code movements, which might violate the machine mem-
ory model, from other processors. With this support, a compiler
can enforce a strict memory model like sequential consistency on a

relaxed-consistency machine, and still attain high performance [4].
Continued interest in atomic regions has also led to work that pro-
poses ways to deal with the limitation of hardware speculation re-
sources, either through short rollbacks [8] or smart monitoring of
the resources [7].

7.2 Alias Speculation
There is a significant body of work that attempts to perform alias
analysis speculatively, relying on runtime checks to verify them in
similar ways as DeAliaser. These checks can either be done purely
in software [31], or with the assistance of special hardware such as
in Itanium’s Advanced Load Address Table (ALAT) [14, 25, 26]
and in Transmeta’s binary translator [15, 21].

The ALAT is a hardware table that monitors accesses to mem-
ory locations. It is used for hoisting load instructions across poten-
tially aliasing stores. A check instruction is placed at the location
of the original load that verifies in hardware that no intervening
stores aliased with the hoisted load. Since the span of code mo-
tion is clearly demarcated by the hoisted load and the check, pre-
cise alias checks on multiple code motions are naturally supported.
However, the need to perform recovery in software prevents cer-
tain optimizations from being performed and the engineering com-
plexity discourages compiler writers from implementing aggressive
optimizations. Also, the frequency of check instructions cost both
performance and energy.

Perhaps the work that bears the most resemblance to ours is
the work on Transmeta’s Code Morphing Software (CMS) binary
translator [15, 21]. Just like DeAliaser, CMS leverages atomic re-
gions to perform alias speculation. Load hoisting is used to overlap
load latencies with computation in their statically-scheduled VLIW
hardware. However, it is unclear from the ISA extensions that the
company published, how multiple spans of code motion can be sup-
ported inside a single atomic region. This support is crucial for ag-
gressive optimization. Moreover, to our knowledge, the exact de-
tails of how CMS takes advantage of those extensions have never
been published in the literature. In addition, note that neither CMS
or the ALAT supports the movement of stores.

In this paper, we discuss many compiler as well as hardware
aspects of the problem of doing alias speculation using atomic
regions and propose a solution that can move both loads and stores
in a general way. We also discuss ways to minimize imprecision in
the face of multiple code motions inside an atomic region.

Another related approach has been to have the hardware moni-
tor alias speculation violations and silently patch up the state when
it happens, unbeknownst to software and even without having to
rollback execution, such as in CRegs [13] and in the Store-Load
Address Table (SLAT) [33]. While this is an attractive idea, the
complexity of patching up the state is analogous to the job of gen-
erating recovery code in the compiler, and doing this in hardware
clearly has its limits. Hence, the optimization that they support is
limited to speculative register promotion.

8. Conclusions
This paper proposed, for the first time, to expose the alias checking
capabilities present in upcoming transactional memory systems for
the purpose of alias speculation. This is accomplished with a set of
novel instructions and hardware extensions. We call our approach
DeAliaser. The paper also presented how these instructions are
used in a source-level compiler to enable (i) code motion on both
loads and stores, and (ii) multiple code motions in a single atomic
region with minimal loss of precision. The latter is crucial for
aggressive optimization. DeAliaser’s capabilities are attained by
simply exposing the existing checkpointing and memory conflict
checking facilities of atomic regions to the compiler. No significant
hardware complexity was added to existing atomic regions.



We evaluated LICM, GVN, and PRE optimizations enhanced
for DeAliaser in the LLVM compiler. Our work resulted in an aver-
age application speedup of 9% for SPEC FP2006 benchmarks and
3% for SPEC INT2006 benchmarks, over the application of the
baseline LLVM alias analysis. We also showed a detailed charac-
terization of the atomic regions formed by DeAliaser, and examples
of real code where the optimizations happened.
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