
Dealing with Concept Drift and Class Imbalance
in Multi-label Stream Classification

Eleftherios Spyromitros-Xioufis1, Myra Spiliopoulou2, Grigorios Tsoumakas1, Ioannis Vlahavas1
1Aristotle University of Thessaloniki, Thessaloniki 54124, Greece

2Otto-von-Guericke University of Magdeburg, Magdeburg 39106, Germany
{espyromi,greg,vlahavas}@csd.auth.gr, myra@iti.cs.uni-magdeburg.de

Abstract
Streams of objects that are associated with one
or more labels at the same time appear in many
applications. However, stream classification of
multi-label data is largely unexplored. Existing ap-
proaches try to tackle the problem by transferring
traditional single-label stream classification prac-
tices to the multi-label domain. Nevertheless, they
fail to consider some of the unique properties of
the problem such as within and between class im-
balance and multiple concept drift. To deal with
these challenges, this paper proposes a novel multi-
label stream classification approach that employs
two windows for each label, one for positive and
one for negative examples. Instance-sharing is ex-
ploited for space efficiency, while a time-efficient
instantiation based on the k-Nearest Neighbor algo-
rithm is also proposed. Finally, a batch-incremental
thresholding technique is proposed to further deal
with the class imbalance problem. Results of an
empirical comparison against two other methods on
three real world datasets are in favor of the pro-
posed approach.

1 Introduction
Multi-label stream classification (MLSC) has emerged re-
cently as an extension to conventional stream classification
in response to applications where arriving data instances can
or must acquire more than one label. This typically happens
either because the labels are orthogonal or because it is not
practical to define labels that are completely distinct and intu-
itive at the same time. Orthogonal labels are encountered e.g.
in the categorization of incoming mails or enterprize docu-
ments: such instances may be relevant to a thematic label, as
well as to a label concerning confidentiality. Such classes are
a priori orthogonal, but correlations may be encountered (e.g.
instances belonging to some theme are confidential). Over-
lapping classes are typical in news. For example, an article
about the Fukushima nuclear plant could be annotated with
labels like “nuclear crisis”, “Asia-Pacific news”, “energy” and
“environment”.

Multi-label classification of static data enjoys increased at-
tention in recent years. An overview of the domain, includ-
ing discussion of applications can be found in [Tsoumakas
et al., 2010]. Solutions for static data do not readily trans-
fer to stream scenarios though, since they assume static con-
cepts and availability of all data for learning. On the other
hand, research on single-label stream classification has con-
tributed several powerful algorithms (cf. [Gaber et al., 2007]
for an overview) that exhibit good predictive power and fast
adaptation to concept drift. In principle, drift adaptation en-
compasses monitoring the distribution of positive and nega-
tive examples within some window, and discarding old ex-
amples when the most recent data indicate a change in the
distribution. Some of these solutions have been extended to
the multi-label case (e.g. [Qu et al., 2009]), without however
explicitly addressing a number of challenges that are specific
to multi-label streams.

A multi-label data stream contains separate multiple targets
(concepts), and it is impractical to assume that all of them will
start drifting simultaneously or at the same rate. Essentially,
each concept is likely to exhibit its own drift pattern. Another
challenge of multi-label data is the class imbalance problem:
each label has usually more negative than positive examples,
but still some labels have much more positive examples than
others. If a single window is used, it is expected that some
labels will have enough examples for learning the positive
class, but many labels may have little or even no positive ex-
amples.

We present a new approach that deals with the above chal-
lenges of MLSC. Our new Multiple Windows (MW) method
maintains two fixed-size windows per label, one for positive
and one for negative examples. This is accomplished in a
space-efficient way through instance-sharing between win-
dows. In addition, we present a time-efficient instantiation
of this method, using k-Nearest-Neighbors (kNN) as the base
classifier for each label. Class imbalance is further tackled us-
ing a new batch-incremental thresholding technique that ac-
curately translates the probabilistic estimates for each label to
bipartitions.

The rest of the paper is organized as follows. In section 2,
we discuss existing work on multi-label stream classification
and further relevant literature. Section 3 presents our contri-

butions. It is followed by the empirical evaluation in section
4. The last section concludes our study.

2 Related Work
One of the first methods for MLSC is [Qu et al., 2009]. It
assumes that stream instances arrive in chunks of size S and
builds an ensemble of K classifiers, on K successive chunks.
To deal with concept drift, every S examples the oldest model
is replaced by a model built on the latest chunk. The authors
used stacked binary relevance [Godbole and Sarawagi, 2004]
to learn from each chunk, but the method could be coupled
with any batch multi-label learner.

Another work dealing with multi-label streams is [Read et
al., 2010]. It presents a framework for generating synthetic
multi-label data streams along with a novel MLSC method
based on the Hoeffding Tree [Domingos and Hulten, 2000], a
popular decision tree classifier for single-label streams. Their
method extends the Hoeffding Tree by using a multi-label
definition of entropy and by training multi-label classifiers at
the leaves of the tree. However, it does not offer drift adapta-
tion, hence is not suitable for classifying evolving multi-label
streams.

The aforementioned approaches try to tackle MLSC by
combining existing stream and multi-label classification
methods but they do not deal explicitly with the special char-
acteristics of a multi-label stream such as independent con-
cept drift for each label (or group of labels) and skewness in
the distribution of positive and negative examples for most of
the labels.

In single-label data streams, most approaches assume bal-
anced distributions of positive and negative examples. One
of the exceptions is the method of [Gao et al., 2007]. This
method processes the stream instances in batches. It tries
to build balanced training sets as follows: all positive exam-
ples are kept, while the negative examples of the latest chunk
are undersampled, and organized (together with the positive
ones) into multiple disjoint samples. Then, an ensemble of
classifiers is trained, which is completely rebuilt upon the ar-
rival of the latest chunk. Ensemble re-learning is computa-
tionally expensive, though. Moreover, retaining all positive
examples may 1) prevent the learner from adapting properly
to drift and 2) prohibitively increase re-training time.

We follow a similar strategy to deal with label skewness in
multi-label streams but we impose a limit in the number of
positive examples that we keep for each label. This way we
overcome the aforementioned disadvantages of the method of
[Gao et al., 2007] and make it more suitable for multi-label
streams where each label has each own degree of skewness.
Furthermore, our method is instance-incremental and thus al-
lows faster adaptation to drift and avoids the computational
overhead of rebuilding the model from scratch.

3 Our Contributions
3.1 A Multiple Windows Approach
Our approach starts from a mainstream idea for learning from
single-label concept-drifting data streams, that of the moving-
window [Klinkenberg and Joachims, 2000]. As its name im-

plies, this idea is about maintaining a classifier that is trained
from a moving window of recent examples.

A couple of issues can arise if we attempt to apply this
idea to multi-label data: a) Each label constitutes a different
learning problem, including a different rate of concept drift.
b) The distribution of positive and negative examples for most
labels will be skewed, and the negative examples are expected
to dominate, so that the few positive examples will be insuf-
ficient for learning the positive class for some of the labels.
An option here is to increase the size of the window, allow-
ing a sufficient number of positive examples for all labels.
However, this would increase the probability of concept drift
occurrence in the window.

To deal with the above issues we propose the following ap-
proach. We associate each label with two fixed size instance-
windows, one for positive and one for negative examples. A
new training example is placed in the positive (negative) win-
dows of its relevant (irrelevant) labels. The size np of the
positive windows is a parameter of the approach and should
be (1) large enough to allow learning an accurate model (2)
small enough to reduce the probability of concept drift in the
window. The number of examples in the negative windows,
nn, is determined using the formula nn = dnp/re where r is
another parameter of the approach, called distribution ratio,
with the role of balancing the distribution of positive and neg-
ative examples in the union of the two windows and typical
values between 0.3 and 0.7 [Gao et al., 2007].

Compared to a window-based approach that would use a
single window for a label, our approach effectively oversam-
ples the positive and undersamples the negative examples for
all labels whose ratio of positive to negative examples in the
single window is less than the desirable ratio r. The oversam-
pling is achieved by adding the most recent positive examples
that appear prior to that window and the undersampling by
retaining only the most recent negative examples. Figure 1
contrasts the two approaches.

Our technique reduces the high variance caused by the in-
sufficient positive examples available to a classifier operating
in a single window, leading to reduced classification error.
In the case of concept drift, the bias may increase by the in-
troduction of old positive examples caused by oversampling.
However, this increase is expected to be small because the
negative examples are expected to always be current.

We follow the binary relevance (BR) approach, since we
transform the multi-label problem into multiple binary prob-
lems and tackle each problem independently. BR has been
criticized in the past for ignoring potential underlying label
correlations, but, in the meanwhile, there are BR-based meth-
ods that overcome this limitation (e.g. [Read et al., 2009]).
We use the independent modeling of BR, because it allows
us to effectively handle the expected differences in frequency
and concept drift between the labels. BR offers also a number
of further advantages: a) it can be combined with any binary
classification algorithm, b) it can easily handle the appear-
ance of new labels by training a new corresponding binary
classifier, c) it can be easily parallelized to achieve a constant
time complexity with respect to the number of labels.

Stream n p n n p p n n n n n n n p n n p n n n
Typical window-based method * * * * * * * * * *

Our approach * * * * * * * * * *

Figure 1: Examples selected by a typical moving-window approach and by the proposed approach. The rightmost example is
the most recent. A star indicates that the corresponding example appears inside the window. The size of the window of the
typical approach is 10 and the ratio of positive to negative examples is 2/8 . In our approach, we set np = 4, nn = 6, r = 2/3.

Space-Efficient Implementation of Multiple Windows
In the following, we describe a space-efficient implementa-
tion of the proposed multiple windows scheme. In particular,
we discuss the update of the windows when a new example
arrives. The pseudocode of the update method is listed in
Algorithm 1. Table 1 summarizes the notation used in the
pseudocode.

Notation Description
xi The ith stream instance
Yi = {l1, .., l|Yi|} The label set of xi
L = {l1, ..., l|L|} The set of observed labels
B = {(x1, Y1), .., (xn, Yn)} Shared buffer of examples
Qp = {Qp

l1
, .., Qp

|L|} Positive windows
Qn = {Qn

l1
, .., Qn

|L|} Negative windows
np Size of positive windows
r Distribution ratio
k # of nearest neighbors

Table 1: Description of notation used in the method

Algorithm 1 is invoked for each arriving labeled instance,
in order to update the positive and negative windows of each
label. Each window is implemented as a queue. When the
UpdateWindow function is called (lines 4, 6, 10), we in-
sert the current instance in the queue and push the oldest in-
stance out of the queue if it is full. The positive and negative
queues store only references to the original instances, which
are stored only once in the shared buffer B. Every time an
instance is removed from a queue, the algorithm updates a
counter which holds the number of queues in which the in-
stance is still present. If the counter becomes 0, the instance
is also deleted from the shared buffer. Notice that when a
labeled instance contains a label which appears for the first
time, then the set of observed labels L is updated and a new
positive and a new negative queue are created for this label
(lines 8-9). Thus the algorithm automatically handles unseen
labels.

The size of the shared buffer |B| determines the space-
complexity of the method and depends on the following fac-
tors: (1) the size of the positive windows, (2) the number
of observed labels and (3) the overlap between the labels.
The value np ∗ |L| is the theoretical maximum for |B| and
is reached if there is no overlap among the labels. The posi-
tive window of a label with no co-occurrences with other la-
bels shares 0 examples with the other windows. On the other
hand, np∗|L|

C , where C is the average number of labels per in-
stance, is a lower bound for |B|. It represents the case where
the average C is evenly distributed among the labels. In prac-
tise the overlap is never evenly distributed (there are groups

Algorithm 1: UpdateModel (xi,Yi)
Input: B, Qp, Qn, L
Output: The updated model

1 B ← B ∪ {(xi, Yi)}
2 foreach lj ∈ L ∪ Yi do
3 if lj ∈ L ∩ Yi then
4 Qp

lj
← UpdateWindow(xi,Q

p
lj

)

5 else if lj ∈ L \ Yi then
6 Qn

lj
← UpdateWindow(xi,Qn

lj
)

7 else
8 L← L ∪ {lj}, Qp

lj
← null, Qn

lj
← null

9 Qp ← Qp ∪Qp
lj

, Qn ← Qn ∪Qn
lj

10 Qp
lj
← UpdateWindow(xi,Q

p
lj

)

of labels with higher overlap than others) and |B| grows when
the distribution of co-occurrences is skewed. The size of the
negative windows nn does not affect |B| since we can find
negative examples to fill all the negative windows in the lat-
est nn/(1−maxfr) stream instances, where maxfr is the
frequency of the most frequent label. Our experiments (not
reported here due to space limitations) verify that |B| lies be-
tween the above bounds.

3.2 An Efficient kNN-based Implementation
We chose kNN to instantiate the proposed multiple windows
approach for the following reasons:
• kNN is an incremental classifier. As such it can incor-

porate new instances in the model and discard old ones
without needing to be rebuilt from scratch. The method
could also be coupled with non-incremental base classi-
fiers, but this would require rebuilding the classification
model in regular time periods. This would reduce the
ability of the method to adapt quickly to sudden con-
cept changes, as it would require to wait for a batch of
instances to arrive before updating the model.
• kNN is a method which makes no assumptions on the

form of the data distribution and learns the structure
of the hypothesis directly from the training data. In
stream classification, we usually have no prior knowl-
edge about the data distribution and additionally the dis-
tribution may evolve over time.
• kNN is a fast algorithm with proven success in single-

label data streams [Ueno et al., 2006].
We further developed an efficient kNN implementation of

the prediction method that makes a single pass over the ex-

amples of the shared buffer to calculate the distance between
the unlabeled instance and any of the examples in the shared
buffer only once. As shown in Algorithm 2, instead of per-
forming nearest neighbor search in the instances of Qp

lj
∪Qn

lj

for every label lj , we calculate the distances of all instances in
B to the test instance only once and sort B on these distances
(line 5). Then we scan the sorted list from top to bottom and
gather the votes for each label until all the nearest neighbors
have been found.

Algorithm 2: MakePrediction(xi)
Input: B,Qp, Qn, L, k
Output: confidence[lj]: a confidence score for each

label

1 // initialize counters
2 totalNNCounter = |L| ∗ k
3 foreach lj ∈ L do
4 NNCounter[lj] = k
5 BSort = sort(B,xi) // Sort instances in B by distance

from xi
6 for m← 1 to |Bsort| do
7 if totalNNCounter == 0 then
8 break
9 foreach lj ∈ L do

10 if NNCounter[lj] == 0 then
11 continue
12 if BSort[m] ∈ Qp

lj
∪Qn

lj
then

13 NNCounter[lj] = NNCounter[lj] - 1
14 totalNNCounter = totalNNCounter - 1
15 if lj ∈ Qp

lj
then

16 votes[lj]++

17 foreach lj ∈ L do
18 confidence[lj] = votes[lj] /k

3.3 A Batch-Incremental Thresholding Method
Each kNN classifier actually computes an estimation of the
probability of the corresponding label being relevant, which
is transformed into a hard 0/1 classification via an implicit 0.5
threshold. This is true for other classifiers as well, like logistic
regression (which is not incremental) and naive Bayes (which
is incremental).

However, when data are characterized by class imbalance,
the typical 0.5 threshold is often an improper choice. We
therefore, propose a novel batch-incremental thresholding
method which computes a different threshold for each label
independently of a specific evaluation measure.

The method is simple: we calculate the frequency of each
label and store the confidence scores given for each label ev-
ery n instances. We then sort the confidence scores and select
as a threshold for each label the value which would more ac-
curately approximate the observed label frequency in these n
instances. We use these threshold values for the next n in-
stances and re-calculate the thresholds.

The only report of another incremental thresholding
method for multi-label classifiers is found in [Read et al.,
2010] where they incrementally adjust a common threshold
for all labels so that the predicted label cardinality matches
the actual one. We rather use a threshold for each label, in
order to reduce the impact of class imbalance which is known
to negatively affect the performance of BR-based classifiers.

4 Empirical Results
4.1 Datasets
We experimented on three large real-world textual multi-label
datasets. Table 2 presents the main statistical properties of
these datasets.

The tmc2007 dataset [Srivastava and Zane-Ulman, 2005]
comes from a competition organized by the text mining work-
shop of the 7th SIAM international conference on data min-
ing. The original data comprised 28596 aviation safety re-
ports in free text form, annotated with one or more out of 22
problem types that appear during flights. The imdb dataset
contains 120919 movie plot text summaries from the Internet
Movie Database, labeled with one or more out of 28 genres
[Read et al., 2009]. The reuters (rcv1v2) data set is a well
known benchmark for text classification [Lewis et al., 2004].
It contains 804414 news articles over 365 days assigned to
one or more out of 103 topics.

Text representation in all datasets follows the bag-of-words
model. Boolean vectors are used in tmc2007 and imdb, while
tf-idf vectors are used in the case of rcv1v2. We applied fea-
ture selection to tmc2007 and rcv1v2 to select the top 500 fea-
tures according to the χ2

max criterion as described in [Lewis
et al., 2004]. Note that both the calculation of the tf-idf
vectors as well as the feature selection process are based on
the complete dataset, hence they would not be feasible un-
der a real data-stream environment. A dynamic feature space
method (e.g. [Wenerstrom and Giraud-Carrier, 2006]) should
be used instead, but this is outside of the focus of this paper.

Note also that tmc2007 and imdb are in fact static datasets
with no specific instance ordering. We treat these datasets
as streams and process them in their default order. On the
other hand all instances in rcv1v2 are time ordered and are
considered in this order.

name |D| |X| |L| LC LD dis
tmc2007 28596 500b 22 2.219 0.100 1172
imdb 120919 1001b 28 1.999 0.071 4503
rcv1v2 804414 500n 103 3.240 0.031 13922

Table 2: Multi-label data sets and their statistics. |D|: number
of instances, |X|: number of attributes (b:binary/n:numeric),
|L|: number of labels, LC (Label Cardinality), LD (Label
Density): LC

|L| , dis: number of distinct label sets.

4.2 Baselines and Settings for all Algorithms
We compare the performance of our method, denoted MW
(multiple windows), against two baselines. The first one, de-
noted SW (single window) operates on a single moving win-
dow of N instances where N is a parameter of the algorithm.

The second one, is EBR (ensemble of binary relevance), the
approach introduced in [Qu et al., 2009], coupled with binary
relevance as the multi-label learner for each chunk.

The two baselines were instantiated with kNN as the base
classifier, in order to compare them with the proposed ap-
proach on the same basis. The number of neighbors was set
to 11 for all methods, which is a typical value used for the
kNN algorithm. The Jaccard distance was chosen as a dis-
tance function for NN calculation. The Jaccard distance is an
asymmetric measure of information that leads to very good
results in textual datasets compared to symmetric distance
functions such as the Euclidean distance. In textual datasets,
counting the non-existence of a term in two documents has
no meaningful contribution to their (dis)similarity. Prelimi-
nary experiments showed large gains in accuracy when using
the Jaccard instead of the Euclidean distance in all our textual
benchmark datasets.

For our method we used np = 400 positive and nn = 600
negative examples for each label which implies a distribution
ratio, r = 2/3. A positive window size of 400 was chosen as
a good trade-off between giving the learner enough positive
examples for learning the positive class but not so much that
would increase the risk of having concept drift in the window.
As a result, the method was given a total of 1000 examples
for learning each label. Again, to have a fair comparison with
the baselines, they were given the same number of training
examples for each label. SW was given a window of 1000
examples and EBR was run with 5 models, each one built on
200 examples. Finally, all methods were initialized with the
first 1000 examples and we used n = 1000 in our thresholding
method.

4.3 Evaluation Measures & Methodology

To evaluate the effectiveness of the methods we use the train-
then-test (or prequential) evaluation methodology [Gama et
al., 2009], where each example is first classified using the
current classification model and it is then used to update the
model. This way the classifier is tested against all stream
examples before seeing them.

We use two measures to evaluate the effectiveness for a
single label. The first one is F1, the harmonic mean of re-
call and precision, while the second one is the area under an
ROC curve (AUC). AUC is appropriate for threshold indepen-
dent evaluation, since it is calculated based on the confidence
scores given by a classifier. We use macro-averaging to calcu-
late a single measure across all labels, because it gives equal
weight to each label in contrast to micro-averaging, which is
dominated by high frequency labels [Lewis et al., 2004].

To show the evolution of the models we calculate and
report their performance every |D|/20 instances (approxi-
mately), on the previous |D|/20 instances. In addition, we
report the macro-averaged F1 for all stream instances to get
an impression of the overall performance. Unfortunately, the
calculation of macro-averaged AUC over all stream instances
was infeasible, since it requires to store all the confidence
scores from the beginning until the end of the stream, con-
suming all the available memory.

4.4 Results
Figures 2, 3 and 4 present the macro-averaged AUC on
tmc2007, imdb and rcv1v2 respectively. The proposed mul-
tiple windows approach consistently outperforms both base-
lines on all datasets in this threshold-independent evaluation.
The boost in performance is more apparent in rcv1v2. We at-
tribute this to its evolving nature and the presence of many
labels with highly skewed distributions.

Figure 2: Macro AUC results on tmc2007

Figure 3: Macro AUC results on imdb

Figure 4: Macro AUC results on rcv1v2

Table 3 reports the results on the threshold-dependent
macro-averaged F1 measure for all datasets. For each
method, the two columns show the performance with and
without thresholding.

We first notice that all three methods have substantial gains
in macro-averaged F1 when the thresholding technique is uti-
lized. This shows that the proposed thresholding technique
works quite well and at the same time stresses the importance
of using a proper thresholding strategy for multi-label classi-
fication of data streams.

Next, we note that MW is better than its competitors in
macro-averaged F1 in all datasets, both with and without

MW SW EBR
Dataset no th no th no th

tmc2007 0.415 0.516* 0.313 0.460 0.177 0.461
imdb 0.115 0.131* 0.040 0.116 0.004 0.103

rcv1v2 0.228 0.401* 0.299 0.323 0.071 0.268

Table 3: Results on macro F1

thresholding, except in one case. The exception is rcv1v2,
where MW without thresholding is worse than SW. This
stresses even more the importance of a proper thresholding
strategy, given that in rcv1v2 the AUC of MW was far better
than SW (and EBR). Using thresholding, MW achieves the
best result in all datasets. This shows again that the multiple
windows approach can also work well when bipartitions are
required as output, provided it is coupled with an appropriate
thresholding strategy.

In a second set of experiments (not reported here due to
space limitations), we have given more examples to the meth-
ods. We observed that the performance increased, especially
for tmc2007 and imdb. We suspect that this is due to the rather
static nature of these datasets, where it is intuitive that giving
more examples for training increases the predictive perfor-
mance. The improvement was only minor for rcv1v2, which
is a more dynamic dataset and simulates better an evolving
multi-label stream.

5 Conclusions and Future Work
We presented a novel method for multi-label stream classi-
fication which adopts a multiple windows approach to deal
with concept drift and skewness in the distribution of posi-
tive and negative examples of each label. Our method, be-
ing independent of the base classifier, offers a general frame-
work for dealing with evolving multi-label streams. Space
and time efficient implementations of this method were dis-
cussed. We also proposed a batch-incremental thresholding
technique which aims to further reduce the impact of class
imbalance to the learning process.

The empirical evaluation showed that 1) the theoretical ad-
vantage of our learning method is verified in practice by sub-
stantial gains in threshold-independent evaluation and 2) our
thresholding technique is able to effectively adjust the deci-
sion thresholds, again with significant gains in predictive ac-
curacy for all methods studied.

In the future we plan to 1) give our method the ability to
model label correlations by utilizing methods like [Read et
al., 2009], 2) dynamically adjust the size of the positive win-
dow of each label using a drift detection method, 3) employ a
mechanism to efficiently deal with label set expansion, 4) ex-
periment with different binary base classifiers and 5) evaluate
our method in synthetic datasets modeling various concept
drift patterns and imbalance degrees.

References
[Domingos and Hulten, 2000] P. Domingos and G. Hulten.

Mining high-speed data streams. In Proceedings of the

6th ACM SIGKDD International Conference on Knowl-
edge Discovery and Data Mining, pages 71–80, 2000.

[Gaber et al., 2007] M. Gaber, A. Zaslavsky, and S. Krish-
naswamy. A survey of classification methods in data
streams. In Data Streams: Models and Algorithms, chap-
ter 3, pages 39–59. Springer, 2007.

[Gama et al., 2009] J. Gama, R. Sebastião, and P.P. Ro-
drigues. Issues in evaluation of stream learning algorithms.
In Proceedings of the 15th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining,
pages 329–338, 2009.

[Gao et al., 2007] J. Gao, W. Fan, J. Han, and P.S. Yu.
A general framework for mining concept-drifting data
streams with skewed distributions. In Proceedings of
the 7th SIAM International Conference on Data Mining
(SDM’07), pages 3–14, 2007.

[Godbole and Sarawagi, 2004] S. Godbole and S. Sarawagi.
Discriminative methods for multi-labeled classification. In
Proceedings of the 8th Pacific-Asia Conference on Knowl-
edge Discovery and Data Mining, pages 22–30, 2004.

[Klinkenberg and Joachims, 2000] R. Klinkenberg and
T. Joachims. Detecting concept drift with support vector
machines. In Proceedings of the 17th International
Conference on Machine Learning, pages 487–494, 2000.

[Lewis et al., 2004] D.D. Lewis, Y. Yang, T.G. Rose, and
F. Li. Rcv1: A new benchmark collection for text catego-
rization research. Journal of Machine Learning Research,
5:361–397, December 2004.

[Qu et al., 2009] W. Qu, Y. Zhang, J. Zhu, and Q. Qiu. Min-
ing Multi-label Concept-Drifting Data Streams Using Dy-
namic Classifier Ensemble. In Proceedings of the 1st Asian
Conference on Machine Learning, pages 308–321, 2009.

[Read et al., 2009] J. Read, B. Pfahringer, G. Holmes, and
E. Frank. Classifier chains for multi-label classification. In
Proceedings of ECML PKDD ’09, pages 254–269, 2009.

[Read et al., 2010] J. Read, A. Bifet, G. Holmes, and
B. Pfahringer. Efficient multi-label classification for evolv-
ing data streams. Technical Report, April 2010.

[Srivastava and Zane-Ulman, 2005] A.N. Srivastava and
B. Zane-Ulman. Discovering recurring anomalies in text
reports regarding complex space systems. In Proceedings
of IEEE Aerospace Conference, pages 3853 –3862, 2005.

[Tsoumakas et al., 2010] G. Tsoumakas, I. Katakis, and
I. Vlahavas. Mining multi-label data. In Data Mining and
Knowledge Discovery Handbook, chapter 34, pages 667–
685. Springer, 2nd edition, 2010.

[Ueno et al., 2006] K. Ueno, X. Xi, E. Keogh, and D.-J. Lee.
Anytime classification using the nearest neighbor algo-
rithm with applications to stream mining. IEEE Interna-
tional Conference on Data Mining, pages 623–632, 2006.

[Wenerstrom and Giraud-Carrier, 2006] B. Wenerstrom and
C. Giraud-Carrier. Temporal data mining in dynamic fea-
ture spaces. In Proceedings of the Sixth International Con-
ference on Data Mining, ICDM ’06, pages 1141–1145,
Washington, DC, USA, 2006. IEEE Computer Society.

