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ABSTRACT Millions of alarms in the optical layer may appear in optical transport networks every month,

which brings great challenges to network operation, administration and maintenance. In this paper, we deal

with this problem and propose a method of alarm pre-processing and correlation analysis for this network.

During the alarm pre-processing, we use the method of combined time series segmentation and time sliding

window to extract the alarm transactions, and then we use the algorithm of combined K -means and back

propagation neural network to evaluate the alarm importance quantitatively. During the alarm correlation

analysis, we modify a classic rule mining algorithm, i.e., Apriori algorithm, into a Weighted Apriori to

find the high-frequency chain alarm sets among the alarm transactions. Through the actual alarm data from

the record in the optical layer of a provincial backbone of China Telecom, we conducted experiments and

the results show that our method is able to perform effectively the alarm compressing, alarm correlating,

and chain alarm mining. By parameter adjustment, the alarm compression rate is able to vary from 60%

to 90% and the average fidelity of chain alarm mining keeps around 84%. The results show our approach

and method is promising for trivial alarm identifying, chain alarm mining, and root fault locating in existing

optical networks.

INDEX TERMS Alarm pre-processing, K-means, back propagation neural network, alarm compression,

alarm correlation analyzing, optical network.

I. INTRODUCTION

As the scale of optical transport network (OTN) expands,

the number of alarms in optical layer may reach over one

million within only one week, which brings great trouble to

the network operation, administration, and maintenance. For

example, if alarms appear due to an overtime service delay or

an extra-high bit-error-rate (BER), the network administrator

has to judge the fault location promptly and correctly in order

to repair the fault in time. However, the situation in actual

network is very complicated. A fault is often related to a large

number of alarms, including many redundant alarms. Mean-

while, there exist lots of false alarms corresponding to no

fault. Therefore, it is difficult for people to find useful infor-

mation promptly from such a large number of alarms. If these

alarms can be compressed reasonably and automatically,

The associate editor coordinating the review of this manuscript and
approving it for publication was Tianhua Xu.

the alarm analysis will be much easier, which will help the
network administrator to find the root cause of the faults and
restore the OTN in time. Therefore, the alarm compression
has become an urgent and also tough problem in optical
networking, and the premise of alarm compression is alarm
correlation analysis. As an important part of the network
fault management, the alarm correlation analysis is helpful
for deleting redundant alarms, predicting chain alarms, and
locating faults. Traditional alarm correlation analysis can
find the alarms associations to a certain extent and depend
mainly on the expert systems or even manual operation of
the experienced staff. With the growing number of optical
links and OTN systems, it is increasingly difficult for experts
to keep up with the rapid changes in the network and then
discover truly useful knowledge from the alarms.

Most of the existing studies are based on association
rule mining, correlation coefficient, or mutual information

to analyze the alarm correlation [1]–[4]. Meanwhile, alarm
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association analysis based on association rule mining has

been widely concerned due to its advantages of compressing

alarm volume and finding high-frequency chain alarms. Typ-

ical rule mining methods are Apriori-like algorithms [5]–[7],

which locate frequent alarm transactions by repeatedly scan-

ning the database and present them as rules. However, there

are few studies or reports on alarm analysis for optical net-

works and the existing methods are not very suitable for

optical networks. The alarms in OTNs rise not only from the

optical transport plane but also the service plane and the con-

trol plane, so that the large amount of alarms from different

planes often interact with each other. As a result, if the asso-

ciation rules are directly mined from the original alarms, the

performance of the algorithm will be degraded significantly.

Moreover, the original alarms from actual optical networks

always suffer from several problems (i.e., information redun-

dant, time asynchronous, and ambiguous importance of alarm

attributes, etc.), which are detrimental to alarm analysis and

compression. Therefore, alarm pre-processing is required.

The common methods of quantitative evaluation of the

alarm importance rely on experienced network experts in

determining the relative importance of alarms [8]–[10].

Different network experts or researchers may derive differ-

ent weights for the alarms in the same network. However,

the alarm number rises to tens of thousands and also the

network is becoming more and more dynamic. It becomes

impossible to determine the relative importance of all alarms

accurately by manual operation or experts alone. To address

the problem of a huge number of alarms with various

attributes and of uncertain importance in the dynamic opti-

cal network, an effective and objective method of alarm

importance evaluation is necessary. In an optical network,

the alarm usually contains many attributes and each attribute

with a wide range of values makes the alarm importance

ambiguous. Therefore, it is necessary to give weights to these

attributes and thus evaluate the alarm importance quantita-

tively. Recently, machine learning is playing an increasingly

important role in optical communication research, and has

been applied in diverse areas such as predicting equipment

failure in optical network [11], reducing nonlinear phase

noise [12], [13], compensating physical impairments [14],

monitoring optical performance [15], [16], adaptive nonlinear

decision at the receivers [17], adaptive demodulator [18], and

traffic-aware bandwidth assignment [19].

In this paper, we propose the TKBW method for alarm

pre-processing and alarm association rule mining. The time

required for different faults to trigger a series of chain alarms

is different and, therefore, we use the time sliding win-

dow (TT) to divide the original alarms into alarm sequences

and thus extract the alarm transactions. Meanwhile, the alarm

synchronization and redundancy removal are performed in

each of alarm sequence. To address the problem of a huge

number of alarmswith various attributes and uncertain impor-

tance, in this paper we use KB method to give the weights to

the Importance on Alarm Attributes (IAAs). After the alarm

pre-processing by combined K-means and Back propagation

FIGURE 1. Extraction of original alarm attributes.

neural network (TT-KB) method, we modified the traditional

Apriori algorithm as W-Apriori algorithm to find out the

association rules between alarms, and facilitate the alarm

compression and fault location.

The rest of the paper is organized as follows: In Section II,

we discuss the principles of the alarm analysis scheme,

including the TT-KB method for alarm pre-processing, the

W-Apriori method for alarm correlation, and their imple-

mentation. Section III shows the experimental results and

discussion. Finally, we draw conclusions in Section IV.

II. PRINCIPLE OF ALARM ANALYSIS SCHEME

The proposed TKBW method is mainly divided into two

parts: alarm pre-processing and alarm correlation analysis.

A. TT-KB BASED ALARM PRE-PROCESSING

Given its present huge scale in trans-provincial backbones

and metropolitans networks, there are a large number of

original alarms in the existing optical network. Moreover,

the original alarm data are facing the problems of information

redundant, time asynchronous, and the unclear IAAs. We use

the TT method to divide all the original alarms into alarm

sequences. Then the alarm synchronization, redundancy

removal, and alarm transaction extraction are performed for

each alarm sequence via a time sliding window. But there

are many alarm attributes and their IAAs are unknown,

so that we use the KB method to evaluate the IAAs quan-

titatively. Firstly, the alarm attributes are quantized, and then

the K-means algorithm is used to classify the alarms. Then,

the Back propagation neural network (BP-NN) algorithm is

used to infer each IAA weight.

According to the network management logs in existing

provincial OTN, the original alarms usually contain the fol-

lowing attributes: equipment name, equipment type, equip-

ment address, network element type, alarm level, alarm name,

alarm type, alarm time, subnet, and so on. Among these

attributes, the equipment name can be determined by the

equipment address. The network element type and its subnet

are unified within a certain network segment. Therefore,

as shown in Fig. 1, to start with, we extract the six attributes,

the equipment address (Ea), the alarm name (An), the alarm

level (Al), the alarm type (At), the equipment type (Et) and

the alarm time (t) to form a new alarm, which is marked as a

6-tuple {Ea, An, Al, At, Et, t}.
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1) TT METHOD OF ALARM TRANSACTION EXTRACTION

In the existing OTN, the number of alarms for different faults

is different and the time required to form an alarm sequence

is also different. Therefore, during time-segmenting of a large

number of alarms, we have to ensure that a complete alarm

sequence is collected. Otherwise it will affect the subsequent

alarm correlation analysis. Here, we calculate the time series

similarity to implement the time segmenting, which makes

the alarm similarity in the same time period maximum while

the alarm similarity in different time periods minimal.

According to a direct calculating method of the time series

similarity [20], the time interval is used as the criterion for the

similarity measure among alarms, x, y as given by Eq. (1),

dist(x, y) =

√

∑

(x − y)2 (1)

Thus, the intra-segment similarity function SI(t) is defined

as the sum of the squares of the time intervals from each

moment to the midpoint of the time period, as follows,

SI(t) =

k
∑

i=1

I (ti) =

k
∑

i=1

∑

t∈ci

dist(t, ci) (2)

where ci represents the midpoint of the time period ti.

The inter-segment similarity function SO(t) is defined as

the sum of the time intervals between the midpoint of each

time period, as follows

SO(t) =
∑

1≤i≤j≤k

dist(ci, cj) (3)

Then the sum of the squared error (SSE) is adopted as the

objective function and also the index to measure the division

of the time window, as given by Eq. (4):

SSE =

k
∑

i=1

∑

t∈ci

|t, ci|
2 (4)

where the optimal result is to obtain the minimal SSE. The

main flow of the algorithm is attached as Algorithm I in

Appendix.

After the time segmenting, we use the time sliding window

method [21] to perform time synchronization, redundancy

removal, and alarm transaction extraction for the alarms in

each time period. Time synchronizationmeans that the alarms

appearing in the same time window are regarded as con-

current alarms and are to be extracted into the same alarm

transaction. In addition, if an alarm appears several times in

a short interval, it is recorded only once in the same time

window in order to eliminate redundant alarms. The alarm

transaction refers to the collection of alarms appearing in the

same time period.

Regarding the time sliding window method, we give the

following definitions:

Definition 1: Time window. The given time window width

is V , and the time window is used to slide from the beginning

of a time period until the end of the time period.

FIGURE 2. Example of alarm transactions extraction using the time
sliding window.

TABLE 1. Example of the alarm transaction database TD1.

Definition 2: The window slide step h, which is the length

of each movement of the time window.

Figure 2 shows an example that the total alarms {A, A, B,

C,. . . ,C, B} are divided into several alarm sequences (e.g.,

D1,D2,. . . ,Dk) according to the time series similarity calcula-

tion. Then given the windowwidth V of 5 and the sliding step

size h of 2, the time sliding windowmethod is used to perform

alarm transaction extraction for each alarm sequence. If for

example alarms B(23) and B(27) occur in the same window,

the alarm B is recorded only once. The time when the alarm

occurs is recorded as 23s and 27s, which is expressed as

B(23,27):1. Similarly if alarms A(28) and A(28) are reported

multiple times at the same time, alarm A is recorded once.

The alarm occurs for 28s, which is expressed as A(28):1.

Table 1 gives an example of the alarm transactions extracted

by the time period alarm sequence. The alarm transaction

refers to the set of alarms collected in a given time window,

such as {A, B, C}, {B, C, E}, {C, E, A, B}, {E, A, B},

{B, D}, and we treat the total alarm transactions as an alarm

transaction database TD1 = {{A,B,C}, {B,C,E}, {C,E, A,

B}, {E, A, B}, {B, D}}.

2) QUANTITATIVE EVALUATION OF ALARM IMPORTANCE

To evaluate the alarm importance quantitatively, it is neces-

sary to assign IAA weights (Fig.4).

We apply the KB method where the alarm attributes are

taken as the input and the alarms with similar attributes are

classified into the same class by the K-means algorithm. Then

both the alarm attributes and the classifications are taken

as the input of the BP-NN to train the connection weights

between the neurons, so that the connection weights map

the information of the alarm attributes, and thus obtain IAA

weights.

According to the advice of experienced network adminis-

trators and by observation of the alarm sets and the fault sets

in the actual network logs, we select three alarm attributes

that are most closely related to the faults as the initial sample
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input, i.e. A = {Al, At, Et} in Fig.1. Each attribute in the

collection has several values that indicate the relative impor-

tance. Here we use the K-means algorithm to automatically

classify similar alarm samples, and get the comprehensive

alarm classifications after fully considering these three alarm

attributes.

We rewrite Eq. (1) as Eq. (5), where xi and xj represent the

attribute values, and D represents the number of attributes.

dist(xi, xj) =

√

√

√

√

D
∑

d=1

(xi,d − xj,d )2 (5)

All alarms are divided into K classes, denoted as C1, C2,

. . . . . .Ck. Then, we take A = {Al, At, Et} as the input and the

K alarm classes as the labels to train a stable BP-NN model

owing to the strong self-learning and fitting ability of the

neural network. Thus, via the method in [22], the connection

weights of neurons are mapped to the IAA weights, as given

by Eq. (6):

FeatureX =
∑

Y
HiddenXY (6)

where X is the weight matrix between the input layer neu-

rons and the hidden layer neurons, and Y is the weight

matrix between the output layer neurons and the hidden layer

neurons.

Finally, we give the score of the alarm importance as

Eq. (7), where N is the number of inputs.

W =
1

N
(Feature1 × Al + Feature2 × At + Feature3 × Et)

(7)

B. W-APRIORI BASED ALARM CORRELATION ANALYSIS

The score of the alarm importance is helpful for setting

a threshold and thus discard those trivial alarms and false

alarms. For the remaining alarms, correlation analysis is still

needed to obtain chain-alarms.

The existing correlation analysis method is not designed

for optical networks and they do not consider the difference in

alarm importance. For example, the typical Apriori algorithm

treats different alarms as equal, and there is no difference in

the alarm attributes. However, in an actual optical network,

an alarm usually consists of many attributes, and different

attribute combinations indicates different alarm severities.

When mining the alarm correlation, we improve the

Apriori algorithm as W-Apriori, in which the score of alarm

importance is used as the weight.

Given a database with a set of alarm transactions D =

{T1, T2,. . . ,Tm}, where Tj(j = 1,2,. . . ,m) is the set of alarms

collected within time window. I = {i1, i2,. . . , in} is the set

of all alarms in the database, and each alarm transaction set

Tj is a subset of I (i.e. Tj ⊂I). The set of alarm scores in

the corresponding alarm set I can be expressed asW = {W1,

W2,. . . ,Wn} (0 ≤Wj ≤ 1, j = 1,2, . . . , n), andWj is the score

of the alarm ij.

In traditional Apriori, the association rule is the expression

of the form X⇒Y, where X and Y are disjoint item sets

(i.e. X∩Y = Ø). The strength of the association rule is

measured by its support and confidence. The support deter-

mination rules can be used for the frequency of the given data

set, and the confidence determines how frequently Y appears

in transactions that contain X. The W-Apriori algorithm

redefines the above two.

Definition 3:Weighted Support. The traditional support of

pattern X(X⊆I) is denoted as Support(X) = Count(X)/|D|,

where Count(X) = |Tj|X∈Tj,Tj ∈D| is the number of

transactions for which item set X appears in D, and |D| is

the total number of transactions in D. Then the weighted

support (wSupport) of X is defined as Eq. (8), where n is

the number of items in X. Meanwhile, minwSup is used to

represent the minimum weighted support threshold, which

is used to evaluate the minimum limit of the transaction

frequency.

wSupport(X) = Support(X) × (
∑n

Ij∈X,j=1
Wj) (8)

Definition 4: Weighted Confidence. The traditional confi-

dence of a ruleX⇒Y isConfidence (X⇒Y)= Support(X∪Y)/

Support(X). Then the weighted confidence (wConfidence) of

a rule X⇒Y is defined as Eq. (9), where n is the number of

items containing the union of X and Y, and m is the number

of items in X. Meanwhile, minwConf is used to represent the

minimum weighted confidence threshold, which is used to

evaluate the minimum limit of the transaction association.

wConfidence(X ⇒ Y)

=
Support(X ∪ Y) × (

∑n
Ij∈(X∪Y),j=1Wj)

Support(X) × (
∑m

Ij∈X,k=1Wk )
(9)

Definition 5: Weighted Frequent itemsets. Given a

database D and a weighted support threshold minwSup, if a

pattern X satisfies: wSupport(X) ≥ minwSup. Then X is the

weighted frequent itemsets.

Therefore, the purpose of the W-Apriori algorithm is to

find all the association rules where the wSupport and the

wConfidence satisfy the conditionswSupport≥minwSup and

wConfidence ≥ minwConf in the given alarm database D

respectively. The description of the W-Apriori algorithm is

given as Algorithm II (seen in Appendix).

Figure 3 is an example to illustrate the implementation

of the W-Apriori algorithm. We use the alarm transaction

databaseD1 given in Table I, which contains 5 alarm transac-

tion sets: {A, B, C}, {B, C, E}, {C, E, A, B}, {E, A, B},

{B, D}, where minwSup = 50% is used as the minimum

support threshold. The W-Apriori algorithm uses an iterative

strategy of layer-by-layer search: in the k-th cycle, frequent

k-itemsets are generated through a combination of the trans-

action database and candidate k-itemsets, and then a new can-

didate (k+1)-itemsets are generated based on the k-itemsets.

And so on, the algorithm stops until the maximum itemset

of a cycle is empty. Finally, we filter out high-frequency

chain-alarm {A, B}, {B, C}, and {B, E}.
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FIGURE 3. Execution process of W-Apriori algorithm.

FIGURE 4. Application scenario of the alarm analysis scheme.

C. IMPLEMENTATION OF TKBW ALGORITHM

The application scenario of the alarm analysis scheme is

shown in Fig. 4. In the OTN network, the alarm data in

optical layer collected through the network management sys-

tem or the controller in software defined optical network

(SDON), and then the TKBW method is used for alarm

analysis.

Figure 5 illustrate the overall principle of the TKBW

method. TKBW consists of two modules, i.e. an alarm pre-

processing module and an alarm correlation analysis module.

The alarm pre-processing module extracts the alarm transac-

tion and evaluates the alarm weight and converts the alarm

data into alarm transactions suitable for correlation analysis.

The alarm correlation analysis module is used to mine the

association rules from the alarm transactions, and thus finds

out the chain alarms. The procedure of the TKBW method is

shown as follows.

Step 1: Collecting the alarms and select the useful alarm

attributes;

Step 2: Extracting the alarm transactions by using TT

method;

Step 3: Scoring the alarm importance by using KBmethod;

Step 4: Analyzing the alarm correlation with W-Apriori

algorithm and find out the chain alarms.

III. EXPERIMENTS AND DISCUSSIONS

Experiments were conducted with the alarm data from the

network log of optical layer equipment in a provincial

backbone of China Telecom that contains 441 OTN nodes.

We collected 5,100,000 original alarms within 30 days.

The proposed TKBW method was developed via Python

and implemented on a computer with Windows 7 operating

system, Intel(R) Core (TM) processor i5-4345 with 2G main

memory.
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FIGURE 5. Schematic diagram of TKBW method.

FIGURE 6. Comparison of the time consumptions in extracting alarm
transactions by TT method and UT method.

A. ALARM TRANSACTION EXTRACTION

First, the original alarm data of the first 20 days were used as

the test data, and Step 1 and Step 2 in TKBW procedure were

performed to extract the alarm transaction. In the actual OTN,

the operator generally uses the alarm data extracted every

15 minutes, which is not extracted in real time. Therefore,

we divided all the alarms per day by intervals of 15 minutes

and thus got averagely 90 alarm transaction databases per

day, namely D1, D2, . . . and D90. Then, a time sliding

window processing was performed for each alarm transaction

database to extract the alarm transactions. Here we set the

window width V as 5 minutes and the sliding step h as

2 minutes.

We compared the time consumption of alarm transaction

extraction by the TT method and the uniform time (UT)

window method. It can be seen from Fig. 6 that the

more complex TT method takes slightly longer time than

the UT method does. And as the alarm transaction num-

ber increases, the difference fades away. We still pre-

fer to use the TT method because it fully considers the

unevenness of the distribution of alarm data, and also can

remove the isolated points and abnormal points as invalid

alarms.

FIGURE 7. Mean square error varies with the iteration epoch of K-means.

B. QUANTITATIVE ANALYSIS OF ALARM IMPORTANCE

In step 3, according to the advice of experienced network

administrators, we selected three alarm attributes that are the

most closely related to the faults, namely, alarm level Al,

alarm type At, and alarm equipment type Et. These three

attributes were initialized. For example, for alarm level AL,

we initialized emergency as 1, importance as 2, secondary as

3 and prompt as 4. Then, the alarm transactions with initial-

ized attributes were taken as the input of K-means algorithm,

where the alarms with similar attributes were divided into

the same class. As shown in Fig. 7, after about 15 iterations,

the mean squared error of classification converged to 1.5,

indicating that the K-means algorithm is trained.

After the K-means classification, all the alarms were auto-

matically classified into four classes, recorded as C1, C2,

C3 and C4, respectively. Then, this classification was used as

the input label of BP-NN, where the connection weights of

all BP-NN neurons were obtained through BP-NN feedback

learning. Here, we considered the effect and complexity of the

algorithms, and set numbers of the input, output and hidden

layers of BP-NN as 3, 4 and 10 respectively, and set the

learning rate as 0.01. Fig. 8 shows the connection weight

between the input neurons and the first hidden layer neurons

during BP-NN training, which changes with the number of
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FIGURE 8. Connection weights vary with the iteration epoch of BP-NN.

FIGURE 9. IAA weights for different quantitative combinations.

training iterations. It can be seen that after 10 epochs of

iteration, the connectionweight tends to be convergent, which

shows that it is feasible to score the alarms and their attributes.

In the above, we marked the output classifications (C1 to

C4) by K-means as four different values, but these values are

in fact only tags of the classes and they are not necessarily

the only representations. Therefore, there are 24 kinds of

combinations when assigning 1∼4 to C1∼ C4 respectively.

We repeated the above experiment with different combina-

tions of the initial values of C1∼ C4 and then calculated

the IAA weights given by Eq. (6). The results are shown

in Fig. 9. It can be seen that, although with different initial

values, via the classification of K-means and BP-NN, the IAA

weights are able to be stabilized at around 0.55, 0.25 and

0.20 respectively. It indicates that the combined algorithm

of K-means and BP-NN works independent of the initially

quantized values. Therefore, the idea of giving quantitative

evaluation to the alarms and the abstract alarm attributes

works. Then, the scores of alarms can be calculated according

to Eq. (7), and the wSupport and wConfidence of alarms

can be calculated according to Eq. (8) and Eq. (9). There-

after, as illustrated by the C1 step in Fig.3, we obtained the

FIGURE 10. Time consumption varies with minwSups.

wSupport for each alarm and then deleted those alarms whose

wSupport s are less than theminwSup. Here, theminwSup acts

as a threshold for the preliminary alarm compression and this

threshold should be assigned according to the requirements

of the actual network management.

C. ALARM CORRELATION ANALYSIS

AND ALARM COMPRESSION

After the preliminary alarm compression, we analyzed the

correlation among the remaining alarms and explored ways

to compress the alarms in terms of alarm compression rate

and fidelity.

First, the time consumptions of the traditional Apriori and

the modified W-Apriori were compared, as shown in Fig. 10,

where the number of alarm transactions sets is 100,000 and

minwSup changes from 0.1 to 0.6. As theminwSup increases,

the time consumptions of both algorithms decrease gradually.

The main reason is that when the thresholdminwSup is small,

more alarm transaction sets need to be processed. In addition,

the W-Apriori takes less time than the Apriori does.

Next, we tested the effects of alarm number on the

performance of both algorithms. Fig. 11 shows the time con-

sumptions for mining 10,000 to 100,000 alarm transactions

by both algorithms, with a fixedminwSup of 0.2. As the alarm

number increases, the time consumption of both algorithms

become longer, but the W-Apriori outperforms the Apri-

ori gradually. With larger alarm number, the advantages of

W-Apriori becomes more obvious.

Both Fig. 10 and Fig. 11 show that the modified

W-Apriori outperformsW-Apriori in terms of time consump-

tion, since the W-Apriori considers the alarm importance and

thus removes a large number of redundant alarms (e.g., false

alarms).

Figure 12 presents the comparison of the compressed

alarm collection number by both algorithms, with various

minwSup s and with a fixed alarm transaction number

of 10,000. To some extent, the same minwSup means that the

same compression fidelity can be obtained. Fig. 12 indicated
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FIGURE 11. Time consumption varies with alarm number.

FIGURE 12. Compressed alarm collections by both algorithm with various
minwSups.

with the same compression fidelity, W-Apriori works more

effectively and leads to fewer alarm collections.

We applied the TKBW trained by the alarms in the first

20 days and then analyzed the alarms in the last 10 days

in order to evaluate the alarm compression performance.

Here, the average number of alarm transactions generated

per day is approximately 5,000. Fig. 13 shows the varia-

tion of compressed alarm collections with various minwSup,

in which, as minwSup increases from 0.1 to 0.3, the alarm

collections are obviously compressed. In particular, when

minwSup is 0.2, the number of compressed alarm collections

is about only half of that whenminwSup is 0.1. This indicates

that different minwSup means different compression rates.

Therefore, the bigger the minwSup is, the greater the com-

pression rate is, and the fewer alarm collections are finally

obtained.

In order to show the effects of minwSup on the alarm

compression more directly, we plotted the alarm compression

rate with different minwSup for total 30 days, as shown

in Fig. 14. The alarm compression rate here refers to the

ratio of the number of compressed alarm collections over

FIGURE 13. Number of compressed alarm collections v.s. minwSup.

FIGURE 14. Compression rate with different minwSups.

the number of total original alarm collections. It can be seen

that as minwSup increases from 0.1 to 0.2 and then to 0.3,

the alarm compression rates rises from 67% to 82% and then

to 89%, respectively. That is, larger minwSup yields higher

compression rate. In other words, with larger minwSup, more

alarms will be removed as false alarms.

Moreover, given a fixed minwSup, the compression rate

remains almost stable, independent of both the training sam-

ples in the first 20 days and the application samples in the

last 10 days, which indicates that the W-Apriori works stable

and has little deviation between the training samples and the

application samples.

The results above also indicate that, by adjusting the

minwSup, we are able to obtain different compression rates

for different purposes. Higher alarm compression rate is not

necessarily desired, for that we must consider the compres-

sion fidelity, which is defined as follows.

After the alarm compression, the collections of high-

frequency chain alarms were obtained. We assume that the

high-frequency chain alarms are the substantial key alarms

that can represent the actual faults, and the location of the
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FIGURE 15. Compression fidelity with different minwSups.

fault nodes are known. Then, we define compression fidelity

as the proportion of the compressed high-frequency chain

alarms occurrence location containing the actual fault node

location in each time period.

Wemeasured the quality of the alarm compression in terms

of compression fidelity. Fig. 15 shows the variation of com-

pression fidelity with different minwsups when minwConf is

0.1. Here, we set minwConf to a smaller value, mainly in

order to retain a large number of original alarm collections

and facilitate the statistical experiment results. It can be seen

that as the minwSup is 0.1 or 0.2, the fidelity keeps relatively

high, namely 84% and 80% respectively, indicating that after

alarm compression with such a minwSup, the high-frequency

chain alarms can reflect the actual fault situation to a large

extent. However, as the minwSup is 0.3, too much alarms are

removed during compression and thus the fidelity remains

even lower than 60%, which means in this case the alarm

compression is not very believable.

Moreover, from Figs. 14 and 15, it can be seen that when

minwSup is 0.2, the obtained alarm compression rate is 15%

larger than when minwSup is 0.1, which indicates that when

the minwSup is 0.2, the original alarms can be compressed

to a larger extent while relatively high compression fidelity

is kept. Therefore, considering both the alarm compression

rate and fidelity, it may be appropriate to select the minwSup

threshold as 0.2. However, in actual optical network, themin-

wSup threshold should be set to a particular optimal range

of values according to the network scale. If the threshold is

set too small, many redundant alarms (e.g., false alarms) will

be retained, which is not conducive to the subsequent alarm

correlation analysis and alarm compression; if the threshold is

set too large, some important alarms (e.g., substantial alarms)

will be removed. Therefore, in practical operation, it is neces-

sary to set a threshold according to actual OAM requirements

and operational effects.

According to the experimental results, the TKBW

method can effectively perform alarm compression, alarm

correlation analysis and chain alarm mining to imple-

ment the compression of alarms and obtain high-frequency

chain alarms. This means that we can use high frequency

chain alarms to find the root fault nodes location. More-

over, the method is not complicated in implementation.

Therefore, the proposed method is easy to set up in the

controller.

However, since the experimental data have come from the

actual alarmmonitoring record in optical layer of a provincial

backbone of China Telecom, the number of alarm attributes

of the fiber layer equipment is small and the attributes are

relatively thick. Our method cannot fully guarantee that all

OTNs are applicable. If there are more data from different

OTNs, a more complete analysis method can be proposed

and the universality of the method can be verified. In addi-

tion, we extracted six important and valid attributes in the

experiment. If we change the number of alarm attributes (e.g.,

reduce the number of alarm attributes) and re-experiment,

weather we get the same results will require further testing

and analysis. Whatever the outcome, the proposed scheme

offers a good promising model, which is interesting and will

needs further future research.

IV. CONCLUSION

To deal with the problem of coping with the huge number

of Alarms in OTNs, we have proposed the TKBW method,

which offers alarm compression and high-frequency chain

alarms mining. By taking actual data of network logs from

China Telecom, we have conducted experiments, the results

of which show that the TKBW method is able to give a score

to indicate the importance of each alarm and the score is

independent of the initial quantization values. In addition, the

TKBWmethod is able to mine the chain alarms and compress

the alarms to a rate on demand by adjusting parameters, such

as minwSup. The results are promising and helpful for false

alarm identifying and root failure locating.

APPENDIX

See Algorithms I and II.

Algorithm 1 Time Division Method Based on Similarity of

Time Series
Input: k: the number of time segments n: database con-

taining n alarm events

Output: k: k time intervals with minimum sum of squared

errors

1: Select initial cluster center points for k time segments;

2: for (j = 1; j <= n; j++){

3: Assign eachtj to the time interval which has the

closest mean; }

4: for (i = 1; i <= k; i++){

5: find the cluster center point ci for each time segment;

}

6: compute SSE =
k
∑

i=1

∑

t∈ci

|t ,ci|
2;

7: Repeat until SSE conversed.
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Algorithm 2 W-Apriori Algorithm

Ck : Candidate itemsets of size k

Lk : frequent itemsets of size k

Input: D: transaction database

minsup: minimum support threshold

Output: L: frequent itemsets of D

1: L1 = FindFrequent_1_itemsets(D);

2: //generate the frequent 1-itemsets

3: for (k = 2;Lk−1Lk−1 6= ∅ 6= ∅; k + +)

4: Ck = Genetate Candidates (Lk−1, minsup);

5: //generate the new candidate itemsets

6: for each transaction t ∈ D

7: Ct = subset(Ck ,t);

8: //find out all candidate k-itemsets contained

in transaction t

9: end for

10: Lk ={c ∈ Ck | support ≥ minwsup}

11:end for

12: return L = ∪Lk ;
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