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Gwen, voor jou 





Voorwoord 

                 

Dit proefschrift is het resultaat van vier jaar onderzoek bij de vakgroep 

Financieel Management van de Erasmus Universiteit in Rotterdam. Het begon 

allemaal in Maastricht, waar ik als student door Kees werd overgehaald om met hem 

mee te gaan naar Rotterdam. Hoewel ik daarmee een geweldige stad en omgeving 

achter me liet, heb ik nooit spijt gehad van deze keuze. Het leven als onderzoeker was 

inspirerend, en bood mij de mogelijkheid om veel te leren, nieuwe ideeën op te doen 

en eigen interesses verder uit te diepen.  

Vanaf het begin van mijn tijd in Rotterdam was Kees de natuurlijke begeleider 

van mijn proefschrift. Hoewel hij het altijd druk had, heeft hij me steeds op 

belangrijke momenten van waardevol advies kunnen dienen. Speciaal waren voor mij 

de vrijheid die hij gaf om in het buitenland conferenties te bezoeken en de nodige 

buiten-universitaire activiteiten te ontplooien. Voor het vertrouwen dat hij me daarmee 

schonk, ben ik Kees zeer erkentelijk.  

Een speciale band heb ik in de afgelopen vier jaar daarnaast opgebouwd met 

Chuck. Als co-auteur van het experimenten-onderzoek hebben we gezamenlijk met 

Kees vele ups en downs meegemaakt, maar met een resultaat dat ik beschouw als het 

beste van dit proefschrift. Chuck heeft me daarnaast veel bijgebracht over het 

uitvoeren van wetenschappelijk onderzoek, en het geduld en de precisie die daarbij 

horen. Op het gezamenlijke werk en mijn twee perioden in Tucson, Arizona, kijk ik 

dan ook met een goed gevoel terug. Thanks Chuck! 

De vakgroep Financieel Management is gedurende mijn onderzoeksperiode 

sterk van samenstelling veranderd. Veel van die oude en nieuwe collega's hebben mijn 

verblijf aan de universiteit tot een heel leuke periode gemaakt. Wat na het eerste half 

jaar echter niet meer veranderd is, is een altijd positieve en hulpvaardige Ben als 

kamergenoot. Eveneens een collega, maar dan van de universiteit Maastricht, is 

Thorsten. Zijn enthousiasme en bedrevenheid in Gauss-programmeren hebben 

geresulteerd in een mooi hoofdstuk in onze beider proefschriften.  

Een dankwoord ben ik daarnaast verschuldigd aan alle studenten die hebben 

meegedaan aan de experimenten. Hun geduld als de software het weer eens begaf , is 

niet voor niets geweest.  



Mijn meeste dank gaat uit naar familie en vrienden, die zorgen voor de 

noodzakelijke ondersteuning, maar ook relativering van mijn werk. Papa, mama, 

Monique en vooral natuurlijk Gwen: dit boekje is er dankzij jullie. 

Cyriel 

Gouda, april 2003 
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1  Introduction 

Financial derivatives are the subject of this thesis. Although ‘derivative’ is a 

very common term in financial markets, it is instructive to dive a little deeper into its 

meaning. A derivative is a financial instrument whose value depends on the value of 

another, more basic or primitive, underlying instrument. ‘Derivative’ is in fact a very 

general term that can be applied to a whole range of underlying instruments and pay-

off structures, ranging from forwards, futures, swaps, call and put options, to complex 

exotic structures such as swaptions, caps, floors, straddles, spreads, butterflies and 

barriers. This list is constantly growing, and only limited by the fantasy of the 

financial community. A list of possible underlying values is equally endless and may 

include stocks, bonds, foreign currencies, gold, oil, electricity, credit, emission rights, 

transportation costs, and even weather. Why derivatives encompass such a wide 

variety of instruments becomes clear when one realizes that a popular underlying, a 

stock, may in itself already be considered as a derivative, namely as an option on the 

assets or profits of the issuing firm. So although a derivative seems well defined, in 

practice the distinction between primitive (underlying) securities and derivative 

securities is more diffuse. In the most general definition, every financial instrument 

may be termed a derivative, since its value depends on one or more factors.  

Luckily, in individual cases it is often clear what is the underlying asset and 

what is the derivative. For example, if we price an option on a stock, then we consider 

the option to be the derivative and the stock to be the underlying security. Less clear 

however is the interaction between the two, which is the central theme of this thesis. 

Moving forward through this thesis we will increasingly narrow our focus. Part I 

(Chapters 2-5) starts with a general theoretical and experimental study on how 

standard options affect trading and efficiency in the underlying asset. In part II 

(Chapters 6-10) we first explore two specific econometric methods to infer 

information about future price movements in stock indices from market option prices. 

The final subject of part II is the most classical, in the sense that it is about derivative 

pricing. It presents an approach to price options on electricity spot prices, a very 

peculiar and risky underlying asset. 
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The part in this thesis on electricity options highlights the widespread 

acceptance of derivatives in different segments of the economy. Derivatives are used 

for two main and partly opposing reasons: hedging and speculation. Both are 

indispensable for a sound functioning market. Hedging is the reduction of financial 

exposure, and trade in derivative contracts offer a way to achieve this. Derivatives 

may facilitate risk reduction, because they are in general easier to trade and more 

flexible in their pay-off structures than the underlying security itself. A well-known 

example in which derivatives are used to hedge price risks, is an airline company with 

an exposure to fuel-price increases. The airline company is unable to pass fuel price 

rises immediately through in the flight tariffs, without losing part of the customer 

base. Since fuel costs represent a major component of an airline’s costs, fuel price 

fluctuations may seriously put profitability and company viability at stake. The 

positive aspect of this risk is that the airline is not the only company with an exposure 

to it, and a very liquid market in fuel derivatives has emerged. The airline company 

can fixate (part of) its fuel costs by buying fuel futures or forwards, or create an upper 

bound on costs by buying call options. These strategies act like an insurance policy. 

Without a market for fuel derivatives, the only way to insure against fuel price rises 

would be to maintain a large stock of fuel. In comparison, derivatives provide a more 

convenient and cheaper solution.  

The other purpose of derivative trading is speculation. While trading 

derivatives is only a secondary business for hedgers, it is the primary business for 

speculators. Speculators try to predict market movements and make a profit out of it. 

Unfortunately, speculation has a very negative image and is often associated with 

casino-like transactions. However, speculators provide the necessary liquidity for 

hedgers to trade and thus maintain a market. Furthermore, wise speculators carefully 

manage their positions to limit exposures. A well-known speculator for example is 

George Soros, who reportedly amassed a fortune of around €7 billion with his 

speculative Quantum Fund. His finest hour was on a single day in 1992, when he 

earned around $1 billion by betting correctly that the British pound would fall in 

value. By hedging, traders bring risks to the market, whereas by speculation they bring 

information and liquidity to the market. 

The two examples of hedging and speculation may falsely lead to the 

conclusion that only large investors and corporations have to do with derivatives. 

However, nearly every man and woman in the western world is exposed to 

derivatives. Money tied up in life insurance or pension funds is often managed with 
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derivatives. Most mortgages contain option-like provisions, whose value depends on 

market interest rates. And some individuals trade derivatives directly. Especially the 

Amsterdam options exchange (now Euronext) has traditionally been a popular venue 

for individuals. 

Over the years, derivatives have attracted increasing attention by traders, 

journalists and researchers alike. Trading volumes have reached astonishing levels: on 

the two main European exchanges for example, Euronext – Liffe and Eurex, in 2001 a 

total of 216 and 675 million contracts changed hands. On Liffe’s electronic trading 

platform derivatives trading represented a total underlying value of $138 trillion in 

2001 (figure for Eurex not published). This is around 300 times Dutch Gross National 

Product and growing at a much faster rate than GNP. 

Instrumental to the enormous trading volumes are the advances in trading 

platforms. To date nearly all trades are closed electronically, either through organized 

exchanges or over-the-counter by derivative dealers. This explains the fast 

internationalization of the trading flows and the difficulty to control cross-border 

money flows, which is often cited as a reason for the increase in financial market 

volatility. The perceived volatility increase is not the only negative aspect associated 

with derivatives. Derivatives caused several large financial disasters and bankruptcies 

that received massive attention in the press. Probably most well known are the 

misfortunes that Nick Leeson brought to the Barings Bank (and himself ultimately) in 

1995. From Barings’ Singapore office he used financial futures to speculate on an 

increase in the Japanese Nikkei 225 stock index. Doubling his bet after each loss1 he 

destroyed a total value of $1.3 bln and induced the collapse of an old reputable 

London investment bank, whose clients included the British Royal family. Even more 

ironic for the derivative community however was the disaster concerning the hedge 

fund Long Term Capital Management amidst the financial turmoil of 1998. The fund 

had been successfully exploiting market inefficiencies for a couple of years with the 

help of professors Merton and Scholes, the two most acclaimed researchers in 

financial derivatives. Together with Fischer Black, the two professors were the bright 

heads behind the famous Black-Scholes option price formula for which they received 

the Nobel Prize for Economics in 1997. Even their brainpower could however not 

avoid losses accumulating to $3.7 bln. The fund only survived thanks to a savings 

1 Brown, S.J. and O.W. Steenbeek, 2001, “Doubling: Nick Leeson’s trading strategy”, Pacific 
Basin Finance Journal, 9, p.  83-99 
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operation lead by the US Central Bank. Confidence in derivatives in general and the 

professionals who use them in particular, had however been severely damaged. 

The famous pricing framework that earned Scholes and Merton the Nobel 

Prize, relied on the assumption that derivatives are redundant assets. This means that a 

derivative contract can be exactly replicated with a dynamic portfolio in the 

underlying assets. For example, it is assumed in the Black-Scholes-Merton framework 

that a standard European call or put option on a stock can be replicated with a 

continuously updated portfolio of the stock. This assumption is convenient for pricing 

purposes, since its consequence is that the risk of a derivative can be hedged away and 

is thus irrelevant. This assumption is however at odds with all the positive and 

negative properties of derivatives we just discussed. If a derivative is a redundant 

asset, why would we trade it, and how could it cause financial disasters? The 

assumption of redundancy is of course a simplification; in practice, derivatives can 

hardly ever be replicated completely. Transaction costs, the lack of continuous trading 

opportunities, non-normal return distributions and non-storability of the underlying 

asset prohibit traders from replicating derivative trade-offs exactly. That’s how 

derivative markets continue to flourish. They attract other traders (or the same traders 

at different moments) than markets in the underlying. Since both markets are 

interrelated, information flows from one market to the other, as we analyze in this 

thesis.  

Part I consists of two market microstructure studies in which we explore how 

derivatives trading affects the price process of the underlying. More specifically, in a 

world of asymmetric information (some traders know more than others) we investigate 

how a derivative changes the quality of a market. Apart from studying information 

flows in general, we test whether option trading increases bid-ask spreads (trading 

costs), price volatility, losses to uninformed traders, and pricing errors. We use two 

research methodologies: experiments (Chapter 3) and a theoretical model (Chapter 4). 

Although there are some related experiments, the use of it is really new to this 

research topic. We use experiments, because they permit control of a number of 

confounding factors that plague empirical studies. When we study for example assets 

on which options are traded and compare them to assets with no related derivatives, 

we cannot simply ascribe differences in market quality to the trade in derivatives. 

Assets with derivatives are in general the more liquid assets not because of these 

derivatives; rather, they have derivatives because they are the most liquid and 

interesting to trade in. Even so plagued by natural biases are event studies that 
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investigate what happens to an underlying security when derivatives are introduced. 

The main problem with empirical studies is namely that the introduction of derivatives 

is not a random event, but may be biased towards more volatile assets (Vijh (1990)). 

To avoid such biases we use experiments where students trade in a simulated 

computerized market environment. This allows us to set the conditions for trading 

ourselves, and place all actions under a microscope. The study reveals important 

information flows from one market to the other, and overall indicates that an option 

improves the quality of a market.    

Experiments and empirical studies are obsolete if theory would provide clear 

guidance. There are however only a few theoretical studies on this topic, and the few 

studies have limited applicability to real world markets. For example, two studies 

(Easley, O'Hara and Srinivas (1998) and John, Koticha, Narayanan and 

Subrahmanyam (2000)) use a single-trade setting, and thus ignore any dynamic 

strategic behavior or learning effects. In the theoretical model of Chapter 4 we show 

the importance of such dynamics. We furthermore show the mutually interacting, non-

linear and sometimes opposing effects of three main variables: the number of 

informed trades, the proportion of liquidity motivated option trades, and the effective 

leverage that the option market provides to the informed trader. Though abstracting 

from real human behavior, the model helps to clarify what conditions lead to 

improvements in market quality. Just as the experiments, the model makes clear that 

an option market improves informational efficiency in the underlying in terms of 

reduced price errors (market prices are closer to their theoretical value). In an initial 

phase of derivative market development, liquidity motivated traders are however 

better off without derivatives. In the course of its development, this effect gradually 

reverses, but stock market volatility increases.  

The first part of this thesis addresses a very fundamental issue of derivatives: 

are they good or bad? The second part has a slightly narrower defined topic. It 

presents three different option pricing methodologies that deviate from the standard 

assumption of normally distributed returns. In the first two main chapters, we explore 

two econometric methodologies to infer from option prices information about future 

price movements in the underlying stock index. The interest in this topic arose from 

the observed skews, smiles and term-structure effects in implied volatility curves. One 

of the most plausible explanations is that returns do not follow a Brownian motion, as 

assumed in the standard Black and Scholes pricing formula. The first method we 

explore, translates the smile and skew patterns into a skewed version of the well-
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known Student-t distribution. The main advantages of this distribution are that it nests 

the normal distribution and that it contains direct parameters for the first three 

distributional moments (apart from the mean): variance, skewness and kurtosis. We 

describe how the parameters can be obtained and compare it with three other methods 

on FTSE index options. The comparison indicates that the skewed Student-t method 

yields a good fit to option prices, somewhat better than a popular implied tree 

approach. Compared to an approach that directly fits the implied volatility curve, it 

performs however worse. We explain this by the increased attention of option traders 

on implied volatility curves.  

The approach that we present in Chapter 8 is more complete than the one in 

Chapter 7. It does not just yield a distribution of returns at one future point in time, but 

a complete price process. It uses the whole implied volatility term structure: options 

with different maturities and different strikes. We use a GARCH-type price process, 

for which option-pricing procedures have recently become available. The strength of 

the implied GARCH approach is its ability to map a risk-neutral distribution to an 

actual distribution, whereas the skewed Student-t approach just yields risk-neutral 

distribution and is thus in fact only suitable to price other options. The implied 

GARCH approach on the other hand can be applied to the real world. It provides 

traders, risk managers and market regulators with an approach to infer the market's 

view on actual future price movements.  

The final study focuses on the energy market. Electricity markets worldwide, 

including all European Union countries, are in the process of liberalization and 

deregulation. This has opened a whole new field for financial researchers. Chapter 9 

presents a methodology to price European-style options on a very peculiar underlying 

asset: electricity spot prices. Electricity is a pure flow variable that can only be stored 

at high costs. That's why its spot price2 in liberalized markets is truly the result of 

supply and demand at that particular point in time, since no storage arbitrage can be 

applied. In combination with the relative inelasticity of both supply and demand, this 

results in prices with exceptionally high volatility, due to daily price changes of over 

1000%. A few so-called 'spikes', prices that temporarily deviate largely from ordinary 

levels, account for a large part of this volatility. Spikes represent a non-negligible risk 

in electricity markets, and are extremely relevant for option pricing, but it has proven 

to be no sinecure to model them properly. Instead of using the popular jump-diffusion 

2 Spot electricity is electricity with a very short delivery period, usually one day ahead. 
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models, we rely on a regime-switching model. In this model the spikes represent a 

regime that is separate from the normal mean-reverting process. This yields a better 

representation of electricity price behavior and permits the separation of an option 

price in a mean-reverting and a spike component. Based on Dutch electricity prices, 

we show that the spike component may represent nearly all of the value of out-of-the-

money call options. The pricing framework is relevant for the energy industry, in 

which this kind of options are increasingly traded to manage uncertain demand. It can 

furthermore be applied to price the large number of capped end-user power contracts 

and for the valuation of real assets, such as (flexible) power plants. 
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Part I 

Microstructure studies 

in derivatives markets 
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2 Introduction to the first part

In this part of the thesis we investigate the implications of asymmetric 

information for informational linkages between an asset market and a call option on 

that asset. This is an interesting issue because of the empirical evidence that option 

listings are associated with higher market quality for the underlying asset. A plausible 

explanation for this effect is that the presence of a correlated asset permits the sharing 

of effective price discovery across markets. Market makers in the stock can set more 

accurate prices if they learn from transactions in the option. We use two research 

methodologies to study this hypothesis: experiments and a theoretical model. With the 

experiments (Chapter 3) we place a market in which we observe all information sets 

under a microscope. This allows us to examine the implications of the strategic 

interactions of an insider, demanders of liquidity, and suppliers of liquidity for the 

linkages between the two markets and the time series of prices in general. With the 

theoretical model (Chapter 4) we analyze on a very detailed level how the price 

discovery process on stock and option market interact, and how this impacts the 

quality of a market.  

A number of insider-trading cases involving options suggest an increasing 

importance of options markets as an outlet for information based-trade3. At the same 

time, we observe a growth in the number of multiple listings of options across 

exchanges and an increased computerization of options trading4. These developments, 

along with increased liquidity, are accompanied by a reduction in bid-ask spreads, 

which make options an increasingly attractive product for informed trading.  

The empirical evidence for informational linkages between the market for 

listed options and the underlying stock is however mixed. Fleming, Ostdiek and 

3 See for example “Where Have the Insider Traders Gone? Options Markets are Their New 
Home,” The Wall Street Journal, April 23, 1997, p. C1.  
4 See for example “Handel op optiebeurs verstomd” (trade on options exchange has fallen 
silent), Volkskrant, August 27, 2002 that describes the transfer on the Amsterdam options 
exchange from floor-based trading to screen-based trading.  
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Whaley (1996) find that stocks lead options, which the authors attribute to the overall 

lower trading costs in the stock market. Likewise, Vijh (1990) finds that very large 

option trades have limited effects on option prices, and concludes that they are 

unlikely to be information based. Sheikh and Ronn (1994) on the other hand find 

systematic patterns in option returns that are inconsistent with the view of options as 

redundant assets. They attribute these patterns to strategic behavior by informed and 

discretionary liquidity traders. Similarly, Easley, O’Hara, and Srinivas (1998) find 

evidence that option markets are a venue for information based trading. Their results 

show that properly defined “bullish” and “bearish” option market volumes have 

predictive power for price movements in the underlying asset. 

Earnings announcements are typical events around which information 

becomes public. Jennings and Starks (1986) and Amin and Lee (1997) study the effect 

of options trading on price discovery around such earnings announcements. They 

provide evidence that the stock price adjustment to earnings announcements is faster 

for firms with traded options. 

There is a large body of empirical work that examines the influence of stock 

option listings on the time series properties of the market for the underlying asset.  

Much of this evidence suggests that the presence of listed options is associated with 

higher market quality in the market for the underlying stock. For example, Kumar, 

Sarin, and Shastri (1998) find that bid-ask spreads decline while quoted depth and 

informational efficiency increase subsequent to the listing of options. Numerous event 

studies find that option listing causes a decrease in volatility, although in several other 

studies the results are mixed or insignificant5. In recent subperiods Mayhew and 

Mihov (2000) even document increased volatility after option listings.  

As shown above, the amount of empirical work on the impact of option 

trading is huge. Many of those empirical studies have certainly been fuelled by the 

lack of clear guidance that theoretical models provide. For example, Biais and Hillion 

(1994) show that with asymmetric information and incomplete markets, the 

introduction of a nonredundant option has ambiguous consequences for informational 

efficiency. Although the option can help avoid a market breakdown, it enlarges the set 

5 The following studies find a decrease in volatility: CBOE (1975 and 1976), Trennepohl and 
Dukes (1979), Skinner (1989), Conrad (1989), Detemple and Jorion (1990), Damodaran and 
Lim (1991), Kumar, Sarin and Shastri (1998). In the following the results are mixed or 
insignificant: Klemkosky and Maness (1980), Whiteside, Dukes and Dunne (1983), Fedenia 
and Grammatikos (1992), Fleming and Ostdiek (1999). 
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of trading strategies the insider can follow, and can reduce informational efficiency by 

making it more difficult for market makers to interpret the information content of 

trades. Back (1993) extends the Kyle (1985) framework to include a call option. His 

main result is that the listing of an option leaves average volatility unchanged.  

Of the comparatively small number of theoretical papers, at least two use a 

sequential trade model in the spirit of Glosten and Milgrom (1985): Easley, O’Hara 

and Srinivas (1998), and John, Koticha, Narayanan and Subrahmanyam (2000). Both 

models are developed in an asymmetric information setting in which informed traders 

may trade in stock or option markets. Easley et al. (1998) study whether option 

markets attract informed trading and whether they incorporate information more 

quickly than stock markets. They derive that under certain conditions options are 

attractive to traders with superior information. John, Koticha, Narayanan and 

Subrahmanyam (2000) use a single-trade model to study the impact of option trading 

and margin rules on the microstructure of stock and option markets. They analyze 

opening quotes and show that the introduction of option trading increases quoted 

spreads, but improves the informational efficiency of stock prices irrespective of 

whether or not binding margin requirements are in place. The increase in the 

informativeness of the trading process results because with option trading private 

information can be inferred from two sources – order flow in the stock and option 

markets.  

In the next chapter we use a controlled economic experiment where students 

trade in a laboratory environment. In that chapter we study the implications of 

derivative trading in an asymmetric information setting. The use of laboratory asset 

markets is relatively new to the market microstructure research, and the derivative 

research in particular. Although experimental research poses some difficulties (see for 

example Kagel and Roth (1995), and Friedman and Sunder (1994)), we will show in 

the next chapter that it may provide valuable insights. With experiments, the 

researcher can change some aspects of the economic environment while keeping other 

aspects constant. The researcher is furthermore able to control the amount of each 

trader’s information. Finally, experiments permit the researcher to study detailed 

trading information, not only including executed trades, but also all dealer quote 

revisions, and profits and losses incurred by the participants in the market.   

With the experiments we present a unique approach to study the overall effect 

of option trading on market quality in the underlying. In order to better understand the 

different mechanisms that lead to the results, in Chapter 4 we set up a dynamic 
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theoretical model that resembles the experimental design. The model is sequential, 

which means that only one trade is executed at a time, and has a similar design as the 

single-period models in Easley, O’Hara and Srinivas (1999) and John, Koticha, 

Narayanan and Subrahmanyam (2000). The experiments made convincingly clear that 

the effect of options must be analyzed in a dynamic setting, and not in a single-trade 

setting as do those theoretical studies. Options allow informed traders to strategically 

switch between two markets: traders are for example willing to forego immediate 

profits for larger profits at a later point in time. At the same time, dealers can infer 

information from both markets to set more accurate quotes. We therefore extend the 

single-trade model into a multi-trade model in which traders may trade more than once 

in a period and dealers update information after each trade. Because of the increased 

model complexity, outcomes are not available in closed form, but generated by 

simulating trading sequences.  

With the experiments we obtain insights beyond empirical studies in a 

relatively realistic setting including real human behavior. The theoretical model on the 

other hand is more stylized, but yields additional insights. In the model we assume for 

example that dealers are completely rational, competitive and risk-neutral, whereas in 

the experiments risk-aversion, fierce competition and collusion between dealers play a 

role. Abstracting from these behavioral aspects, the simulations provide new insights 

in the complex price discovery process that determines the quality of a market.  
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3 Stock market quality in the presence  

of a traded option 6

Theoretical evidence on the implications of options trading for market quality 

of the underlying does not provide clear guidance, and the empirical evidence for 

informational linkages between both markets is mixed and may be biased. Vijh (1990) 

for example makes an important note on all the event study results around option 

listings: because the listing of options is by no means a random event, the research 

results may be biased, especially when options are most likely to be introduced on 

options and in periods with high volatility. To circumvent the problem of empirical 

studies to control for such biases, we use a controlled economic experiment. The 

experimental results clarify the implications of asymmetric information for 

informational linkages between a stock market and a traded call option on that stock. 

Our experimental design incorporates both an asset and a call option on that 

asset (for simplicity we refer to the asset as a stock). The framework is based on the 

Kyle model with a single insider who knows the ex post liquidation value of the asset. 

Liquidity shocks in the stock and option are exogenously determined as in Back 

(1993), although we permit liquidity traders to act strategically in an attempt to 

minimize trading costs. We also employ a transparent quote-driven trading protocol, 

with all trades executed by competing dealers, and all trades visible to all participants. 

We thus obtain a standard trading mechanism, and impose no constraints on the 

strategies of the insider, dealers or liquidity traders. 

One experimental approach would be to compare a market with a traded 

option to a market operating in isolation. We do not attempt this since it would 

introduce control problems, as follows. Adding a traded option with dedicated option 

dealers would increase the supply of liquidity services and confound our attempt to 

isolate differences due to information flows. Adding a traded option without dedicated 

6 This chapter is based on: C. de Jong, C.G. Koedijk and C.R. Schnitzlein, 2002, “Stock market 
quality in the presence of a traded option”, working paper.  
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dealers (requiring the stock dealers to make a market in both the stock and the call 

simultaneously) would dramatically increase the difficulty of the dealers’ task. 

Rather than take this approach we focus on the role of the ex post intrinsic 

value of the option. We set the strike price of the option equal to the (uninformed) 

expected value of the stock. With the stock distribution approximately Gaussian, the 

option distribution is highly skewed around its expected value. When the intrinsic 

value of the option is positive, the linkage between the two markets is direct in the 

sense that knowing the liquidation value in one market is perfectly informative with 

respect to the liquidation value in the other. The potential for option trading to 

contribute to price discovery in the stock here is large. When the option’s intrinsic 

value is zero, knowledge of the option liquidation value only permits a truncation of 

the stock value distribution, with a corresponding decoupling of price discovery. 

Therefore, the informational linkage between the two markets depends on the intrinsic 

value of the option. This allows an examination of how price discovery in the markets 

depends on the presence of a highly correlated asset. We argue below that differences 

in market quality for the underlying asset as a function of the ex post intrinsic value of 

the option will provide evidence for how and why the introduction of a traded option 

matters.  

Our major findings are the following. The insider trades aggressively in both 

the stock and the option, and typically trades in the market that affords the most 

profitable trading opportunity. Liquidity traders concentrate their trades at the end of 

the trading period when trading costs are low, and insider trading patterns mimic those 

of liquidity traders. Price discovery with respect to intrinsic value takes place in both 

markets and this leads to informational linkages: dealers in each market revise quotes 

in the direction consistent with an information story in response to trades in the other. 

A strong set of results pertains to the effect of the intrinsic value of the option 

on liquidity and price efficiency. When the intrinsic value of the option is positive, 

convergence to intrinsic value in the stock is faster, liquidity trader losses in the stock 

are smaller, and the volatility of transactions prices is lower than when the option’s 

intrinsic value is zero. This appears due to the greater information content of trades in 

the option market in this case: this information is used by the dealers in the stock to 

more rapidly pinpoint intrinsic value. Of particular importance here is how differences 

in the dealers’ conditional expectations for the stock and option values interact with 

the strategy of the insider to increase the message space of the dealers, and help 

dealers more rapidly pinpoint fundamental value. 
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Although the experimental asset market literature is large and growing, there 

are relatively few studies that incorporate derivatives. For example, Forsythe, Palfrey 

and Plott (1982, 1984) and Friedman, Harrison, and Salmon (1984) find that in a 

private-value setting7 the inclusion of a futures market speeds convergence to 

informationally efficient pricing, although while the latter study finds that futures 

reduce spot-price variability, the former study does not. Plott and Sunder (1988) 

compare private-value markets organized with two or three trader types and three 

states with two other types of markets. In the first there is a single trader type 

(common values) and in the second there are three option-like contingent claim 

securities, each paying off in one (and only one) state. They find that the contingent 

claims markets aggregate information better than the single security market and 

propose possible explanations including the importance of knowledge of others’ 

preferences as a necessary condition for the aggregation of diverse information. 

However they conclude their understanding of the issue is so incomplete they cannot 

even provide a precise conjecture (p. 1116). Finally, Kluger and Wyatt (1995) find 

that in a two-state private-value setting, an alternating asset market and option market 

(that are never open simultaneously) converge to equilibrium faster than an asset 

market alone. What distinguishes our experimental design from previous experimental 

work therefore is its focus on information flows in a common-value setting, where the 

option market and the stock market are open continuously. 

A barrier to experimental research that incorporates options is the necessary 

complexity of such markets. In order to ensure that our subjects could master the 

trading environment and employ sophisticated strategies we used only advanced 

finance students who were already familiar with options and their associated non-

linear payoffs. We also developed and employed custom software that aided subjects 

in mastering a setting that involves the trading of two interdependent assets. Finally, 

7 In a private-value experimental setting, a motive for trade is induced by introducing a limited 
number of states (two or three) and giving two or three different trader types state contingent 
payoffs that are negatively correlated (e.g., trader type I receives a high payoff in state A and a 
low payoff in state B while type II traders have payoffs that are reversed).  Typically subsets of 
traders are given information with respect to which states can or cannot occur in a given 
period. Allocative efficiency measures the extent to which the trader type with the highest state 
contingent valuation holds the assets (which are in fixed supply) at the end of the period, and 
price efficiency measures the extent to which prices converge to the highest dividend in the 
realized state. 
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we relied on extensive training and multiple replications in order to verify the effect of 

experience on outcomes: each cohort of subjects was kept intact for a minimum of 

four experimental sessions in addition to an initial training session. 

The plan of the chapter is as follows. In Section 3.1 we describe the 

experimental design and procedures. In Section 3.2 the data are presented and 

analyzed. In Section 3.3 we discuss our results in the context of theoretical models and 

in Section 3.4 we conclude. 

3.1  Experimental design and procedures 

Our experimental design is roughly based on the Kyle (1985) model, 

generalized to include a single call option. There is a single insider that knows the 

intrinsic value of the stock and two liquidity traders who receive asset specific 

exogenous liquidity shocks in both the stock and the call. Three competing dealers 

maintain outstanding bids and asks for the stock and three additional dealers make a 

market in the call. 

We impose no constraints on the timing, number, or direction of trades the 

insider may make in either market. For example, the insider is permitted to trade 

against her information in either market in an attempt to camouflage her information. 

We do not impose borrowing constraints or short-sales constraints, so leverage effects 

that might make options attractive to informed traders are not present in the 

experimental markets. The insider’s choice to trade in the option or the stock is 

dictated entirely by the relative magnitude of profitable trading opportunities in the 

stock and the option, and the price responsiveness to order flow implied by the timing 

and direction of her trades. We do limit all trades to a single unit in order to reduce the 

difficulty of the dealer’s task, and sharpen our ability to make inferences with respect 

to the informational content of the order flow. 

As is standard in the microstructure literature (and more specifically in 

microstructure models that incorporate an option, e.g., Back (1993), Easley, O’Hara, 

and Srinivas (1998), and John, Koticha, Narayanan, and Subrahmanyam (2000)) we 

impose liquidity shocks in each market that are exogenous to intrinsic value. This 

avoids a “no trade” equilibrium as in Milgrom and Stokey (1982) and Biais and 
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Hillion (1994).8 An exogenous liquidity trading motive is particularly natural in 

options markets where many trades are hedging related and by their nature non-

informational. We operationalize liquidity shocks by giving each liquidity trader a 

required end-of-period position in both the stock and the call. We make these demands 

inelastic by imposing penalties of sufficient magnitude that are proportional to the 

distance between a liquidity trader’s final position and his required position. Although 

their required positions are exogenously determined each period, there are no 

constraints on how liquidity traders arrive at these positions: they are free to choose 

the timing of trades in both markets in order to minimize trading costs.9 We also 

impose larger liquidity shocks on average in the stock market. This matches a feature 

of field markets, and is a possible impediment to an equilibrium in which the insider 

trades the option.10

We employ a transparent quote-driven trading protocol: dealers maintain 

standing bids and asks in separate centralized limit-order books for the stock and the 

option. This is a standard feature of many field markets, and reduces the complexity of 

the task for subjects since they transact against known prices. A dealer is free to 

compete for order flow by adjusting his bid or ask at any time and there are no 

8 The imposition of exogenous liquidity shocks has also become a standard feature of market 
microstructure experiments. The use of computerized liquidity traders (Schnitzlein (1996), 
Bloomfield and O’Hara (1998)) has the advantage of reducing the required number of subjects 
while allowing the perfect control of the timing and size of liquidity shocks. In this study, 
subjects are employed in the role of liquidity traders to allow the examination of issues 
pertaining to their strategic timing of trades in order to minimize transactions costs. Other 
studies that employ strategic liquidity traders include Lamoureux and Schnitzlein (1997), and 
Cason (2000). Finally Bloomfield and O’Hara (1999, 2000) employ both strategic and 
computerized liquidity traders. 
9 We give each liquidity trader uncorrelated required positions in the stock and the option for 
experimental expediency: it reduces the number of agents required - an important consideration 
since our design required keeping cohorts of subjects intact for four sessions. This design 
feature does not change the incentives of liquidity traders to act strategically in order to 
minimize trading costs.  
10 In Easley, O’Hara, and Srinavas (1998), whether an informed trader only uses stocks or 
trades both stocks and options depends in part on the fraction of liquidity traders in the option. 
Theory is silent on the relationship between the magnitude of liquidity shocks in the stock and 
option. Relative stock and option volumes suggest that non-informationally motivated trade is 
probably larger in absolute terms in stocks than options. We therefore match this feature of 
field markets with our experimental design.  
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constraints or costs associated with quote revisions. Unlike most theoretical models 

where dealers are assumed to be risk-neutral agents that set quotes equal to conditional 

expectations, dealers in the experimental markets are motivated to engage in price 

discovery in order to earn trading profits.  

We include only one call option (and no put options) to create the following 

asymmetry. When the intrinsic value of the option is zero, knowledge of the option 

liquidation value only permits a truncation of the stock value distribution. When the 

intrinsic value of the option exceeds zero, the liquidation value in one market is 

perfectly informative with respect to the liquidation value in the other. This design 

allows us to analyze how the introduction of a correlated asset like an option affects 

market quality while enhancing experimental control: since the same group of subjects 

participates in multiple market periods when the intrinsic value of the option is either 

positive or zero, we control for the influence individuals might have on market quality 

as a function of (positive or zero) intrinsic option value.  

3.1.1 Parameter values and variable distributions 

Agents begin the first market period of a session with a cash balance that 

differs across the type of agent. Cash balances and all other values are expressed in 

laboratory dollars (L$). The insider has a starting cash balance of L$450, the stock and 

option dealers of L$550, and the liquidity traders of L$900. The differences in starting 

cash balances are intended to minimize differences in profits by trader type. The 

starting cash balances average L$617. Trading profits (losses) are carried forward to 

subsequent periods. At the end of the final market period, the cash balances are 

multiplied by 0.08 to convert laboratory dollars to Dutch Guilders (NLG)11, and each 

subject is privately paid his earnings. Given the zero-sum nature of the trading game, 

cash payments (net of any penalties incurred by traders) average L$617 (NLG 50) per 

subject per session. 

Each market period the stock value is known to be drawn from an 

approximate normal distribution with mean of L$100, standard deviation of L$12, and 

support on the whole laboratory dollars between L$50 and L$150, both inclusive. The 

11 One Dutch Guilder equals approximately € 0.45, or US$ 0.50 at the time the experiments 
took place. 
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value of the European call option with a strike of L$100 is max[Stock – 100, 0]. A 

riskless asset (cash) is included that for simplicity pays an interest rate of zero. 

3.1.2 Traders 

Four different types of agents are present in each market period: one insider, 

two liquidity traders, three stock dealers and three option dealers. We define a cohort 

to be the nine subjects that always trade together. Every cohort participates in four or 

five different sessions. Each session consists of between five and nine different market 

periods, with each market period defined by a different set of random draws for the 

asset values and liquidity shocks.   

The insider is the only agent to learn the end-of-period stock and option value 

prior to the start of the trade. Each of the two liquidity traders is required to finish the 

trading period with a randomly determined position in the stock and the option. Each 

trader’s required position is determined by an independent draw from a discrete 

uniform distribution. The draws range from –6 to +6 for the stock, and from –3 to +3 

for the option, each integer-valued and excluding 0. If a trader does not meet this 

requirement, a penalty is assessed at the end of the period equal to L$100 times the 

absolute value of the deviation between the required position and the actual end-of-

period position. The magnitude of the penalty ensures that demand is inelastic at the 

required position. Each period, total trading profits and losses of each trader are added 

to starting cash balances and carried forward to the next period. Therefore, traders 

have an incentive to minimize trading costs. Each liquidity trader privately learns his 

required position prior to the start of each market period. 

Three stock dealers make a market in the stock and three option dealers make 

a market in the option. The dealers have to provide quotes at all times, with the only 

restriction that they must lie in the interval [50, 150] for the stock and [0, 50] for the 

option. Dealers see the quotes reported by all other dealers and are allowed to revise 

their quotes at any time. Apart from providing bids and asks, they can initiate trades 

themselves as well, either in the market for which they provide quotes, or in the other 

market. At the beginning of each market period, dealers do not learn either the end-of-

period stock or option value nor the liquidity traders’ required positions, and they do 

not receive required positions. All information pertaining to distributions, parameters, 

and the rules governing trade is common knowledge. 
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3.1.3  Communication 

All interactions among subjects are conducted on a series of networked 

personal computers with custom software. The computer screen in front of each 

subject contains continuously updated market information, including trade history, 

cash balance, stock and option positions, net market order imbalance (buyer initiated 

trades less seller initiated trades), current bids and asks, and the time remaining in the 

current trading period. The trade history shows the trades that have occurred, whether 

a buyer or seller initiated them, the price of the trade, and each agent’s own 

transactions. In addition, the insider’s screen shows the end-of-period value of both 

assets, and each liquidity trader’s screen shows his end-of-period required positions 

for the stock and option.  

3.1.4  Trading procedures 

Before the trading interval can begin, each dealer in the stock and each dealer 

in the option must submit a bid and an ask.12 A dealer’s bid represents the price at 

which he/she is willing to buy a single unit of the risky asset while a dealer’s ask 

represents the price at which he/she is willing to sell a single unit. Only the stock 

dealers submit quotes in the stock market, and only the option dealers submit quotes in 

the option market. After all dealers have entered their quotes, the markets open and 

the trading interval clock begins a 60-second countdown. Each dealer does not 

observe the other dealers’ quotes until the market opens. During the trading period 

traders are free to hit inside quotes in both markets, and each dealer is free to revise 

his outstanding quotes at any time. The quotes are displayed on each agent’s computer 

screen so that bids are in ascending order and asks are in descending order, with the 

inside quotes highlighted. A dealer can move to the “inside” on either side of the 

spread by improving on the current inside quote. When a trader initiates a trade at the 

inside bid or ask, all traders and dealers observe the transaction and the price, but they 

do not learn which trader initiated the trade. The market period clock is stopped while 

the dealers go through the process of resubmitting quotes. Therefore, the actual 

12 Starting bids and asks in the stock must bracket the expected value of L$100, starting bids 
and asks in the option must bracket the expected value of L$4.78.  
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trading interval requires considerably more than 60 seconds: most took between ten 

and twelve minutes. Trades represent a zero-sum game, with the profitability of each 

trade determined on the basis of the relation between the trading price and the end-of-

period asset value. Trading profits on a trade are equal to the signed trade (+1 for a 

buy, -1 for a sell) times the end-of-period asset value less the transaction price. All 

transactions are for a single unit of the risky asset. 

At the end of each market period each subject is informed of the actual end-

of-period value of the stock and the option, personal trading profits (or losses), any 

penalties incurred (in case of the liquidity traders), and his final cash balance after 

liquidation of end-of-period positions at stock and option intrinsic value. 

3.1.5 Subjects and experimental procedures 

The participants in the experiments are students in the Rotterdam School of 

Management at Erasmus University. All were students with a specialization in finance 

(32 undergraduates and 4 graduate students). The first set of markets involving cohort 

I was conducted in September of 1999, followed by a set of markets involving cohort 

II in January 2000. In order to verify our results, we formed cohorts III and IV and ran 

an additional set of markets in March and April 2001.  

Each cohort went through training in the information structure, variable 

distributions, and parameter values, and on average five market periods of trade. The 

training round lasted between two and three hours, and ensures that subjects possess a 

good understanding of the rules of the market.  

Each session was preceded by a review of trading rules, parameter values and 

distributions. The review became progressively shorter as the subjects became more 

experienced. In the first session, subjects were randomly assigned to roles. In the 

second to fourth sessions, the roles of subjects were changed according to a predefined 

scheme of which they were unaware: subjects are insiders at most once, and liquidity 

traders, stock dealers and option dealers at least once and at most twice. The benefit of 

this role-switching scheme is that it controls for differences across participants - we do 

not want those differences to drive differences between trader types – and it provides a 
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deep understanding of the market setting that comes from assuming the roles of 

different agent types.13

3.2  Results 

Each of the four cohorts participated in an initial training session and then 

four (or in one case, five) two-hour sessions. Since subjects were assigned to new 

roles at the beginning of each session, we exclude the first two market periods from 

each session in order to allow subjects to refamiliarize themselves with their roles, the 

trading rules, and the software. This yields an initial data set of 17 sessions, 132 

market periods and 3,475 transactions. 

Our initial data analysis revealed mild learning effects before the third 

session: dealer losses are sometimes large over the first two sessions, with the dealers 

on average incurring losses. In contrast over the last two sessions the dealer industry is 

profitable in all four cohorts. Since dealers’ quote-setting strategies are completely 

unconstrained (dealers may set bids and asks at the support of the asset value 

distribution – prices that cannot be unprofitable) dealer losses are clearly inconsistent 

with equilibrium behavior. Since our intention is to present “equilibrium” results, we 

therefore report analysis based on the last two sessions from each cohort. Our 

“experienced” data set consists of 8 sessions, 62 market periods, and 1,630 

transactions. As a robustness check we also performed the analyses that follow with 

all 17 sessions. Major results are unchanged although on most dimensions behavior 

shows more variation when the initial sessions are included. 

Each market period in each session is distinguished by a distinct set of random 

draws for the stock value, the option value, and the liquidity traders’ demands. 

Summary statistics pertaining to these draws are reported in Tables 3.1 and 3.2.  

13 Ball, et al. (1991) find that convergence to equilibrium strategies in bargaining games with 
adverse selection is speeded by rotating the roles of subjects. 
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A principal finding that we analyze in detail below is that price efficiency in 

the market for the stock is higher when the intrinsic value of the option is positive (in-

the-money). This effect is very strong, is present in all four cohorts, and is highly 

significant when we use a matched-pairs t-test to compare a single mean level of price 

efficiency for each cohort when the ex post value of the option is in-the-money, with a 

single mean when the option is out-of-the-money (t = 6.86, p<0.01).14 A comparably 

strong result obtains for the effect of a positive intrinsic option value on stock price 

volatility (t = 6.48, p<0.01). Later in this section we analyze the behavior that leads to 

these main results. This requires analysis on the level of the session, market period, 

and in some cases individual transactions. In order to account for possible session-

level interdependencies in the data, we report all regressions with p-values that are 

based on GMM t-statistics statistics that are consistent in the presence of 

heteroskedasticity and autocorrelation.15 All reported p-values are for two-tailed tests. 

3.2.1 Stock market quality and the intrinsic option value 

In this section we characterize stock market quality as a function of whether 

the ex post intrinsic value of the option is positive or zero. Our initial measures of 

market quality are price efficiency, volatility, and liquidity trader losses. 

We define price errors (PE) as the difference between intrinsic value and the 

transaction price, in absolute value. We also report price errors relative to the midpoint 

of the inside bid-ask spread (average of highest bid and lowest ask) in absolute value. 

Relative price errors provide a measure of how rapidly information in the order flow is 

14 We report both t-tests and results from the non-parametric randomization (permutations) test. 
With four cohorts, the randomization test yields the theoretical minimum p-value for a two-
tailed test (0.125). 
15 Analysis on the level of the cohort is most conservative since observations across sessions 
are by definition independent. We test for cohort effects (dependencies across sessions within 
cohorts) by analyzing realized bid-ask spreads. We choose bid-ask spreads because although 
we change the roles of agents between sessions, the task of dealers is most complex and 
potentially subject to the influence of previously observed behavior. We test for dependencies 
by performing both parametric and nonparametric ANOVA on average session realized 
spreads in the option, with the data grouped by cohort. None of the tests approach even 
marginal significance. The variation in behavior across sessions is primarily due to the agents 
that assume the role of dealer, and not the cohort to which the dealers pertain. 
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incorporated into market prices in the presence of a strategic insider who chooses 

between transacting in the option and the stock. 

When the intrinsic value of the option is positive, mean price errors in the 

stock market are significantly lower. This effect is very strong, and is present at the 

level of cohorts, sessions, market periods, and individual transactions. We augment 

the cohort level analysis reported above by calculating for each session both a “within 

session” mean of the periods in which the intrinsic value of the option is zero, and a 

“within session” mean when the intrinsic value is positive. In seven out of eight 

sessions mean price errors are smaller when the intrinsic value of the option is 

positive16. Both a matched pairs t-test and the non-parametric randomization test yield 

a highly significant difference (p<0.01). 

Realized spreads in the stock (ask minus bid at the time of each transaction) 

are only slightly smaller when the intrinsic value of the option is positive. Aggregating 

on the level of the session as above, the difference is insignificant. The reduction in 

realized spreads does not explain the increase in price efficiency: the informational 

efficiency of the midpoint of the bid-ask spread also increases when the intrinsic value 

of the option is positive (p=0.03 and p=0.06 for the t-test and randomization tests 

respectively). Mean price errors measured relative to transaction prices and spread 

midpoints, and realized spreads by session are reported in Table 3.2. 

16 The first session of cohort 4 is the only exception, and can be explained as follows. In all 
three periods in which the option is in-the-money, both liquidity traders had to sell the stock. 
As a result, all liquidity traders traded in the opposite direction from the insider, complicating 
price discovery. 
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Sess. Per. Avg. Stock Option PES PES PEC PEC PESC PESC Stock  Option DPS

stock trades trades (price) (mid) (price) (mid) (price) (mid) spread Spread (mid)

1-1 5 95.0 15.2 12.6 9.9 10.7 2.0 5.2 6.3 8.2 16.2 8.7 1.8

1-2 4 91.3 18.8 8.8 6.7 8.2 3.6 4.7 5.7 7.1 11.1 6.7 1.3

2-1 4 90.5 18.8 8.8 11.2 11.9 5.5 7.5 9.4 10.5 9.9 9.0 1.2

2-2 6 91.7 16.3 8.5 11.1 10.7 2.9 3.7 8.3 8.3 10.5 3.7 1.6

3-1 3 88.0 20.3 9.7 8.9 11.1 1.8 4.3 6.6 8.9 15.4 7.0 0.9

3-2 5 92.4 13.2 6.2 7.3 8.4 1.4 3.7 5.4 6.9 8.2 6.4 1.0

4-1 5 91.0 15.6 12.6 12.4 13.8 1.4 3.5 7.5 9.2 13.2 5.4 2.1

4-2 5 89.6 12.8 12.6 9.3 9.8 2.8 4.2 6.1 7.0 17.3 5.9 0.8

Avg 91.2 16.4 10.0 9.6 10.6 2.7 4.6 6.9 8.3 12.7 6.6 1.3

1-1 2 113.0 20.5 15.5 7.0 11.0 7.7 7.5 7.3 9.5 14.6 7.3 1.6

1-2 3 111.0 10.3 12.0 4.3 3.4 3.9 6.4 4.1 5.0 10.6 9.4 1.1

2-1 4 109.8 15.3 9.5 5.8 7.3 4.5 5.5 5.3 6.6 10.3 7.6 1.0

2-2 2 117.5 9.5 12.5 10.1 11.4 10.6 11.9 10.4 11.7 8.7 5.5 1.5

3-1 5 113.8 21.8 12.2 5.3 8.5 4.7 6.3 5.1 7.7 12.4 10.8 0.8

3-2 3 109.0 13.0 8.7 4.0 4.2 3.0 4.7 3.6 4.4 7.8 7.5 0.7

4-1 3 107.0 14.3 14.3 13.0 9.9 5.4 5.3 9.2 7.6 17.3 6.2 1.0

4-2 3 110.0 12.7 8.7 5.4 10.3 5.4 6.1 5.4 8.6 15.2 6.8 0.6

Avg 111.4 14.7 11.7 6.9 8.3 5.7 6.7 6.3 7.6 12.1 7.6 1.0

1.7 -1.7 2.7 2.3 -3.0 -2.1 0.6 0.7 0.6 -1.0 0.3

0.4% 3.0% 2.1% 7.2% 43.5% 49.7% 45.5% 14.9% 3.7%

70.0% 5.8% 1.7% 3.5% 41.9% 47.8% 45.7% 15.9% 0.0%p-value: matched pairs rand. test

Difference

Panel A: Intrinsic value of the option is zero

Panel B: Intrinsic value of the option is positive

p-value: matched pairs t-test
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Table 3.2. Price efficiency, spreads, volatility and the intrinsic value of the option.
This table reports price errors, realized bid-ask spreads and volatility for each of the eight 

sessions in the experiments. Panel A is based on the periods where the end-of-period intrinsic 

value of the option is zero; Panel B is based on the periods where the end-of-period intrinsic 

value is positive. PES (price) is the mean of the absolute difference between the stock 

transaction price and the intrinsic stock value. PES (mid) also measures price errors in the 

stock, but relative to the midpoint of the bid-ask spread. PESC (price) is the mean of the 

absolute difference between the transaction price and the stock or option intrinsic value 

depending on the asset traded, and is our measure of price efficiency in the aggregate. PESC

(mid) is defined similarly. Stock (Option) spread is the realized stock (option) bid-ask spread at 

the time of a stock (option) transaction. DPS is the mean change in the midpoint of the bid-ask 

spread, and is a measure of market volatility. In all cases, an average is calculated for each 

market period in a session, and then each market period is weighted equally. When option 

intrinsic value is positive, stock price errors and volatility are significantly lower, and option 

price errors are higher. 
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What causes the dramatic increase in price efficiency when the option is in 

the money? The short answer is that the insider’s trades in the option are more 

informative only when the option’s ex post intrinsic value is positive. This in turn 

allows dealers in the stock market to benefit from price discovery in the option 

market. We analyze this phenomenon in detail in Section 3.2.2. 

Higher price efficiency when the intrinsic value of the option is positive is 

also associated with lower stock price volatility. Our measure of volatility is 

constructed as follows. First we calculate the change in the midpoint of the bid-ask 

spread for each transaction in a market period (|mpt – mpt-1|), and then compute the 

average for each market period. Spread midpoints are used in order to control for bid-

ask bounce, with changes in the midpoint serving as a proxy for the transaction-

induced revision in the conditional expectation of the intrinsic stock value.17 Market 

period averages are calculated for each session and reported in Table 3.2. Weighting 

each session equally, mean midpoint price changes are 27% less when the intrinsic 

value of the option is positive (p=0.04 and p<0.01 for the t-test and randomization 

tests respectively). This effect is present in all eight sessions (and all four cohorts), 

and indicates a more direct convergence to intrinsic value in the stock. 

Our third measure of stock market quality is the magnitude of liquidity trader 

losses. Liquidity traders have inelastic demands that are uncorrelated with intrinsic 

value, and as expected incur large significant losses from their stock market activity. 

These losses decline by 44% when the intrinsic value of the option is positive (Table 

3.3). This effect occurs in six of the eight sessions and is due to liquidity traders on 

average trading at prices closer to intrinsic value. In the two sessions where it does not 

occur, it is explained by the average direction of liquidity trades relative to the 

intrinsic value of the stock (for example, in the first session with cohort 4, in all three 

periods in which the option is in-the-money, both liquidity traders had to sell the 

stock, resulting in very large liquidity trader losses). In Table 3.4 we present an 

analysis that controls for the direction of liquidity trades relative to the value of the 

stock and option, and we find a highly significant reduction in liquidity trader losses in 

the stock in the presence of an option with positive intrinsic value (p<0.01). 

17 Inventory effects may imply this conditional expectation need not be centered at the spread 
midpoint. We assume these effects are of second order importance. 
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3.2.2 Price errors and time 

In this section we examine the role of the option’s intrinsic value on the 

convergence to informationally efficient pricing in the stock using transactions level 

data and a parsimonious specification. In every market period, the trading activity of 

the insider causes stock and option prices converge to intrinsic value by the end of the 

market period; our focus here is on how the intrinsic value of the option affects the 

speed of convergence to strong-form efficiency. 

Recall that at the beginning of a market period, dealers know that the 

probabilities of the option being in or out-of-the-money at the end of the period are 

roughly equal. We regress stock price errors on a constant, the absolute difference 

between the stock value and its unconditional expectation (DEV), the product of the 

net liquidity shock in the stock and the difference between the stock value and its 

unconditional expectation (COR(S)),18 an indicator variable that indicates whether or 

not the insider initiated the trade (INSIDER), the transaction time (TIME), and the 

transaction time interacted with a variable that indicates whether or not the intrinsic 

option value is positive (TIME*ITM). To derive the transaction time we order the 

stock transactions and divide them by the total number of transactions in a period. 

This definition of time accounts for the clustering of transactions in clock time. The 

number of observations is 974 and the adjusted R2 is 25.8%.  

PE = b0 + b1DEV + b2COR(S) + b3INSIDER + b4TIME + b5TIME*ITM  (1) 
  10.32  0.20  -0.03          -3.51   -3.79      -4.87   
  (9.09) (2.62) (-4.57)        (-4.83) (-2.57)    (-3.41) 

All parameter estimates have the expected sign and are significant at the 1% 

level. When the asset value is extreme, price errors are significantly higher: in this 

case convergence to informationally efficient pricing requires more time. When the 

net liquidity trade is in the direction of the insider’s information price errors are lower. 

This is due to fewer trades on the “high price error” side of the spread as price 

converges to intrinsic value, and a simpler information extraction problem for the 

dealers. When the insider transacts price errors are lower, because her trades are on the 

“low price error” side of the spread as insider activity moves price toward intrinsic 

18 This variable measures the extent to which the liquidity traders trade in the same direction as 
the insider’s information. 
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value: it is the cumulative effect of insider trading that causes price errors to decline 

with time. 

The coefficient on the time of trade variable interacted with the positive 

option value indicator is negative and highly significant. This indicates more rapid 

convergence when the option is in-the-money. This is because when the option is in-

the-money, the option value is perfectly correlated with the stock value: trades in the 

option help dealers pinpoint the value of the stock. When the option is out-of-the-

money, trades in the option only aid the dealers in truncating the stock value 

distribution. We analyze in detail in Section 3.2.6. below the informational linkages 

between the two markets. 

3.2.3 Insider profits and behavior 

Market period data on profitability by trader type are reported in Table 3.1. 

Profits on each trade are (V-P)*Q, where V is the end-of-period value of the asset, P is 

the transaction price, and Q is an indicator (+1 for a buy, -1 for a sale). An agent’s 

market period profits are the sum of the profits on all transactions that agent 

participated in during that market period. Because the insider is the only agent who 

knows the terminal value of the stock and option, the behavior of the insider is critical 

in determining patterns in informational efficiency. 

The profits earned by the insider are significantly greater than zero in both the 

stock market and the option market. In most market periods (56%) the insider earns 

profits in both the stock market and the option market. Over the 62 trading periods, the 

insider traded 384 times in the stock and 234 times in the option.  
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Figure 3.1. Temporal patterns in trading activity and the bid-ask spread.
This figure shows the concentration of both insider and liquidity trader activity at the end of 
the trading period and the temporal decline in realized bid-ask spreads. The temporal 
consolidation of trading is consistent with the theoretical model of Admati and Pfleiderer 
(1988) in which both insiders and a subset of liquidity traders are given discretion over the 
timing of their trades. Liquidity traders prefer to trade when the market is deep (when trades 
have little impact on price). This in turn gives liquidity traders strong incentives to trade 
together. The insider also prefers to trade when the market is deep. The tendency of spreads to 
narrow over time is also observed in another dealer market experiment (Lamoureux and 
Schnitzlein (1997)). This type of disequilibrium behavior is roughly consistent with the ad-hoc 
price adjustment rule posited by Bulow and Klemper (1994). 
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Most insider trades occur late in the trading period (Figure 3.1): on average, 

one-quarter of insider volume is not transacted until over two-thirds of the trading 

interval has expired. Temporal patterns in insider trading almost exactly match 

patterns in liquidity trading, with the correlation between the time of insider trades and 

liquidity trades 87% (p<0.01). The temporal concentration of trades is consistent with 

the theoretical model of Admati and Pfleiderer (1988) in which both insiders and a 

subset of liquidity traders are given discretion over the timing of their trades. Unlike 

the model, most trading is concentrated late in the trading period. This important 

difference is due in part to the complete absence of ex ante constraints on when 

liquidity traders must trade in the experimental markets. With absolute discretion over 

the timing of trades liquidity traders prefer to trade late when bid-ask spreads are more 

closely centered on intrinsic value.  

The insider infrequently engages in unprofitable trades (3.7% of all insider 

trades). The majority of these trades are in the option in the opposite direction of the 

insider’s information. This is evidence that these trades are intended to mislead 

dealers, since in most trading periods this is the least unprofitable trade when an 

insider trades in the opposite direction of her information.19 At the time of most 

insider trades (72.6%) the insider can trade profitably in either the stock or option 

market. In most of these cases (86.3%) the insider chooses to transact in the market 

that at that instant offers the more profitable trading opportunity. When the option is 

in-the-money, insiders make 51.4% of their trades and earn 44.0% of their trading 

profits by transacting in the option. When the option is out-of-the-money, insiders 

make 34.5% of their trades and earn only 8.8% of their profits from trading in the 

option: the option market’s role in the price discovery process is more limited in this 

case. 

19 Bloomfield and O’Hara (2000) is an experimental study that investigates whether transparent 
markets can survive in the presence of less transparent markets. In their design, both a liquidity 
trader and an insider may conceal their trades by trading with a low transparency dealer. They 
conclude that strategic trading does not play an important role in their markets and traders are 
unwilling to pay a premium to have their trades concealed, although there is evidence that 
insiders sometimes trade against their information with transparent dealers in order to fool the 
market. The strategy space is rich in the sense that traders can choose among multiple trade 
sizes, however they have limited ability to choose the timing of trades: all trades are executed 
simultaneously at one of eight trading rounds each period, and therefore time per se does not 
play an explicit role. 
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We decompose insider profits by regressing insider profits on a constant, an 

indicator that takes on the value of one when the liquidation value of the option is 

positive (ITM), the distance of the stock value from its unconditional expectation 

(DEV), the number of liquidity trades in the stock (LIQ(S)), the number of liquidity 

trades in the option (LIQ(O)), the product of the net liquidity shock in the stock and 

the difference between the stock value and its unconditional expectation (COR(S)), 

and a similar statistic for the option (COR(O)). 

PROFINS,STOCK = b0 + b1ITM + b2DEV + b3LIQ(S) + b4LIQ(O) + b5COR(S) + b6COR(O) (2) 

The results (Table 3.4) indicate that insider profits are increasing in the 

distance between the stock value and its unconditional expectation (p<0.01). Profits 

are also higher when the net liquidity shock in the stock is in the opposite direction of 

the insider’s information: the insider can more easily disguise her information while 

making profitable trades (p<0.01). A similar effect obtains for the net liquidity shock 

in the option (p=0.06). When the end-of-period option value is positive the insider 

earns lower profits in the stock (p<0.01). This is due to a greater number of profitable 

trades in the option (which stock dealers learn from). A regression identical to (2) but 

where the dependent variable is insider profits in the option (Table 3.4) indicates 

insider profits in the option are higher when the end-of-period option value is positive 

(p<0.01).  

Aggregate insider profits (profits derived from trading in the stock and the 

option) are higher when the option is out-of-the-money. Using session level data 

(Table 3.3) the difference is not significant (p=0.32 and p=0.29 for the parametric and 

nonparametric test respectively), but the analysis in Table 3.4 reveals a significant 

difference (p=0.02). If real, this result would be puzzling, since the insider is free to 

forego option trading. It is driven however by two unusual trading periods when the 

intrinsic value of the option is zero, and is not a robust result20.

20 In both of these trading periods, there is a large positive net liquidity shock. In one case, 
eleven consecutive liquidity trades in the stock and the option at the beginning of the period are 
purchases. Interspersed among these trades are additional (unusual) buy orders initiated by 
dealers that move price further away from intrinsic value. When the insider finally begins to 
trade, price moves very slowly toward intrinsic value: the dealers are apparently convinced by 
the initial 18 consecutive buy orders that the stock value is above its unconditional expectation. 
In the second case, a single dealer lowers the inside bid unusually slowly in the face of a large 
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3.2.4 Liquidity trader profits and behavior 

Liquidity traders are free to choose the timing of trades, but the exogenous 

liquidity shocks are enforced by penalties that make liquidity demands (by the end of 

a market period) perfectly inelastic. Each liquidity trader receives an independent 

shock in the stock and the option. Over the 62 market periods, the liquidity traders 

never incurred a penalty for failing to exactly fulfil liquidity requirements. 

As noted above, liquidity traders tend to trade late: 86.3% of liquidity trades 

are in the second half of the trading interval, when spreads are narrower. 

Requirements to sell options are on average satisfied earlier than requirements to buy 

options and to buy or sell units of the stock. This may be due to the fact that with the 

highly skewed unconditional option value distribution, price discovery is on average 

easiest for option sell orders. The desire of liquidity traders to trade near the 

unconditional asset value distribution therefore dictates earlier liquidity trading in this 

case, although two-thirds of these trades are still in the second half of the trading 

interval. 

sell order imbalance. In the first case, insider profits exceed their mean by 3.9 standard 
deviations, and in the second by 4.8 standard deviations. The high insider profits in these two 
periods explain the significance of the ITM coefficient estimate, but seem unrelated to the 
relationship between the level of insider profits and the presence of a positive intrinsic value 
option. We verify this by repeating the regressions from Table 3.4 but flagging these two 
periods with an indicator variable that takes on the value of one in these two periods and zero 
otherwise. The ITM coefficient estimate becomes insignificant in the aggregate insider profits 
regression. Importantly, other qualitative results in the other eight regressions in the table are 
unchanged.  
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Table 3.3. Profitability by trader type and the intrinsic value of the option.

This table reports profitability by trader type for each of the eight sessions. Panel A is 
based on periods where the intrinsic option value is zero, Panel B on the periods 
where it is positive.  

Liq. Stock Liq. Option Liq. Stock Option

Session Periods Insider Traders Dealers Insider Traders Dealers Insider Traders Dealers Dealers

1-1 5 41.1 -99.7 58.6 7.5 -10.7 2.7 48.6 -110.4 59.1 2.7

1-2 4 46.5 -38.1 -9.2 4.1 -8.7 4.6 50.5 -46.8 -9.2 5.5

2-1 4 82.9 -100.1 24.5 15.2 -6.9 -5.8 98.1 -107.0 22.0 -13.0

2-2 6 60.7 -86.9 26.4 7.3 -1.1 -1.1 67.9 -88.0 21.3 -1.3

3-1 3 42.6 -77.1 41.8 2.3 -9.2 4.1 44.9 -86.2 44.5 -3.2

3-2 5 43.6 -6.2 -35.7 1.1 -4.5 2.8 44.7 -10.7 -35.1 1.1

4-1 5 73.7 -63.1 -18.8 5.1 -2.3 -1.6 78.7 -65.4 -20.0 6.7

4-2 5 14.6 -78.9 72.6 -1.9 -5.2 7.2 12.7 -84.1 72.6 -1.1

Avg 50.7 -68.8 20.0 5.1 -6.1 1.6 55.8 -74.8 19.4 -0.3

1-1 2 53.0 1.9 -57.4 21.0 -6.3 -14.6 74.0 -4.4 -57.6 -12.1

1-2 3 0.3 -33.0 34.7 20.4 -22.5 2.2 20.7 -55.5 34.7 0.2

2-1 4 27.5 -29.8 -6.9 19.2 -15.5 -4.4 46.7 -45.3 -6.1 4.8

2-2 2 17.0 -5.0 -12.0 69.3 -18.8 -50.6 86.3 -23.8 -12.0 -50.6

3-1 5 27.9 -39.7 1.1 9.3 -15.1 22.4 37.2 -54.8 -15.5 33.1

3-2 3 6.7 -26.2 21.8 6.2 -2.4 -4.0 12.9 -28.7 22.1 -6.3

4-1 3 18.0 -160.6 144.5 13.0 -21.9 12.9 31.0 -182.5 140.5 11.0

4-2 3 31.1 -15.2 -15.7 6.0 -21.3 15.3 37.1 -36.5 -15.7 15.0

Avg 22.7 -38.5 13.8 20.6 -15.5 -2.6 43.2 -53.9 11.3 -0.6

28.0 -30.3 6.3 -15.5 9.4 4.2 12.5 -20.9 8.1 0.3

3.0% 23.2% 85.0% 5.7% 2.2% 59.9% 30.6% 41.8% 80.7% 97.6%

3.9% 21.6% 86.6% 0.0% 3.0% 66.4% 27.7% 40.9% 78.0% 96.5%

Panel B: Intrinsic value of the option is positive

p-value rand. test

p-value t-test

Difference

Stock profits Option profits Total profits

Panel A: Intrinsic value of the option is zero
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Market Trader Type constant ITM DEV LIQ(S) LIQ(O) COR(S) COR(O) Adj R2

Stock Insider 9.91 -36.20 3.93 -3.39 8.44 -0.23 -0.46 28.50%

(0.30) (-3.34) (2.72) (-1.50) (2.11) (-3.15) (-1.96)

Stock Liq. traders 3.53 25.12 0.90 -10.45 0.62 0.70 0.06 65.60%

(0.19) (3.10) (2.46) (-4.41) (0.13) (6.96) (0.37)

Stock Dealers -13.43 11.07 -4.83 13.84 -9.06 -0.47 0.40 46.90%

(-0.43) (0.79) (-3.38) (3.84) (-2.00) (-3.42) (1.54)

Option Insider -7.25 11.55 0.83 0.89 -0.43 -0.04 -0.18 20.10%

(-1.04) (3.44) (2.68) (0.93) (-0.24) (-1.28) (-2.22)

Option Liq. traders 0.87 -11.01 0.02 0.66 -3.23 0.00 0.29 42.10%

(0.18) (-5.49) (0.12) (1.34) (-2.20) (-0.15) (5.42)

Option Dealers 6.38 -0.54 -0.85 -1.55 3.65 0.04 -0.11 8.70%

(0.90) (-0.16) (-2.35) (-1.71) (1.97) (0.95) (-1.44)

Stock Insider 2.65 -24.65 4.76 -2.50 8.01 -0.27 -0.63 32.40%

 & Option (0.08) (-2.44) (3.63) (-1.11) (2.06) (-2.87) (-2.94)

Stock Liq. traders 4.40 14.11 0.92 -9.79 -2.61 0.70 0.35 59.50%

 & Option (0.21) (1.53) (2.27) (-3.64) (-0.48) (6.85) (2.28)

Stock Dealers -7.05 10.53 -5.68 12.29 -5.40 -0.43 0.29 40.60%

 & Option (-0.22) (0.73) (-4.19) (3.20) (-1.00) (-2.71) (1.02)
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Table 3.4 Determinants of profitability
In order to examine the determinants of profitability by trader type we estimate the following 
model with GMM (t-statistics that are consistent in the presence of heteroskedasticity and 
autocorrelation are reported in parentheses). Each of the 62 observations summarizes the 
random draws (asset values and liquidity shocks) for a single market period. 

PROFtype, market = b0 + b1ITM + b2DEV + b3LIQ(S) + b4LIQ(O) + b5COR(S) + b6COR(O) 

Variable definitions are as follows. PROFtype, market is the per period profit of all subjects of the 
same type (insider, liquidity traders or dealers) in a specific market (stock, option or both). 
ITM is an indicator variable that takes on the value of 1 when the intrinsic value of the option 
is positive and 0 otherwise. DEV is the absolute difference between the stock value and its 
unconditional expectation of 100. LIQ(S) is the number of liquidity trades in the stock. LIQ(O) 
is the number of liquidity trades in the option. COR(S) is the product of the net liquidity shock 
in the stock and the difference between the stock value and its unconditional expectation (a 
measure of the extent to which liquidity traders trade in the direction of the insider’s 
information). COR(O) is the product of the net liquidity shock in the option and the difference 
between the stock value and its unconditional expectation.
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Liquidity traders suffer large significant losses in both the stock and option 

market (Tables 3.1 and 3.3). As noted in Section 3.2.1, average liquidity trader losses 

in the stock when the option intrinsic value is positive are lower than when the option 

intrinsic value is zero, although this difference is only marginally significant. In order 

to control for other determinants of liquidity trader profitability, we regress liquidity 

trader profits in the stock on the liquidity shock variables, the extremeness of the asset 

draw and the positive option intrinsic value indicator variable (Table 3.4).  

Overall liquidity trader profits are decreasing in the magnitude of the liquidity 

shocks, but increasing in the correlation between the net liquidity shock and the 

insider’s information: when the liquidity traders are required to trade in the direction 

of the insider’s information, their profits are higher. Both of these effects are highly 

significant (p<0.01). The extremeness of the asset value draw is also significant 

(p=0.02). Finally, when the option’s intrinsic value is positive, liquidity trader losses 

are lower (p<0.01). This is because liquidity traders trade at prices closer to intrinsic 

value in this case. 

3.2.5 Dealer profits and behavior 

Recall that the three stock dealers are required to make a market in the stock. 

They are also permitted to transact against quotes submitted by other dealers in the 

stock and the option. The option dealers participate in 6.7% of the transactions in the 

market for the stock and the stock dealers participate in 11.0% of the transactions in 

the option.

Since both stock and option dealers are permitted to trade in either asset we 

define dealer profits in the stock to be the sum of all stock dealers’ profits in a market 

period, with option dealer profits similarly defined. Weighting each of the sessions 

equally, stock dealer profits are about half the magnitude of insider profits, and 

significantly greater than zero (p=0.03 for both the t-test and the randomization test). 

Option dealer profits are positive, but lower, and are not significantly different from 

zero. In order to investigate the determinants of dealer profitability, we estimate the 

regression from (2) and report the results in Table 3.4.  

The results are similar when we use either stock market dealer profits or the 

sum of stock and call option dealer profits (aggregate dealer profits) as the dependent 

variable. Dealer profits are decreasing in the extremeness of the asset value draw, and 

increasing in the magnitude of the stock liquidity shock. When stock dealer profits is 
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the dependent variable the negative coefficient on the COR(S) variable indicates that 

when the liquidity traders trade in the direction of the insider’s information, stock 

dealer profits are lower. This is intuitive since in this state dealers take fewer highly 

profitable liquidity trades that are in the opposite direction of intrinsic value. When 

aggregate dealer profits is the dependent variable, the coefficient estimate for the 

COR(S) variable decreases in absolute value. This is because when the stock liquidity 

traders tend to trade in the direction of the insider’s information, option dealers learn 

more rapidly from trades in the stock and earn higher profits. In general, dealer profits 

are not related to whether the intrinsic value of the option is positive. This is evidence 

that the dealer competitive dynamic accounts for the informational content of the 

order flow as a function of trading patterns (that depend on the intrinsic value of the 

option). 

3.2.6 Informational linkages between the stock and option markets 

In the previous sections we document the impact of the intrinsic value of the 

option on price errors, volatility and profitability by trader type. In this section we 

examine the informational linkages between the markets that give rise to these effects. 

As noted earlier, the insider trades aggressively in both the stock and the 

option. This is consistent with the mixed strategy equilibrium in Easley, O’Hara, and 

Srinavas (1998), and indicates that a trade in one market will have informational 

implications for the other market. We document the informational linkages by 

examining changes in bid-ask spread midpoints induced by transactions (Table 3.5). 

We define a quote midpoint price change as the difference in the midpoint of the 

inside bid and ask after a transaction and before a subsequent transaction. If there are 

multiple quote changes (by one or more dealers) that affect the inside quote, they are 

summed together.  

Average quote changes are consistent with a strong informational linkage 

between the two markets. Quote midpoints in both markets are revised upwards after a 

stock or option transaction at the ask, and downwards after a stock and option 

transaction at the bid.  

Transaction induced quote changes are not symmetric across the stock and 

option. First, a transaction induces larger quote changes in the stock than in the option. 

This is expected because the option's density covers only half the range of the stock's 

density. Second, the average responsiveness of stock quotes in absolute value to an 
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option purchase (L$1.16) is 68% larger (though not significantly, p=0.12) than the 

responsiveness to an option sale (L$-0.69). The skewness of the option value 

distribution provides a logical explanation for this effect. In the beginning of the 

trading period, the insider can profitably buy options only when the true stock value is 

sufficiently larger than the unconditional expectation of 100, whereas the insider can 

always profitably sell options when the true stock value is 100 or lower. An option 

purchase therefore signals on average a more extreme stock value than an option sale, 

and this market feature seems to be well understood by the stock dealers.21 Third, 

transactions in the option lead to larger quote changes in the option than in the stock 

market; a phenomenon consistent with the lower liquidity shocks (and hence greater 

informational content) of trades in the option. 

21 On average, opening asks in the stock and call respectively are L$110.43 and L$10.42. 
Average opening bids are L$91.52 and L$1.34. 
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Table 3.5 Linkages between the Stock and Option Markets
This table documents the informational linkages between the option and stock market by 
reporting the responsiveness of quotes to trades in both markets. We report changes in the 
midpoint of “inside” bid-ask spread (the average of highest bid and lowest ask). Panel A 
summarizes changes in stock quotes that occur after a transaction but before a subsequent 
transaction. The stock quote changes are broken out as a function of the direction of the 
transaction (buyer or seller initiated), and the market in which the transaction was made (stock 
or option). Panel B summarizes changes in option quotes. Both stock and option quotes change 
in the direction consistent with dealers in one market updating their beliefs with respect to 
intrinsic value on the basis of transactions in the other. 

Stock sell Stock buy Option sell Option buy

# Positive stock changes 45 311 33 72

# Negative stock changes 339 37 86 20

Average -1.12 0.85 -0.69 1.16

Standard Error 0.14 0.09 0.18 0.24

Stock sell Stock buy Option sell Option buy

# Positive option changes 36 65 24 187

# Negative option changes 119 68 229 33

Average -0.44 0.20 -0.61 0.63

Standard Error 0.10 0.11 0.08 0.09

Panel B

Changes in option quotes in response to a stock or call transaction

prior to the subsequent transaction (stock or option)

Panel A

Changes in stock quotes in response to a stock or call transaction

prior to the subsequent transaction (stock or option)
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3.3  Discussion

When the intrinsic value of the option is zero, the insider concentrates her 

trading activity in the stock. Stock dealers update their beliefs primarily on the basis of 

stock market order flow and prices gradually converge to the informationally efficient 

level. 

When the intrinsic value of the option is greater than zero, the insider splits 

her trading activity between the stock and the option. In this case stock dealers learn 

from both stock market order flow and price discovery in the option. This leads to a 

significant increase in stock market informational efficiency relative to the case where 

the intrinsic option value is zero (and most price discovery occurs in the market for the 

stock). Importantly, differences in opinion among stock and option dealers (and the 

insider response) are particularly informative, and speed the price discovery process. 

This effect is not a feature of theoretical models. Although the concentration of insider 

trading in the stock depends on the ex post moneyness of the option, the insider trades 

in both assets in both states, as in the mixed strategy equilibrium derived by Easley, 

O’Hara, and Srinivas (1998). 

These results highlight the mechanisms by which the introduction of a traded 

option can improve the market quality of the underlying asset, and are consistent with 

the theoretical result of John, Koticha, Narayan, and Subrahmanyam (2000): “..even 

though the addition of option trading enhances the ability of informed traders to 

disguise and profit from their trades, the informativeness of the trading process is 

greater because the market can now infer private information from two sources – order 

flow in the stock and option markets.” We believe it is noteworthy that we find 

support for this result in a richer setting than their model since we allow both insiders 

and liquidity traders to be strategic. We also show the exact mechanism by which this 

occurs in a dynamic setting. Unlike the aforementioned model, we do not find 

evidence in support of bid-ask spreads increasing in the presence of options.  

Biais and Hillion (1994) focus on the introduction of a nonredundant option 

that completes the markets and find ambiguous consequences for the informational 

efficiency of the market. In their single period model there are three states and three 

different types of liquidity traders with state-dependent endowments that trade in order 

to hedge their risk exposures. The introduction of the option can reduce the 

informational efficiency of the market by enlarging the set of strategies the insider can 
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follow. This makes it more difficult for the dealers to interpret the informational 

content of trades. 

Although our setting is very different, we do not find evidence for the 

intuition that a larger strategy space for the insider will reduce informational 

efficiency. This is most likely due to our dynamic setting with exogenous liquidity 

shocks in both the stock and the option: the insider uses the cover of liquidity trading 

to gradually but fully exploit profitable trading opportunities. Since the insider trades 

more aggressively in the call when it has a positive value, we find that the required 

number of trades in the stock to reach a given level of efficiency is less than when it 

has no value. This sharing of price discovery strongly suggests a gain in price 

efficiency relative to a case without a traded option.  

Unlike the theoretical results of Back (1993), our results suggest a decline in 

the average level of stock volatility as a result of option introduction. A correlated 

asset in our experiments allows dealers to set their prices with greater precision, 

because they learn from trades in the other market. We speculate that an important 

difference between the model and the experimental design that helps account for this 

result is the presence of strategic liquidity traders in the experiment: in Back’s model 

the liquidity trader arrival process is a Brownian motion and trading is continuous. 

3.4  Conclusion

We analyze the informational linkages between a stock market and a traded 

option by performing a controlled experiment. This allows the observation of all 

information sets and all actions in a setting based on the Kyle (1985) framework, but 

beyond the reach of tractable modeling. We examine the hypothesis that the presence 

of an option improves the market quality of the underlying asset by permitting the 

effective sharing of price discovery across markets. 

We find that an insider trades aggressively in both the option and the stock, 

with most trades directed to the asset that affords the most profitable trading 

opportunity. This leads to price discovery occurring in both markets, and hence 

important feedback effects: trades in the stock market imply quote revisions in the 

options market and vice versa. We believe this result sheds light on why most 

empirical studies find an improvement in market quality after the introduction of 

traded options. 
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The focus of most related theoretical and empirical literature concerns the 

effect of the option on the time series properties of the price of the underlying asset. 

We find a significant relationship, but one that varies dramatically with the ex post 

intrinsic value of the option: when the option is in-the-money the convergence to 

informationally efficient pricing is more rapid and the volatility of transaction prices is 

lower. This is due to option trades making a greater contribution to price discovery. 

Here the linkage between the two markets is direct in the sense that liquidation values 

are perfectly correlated. When the option is out-of-the-money, price discovery in the 

option only helps truncate the stock value distribution. The dependence of market 

quality in the stock on the option’s intrinsic value is very strong, and we thus 

demonstrate the implications of the presence of a correlated asset for price discovery. 

Importantly, the fundamental way in which information is extracted from order flow 

changes in the presence of an option with positive moneyness. The tendency of 

insiders to trade where the magnitude of the profitable trading opportunity is greatest, 

provides a richer set of signals to dealers than when there is only a single asset in 

which the insider can trade profitably. We show therefore that not only does the 

presence of a correlated asset effectively split price discovery across markets; it also 

fundamentally changes the process by which conditional expectations are updated. We 

furthermore show that the less strategic the insider (due to risk-aversion, impatience, 

or noisy signals), the more powerful we expect this effect to be. 
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4 Insider strategies with options 22

In this chapter we analyze the same question as in the previous chapter: how 

does option trading affect market quality in the underlying asset, as measured by 

speed of convergence to intrinsic value, volatility and spreads. As we outlined in the 

introduction to both chapters, the amount of empirical work on the impact of option 

trading is huge. Many of those empirical studies were motivated by the lack of clear 

guidance that theoretical models provide. With this chapter we aim to produce a better 

guide: one that clarifies under what conditions a derivative asset improves market 

quality. For example, in a theoretical paper Biais and Hillion (1994) show that 

although the option can help avoid a market breakdown, it enlarges the set of trading 

strategies an insider can follow, and can reduce informational efficiency by making it 

more difficult for market makers to interpret the information content of trades. The 

major finding of Back (1993), in an extension of the Kyle (1985) model, is that the 

listing of an option leaves average volatility unchanged, which contrasts a lot of 

empirical work.  

Instead of experiments we now develop a sequential trade model in the spirit 

of Glosten and Milgrom (1985) to obtain deeper insights. Of the comparatively small 

number of theoretical papers, at least two use a sequential trade model in the spirit of 

Glosten and Milgrom (1985) as well: Easley, O’Hara and Srinivas (1998; further 

referred to as Easley et al), and John, Koticha, Narayanan and Subrahmanyam (2000; 

further referred to as John et al). Both models are developed in an asymmetric 

information setting in which informed and uninformed traders trade in stock and 

option markets. Easley et al (1998) study whether option markets attract informed 

trading and whether they incorporate information more quickly than stock markets. 

They derive that under certain conditions options are attractive to traders with superior 

information. John et al (2000) focus on the impact of option trading on the market 

quality of the underlying price process, and the role of margin requirements. Whether 

options decrease or increase market quality depends on the criterion they employ.  

22 This chapter is based on: C. de Jong, 2001, “Informed option trading strategies: the 
dynamics of the underlying price process”, ERIM research paper 
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We start from the viewpoint that as long as some superiorly informed traders 

use options, option trades convey information about the underlying. In this chapter we 

provide two important additions to the existing models, that provide valuable new 

insights under what conditions and with what mechanisms option trading may 

improve market quality in the underlying security. First, we extend the single-trade 

markets to a dynamic multi-trade environment. Second, we analyze market quality 

under different levels of option leverage, the main distinguishing property of options. 

Initially, we elaborate on a standard sequential trade model, and show that it is 

inherently dynamic. Expectations are updated after every trade, which allows us to 

study a sequence of trades and analyze new and more precise criteria for market 

quality. Because of the multiple interacting dynamics of the model, we cannot derive 

the results in closed form, but rely on simulations to report the main dynamics. We 

show that the focus of the existing sequential trade literature on only first trades leads 

to the use of inaccurate criteria for market quality. Our analysis indicates that an 

option may serve as an extra source from which information can be inferred, which 

speeds up convergence. In trading performance, uninformed traders only benefit from 

this speedier convergence in well-developed derivatives markets. Uninformed traders 

are best off in a derivatives market that allows for relatively large (informed) trades, 

whereas the number of informed traders should be relatively small. This corresponds 

to well-developed derivatives markets. In terms of price volatility, our model shows 

that the effect of option trading is rather the opposite: trading in well-developed 

derivatives markets leads to higher volatility. 

The plan of the paper is as follows. In Section 4.1 we describe the model and 

in Section 4.2 the associated criteria for market quality. In Section 4.3 we analyze the 

main dynamics of the model and in Section 4.4 we conclude. 

4.1  The model 

We develop a sequential trade model that is similar in nature to that of Easley 

et al (1998) and John et al (2000). These two papers add one or two plain-vanilla 

options to the model of Glosten and Milgrom (1985). In our model trading takes place 

in a stock and a call option on that stock, and traders choose either of the two assets. 

Results are qualitatively the same if a put instead of a call option, or both, would be 
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included. We include only one option type to facilitate the derivations and the insights 

in the most important mechanisms.  

The model is a standard adverse selection model in market microstructure and 

covers one period. It explains how market mechanisms lead prices to efficient values 

when some traders have information superior to others. For a discussion of the 

different assumptions and the resemblance with real world markets, we especially 

refer to the papers by Glosten and Milgrom (1985) and Easley and O'Hara (1987). The 

market is quote driven, which means that buyers and sellers trade with a market maker 

(also referred to as dealer or specialist), who is responsible for providing liquidity 

through bid and ask quotes. We assume market makers are profit maximizing and 

risk-neutral and trading takes place for one unit of one asset at a time. Liquidity and 

inside traders initiate trades. The liquidity traders trade for reasons of liquidity, such as 

portfolio rebalancing and time-varying consumption and income. We do not further 

specify their motives for trade, but assume their demand and supply are completely 

inelastic, so independent of the outstanding quotes, which excludes the possibility of a 

market breakdown. The informed traders get private and perfect signals regarding the 

true asset value. They are completely free to engage in trades and will do so in the 

pursuit of profits. Competition between informed traders causes available profits to 

vanish quickly and ensures that informed traders maximize profits at every individual 

trade.

The random variable S represents the intrinsic value of the stock, the random 

variable C the intrinsic value of the option. The true asset value may be regarded as a 

value that every market participant agrees upon after all information has become 

public. The stock value can either take on a low value X-v or a high value X+v. These 

stock values occur with respective probabilities of L and H, whose sum equals unity. 

The option has an exercise price of X, exactly in between the high and low value, and 

its value can directly be derived from the value of the stock: C = Max[0, S-X].  

All possible outcomes of a single transaction and their relative probabilities 

are depicted in Figure 4.1. Here we give an explanation of the trading process. At the 

beginning of a period, informed traders know whether the stock value is high or low. 

Next, trading for that period begins. Dealers set quotes to buy or sell during the 

trading period, execute orders as they arrive, and then revise their quotes. Informed 

traders optimally buy (stock or option) when the stock value is high, sell when it is 

low. The probability that they trade the stock is π (πL when the stock value is low and 

πH when it is high), and will be determined endogenously within the model in the 
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results section. Liquidity traders' behavior on the other hand is completely exogenous. 

Liquidity traders randomize their trades across stock and option markets, with a 

propensity for the stock of β and for the option of 1-β, and have an equal probability 

to buy or sell23. Informed and uninformed traders anonymously post trades at random 

intervals in both markets, making it for the dealers a priori impossible to determine 

whether they trade with a superiorly informed trader or not. The probability that they 

trade with an informed trader is µ, with an uninformed trader 1-µ. To summarize the 

probability of all different types of trades: 

Pr[Insider buys Stock]    = ½ µ πH   (1a) 

Pr[Insider sells Stock]    = ½ µ πL   (1b)  

Pr[Insider buys Call]    = ½ µ (1-πH)   (1c) 

Pr[Insider sells Call]    = ½ µ (1-πL)   (1d) 

Pr[Liquidity trader buys Stock]   = ½ (1-µ) β   (2a) 

Pr[Liquidity trader sells Stock]  = ½ (1-µ) β   (2b) 

Pr[Liquidity trader buys Call]   = ½ (1-µ) (1-β)   (2c) 

Pr[Liquidity trader sells Call]   = ½ (1-µ) (1-β)   (2d) 

23 Changing the assumption of equal uninformed buying and selling makes the derivation of 
results more cumbersome, but leaves the results qualitatively unchanged. 
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Stock value:  Trader type:    Trade type:

       Buy stock ( H)

   Informed (µ)    Buy call (1- H)

        Buy stock (β/2) 

        Sell stock (β/2) 

High ( H)  Uninformed (1-µ)   Buy call ((1-β)/2) 

        Sell call ((1-β)/2) 

        Sell stock ( L)

Low ( L)  Informed (µ)    Sell call (1- L)

        Buy stock (β/2) 

        Sell stock (β/2) 

   Uninformed (1-µ)   Buy call ((1-β)/2) 

        Sell call ((1-β)/2) 

Beginning of period During period 

Figure 3.1 The structure of trading
The tree diagram shows the structure of trading. Competitive market makers provide liquidity 
to informed and uninformed traders who may trade in a stock and a call option. The 
probabilities of the different outcomes of the game are in brackets. The game repeats from the 
dotted line throughout the period. The game begins at the first node when nature decides 
whether the true stock value in that period is high or low. Then trading starts and a market 
maker randomly selects a trader who is allowed to trade. This trader can be informed or 
uninformed. The variable H is the probability of a high stock value, L the probability of a low 

stock value; µ is the fraction of informed traders, 1- µ of uninformed traders; π is the fraction 

of informed traders who trade in the stock; β is the fraction of uninformed traders who trade in 
the stock; uninformed traders buy and sell with equal probability. 
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It can be shown that even if an insider is a monopolist, he is better off not 

entering in unprofitable trades (see for example John et al, 2000). Although 

unprofitable trades may confuse dealers, the losses incurred cannot be recouped 

sufficiently to justify such a strategy. If there is at least some probability of 

uninformed trader activity, the dealers' bids and asks in the stock are strictly in 

between their minimum and maximum theoretical values. Therefore, when the stock 

value is high, insiders can profitably buy both assets; when it is low, insiders can 

profitably sell both assets. As a result, insiders always have two profitable trading 

opportunities, one in the stock and one in the option.24

From the outset it is unclear what trading strategy would be optimal for the 

insider. We show that the optimal trading strategy depends on the leverage of the 

option and explore different levels of leverage. In the first situation the call option 

gives the right to buy one share of the stock. Although in real world markets an option 

gives the right to buy several (often 100) shares, this limited leverage might be 

realistic if we take into account the depth of the market. Since the depth in the option 

market is generally lower than in the stock market, a representative trade in the option 

might be for the same number of underlying assets as a representative trade in the 

stock. A leverage of one may also be realistic from a trading costs point of view. If the 

order processing costs (excluding bid-ask spread) of one option trade equal that of a 

trade in the leveraged number of stocks, the actual leverage may also be treated as 

one. This is the situation explored in John et al (2000). As we will see later in the text, 

it leads to a relative preference by the insider for the stock market, because the stock 

has a wider distribution than the option.  

In the second situation we allow insiders to trade for a larger (underlying) size 

in the option than in the stock, as in Easley et al (1998). We pay special attention to 

the situations where a representative option trade is twice and four times as large as a 

representative stock trade. This increased leverage is most realistic in modern liquid 

option markets where order-processing costs are moderate and large option trades do 

not attract special attention. Obviously, this improves the attractiveness of the option 

market and leads to an increased number of informed trades in the option.  

24 It is informative to list some differences with the experimental design, apart from the 
important real human behavior a model naturally lacks. The designs are very similar, but in the 
experiments the asset distribution is more complete, an option never provides leverage 
(variable in the model), traders are free to enter the market (not randomized, as in several other 
experiments), and liquidity traders have a fixed (though random) demand for both securities.  
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As noted earlier, we analyze the model in a dynamic setting, contrary to the 

existing sequential trade literature. We do so, because a dynamic setting highlights the 

main effect of derivatives on the underlying asset, which is that dealers in the stock 

use the information in the derivatives market to set more accurate prices. We 

introduce dynamics by generating a sequence of trades instead of looking only at 

opening quotes. An important choice has to be made on where the sequence of trades 

should stop. The model covers one single period, which could be compared to one 

trading day in practice, so we should formulate a criterion on how long one period 

lasts. Important is that the stopping rule is independent of whether the option is traded 

or not, since the results due to differences in the level of option trading should not be 

due to differences in the stopping rule. We use the logical assumption that the number 

of stock trades by uninformed traders is the same for every day, independent of 

whether options can be traded or not. Implicitly we assume that liquidity based trading 

in derivative assets is used in addition to trading in the underlying asset, and does not 

substitute it, as several experimental studies (CBOE, 1975 and 1976) have shown. 

Under this assumption we can define the end of the day as the moment when 

uninformed traders have executed a fixed number (N) of trades in the stock. As this 

does not yet specify the appropriate value for N, the stopping rule is still flexible. We 

show the results for the situation where N = 1, because this is most simple and because 

higher values for N (we analyzed N = 2 and N = 3), does not change the paper's 

conclusions. We thus analyze a sequence of trades in the stock and option that ends 

with the first liquidity trade in the stock.  

 4.2 Market quality criteria 

Market quality is a rather general term, which may include a number of 

characteristics of the underlying market. Based on simulated trading sequences of the 

model described in the previous section we will calculate and analyze different 

criteria: realized spreads, realized pricing errors and realized price volatility. These 

criteria are explained later in the text, but since our model is an extension of John et al 

(2000), we first describe what criteria they use and why they are not appropriate for 

evaluating efficiency in a multi-asset world.  

John et al (2000) study two different criteria, of which the first is the bid-ask 

spread in the stock at an initial trade. If we define the bid in the stock at the time of the 
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t’th transaction (either stock or option) as Bs,t, the corresponding ask as As,t, then the 

initial spread ∆s,1 equals: 

∆s,1  := As,1 – Bs,1    Initial stock spread  (3) 

The authors call their second criterion "the amount of information revealed 

through trading". It is defined as the ratio of two stock variances: the numerator 

contains the variance of expectations after the first trade, the denominator the variance 

of intrinsic values: 

η  := Var(E1[S]) / Var(S)  Variance ratio   (4) 

The idea of the variance ratio is that the higher it is, the more information the 

first trade reveals, the more efficient the market. John et al (2000) find that the 

inclusion of an option market increases the initial spread (decreases market quality), 

and increases the variance ratio (increases market quality). In the discussion of results 

they place more emphasis on the variance ratio and conclude that an option market 

improves overall market quality.  

We strongly believe that these two criteria are inappropriate for evaluating 

market quality if trade takes place in more than one asset. The criteria ignore the 

essential difference an option market introduces, which is that the first trade is not 

necessarily in the stock, but may be in the option instead. The analysis of opening 

spreads and opening expectations therefore misses the learning mechanism by which 

dealers update their quotes. In the results section we will show that the two criteria 

always yield conflicting outcomes, since a larger initial spread (lower market quality) 

implies a larger variance ratio (higher market quality). For a sound analysis of market 

quality, only transaction prices in the relevant asset should be included. That’s why we 

explore more direct methods to evaluate market quality, which are solely based on 

realized trades in the stock.  

We agree with John et al (2000) that an option market may improve market 

quality, but for a different reason. If an option trade precedes a stock trade, 

expectations are updated, and bids and asks in the stock are adjusted to the new 

information. This ‘cross-learning’ behavior is the main reason that we expect an 

option market to speed up convergence in the underlying. Ignoring this dynamic effect 

yields an underestimation of the option's beneficial influence. It should be noted that 
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John et al (2000) were inspired by Kyle (1985) in the choice of their market quality 

criteria. In that model however, the difference between expected and realized stock 

values does not exist, because every trade, and thus every first trade, takes place in the 

stock. Let us now specify our first two dynamic market quality statistics:  

∆s  := As - Bs  Realized stock spread   (5) 

PEs  := | Ps - S |  Realized stock price error   (6) 

where Ps is the realized stock price. We call these criteria dynamic, because 

they require the generation of a sequence of trades. The disadvantage of these 

dynamics is that the solutions can no longer be derived analytically, but need to be 

based on numerical simulations. That’s why the statistics we report later in the text are 

the averages of the above statistics for a large number of simulations.  

A straightforward way to calculate the above statistics would be at all stock 

trades, which may occur after a sequence of option trades. An alternative is to analyze 

the above statistics only at liquidity trades in the stock. This can be justified by the 

notion that new entrants to a market will normally have no specific knowledge about 

fundamental values. For example, they won’t directly bother about the average price 

errors faced by an insider, at least not beyond the effect it has on their own trades and 

their own profitability. In order to define the attractiveness of a market, we believe the 

most logical focus is on uninformed trades. Because the definition of market quality 

can still be a matter of taste, where it is informative we report market quality both 

from the viewpoint of an outsider and of all traders (including informed).  

Another statistic of interest is the volatility of prices or returns. For a given 

intrinsic value we calculate volatility as the standard deviation of realized stock prices 

over a large number of simulations.  

Vols := σ( Ps) Standard deviation (σ(.)) of realized stock price  (7) 

A large body of empirical work is devoted to the influence of option trading 

on volatility in the underlying. Volatility may be regarded as an important criterion for 

market quality, since traders generally prefer few fluctuations in prices. Numerous 

studies find that option listings cause a decrease in volatility, although in several other 
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studies the results are mixed or insignificant.25 However, as Skinner (1989) points out, 

the results should be interpreted with care, because the introduction of an option is not 

a random event. Market participants and exchanges prefer options on volatile stocks. 

Reported decreases in volatility after an option introduction may therefore be the 

result of volatility returning from exceptionally high to normal levels.  

4.3  Results 

This section reports the effect of option trading on the price errors, volatility 

and spreads under different levels of option leverage. We analyze the criteria in a state 

of market equilibrium. For market equilibrium, we first derive the equilibrium dealer 

quotes for a given insider strategy and then determine what strategy yields an 

equilibrium outcome. We start in a market where options provide no effective 

leverage, then continue to higher levels of effective leverage that make options more 

interesting to trade in.  

4.3.1 Equilibrium quotes 

Because we assume that dealers are fully competitive and risk-neutral, they set 

bids and asks in a way that yields zero profits on average. The dealers are uninformed 

and thus lose on every transaction with a better-informed trader. Uninformed liquidity 

traders are necessary in this design for the dealers to break even on average. Dealers' 

quoted bid-ask spread gives them a relative advantage over the liquidity traders, who 

lose on average. 

The zero-profit assumption of dealers can be motivated by the presence of 

competing dealers or zero entrance costs for new competitive dealers. The dealer sets 

for example a bid price that equals the stock value conditional on receiving a sales 

order (Q = -S). If he trades with an insider (probability µ), he knows that an insider 

only sells when the stock value is low (X-v, probability L) and when the insider 

25 The following find a decrease in volatility: CBOE (1975 and 1976), Trennepohl and Dukes 
(1979), Skinner (1989), Conrad (1989), Detemple and Jorion (1990), Damodaran and Lim 
(1991), Kumar, Sarin and Shastri (1998). In the following the results are mixed or 
insignificant: Klemkosky and Maness (1980), Whiteside, Dukes and Dunne (1983), Fedenia 
and Grammatikos (1992), Fleming and Ostdiek (1999). 
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prefers to trade the stock instead of the option (probability L). If the dealer trades 

with a liquidity trader (probability 1-µ), he knows this trader sells the stock with 

probability ½ , independent of the true stock value. Using Bayesian inference we 

obtain: 
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Similarly, the dealer sets an ask price that equals the stock value conditional 

on receiving a purchase order (Q = +S): 
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The bid and the ask for the option can be derived likewise, keeping in mind 

that the option value is zero if the stock value is low: 
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4.3.2 Profit maximization without leverage 

Throughout the paper we make the assumption that informed traders 

maximize profits at every individual trade, because they are afraid that otherwise other 

informed traders will steal away available profits. Furthermore, we assume that 

informed traders have sufficient investment resources, such that they do not bother 

about required investments. We believe this is quite realistic, because the information 

in our model is perfect and because empirical evidence indicates that most informed 

trading is from large financial institutions with abundant investment resources. In the 

first part of our analysis we furthermore assume a representative trade in the option is 

for the same number of shares as a representative trade in the stock. This means that 

the option market offers no effective leverage. The insider’s no-leverage-strategy must 

logically be of the following form, and depend on the dealer quotes in the market. 

Strategy without leverage: 

If an insider receives signal L (low stock price), then:

L = 0   if BS - X + v < BC always sell the option  

L = 1   if BS - X + v > BC always sell the stock 

0 < L < 1  if BS - X + v = BC randomize between stock and option 

If an insider receives signal H (high stock price), then:

H = 0   if AS - X  > AC  always buy the option

H = 1   if AS - X < AC  always buy the stock  

0 < H < 1  if AS - X  = AC  randomize between stock and option 

We now determine under what conditions each of the above situations hold. 

Suppose an insider receives the signal L and suppose further that the profit of selling 

the stock equals that of selling the option. Equating both profits and using the 

expressions for the bid in stock (8) and option (10), we can derive that insiders 

transact the stock with probability L and the option with probability 1- L, both 

between zero and one: 
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If insiders receive the signal H, and the available profits in both markets are 

equal, the probability of buying the stock is: 
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It can be shown that the above 's exceed , so insiders have a larger preference for 

the stock than the liquidity traders have. Please note that if insiders increase their 

relative preference for the stock ( H or L), the stock spreads widen and the option 

spreads narrow. This makes it possible to see that if one of the above formulae 

exceeds one, and so the actual  equals one, the profit of trading the stock is higher 

than of trading the option. It is also possible to see that the above expressions never 

equal zero (except for some unrealistic boundary values) and so insiders will never 

solely trade the option. This is intuitive, because the stock has a larger variability (is 

more 'information sensitive') and hence cannot offer lower absolute profits than the 

option.  

Static criteria 

We start with the static criteria used in other research to show why they yield 

conflicting results and to obtain first insights. The initial stock spread can be derived 

analytically, using the expressions for bid and ask (8 and 9), the insiders' equilibrium 

strategy (12 and 13), and assuming an equal probability of an upward and downward 

move ( L = H = ½).  

If L<1 and H<1, then: 

            (14) 

The initial spread increases linearly in the probability of an informed trade 

(µ), and in the distance between the low and high signal (v), and decreases in the 

( ) ( )( ) vs ⋅−⋅−+=∆ βµµ 1121,
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relative preference of the liquidity traders for the stock market ( ). If the insiders' 

preference for trading the stock ( ) hits its upper bound of one, the initial spread will 

be lower than the above expression, because insiders cannot trade the stock as much as 

they would have wanted. Most interesting is that the initial spread decreases in , so 

uninformed traders initially face a higher spread in the stock market the more they 

trade the option. We obtain a market with only stock trading by setting  equal to its 

maximum value of one. Then the liquidity traders only trade the stock, and so do the 

insiders. Using this static criterion we therefore find that the introduction of an option 

decreases the market quality in the underlying, as does a larger proportion of informed 

trading. 

The second static criterion is the variance ratio. The denominator of the 

variance ratio, the unconditional stock variance, equals v2. The numerator, the 

variance in expected stock values after one trade, is more complicated. Following a 

transaction in the stock, the dealers have updated expectations of the stock value equal 

to the bid (8) or ask (9). Following a trade in the option, the expected stock values are 

similar to expression (8) and (9), but with  replaced by 1- , and  replaced by 1- ,

the probabilities for the option. If we weigh these updated expectations with the 

probability of the respective trades, we can derive the analytical expression for the 

variance ratio (in a mixed strategy) 
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In contrast to the initial spread, the above criterion reports higher market quality the 

larger the proportion of informed trading. Furthermore, the above expression is 

minimal for  equal to zero and one, and has a unique maximum in between (recall 

that π=πL=πH is a function of  and µ). This implies that a market with only stock 

trading ( =1) is less efficient than a market with trading in both assets, which is in 

contrast with the implications from the initial spread.  
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Dynamic criteria 

We derive dynamic criteria, because we believe that static criteria are 

inappropriate for evaluating the beneficial influence of an option. They ignore the fact 

that the stock dealers 'learn' from the trades in the option. If the dealers observe for 

example an option purchase, they know an uninformed trader initiated it with 

probability 1-µ, and that it then does not contain any information about intrinsic 

values. However, they know that it could also have been an informed trade, and that 

the stock value must then be high. They update their beliefs according to the following 

scheme: 
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After a stock sale:
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After an option purchase:
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After an option sale:
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After a purchase in stock or option, the probability of a high stock value is 

revised upwards, and revised downwards after a sale. The larger the insiders' 

preference for the stock ( H), and the larger the proportion of informed traders (µ), the 

more a stock purchase signals a high stock value. The updated beliefs form the basis 

to generate a sequence of trades. At every point in time, we randomly select a trade 

and trader type according to the different probabilities. Then we update beliefs and 

randomly select a new trade and trader type. We continue a sequence of trades till we 

obtain a (liquidity) trade in the stock, either a purchase or a sale, as we motivated in 

the ‘model’-section. Since there is an infinite number of possible sequences, and 



62

because the beliefs are updated differently in every sequence, we are unable to derive 

our dynamic market quality statistics theoretically. Therefore, we rely on a large 

number (one million) of simulations26 to clarify the dynamics.  

The parameters X and v are only necessary to scale the stock and option, but 

do not affect the insiders' strategy or the updating of beliefs. Without loss of 

generality, we can therefore fix them, for example to 100 and 10 respectively. It is 

also reasonable that a priori there is no higher probability of an upward move than a 

downward move, so we keep H= L=½. The parameters  and µ, that govern the 

liquidity traders' behavior and the proportion of informed traders, are more delicate, so 

we will carefully study various values. But first we assume there is an equal 

proportion of informed and uninformed traders (µ=½), and the uninformed trade as 

often in the stock as in the option ( =½).  

Table 4.1 Updating of expectations
This table reports expectations about the true stock value ( H is the probability that the stock 
value is high), the insider trading strategy (  is the probability that the insider trades the stock), 
and dealer quotes. Values are reported at the beginning of trading and after one trade has been 
executed.  

In this base case, the initial available profits in stock and option are equal 

(Table 4.1). That's why insiders start with a mixed strategy, although they prefer the 

stock five times to the option. Initially, they face a spread in the stock market of 12.50, 

in the option of 2.50. If a liquidity trader trades before an insider, and trades in the 

opposite direction of the correct value, an insider trades the stock even more 

26 The simulation program (written in Gauss) is available on request. 

Previous trade H ππππ Stock bid Stock ask Call bid Call ask

First trade 0.50 0.83 93.75 106.25 3.75 6.25

Second trade Stock purchase 0.81 0.77 99.29 108.93 8.13 8.93

Stock sale 0.19 1.00 91.07 100.71 1.07 1.88

Call purchase 0.63 0.80 95.36 107.50 5.36 7.50

Call sale 0.38 0.89 92.50 104.64 2.50 4.64
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intensively. However, if he or another trader trades in the correct direction, he 

subsequently shifts more trading to the option. This happens, because his preference 

for the stock (π) decreases in the correct expectation. Spreads narrow after the first 

trade, irrespective of the trade type, because a trade directs the expectations into one 

direction (the stock distribution becomes skewed). Table 4.1 also shows that a stock 

trade is followed by a stronger update of beliefs than an option trade. This is due to the 

relatively higher preference for the stock of insiders than of liquidity traders (π> ).  

Table 4.2 Market quality with no leverage 
This table reports market quality criteria for various levels of uninformed stock trading. Trades 
are initiated by an informed trader with probability µ, by an uninformed trader with probability 
1- µ. Uninformed traders have an equal probability to buy or sell. They trade with probability 
in the stock, otherwise in the option. Insiders maximize profits at every individual trade. 
Trading stops after the first liquidity trade in the stock. The statistics in panel A apply to all 
trades in the stock market, those in panel B to the liquidity trade in the stock market. Spread

measures the average difference between realized stock bid and ask; price error is the average 
absolute difference between the transaction price and stock value; volatility is the standard 
deviation of stock transaction prices. 

 = 0.10  = 0.25  = 0.50  = 0.75  = 0.90  = 1.00

µ = 0.50 Spread 2.78 4.04 4.52 4.32 4.05 3.84

Price error 1.14 2.00 3.08 4.07 4.64 5.03

Volatility 3.15 3.87 4.34 4.50 4.51 4.50

µ = 0.25 Spread 3.99 4.03 2.80 1.79 1.41 1.21

Price error 3.46 4.76 6.64 7.94 8.41 8.64

Volatility 4.58 4.54 4.09 3.35 2.96 2.75

µ = 0.50 Spread 3.63 5.73 7.20 7.67 7.71 7.67

Price error 2.27 3.80 5.22 6.17 6.65 6.94

Volatility 4.93 5.81 5.99 5.76 5.55 5.39

µ = 0.25 Spread 6.68 7.67 7.00 5.81 5.21 4.86

Price error 5.02 6.55 8.01 8.82 9.12 9.24

Volatility 5.89 5.58 4.53 3.52 3.08 2.83

Panel B: Market quality statistics based on the uninformed stock trade

Panel A: Market quality statistics based on all stock trades
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Table 4.2 reports the static and dynamic market quality statistics 

corresponding to this base case and various fractions of uninformed trading in the 

stock ( ). We first focus on the data corresponding to an equal proportion of informed 

and uninformed traders (µ=½). The statistics of panel A are based on the first trade in 

the stock, those of panel B on the first liquidity trade in the stock. All reported values 

are independent of whether the true stock value is low (90) or high (110). We can infer 

the following results from Table 4.2 for increasing levels of uninformed trading in the 

option (decreasing ).

Thanks to the increased coverage of the option market, insiders are able to 

execute more option trades before the first stock trade. This increased trading activity 

makes it easier for dealers to form their opinion on the correct stock value, which in 

turn leads to lower realized price errors in the stock for all trader types.  

The effect on stock price volatility is ambiguous: volatility is highest for 

intermediate levels of option trading. This can be explained by the phenomenon that 

realized stock prices depend on the number and direction of previous option trades, 

which vary most for intermediate levels of option trading.  

The effect of increased option trading on stock spreads is ambiguous as well. 

From equation (14) we know that the initial quoted spread increases in the fraction of 

option trading, but this result does not hold for realized spreads. Realized spreads may 

increase or decrease with option trading. Both insiders and liquidity traders may face 

an increased spread. Liquidity traders face only somewhat larger stock spreads when 

they execute few trades in the option ( =0.9) compared to when they only trade the 

stock ( =1.0). Although the difference is very limited, their modest option trading will 

harm their performance in the stock market.  

To clarify the ambiguous results on realized spread and volatility, we restrict 

the fraction of informed traders to a more realistic 25% (Table 4.2). It is then easier to 

see that uninformed traders do not necessarily benefit in the stock market from their 

activity in the option market. In fact, if uninformed traders form a large proportion of 

the total population, realized stock spreads (and so stock losses) and volatility increase 

the more they trade the option. This phenomenon is due to the insiders' strategy, which 

is aimed at maximizing profits at every individual trade. This strategy leads to a larger 

preference for the stock than the liquidity traders' preference for the stock. This in turn 

causes informed traders to reap a relatively large part of all stock trades. 

Mathematically (see equation 12 and 13), /( + ) increases in the fraction of 

uninformed traders (1-µ) and the amount of uninformed option trading (1- ).  
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If the option market provides no effective leverage, the following summarizes 

the effect of option trading on the price process of the underlying. First, option trading 

decreases stock price errors. Second, option trading has ambiguous consequences for 

volatility, realized spreads and losses of uninformed traders. In a market where 

informed traders form a large part of the population, volatility, spreads and losses may 

increase or decrease, depending on the exact intensity of uninformed option trading. In 

a market with a small proportion of informed traders (which is likely to be true in 

liquid markets), an option market increases volatility, spreads and liquidity traders' 

losses in the underlying asset.  

4.3.3 Profit maximization with leverage 

In the above analysis we assumed that the option market provides no effective 

leverage in the sense that a representative trade in the option is for the same number of 

shares as a trade in the stock. This situation causes insiders to have a relative 

preference for the stock, and this preference increases for higher levels of uninformed 

trading and for higher levels of uninformed trading in the option. Here we relax the 

leverage assumption and let the parameter γ govern the level of option leverage. 

Equilibrium bid and ask spreads and optimal insider behavior are now functions of the 

leverage. They can be obtained by equating the profit in the stock to the profit in the 

option. Since insiders can trade an option on γ shares, the profit on an option for one 

share should be equal to 1/γ the profit on the stock.  

A special case is the situation in which the option offers a leverage of two. 

Then the insiders have the same propensity to trade stock and option as the liquidity 

traders, as can be shown by equating insider profits in stock and option. 

Informed stock trading probabilities with leverage γ = 2: L = H =   (20) 

With a leverage of two, the insiders in fact mimic the liquidity traders, which 

makes it hard for the dealers to detect them. This strategy is independent of the quoted 

bids and asks, the fraction of informed traders and the fraction of uninformed option 

trading. Because insiders follow the same strategy as the uninformed traders, the 

probability that a trade in the stock is informed is independent of the uninformed 

intensity of option trading. Therefore, the initial spread is independent of β and 

smaller than without leverage: 
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vs ⋅=∆ µ1,         (21) 

In Table 4.3 we present the dynamic market quality statistics when insiders 

mimic the liquidity traders. Although the effect of option trading on volatility is 

mixed, realized price errors and spreads become smaller the more options are traded, 

for all trader types. Since insiders and liquidity traders direct an equal proportion of 

trades to the stock market, the efficiency gain is solely due to the increased learning 

ability of the dealers, and not affected by differences in preferences between informed 

and uninformed traders. A leverage of two thus separates the learning effect from the 

insider strategy effect: an improved market makers' understanding of trades reduces 

realized price errors and stock spreads. 
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Table 4.3 Market quality when option leverage is two
This table reports market quality criteria for various levels of option trading. Trades are 
initiated by an informed trader with probability µ, by an uninformed trader with probability 1- 
µ. Uninformed traders have an equal probability to buy or sell. They trade with probability  in 
the stock, otherwise in the option. Insiders maximize profits at every individual trade, taking 
into account that an option trade is for twice as many shares as an option trade (  = 2). With 
this leverage of two they imitate the liquidity traders' preference for the stock relative to the 
option. Trading stops after the first liquidity trade in the stock. The statistics in panel A apply 
to all trades in the stock market, those in panel B to the liquidity trade in the stock market. The 
statistics are based on one million simulations. Spread measures the average difference 
between realized stock bid and ask; price error is the average absolute difference between the 
transaction price and stock value; volatility is the standard deviation of stock transaction prices. 

 = 0.10  = 0.25  = 0.50  = 0.75  = 0.90  = 1.00

µ = 0.50 Spread 1.08 2.03 2.92 3.46 3.70 3.84

Price error 1.59 2.90 4.03 4.63 4.89 5.03

Volatility 3.61 4.41 4.63 4.58 4.53 4.50

µ = 0.25 Spread 0.76 0.99 1.12 1.18 1.20 1.21

Price error 5.56 7.23 8.09 8.44 8.57 8.64

Volatility 4.87 4.23 3.50 3.06 2.86 2.75

µ = 0.50 Spread 2.17 4.05 5.85 6.92 7.40 7.67

Price error 2.13 3.91 5.49 6.36 6.74 6.95

Volatility 4.39 5.33 5.58 5.51 5.44 5.39

µ = 0.25 Spread 3.02 3.97 4.50 4.73 4.82 4.86

Price error 5.93 7.70 8.65 9.03 9.17 9.25

Volatility 5.05 4.37 3.60 3.15 2.95 2.83

Panel B: Market quality statistics based on the uninformed stock trade

Panel A: Market quality statistics based on all stock trades
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Table 4.4 Market quality when option leverage is four
This table reports market quality criteria for various levels of option trading. Insiders maximize 
profits at every individual trade, taking into account that an option trade is for four times as 
many shares as an option trade (  = 4). See table 4.3 for details of the trading mechanism. 

Compared to the situation without leverage, the average spread, losses and 

volatility in the stock are lower, because the stock dealers do not fear the insiders so 

much. On the other hand, with this mimicking strategy prices converge more slowly. 

Dealers have now more difficulty to detect where insiders are trading. Their prices are 

less accurate and realized price errors larger (but lower than without options)27.

27 One small exception can be detected in Tables 2 and 3 with respect to the smaller price 
errors. Additional analysis made clear that price errors are only smaller with leverage than 
without leverage for a combination of unrealistically high proportions of insider trading and 
uninformed option trading. 

 = 0.10  = 0.25  = 0.50  = 0.75  = 0.90  = 1.00

µ = 0.50 Spread 0.03 0.12 0.53 1.58 2.75 3.84

Price error 1.63 3.02 4.19 4.83 5.03 5.03

Volatility 3.68 4.55 4.81 4.75 4.63 4.50

µ = 0.25 Spread 0.00 0.00 0.00 0.07 0.54 1.21

Price error 5.74 7.37 8.03 8.17 8.50 8.64

Volatility 4.94 4.40 3.98 3.77 3.26 2.75

µ = 0.50 Spread 0.27 0.82 2.13 4.24 6.11 7.67

Price error 1.89 3.46 4.86 5.84 6.48 6.95

Volatility 3.99 4.88 5.24 5.37 5.41 5.39

µ = 0.25 Spread 0.00 0.00 0.02 1.04 3.05 4.86

Price error 5.73 7.37 8.07 8.35 8.82 9.25

Volatility 4.94 4.40 3.96 3.75 3.32 2.83

Panel B: Market quality statistics based on the uninformed stock trade

Panel A: Market quality statistics based on all stock trades
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We now move on to the general case of leverage. Equating the per trade profit 

in the stock to the per trade profit in the option and using Bayesian inference we 

obtain the following probabilities for insiders to trade the stock: 

Informed stock trading probabilities with leverage γ:

( ) ( ) ( )
( ) βγγ

βµγδµ

δµ

β
π

⋅−+

−⋅−⋅−+⋅
⋅

⋅
=

2

1124

2
L

L

L    (22)

( ) ( ) ( )
( ) βγγ

βµγδµ

δµ

β
π

⋅−+

−⋅−⋅−+⋅
⋅

⋅
=

2

1124

2
H

H

H    (23) 

Again, if one of the above expressions exceeds one, insiders only trade the 

stock. Not surprisingly, insiders trade the stock less intensively when the option 

provides effective leverage ( >1). It is now also possible for the above expressions to 

fall below zero, namely if >2. If option leverage is high enough then insiders may 

only trade the option. With leverage the traders face an initial spread of: 

( ) ( ) ( )( ) vs ⋅−⋅−⋅−+=∆ βµγµ 11221,     (24) 

The larger the option leverage, the heavier insiders trade the option and the smaller is 

the difference between initial stock bid and ask.  

In Table 4.4 we analyze a market for which the leverage is factor four. Results 

are similar for other values of  that exceed two. The results indicate that option 

trading leads to smaller price errors and smaller realized spreads. Unfortunately, it is 

hard to predict the impact of option trading on volatility. The effect depends on the 

exact amount of option trading and the fraction of informed trading.  
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4.4  Conclusion 

The current sequential trade literature with a derivative asset has been 

concentrated on initial quotes. Under the assumption that option markets provide no 

effective leverage, opening spreads were found to increase, although trades reveal 

more information. We use a dynamic setting since the focus on just initial quoted 

spreads precludes the learning mechanism to take effect. The mechanism by which 

dealers learn from trades in the other asset to set more accurate prices can only be 

observed in a sequence of trades. In a multi-trade setting, expectations concerning the 

true asset value are updated after every trade and price errors, volatility and spreads 

can be analyzed dynamically by simulation.   

Our model clarifies and separates the two mechanisms following the 

introduction of an option that affect market quality in the underlying stock. On the one 

hand, stock dealers learn from trades in the option market and set more accurate 

prices. On the other hand, the proportion of informed trading in the stock is altered 

depending on the option's effective leverage, possibly reducing market quality. Our 

dynamic model indicates that option trading reduces price errors in the underlying. 

The impact is slightly more complicated on price volatility and on the performance of 

liquidity-motivated traders. The losses by traders with no superior information 

decrease if the option market provides considerable effective leverage and when there 

are few informed traders. At the same time, these conditions lead to larger stock price 

volatility.   

Our dynamic, but very stylized model shows that the effect of derivatives 

markets on the market quality of the underlying asset can only be judged when we 

know in what market informed traders choose to trade. It is not enough to know that 

they use derivatives (or not), but also in what proportion to stock market trading. The 

conditions for a large proportion of informed option trading are best in well-developed 

markets. In well-developed markets most trading is liquidity-based and informed 

traders are not easily detected. Moreover, in such markets the liquidity and depth in 

the derivatives market are relatively large, whereas trading costs are relatively small, 

which may induce traders with superior information to exploit the leverage of the 

option market. Our model makes clear that an option market improves informational 

efficiency in the underlying in terms of reduced price errors. Moreover, in an initial 

phase a derivatives market may be detrimental to the performance of liquidity traders 

in the stock market. In the course of its development a derivatives market will 
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however improve the stock market quality not only in terms of price efficiency, but 

also in terms of the trading performance of liquidity-motivated traders, though at a 

price of increased stock price volatility. 
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5 Conclusion of the first part 

The previous two chapters contain the results of two research methodologies 

to study the impact of an option on the price properties of the underlying asset in a 

world of asymmetric information. We end this first part of the thesis with a brief 

review and a comparison of the results. 

The differences in methodology have involuntarily created a number of 

differences in the market designs. Generally speaking, the experiments are a special 

case of all the different situations we analyzed in the model, but in a more realistic 

environment with real human subjects, and a more complete asset distribution. For 

example, in the experiments the options provide no effective leverage, since a trade in 

the option is for only one unit of the stock. This is a special case in the model, though 

with a more complete asset distribution and human traders. Similarly, the variations in 

informed and uninformed stock and option trading that we were able to analyze with 

the model were impossible in the experiments, due to a lack of time and resources. On 

the other hand, the experiments provide a more realistic view on reality. For example, 

they highlight the important and difficult tasks of the dealers, whereas we assume in 

the model that dealers are perfectly competitive and risk-neutral. Another example is 

that in the model we assume that each participant knows the exact strategy of all other 

participants, and behaves accordingly, whereas in the experiments and practice such 

foresight is unthinkable. 

The best comparison between the two methodologies can be made when we 

consider a situation of no effective leverage in the model. Both theory and 

experiments indicate that this situation leads to a relative preference of the insider for 

the stock, because the stock has a wider distribution. Both theory and experiments also 

predict an important decrease in price errors, because dealers can learn from the prices 

in the other market to set more accurate quotes.  

The methodologies differ however in their implications for some other market 

quality criteria: stock market volatility, realized spreads and losses incurred by 

uninformed traders. In the theoretical model the effects on these criteria depend on the 

fraction of informed trading and the fraction of trades that uninformed traders direct to 

the option market. Therefore, we have to align these variables with the experimental 
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design in order to make a realistic comparison. In the experiments we have an insider 

that accounts for nearly 50% of all trades and uninformed traders transacting one third 

of their volume in the option. This corresponds to a µ close to 0.50 and a  between 

0.50 and 0.75. The experiments find no significant change in spreads, a significant 

drop in volatility and a significant drop in uninformed stock losses when the option 

intrinsic value is positive. In a similar situation, the model on the other hand suggests 

that with option trading realized spreads should increase, but volatility and 

uninformed losses in the stock should remain more or less constant. We believe that 

the clear decrease in volatility during the experiments highlights the significant impact 

that human behavior can have on trading outcomes, and the limitation of a theoretical 

model. With options having positive intrinsic value, dealers are more confident in 

their price setting, which has a stabilizing effect on prices. The fact that uninformed 

losses decrease in the experiments might indicate that informed traders have difficulty 

in reaping all the benefits options provide. Possibly due to risk aversion, they seem 

sometimes too eager to trade the option. With such behavior they reveal their 

intentions too easily and unwillingly support the uninformed traders.    

By abstracting from real human behaviour, we believe that the theoretical 

model somewhat underestimates the benefits of options. In the model all participants 

draw exactly the same conclusions from each trade. As a result, there are no 

differences in opinion among stock and option dealers. In the experiments, similar to 

real-world markets, those differences in opinion (and the insider response) are 

particularly informative, and speed the price discovery process.  

The two studies show the complexity of two interacting markets in a world of 

asymmetric information. Both the market microstructure as well as human behavior 

have their share in price formation, but overall lead to lower price errors. Our 

dynamic, but very stylized model shows furthermore that there may be a trade-off 

between reduced losses to uninformed traders and increased market volatility. Future 

research should therefore be devoted to a clarification of this trade-off, if possible in 

real-world markets, but otherwise in experimental markets to capture the intriguing 

subtleties of human nature that cannot be ignored in the way markets function.  

Regulators that control derivatives markets may use the results of the two 

studies to better set the standards for derivative markets. Regulators need to weigh the 

benefits of lower losses for uninformed traders against possibly increased market 

volatility. They furthermore need to decide on the effective leverage derivative 
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markets may optimally provide. According to the two studies, the benefits of 

derivative trading to improved price convergence are however without doubt. 
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Part II 

Empirical studies  

in derivatives markets
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6 Introduction to the second part 

Certainly one of the most influential innovations in finance is the famous 

Black and Scholes (1973) option pricing formula. Each day, many thousands of 

finance professionals around the world apply this formula and the related Black 

(1976) formula to price options in their day-to-day business. Its relative simplicity and 

ease of application are responsible to a large degree for the enormous growth of 

derivatives trading in the last three decades. In 1997 this was an important motivation 

for the Nobel Prize Committee to grant the innovators of this formula the Nobel Prize 

for Economics28.

One of the fundamental assumptions in the Black-Scholes model is that the 

risk-neutral expected returns on the underlying asset are drawn from a normal 

distribution. Volatility, measured as the standard deviation of the expected returns, 

determines the exact shape of this distribution. A good insight in volatility is therefore 

crucial to calculate proper option values. Since the 1987 crash however, implied 

volatilities calculated from market option prices have varied over the strike price (or 

moneyness) and time-to-maturity, instead of being constant as assumed by the Black-

Scholes model. The variation indicates that risk-neutral expected returns are not 

normally distributed. 

In this part of the thesis we empirically explore three different option pricing 

methodologies that deviate from this standard assumption of normally distributed 

returns. The first two chapters do not aim to price options, but revert the process and 

infer information from market option prices. The last chapter is a more standard 

pricing study, but applied to a very non-standard and risky commodity, electricity.  

The first chapter presents a methodology whose purpose it is to derive the 

risk-neutral distribution from option prices in a flexible and accurate manner. The 

exact shape of the implied risk-neutral distribution gives important information that 

can be used for pricing other options on the same underlying asset, for comparing 

                                                
28 Nobel Prize winners were professors Scholes and Merton; their colleague Black died some 
years before. 
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options on different assets and for closely monitoring changes in the markets 

perception of the underlying price process.   

In the second chapter we explore a method to infer from option prices a 

forecast of the actual price process. Instead of only a cross-section of option prices, 

the method employs options with different maturities. It yields a price process and not 

just a distribution at a single point in time. Combined with a risk premium parameter 

obtained from actual prices of the underlying security, we convert the risk-neutral 

process in an actual price process and assess its ability to forecast short-term volatility. 

Compared to the approach in the previous chapter, we lose some of the flexibility by 

fitting one process through options with different maturities. The extension from the 

risk-neutral world to the actual world enlarges however its scope of application.  

In the third chapter we shift attention from stock indices to electricity, a 

recently liberalized and deregulated commodity in many countries around the world. 

Most of the transactions in this market are still for the physical asset, but futures and 

other financial derivatives steadily increase in trading volume. One of the best 

examples of this is the trading volume on the Scandinavian power exchange Nord 

Pool (see Figure 6.1), which nearly doubles year on year. Moreover, a large proportion 

of electricity end user contracts contain embedded options, such as caps and swings, 

and several power generators may be valued with real option theories. Since electricity 

cannot be stored efficiently, and prices violate normality assumptions severely, pricing 

those electricity derivatives poses however a formidable task. In the third chapter we 

provide a framework based on regime switches to price a category of electricity 

derivatives, namely options on spot prices, and apply it to the Dutch power market.  
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Figure 6.1 Trading volume Nord Pool financial market
This figure shows the total annual volume and its contractual value on the Scandinavian power 
exchange Nord Pool. The value of 1 Norwegian Kronor (NOK) equals approximately € 0.135 
(October 1, 2002). Source: Nord Pool annual report 2001.
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7  The skewed-t implied distribution model 29

In the past two decades the Black-Scholes (1973) option pricing model has 

become the widely accepted standard to value a wide range of derivative securities. 

Despite its ease of application however, the model exhibits some well-known 

deficiencies, including its assumption of continuous and costless hedging 

opportunities and its assumption of security prices following a Brownian motion. 

These deficiencies become most clear in the model's inability to price options 

consistently across strike and maturity. For example, the model frequently misprices 

deep in-the-money and far out-of-the-money options, as was already documented by 

Black (1975). In fact, since 1987, implied volatility has been a convex function of 

strike price and referred to as a 'skew' or 'smile', depending on its exact shape (Bates 

(1991), Rubinstein (1994), Derman (1999)).  

Various changes to the Black-Scholes model have been investigated to 

account for its biases. They may for example be related to non-hedgable risks in 

relatively illiquid options. The most popular adaptation is however the use of a 

different underlying risk-neutral price process or distribution. The choice of this 

adaptation is supported by empirical distribution analysis that rejects Brownian 

motion for most traded assets. The skews and smiles are thus explained by the non-

normal characteristics of implied risk-neutral return distributions.  

Cross sections of option prices have long been used to derive implied risk-

neutral distributions. These distributions represent a forward-looking measure of 

future risk-neutral realizations of the underlying security. Option-implied distributions 

have the distinct advantage of being based on data from a single point in time, rather 

than from a historical time-series. As a result, these implied distributions are 

theoretically more responsive to changes in market's perceptions than are forecasts 

from historical time series data.  

As a drawback, the distribution inferred from option prices is risk-neutral. If 

the representative investor who determines option prices is not risk neutral and cannot 

                                                
29 This chapter is partly based on: C. de Jong and R. Huisman, 2000, “From skews to a 
skewed-t: modeling option-implied returns with a skewed Student-t”, ERIM research paper 
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hedge all exposures (as is typically the case), these distributions may not correspond 

to the market's actual forecast of the future distribution of the underlying asset. This is 

a drawback easily neglected by many researchers and may lead to incorrect 

interpretations about market expectations30. Without specifying risk premia (as we do 

for example in the next chapter), implied distributions should not be interpreted as 

unbiased predictors of future distributions.  

However, even without the specification of risk premia, the risk-neutral 

implied distribution contains useful information. First, the exact shape of the implied 

distribution can be used for pricing options on the same underlying asset, such as 

options with illiquid strikes and maturity, or otherwise exotic features. Second, the 

implied distribution can be used for comparing options on different assets. This is 

especially worthwhile when the underlying assets are regarded as having similar 

representative investors and thus risk-premia are deemed to be equal. Differences in 

implied distributions that are not present in actual distributions may hint at anomalous 

market prices. Finally, implied distributions are an excellent means for closely 

monitoring changes in the markets perception of the underlying price process31. This 

latter application is especially popular among central bankers for gauging the market’s 

expectations regarding interest rates and exchange rates (e.g. Federal Reserve Bank of 

Atlanta (1995), Deutsche Bundesbank (1995), Campa and Chang (1995), Leahy and 

Thomas (1996), Malz (1996 and 1997), Campa, Chang and Reider (1997)). Central 

bankers and other monetary policy makers use this information among others in 

assessing monetary credibility, and the timing and effectiveness of monetary 

operations. 

Breeden and Litzenberger (1978) were the first to show how the implied risk-

neutral distribution function could be derived from option prices: the densities are 

equal to the second order derivatives of call option prices with respect to the strike 

price. Shimko (1993) offers a practical application of this general idea. He proposes to 

model the volatility smile as a quadratic function of moneyness (to obtain a 

continuous volatility smile), and then to calculate the second order derivative 

numerically. This approach is simple and fast, but inaccurate outside the range of 

traded strike prices, where volatility often becomes unbounded. Other methods 

                                                
30 Anagnou, Bedendo, Hodges and Tompkins (2001) provide an excellent review. 
31 The word 'changes' should be stressed, since implied risk-neutral distributions should not be 
interpreted as absolute forecasts, as we discussed.  
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construct implied binomial (Rubinstein (1994)) or trinomial trees (Derman, Kani and 

Chriss (1996), Nagot and Trommsdorff (1999)), or estimate the end-of-term 

distribution non-parametrically (Aït-Sahalia and Lo (1995), Jackwerth and Rubinstein 

(1996)). Other methods that are suitable to infer skews and smiles can be based on any 

option-pricing model that relies on non-normal returns. Examples are the jump models 

of Merton (1975) and Amin (1993), and GARCH option pricing models (see next 

chapter). 

In this chapter we present a different methodology to infer the implied risk-

neutral distribution function from European-style options. We use a skewed version of 

the Student-t distribution, which is known to provide a good fit to historical returns on 

many financial assets (see Reiss and Thomas (1997) for an overview). The skew or 

smile pattern of implied volatility as a function of strike is a direct indication of 

skewness and excess kurtosis of the implied risk-neutral return distribution. A smile 

implies fat tails; a skew implies both fat tails and skewness. The skewed Student-t 

distribution we use, is able to capture these distributional moments, and was first 

proposed in Fernandez and Steel (1998) and later applied to financial time-series by 

Lambert and Laurent (2001). The method to obtain skewness is simple; it assigns 

unequal weights to the distribution on the left and right side of the mode. The 

advantage of this skewed-t method is that the whole distribution depends on only three 

parameters, of which two directly control for the levels of skewness and kurtosis. 

Moreover, the skewed Student-t nests the normal distribution. We can thus easily vary 

parameters to compare different distributions and use the parameters as inputs to price 

other options. Other methods to obtain a skewed Student-t distribution are given in 

Hansen (1994), Theodossiou (1998) and Mittnik and Paolella (2000).  

A method that models skewness and kurtosis even more directly than the 

skewed-t is the one in Corrado and Su (1996). This model adapts a Gram-Charlier 

series expansion32 of the standard normal density function to yield an option price 

formula that is the sum of a Black-Scholes option price plus adjustment terms for non-

normal skewness and kurtosis. Although conceptually similar to our approach in the 

sense that it has separate parameters for skewness and kurtosis, it has one important 

limitation. Implied distributions often have such pronounced tail-fatness, that the 

fourth moment is non-existent, as we will show empirically. Estimating implied 

kurtosis then yields spurious results, whereas our skewed-t method is still able to 

                                                
32 See for example Jarrow and Rudd (1982) 
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estimate a parameter (the degrees of freedom) that captures tail-fatness and thus 

describe the underlying distribution. 

In the next section we explain our method, as well as two curve-fitting and an 

implied trinomial tree method. Section 7.2 starts with an example and provides an 

empirical analysis of the methods with closing prices of European-style options on the 

FTSE 100 index from January 1995 to December 1999. We describe how we estimate 

the models weekly and compare the results. Section 7.3 concludes. 

7.1  Methodology

The skewed-t method assumes that the expected risk-neutral returns implied in 

option prices follow a skewed Student-t distribution. In this section we introduce this 

distribution and describe how it can be applied to options pricing. Then we describe 

the other methodologies with which we compare the skewed-t approach. 

7.1.1  Skewed Student-t 

Consider the probability density function f(x | ) of the central Student-t 

distribution with α degrees of freedom. It reads: 
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where c( ) is a constant that exclusively depends on  and ensures the integral sums to 

unity. The central Student-t distribution is symmetric with mean equal to zero. For 

values of  larger than two, the variance is defined and equals /( -2). The parameter 

 is called the number of degrees of freedom and controls the level of tail fatness: the 

smaller the degrees of freedom, the fatter the tails. The Student-t distribution nests the 

normal distribution: if  approaches infinity the Student-t converges to the normal 

distribution.  

Fernandez and Steel (1998) describe a very general method to introduce 

skewness into a symmetric distribution (around 0) by transforming the probability 

density function by the parameter  as follows:  
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The basic idea underlying (2) is simply the introduction of inverse scale 

factors both sides of the mode. This inverse scaling of the probability density function 

leaves the unique mode at 0, but enables control of the skewness. The density function 

is symmetric for  = 1, negatively skewed for  < 1 and positively skewed for  > 1. 

Furthermore, it can easily be seen that inverting  produces the mirror image around 0.  

( ) ( )γαγα 1,|,| xgxg −=       (3) 

One of the appealing properties of this inverse scaling method is that the 

moments can be calculated directly from the moments of the symmetric distribution, 

and that these moments exist if and only if the corresponding moment of the parent 

distribution exists. In particular (Fernandez and Steel (1998)): 
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For the Student-t the latter expression is available in closed form, and some extra 

algebraic equations lead to relatively simple equations for the mean m and standard 

deviation s (Lambert and Laurent, 2001) 
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( ) 2222 1 ms −−+= −γγ       (6c) 

where (.) is the Gamma function, and  > . Note that  not only influences the 

skewness, but also the mean and standard deviation of the distribution. In the option 

calculations we will need to standardize the random draws from the skewed-t, and 

expressions (6a-c) will then turn out to be extremely helpful.  

We assume that the natural logarithm of the risk-neutral return of the 

underlying asset has a standard deviation of  and follows the above skewed-t 

distribution, where  determines the level of skewness and α  the level of kurtosis. 

The mean of this risk-neutral return should be equal to the risk-free rate (r) minus the 

continuous dividend yield (d). Under these assumptions the time T price of the 

underlying (ST) equals: 
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where x  is a random draw from the skewed-t distribution, whose mean and standard 

deviation equal m and s. Once the three parameters ( , , ) of the underlying risk-

neutral process are known, calculation of European-style option prices is 

straightforward. For calls (puts), the value of the option is simply the value of the 

portion of the distribution above (below) the strike price, discounted back to the 

present by the risk-free rate. In particular, the price of a call option expiring at time T

at a strike price of K equals: 

( )[ ]0,max KSEeC T

Tr −⋅= ⋅−
      (8) 

where the expectation refers to the risk-neutral distribution. The normal distribution is 

nested in the skewed-t, since the latter equals the standard normal if  = 1 and 

approaches infinity. Therefore, the skewed-t option pricing methodology generalizes 

the standard Black and Scholes (1973) methodology by two extra parameters that 
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directly account for two more distributional moments33. Unlike the Black-Scholes 

formula, there is no closed form for the option price under the skewed-t distribution. 

As a consequence, the expected value in (8) has to be derived numerically.  

Although later in this section we show how to infer the parameters from 

European-style options, it is worthwhile mentioning roughly how they can be inferred 

from American-style options as well. For American-style options the relationship 

between the distribution and the option price is less direct, due to the early exercise 

premium. The option’s value will depend on the entire stochastic process of the 

underlying, not just the distribution at the option’s expiration. This early exercise 

premium however is subject to a rather strict minimum and maximum (see e.g. Melick 

and Thomas (1997)). For call options expiring at time T the bounds are:  

( )[ ]0,max KSEC T

u −=       (9) 

( )[ ] [ ]{ }KSEKSEeC TT

Trl −−⋅= ⋅− ,0,maxmax     (10) 

The upper bound Cu is the undiscounted European option value, whereas at a 

minimum the lower bound Cl equals the (discounted) European value. At a maximum 

the ratio of the upper to the lower bound is thus e-rT. Although these bounds can be 

remarkably close together for reasonable interest rates, a point estimate is required in 

the inference of the distributional parameters from American options. To generate 

such a point estimate, one could weigh the upper and lower bounds by an extra 

parameter that determines where exactly between the bounds the American option is 

priced34. So, with one extra parameter any methodology could be applied to American 

options as well. 

7.1.2  Other methodologies 

With its separate parameters for the first four distributional moments, we 

expect the skewed Student-t distribution to be flexible enough to price options across 

different strike prices. The only way to assess its flexibility however is a careful 

33 As can be seen in Equation (6c) the parameter  not only influences skewness, but the 
variance and kurtosis as well. Both are minimal for  = 1. 
34 Melick and Thomas (1997) use different weights for options in- and out-of-the-money. 
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comparison to a set of other methodologies. Apart from a comparison with the 

lognormal distribution (constant volatility), we choose three main reference 

methodologies with approximately the same degrees of freedom (parameters) as our 

method: two implied curve-fitting methods plus a trinomial tree. Curve-fitting 

methods were introduced by Shimko (1993) and since become very popular among 

academics and practitioners alike. Therefore, it is a natural reference method. Of the 

various tree approaches that have been proposed for option pricing, a trinomial tree 

has proven to provide the necessary flexibility to model empirical returns (Bliss and 

Ronn (1989)) as well as option-implied returns (Derman, Kani and Chriss (1996) and 

Nagot and Trommsdorff (1999)), and is a natural candidate as well. Below we 

describe these reference methodologies in more detail.  

Shimko (1993) was the first not to model the underlying process or 

distribution, but the implied volatility curve instead. He fits a curve through the 

implied volatility curve, translates the implied volatilities into option prices and 

derives the risk-neutral distribution from the second order derivatives of the call 

option prices with respect to strike prices, following Breeden and Litzenberger (1978). 
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Shimko (1993) imposes a quadratic polynomial structure on the implied 

volatility curve. In the original paper the exercise price serves as independent variable 

in the quadratic form. This method requires no optimization, and is therefore fast and 

simple. However, it produces option prices that are inaccurate outside the range of 

traded strike prices, because implied volatilities either go to plus or minus infinity. 

Hence, tail behavior of the distribution is hard to evaluate. As a solution, it has been 

proposed to apply a lognormal structure on the tails by flattening the volatility curves 

at the endpoints. A less ad hoc solution is that of Malz (1997), who proposes to 

replace the strike price by the option’s delta as independent variable, a statistic that 

lies in the closed interval from zero to one. In our applications we will use both 

modifications: the deltas as independent variable, and the (rescaled) strike price35.

                                                
35 This rescaled strike price is the moneyness: Ke

-rT/S0 - 1  
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A very flexible approach to price options is by constructing trees. Especially 

for the valuation of early exercise premia in American-style options a tree approach is 

often applied, since a well-defined tree allows for efficient backward valuation 

procedures. In a binomial tree the underlying risk-neutral process may go up or down 

in each time-step. The most well known binomial tree is probably that of Cox, Ross 

and Rubinstein (1979), in which the magnitude of a downward move is the inverse of 

the magnitude of an upward move. This relatively simple process has however proven 

to provide only limited flexibility (Bliss and Ronn, 1989). That’s why the tree process 

may be extended with a state of no or limited change in the underlying process. This 

extension enlarges its flexibility considerably and is our motivation to choose an 

implied trinomial tree as a benchmark for our skewed Student-t approach. In our 

comparison we apply the same tree as Nagot and Trommsdorff (1999). The trinomial 

tree approach captures those features of implied distributions that are most prominent 

in real-world option markets: negative skewness and excess kurtosis. In contrast to 

some other tree approaches (e.g. Derman, Kani and Chriss (1996) and Jackwerth 

(1997)) theirs requires less information, while maintaining enough flexibility: the 

underlying asset can either go up by a factor u (>1), not move at all, or go down by a 

factor d (<1), with respective probabilities of p1, p2 and 1 - p1 - p2. Because the 

downward move is not restricted to the inverse of the upward move, this tree is non-

recombining, which explains part of its flexibility36. For reasonable accuracy the 

number of time-steps should be at least 15 to 20. Going forward through the tree, the 

probabilities and terminal asset values can be expressed in terms of the four 

parameters u, d, p1, and p2.

7.2 Empirical Results 

We start this section with an example to gain some insights in the different 

methods. We proceed with a description of the FTSE-100 options data for the more 

rigorous empirical analysis. With the five years of options data we estimate the 

implied distributions and perform a comparative in-sample analysis to assess the 

appropriateness of the skewed Student-t formulation.  

                                                
36 Only one degree of freedom is left unused: the intermediate move i may be free to deviate 
from 0. 
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7.2.1  Example 

In order to gain insight in our Student-t based model, we start with an example 

that is presented both by Shimko (1993) and Nagot and Trommsdorff (1999). We 

compare our results with theirs, as well as the classical lognormal distribution.  

Table 7.1 Shimko example
This table presents the closing prices of European-style call options on the S&P 500 index with 
different strike prices on October 21, 1991. The options expire in December 1991 and prices 
are in US$. The data are taken from Shimko (1993). 

Consider the following European-style call options on the S&P 500 index. 

The prices are from October 21, 1991. The index value is 390.02, the interest rate 

5.03%, the continuous dividend yield 3.14%, and the time-to-maturity 0.16 years (40 

trading days). The prices of the call options are listed in Table 7.1. The optimization 

of the skewed-t method leads to the following estimates for the standard deviation ( )

15.60%, skewness ( ) 0.523, and degrees of freedom ( ) 15.64. The skewness 

parameter indicates pronounced negative skewness and excess kurtosis, due to a 

moderate number of degrees of freedom and  deviating from 1.  

Strike price 325 345 360 365 375 385
Option price 66.500 46.000 33.000 27.750 20.125 13.500

Strike price 390 395 400 405 410 425
Option price 9.625 7.250 5.375 3.375 1.875 0.250
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Table 7.2 Results Shimko example
This table presents the implied distribution characteristics of the logreturns from the example 
presented in Table 7.1 for five methods. Parameter estimates are obtained by minimizing the 
root mean squared error (RMSE) between actual and model call option prices, except for 
Shimko’s method. 'Normal' refers to the normal implied distribution, 'Shimko (K)' to Shimko’s 
method regressed on rescaled strike prices and flattening beyond traded strike prices, 'Shimko 
(delta)' to Shimko’s method regressed on option deltas, 'ITT' to Nagot and Trommsdorffs 
(1999) trinomial tree with 30 time-steps, and 'Skewed-t' to our method.  

Based on these data we estimate parameters for five different methods by 

minimizing the root mean squared error (RMSE). The methods under consideration 

are the standard normal, the Shimko (regressed alternatively on rescaled strike price 

and option delta), the implied trinomial tree with 30 time steps (ITT), and our skewed-

t. In Table 7.2 we compare the fit as well as the return moments (statistics are based 

on the logreturns). The fit of the skewed-t method and ITT are of comparable 

magnitude, as indicated by the root mean squared error between the actual and fitted 

prices. In this example they clearly improve upon the normal method and (to a lesser 

extent) the Shimko (delta) method. The main differences appear in the estimates for 

skewness and kurtosis. By construction, the normal distribution contains neither 

skewness nor excess kurtosis. Due to the flattening of the tails we employed, the 

estimates of skewness and kurtosis in Shimko’s approach are rather unreliable. The 

reported statistics of all methods differ quite a bit, although the shapes of the density 

functions look rather similar, except for the normal (Figure 7.1). The differences in 

moment statistics are likely to be due to the behavior in the tails, which is hard to 

judge by eye. What this example therefore clarifies, is that the option prices do not 

completely pin down the underlying distribution, a fact that Melick and Thomas 

RMSE Skewness Kurtosis

Normal 1.506 0.000 3.000
Shimko (K) 0.429 -0.348 3.327
Shimko (delta) 0.819 -0.981 4.122
ITT 0.557 -0.633 3.717
Skewed-t 0.443 -0.227 3.263
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(1997) provides an excellent graphical example of. This motivates our choice for a 

parsimonious distribution that has proven to provide a good fit to return-data. 
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Figure 7.1 Implied distributions, Skimko example
This graph shows the implied probability densities, obtained by minimizing the root 
mean squared error between actual and model option prices, as presented in Table 7.1. 
'B&S' refers to the normal (Black-Scholes) method, 'Shimko' to the quadratic curve 
fitting method with rescaled strike prices, 'Skewed-t' to our skewed Student-t method, 
and 'ITT' to the trinomial tree approach. 
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7.2.2  Description of the data 

Daily closing prices on the FTSE-100 (Financial Times Stock Exchange 100 

Index) index options, traded on Liffe (London International Financial Futures and 

Options Exchange) are used in an attempt to assess the different methods more 

rigorously than the above example. We use data from January 1995 till December 

1999. The underlying value of the options is the future on the FTSE-100 index with 

the same expiry date. The FTSE-100 index consists of the largest 100 UK companies 

by market value, and is the leading indicator for stocks that trade on the London Stock 

Exchange.  

The FTSE-100 options are European-style index options that expire on the 3rd

Friday of the expiry month. Over the past ten years, volume has continuously been 

growing to a daily level of nearly 25.000 contracts, or 30 billion, at the end of 1999. 

Trading volume is somewhat higher in calls than in puts. Most active trading is in 

(close to) at-the-money series and short-term maturities. For example, nearly half the 

volume in the 1995-1999 period is concentrated in the series that expire within one 

month (20 trading days), whereas only 12% is concentrated in maturities of over three 

months (60 trading days). Similarly, 62% of the trades are at strike prices within 5% 

from the current futures price, whereas only 15% is at strike prices outside 10% of the 

futures prices. There is an apparent difference in strike preference between call and 

put trades. Most call trades are at strike prices close to or above the current futures 

price, whereas most put trades are on the other side of the strike spectrum. This shows 

that traders prefer at-the-money and out-of-the-money options: those options that are 

cheapest and have the strongest option-like characteristics. Measured by trading 

volume and open interest, the FTSE-100 options and futures markets are currently the 

most liquid derivatives markets in Europe. Therefore, they are probably the best 

markets in Europe for testing an option-pricing model. 

The data we use in the analysis are from Liffe's CD-Rom “Equity Products 

End of Day Data”, which contains options and futures data on the FTSE-100 and its 

constituents from March 1992 till December 1999. We use the closing prices on the 

FTSE-100 index from January 1995 till December 1999, because markets became 

more liquid over the years. In order to reduce the amount of calculations, we restrict 

attention to the Wednesdays37. For liquidity reasons, we restrict attention to the 

                                                
37 On Wednesday 19 May 1999 there was no trade. Hence, we used the day afterwards. 
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options whose strike prices are within a 10% range from the current futures price and 

with a time-to-maturity of at least 5 and at most 127 trading days (half a year) to 

maturity. Furthermore, since the option prices have tick size of 0.50, we delete from 

the sample all quotes smaller than 1.50 to avoid problems due to stale prices.  

In the option calculations a risk-free interest rate is required to discount back 

the possible payoffs. Of course, we could rely on some real-life interest series, but 

then we would need to interpolate or extrapolate interest rates from different 

maturities to get interest rates with maturities that match those of the options. Shimko 

(1993) presents an elegant method to circumvent this problem. For every maturity 

series, he estimates the discount factor that produces a put-call relation that comes 

closest to put-call parity.  

( ) KTrFPutCall ⋅⋅−+=− exp      (12) 

We estimate this relation (with F and exp(-rT) as parameters) by ordinary least 

squares and thus obtain an ‘implied’ futures price and interest rate. The implied 

interest rate may be interpreted as the lowest borrowing and lending costs that market 

participants face. As a final step in our selection process, we now discard the put 

prices, because the deviations from put-call parity are negligible. This leaves us with 

15466 call option prices, on 258 trading days, with at least 6 different exercise prices 

per maturity, and average time to maturity of 48 trading days.  

7.2.3  Estimation results 

We start estimation with the skewed Student-t method and then move forward 

to the other methods. The skewed-t attains a relatively good fit to the option price data 

(Table 7.5). Average root mean squared error between actual and fitted prices is £0.77, 

which should be judged in the light of option values averaging around approximately 

£220 and 16.5 options per maturity bucket on average. Parameter estimates are quite 

stable over the years, with the exception of volatility. As expected and in line with 

other research, volatility was considerably higher in the years 1997-1999 than in the 

two previous years (Table 7.3). The number of degrees of freedom varies widely and 

assumes sometimes very low levels (below 2) and sometimes very high levels 

(exceeding 1000). Because the estimates for the degrees of freedom are so much right-

skewed we estimated (and report) its natural logarithm instead of the degrees of 
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freedom itself. The average of this estimate is 2.63, which corresponds to 13.8 as 

degrees of freedom and suggests mild kurtosis if the distribution were symmetric. 

However, kurtosis is also influenced by the skewness parameter. This parameter 

proves that the implied returns deviate largely from normality, with average gamma 

equal to 0.69. This value is far below 1 (consistently for nearly all option series) and 

thus the distribution far from symmetric. The shape of the implied volatility curves 

supports the observed skewness in the implied distributions: implied volatility curves 

are all downward sloping in moneyness and delta. The combination of low skewness 

parameter (gamma) and moderately high degrees of freedom results in extreme 

skewness (average –2.69) and relatively high kurtosis (average 10.50).  

The left-skewness in the implied distributions far exceeds levels in actual 

return data (which hardly fall below -0.5) and is a result of out-of-the-money put 

options (and in-the-money call options) being relatively expensive. Apparently, risk-

premia (the price for protection against large negative shocks in the underlying index) 

cannot be neglected in the price formation of options and the assumptions of 

continuous and costless hedging opportunities do not even hold in this very liquid 

market of FTSE-100 index futures and options. Since parameter estimates are quite 

stable over the years (Table 7.3) and across maturity (Table 7.4), risk premia play a 

role in all option prices. Changes in the risk-neutral distribution may therefore be 

attributed to changes in market expectations as well as changes in risk aversion of 

representative agents.   
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Table 7.3 Parameter estimates skewed Student-t method per year
This table presents the average parameter estimates (standard deviation in parentheses) of the 
implied risk-neutral distribution with the skewed Student-t method. The parameters are 
obtained with call option data on the FTSE-100 index options in the period 1995 till 1999. The 

parameter σ measures the volatility of the distribution, the parameter γ determines skewness; 

ln(α) is the natural logarithm of the degrees of freedom and predominantly determines the level 
of kurtosis. The last row contains the number of option series (a certain maturity on a certain 
date) per year. 

Table 7.4 Parameter estimates skewed Student-t method per maturity bucket
This table presents the average parameter estimates per maturity bucket (in trading days) of the 
implied risk-neutral distribution with the skewed Student-t method. The parameters are 
obtained with call option data on the FTSE-100 index options in the period 1995 till 1999. The 

parameter σ measures the volatility of the distribution, the parameter γ determines skewness; 

ln(α) is the natural logarithm of the degrees of freedom and determines the level of kurtosis. 
The last row contains the number of option series (a certain maturity on a certain date) per 
maturity bucket. 

Maturity # obs

< 20 days 177 18.5% (6.1%) 0.74 (0.18) 2.39 (1.34)

20-40 days 243 19.1% (5.3%) 0.69 (0.13) 2.64 (1.04)

40-60 days 219 20.2% (5.0%) 0.68 (0.11) 2.50 (0.99)

> 60 days 297 20.6% (4.6%) 0.66 (0.10) 2.85 (1.19)

Total 936 19.7% (8.0%) 0.69 (0.15) 2.63 (1.18)

σσσσ γγγγ ln(α)

Year # obs

1995 176 13.9% (1.8%) 0.79 (0.07) 3.10 (1.89)

1996 184 12.7% (2.0%) 0.73 (0.08) 2.21 (1.17)

1997 192 18.7% (6.4%) 0.70 (0.08) 2.51 (1.62)

1998 197 27.7% (7.7%) 0.64 (0.09) 2.76 (2.17)

1999 187 24.9% (5.5%) 0.60 (0.10) 2.56 (1.83)

Total 936 19.7% (8.0%) 0.69 (0.11) 2.63 (1.79)

σσσσ γγγγ ln(α)
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The first alternative to the skewed-t under consideration is the simple 

lognormal model, where implied volatilities are the same for each exercise price. Two 

other alternatives are based on Shimko’s method. We estimate one set of parameters 

by regressing implied volatility on a quadratic function of moneyness, and another set 

on a quadratic function of the option’s delta. The final alternative is the implied 

trinomial tree approach, where we divide all times-to-maturity in 30 time steps. 

Parameter estimates for the lognormal, skewed Student-t and trinomial tree are 

obtained by minimizing the root mean squared error (RMSE) in option prices. For the 

Shimko methods we calculate an RMSE as well, by inserting the model volatility into 

the Black-Scholes formula.  

In Tables 7.5 and 7.6 we observe that all methods clearly improve upon the 

standard (log)normal model. A simple quadratic function (Shimko), instead of a 

straight line, for the implied volatility causes an enormous decline in estimation errors. 

Although the conceptual difference is minimal between the two Shimko methods, the 

results indicate it is better to regress implied volatilities on option deltas than on 

moneyness. The former outperforms all other methods in each year (except 1995) as 

well as each maturity bucket. As discussed earlier, this has the additional advantage 

that no problems will be encountered outside the range of traded options, since delta 

lies in between zero and one.  

If we look at the two more complex approaches, skewed-t and trinomial tree, 

we observe that the skewed Student-t approach is by far preferable above the trinomial 

tree in each maturity bucket and in each year. However, both methods consistently 

underperform compared to the delta curve-fitting method, although the skewed-t is 

slightly better than the original strike curve-fitting method. We checked that this 

underperformance is not a result of outliers. The skewed Student-t yields a better in-

sample fit in only 20.5% of the option series, but the implied trinomial tree has an 

even lower score of 0.4%. So the simple quadratic curve-fitting method on option 

deltas works best, and this effect strengthens over time: the Shimko (delta) method 

yields a rather stable fit over the years, but the skewed-t deteriorates considerably. 

This result is surprising at first, since the Shimko method even contains one parameter 

less than the skewed-t and trinomial tree and is thus not a priori more flexible. An 

explanation might be that the two more complex methods do not have the appropriate 

flexibility to capture the market prices (especially the implied trinomial tree). Another, 

though somewhat related explanation is that option traders have been increasingly 

using Shimko(-related) methods to price options. The existence of implied volatility 



100

skews and smiles are common knowledge since the early nineties and it is known that 

many option traders use skew- and smile related ad hoc rules to price options with 

different moneyness. These ad hoc rules are often based on a certain number of 

volatility basis points above or below the at-the-money implied volatility for each 

change in moneyness or delta. In other words: option traders in majority monitor the 

implied volatility curve and interpolate and extrapolate volatilities to price options on 

different points along the curve. The best a posteriori fit is then naturally obtained by 

mimicking the trader’s practice. That may explain why methods that model the 

distribution will have a hard job to beat an implied curve fitting method.  
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Table 7.5 Empirical fit per year
This table presents the empirical fit of the skewed Student-t method and four 
alternatives. Fit is measured by the root mean squared error (RMSE) between actual 
and model call option prices. The fit is analyzed with data on the FTSE-100 index 
options in the period 1995 till 1999. 'Normal' refers to the lognormal implied 
distribution, 'Shimko (Strike)' to Shimko’s method regressed on rescaled strike prices, 
'Shimko (Delta)' to Shimko’s method regressed on option deltas, 'ITT' to Nagot and 
Trommsdorffs (1999) trinomial tree with 30 time-steps, and 'Skewed-t' to our method.

Table 7.6 Empirical fit per maturity bucket
This table presents the empirical fit of the skewed Student-t method and four 
alternatives for different maturities. See Table 7.5 for an explanation.  

Maturity Normal Shimko Shimko ITT Skewed-t

(Strike) (Delta)

<= 20 days 7.62 0.56 0.34 1.74 0.48

20-40 days 6.26 0.49 0.22 1.50 0.70

40-60 days 4.85 0.31 0.13 1.05 0.71

> 60 days 18.62 1.22 0.44 3.73 1.04

Total 13.47 0.92 0.39 2.90 0.77

Year Normal Shimko Shimko ITT Skewed-t

(Strike) (Delta)

1995 4.27 0.50 0.33 1.09 0.33

1996 5.78 0.66 0.38 1.59 0.41

1997 11.22 0.70 0.29 2.56 0.58

1998 21.24 1.39 0.48 4.08 1.28

1999 23.80 1.31 0.47 5.00 1.19

Total 13.47 0.92 0.39 2.90 0.77
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7.3  Concluding remarks 

The shape of an implied distribution gives important information that can be 

used for pricing other options, for comparing options on different assets and for 

closely monitoring changes in the markets perception of the underlying price process. 

In this chapter we proposed a new method to infer the risk-neutral distribution from 

option prices. Its main strength is its relative simplicity with separate parameters that 

directly capture the levels of skewness and kurtosis.  

In an application to several years of FTSE-100 index options we compare the 

in-sample performance of the skewed-t method with the normal method (constant 

volatility), two implied volatility curve-fitting methods and a trinomial tree. Although 

all methods clearly improve upon the normal method, the curve-fitting method that 

regresses implied volatility on option delta outperforms the trinomial tree and skewed-

t methods. Average root mean squared errors between actual and fitted prices are 

lower and this effect strengthens over time. The additional advantage of this method 

compared to the original Shimko method (that regresses volatility on moneyness or 

strike) is that it yields sensible bounded implied volatilities for any strike price. We 

therefore conclude that a curve-fitting method is preferred to price European-style 

options outside the available trading range.  

Even though their fit is outperformed by a curve-fitting method, the two 

methods that focus on modeling the distribution of asset returns do have strong 

appeals. For the pricing of American-style options, backward valuation can only be 

applied in a tree, and the trinomial tree is a reasonably flexible candidate. The skewed-

t method on the other hand has the appeal that its parameters relate directly to the 

moments of the distribution. This helps to judge whether the observed market prices 

are realistic or not. The volatility curve may for example look very smooth, but it 

might imply unrealistic levels of skewness and kurtosis, that are easily detected with 

the skewed-t method. Moreover, the parameters for skewness and kurtosis summarize 

changes in market expectations and risk awareness in a simple and direct manner. 
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8 Implied GARCH volatility forecasting 38

Repeated turbulence in financial markets incessantly reminds us that 

uncertainty is an unavoidable aspect of financial markets. With good reason the 

assessment of uncertainty, often proxied by price volatility, plays a prominent role in 

all areas of finance, ranging from investment decision-making, security valuation and 

risk management to monetary policy making. Even though the measurement and 

forecasting of volatility has attracted the interest of many researchers and 

practitioners, it remains a challenging statistical problem. Not only is it a problem of 

having a proper volatility model, but also of having a robust volatility forecasting 

method. The available models, such as GARCH or stochastic volatility, based on 

historical returns seem to work quite well in sample but generally perform poorly out-

of-sample (Akgiray (1989), Dimson and Marsh (1990), Nelson (1992), Nelson and 

Foster (1995), Franses and Van Dijk (1995), and Brailsford and Faff (1996)).  

In recent years there is some support for the hypothesis that the information 

provided by implied volatilities from daily option prices is more relevant in 

forecasting volatility than the volatility information provided by historical returns 

(Day and Lewis (1993), Jorion (1995), Christensen and Prabhala (1998), Fleming 

(1998), and Blair et al. (2001)). If option markets are efficient, option prices contain 

information about the price process of the underlying asset over the lifetime of the 

option. For the purpose of volatility forecasting this comes down to extracting the 

expectation of market participants about the development of future volatility. 

Therefore, the volatility estimate derived from option prices is a forward-looking 

(risk-neutral) estimate and eventually different from an estimate based on historical 

return data. It eliminates the choice of a particular historical sample period, which may 

result in better volatility forecasts.  

Although the idea of option-implied volatility estimates is relatively simple, 

there is not one straightforward method to extract the information. Every proposed 

method relies on a number of assumptions regarding the model underlying option 

                                                
38 This chapter is based on: C. de Jong and T. Lehnert, 2002, “Implied GARCH volatility 
forecasting”, ERIM research paper.  
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prices. In line with the large number of option pricing models, academics and 

practitioners have applied a multitude of methods to extract option-implied volatilities. 

Before the crash in 1987 the Black and Scholes (1973) model was applied 

mechanically in its original form; there was a nearly constant relationship between the 

implied volatility and the exercise price of the option. After the crash traders seem to 

adjust the volatility for moneyness and maturity before being plugged into the Black-

Scholes model. The result is an implied volatility pattern that cannot be fully 

explained by the recent option pricing literature using historical returns of the 

underlying.  

It is known that implied volatility covaries with realized volatility, but the 

major difficulty is to back out volatility information of the underlying from observed 

option prices. Since the assumptions of the Black-Scholes option-pricing framework 

are usually violated, it is a challenge to select the appropriate implied volatility. 

Previous studies try to explore information from (Black-Scholes) implied volatilities 

of traded options to estimate and forecast future volatility without explicitly modeling 

the underlying return process. A number of researchers have been extensively 

investigating the optimal weighting scheme for the different implied volatilities at 

different strikes39. A method often applied is VIX, which is an S&P100 volatility 

index that combines a number of close-to-at-the-money implied volatilities into a 

single estimate (see Fleming et al. (1995) for a description). The index is constructed 

in such a way that it represents the implied volatility of a hypothetical at-the-money 

option with 22 days to maturity. It is therefore unable to capture any smile or term 

structure effects of the whole implied volatility surface. Those methods that adhere to 

the Black-Scholes implied volatility framework are not only arbitrary and theoretically 

questionable, but also the result often turns out to be a severely biased predictor of 

future volatility (Canina and Figlewski (1993), Fleming (1998) and Blair et al. 

(2001)). 

In this chapter we present a new method to make volatility forecasts, which is 

based on a relatively recent set of option-pricing models that applies the time-series 

GARCH-methodology to option pricing (see Duan (1995), Kallsen and Taqqu (1998), 

Ritchken and Trevor (1999), Bauwens and Lubrano (2002) and Heston and Nandi 

(2000)). We construct the expected future price process by deriving the relevant 

parameters of the GARCH option-pricing model from prices of traded options with 

                                                
39 See Bates (1996) for a review. 
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different strike and maturity. In contrast to methods for estimating and forecasting 

volatility that use past index returns, this method derives anticipated parameters of a 

GARCH process and therefore market expectations about the future price process. 

Since we need a forward-looking estimate in most finance applications of volatility, 

the characteristics of the future price process should be more informative than the ones 

of the historical price process. For example, volatility forecasts are popular among 

central bankers and other monetary policy makers for closely monitoring changes in 

the markets perception on interest rates and exchange rates (e.g. Federal Reserve Bank 

of Atlanta (1995), Deutsche Bundesbank (1995), Campa and Chang (1995), Leahy 

and Thomas (1996), Malz (1996 and 1997), Campa, Chang and Reider (1997)). 

Volatility forecasts of stock market prices are applied by an even wider number of 

financial players to investment decision-making, security valuation and risk 

management. 

There are now several GARCH option pricing models available in the 

literature, but a very flexible one is the GARCH option-pricing model of Duan (1995). 

It has shown some empirical success and it is appropriate for our study. We estimate 

the parameters of the model by minimizing the relative pricing error between the 

market prices and the theoretical option prices of the FTSE-100 and DAX index 

options. The FTSE data covers the period January 1995 till July 2000, whereas the 

DAX data covers the period January 2000 till August 2001. Once we have the 

GARCH parameter estimates we can use Monte Carlo simulations to make volatility 

forecasts some periods ahead. As a comparison, we construct a second volatility 

estimate using the same GARCH specification, but now calibrated with historical 

returns. In an out-of-sample analysis we compare our ‘implied GARCH’ model with 

the ‘historical GARCH’ and conclude which method is superior in making one-day 

ahead forecasts of the volatility of a market index. In line with recent literature on 

volatility measurement we use intraday data to calculate the daily realized volatility 

that serves as a benchmark for our forecasts.  

With this study we make several contributions to the existing volatility 

modeling and forecasting literature. First, we use a new method based on the 

informational content of option prices. With the ever-increasing trading volumes in 

derivative markets, we believe the information in derivatives will become the standard 

for making volatility forecasts. Second, we use the information contained in the whole 

implied volatility surface, both across maturity and across strike price. Third, we use 

data that have received relatively limited attention by researchers but have become 
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increasingly large in trading volume. The limited attention for part of our dataset, 

especially the DAX index options, has the advantage that it is relatively independent 

of the previously done volatility research that was mainly directed to S&P100 index 

options. 

In the next section we set up the econometric framework; in Section 8.2 we 

describe the data; Section 8.3 provides empirical results and Section 8.4 concludes. 

8.1  Methodology 

In this chapter, we focus on the GARCH option-pricing framework developed 

in Duan (1995) and implement a model based on the exponential GARCH (EGARCH) 

of Nelson (1991). Apart from the well-documented GARCH effects (see Bollerslev et 

al. (1992)), this process is also able to model the well-known leverage effect of stock 

market returns (Nelson, 1991). Volatility tends to rise in response to bad news 

(negative excess returns) and to fall in response to good news (positive excess 

returns). The form of the EGARCH specification is comparable to the non-linear 

asymmetric GARCH process of Engle and Ng (1993), the GJR-GARCH model of 

Glosten et al. (1993) and the power GARCH of Ding et al. (1993). Those studies show 

it is crucial to include the asymmetric term in financial time series models, because 

volatility shocks following negative returns are significantly larger than shocks 

following positive returns.  

The EGARCH option-pricing model assumes the risk-neutral valuation 

principle, and the standard Black and Scholes (1973) model can be derived as a 

special case. Kallsen and Taqqu (1998) develop a continuous-time version of the 

model and show that the same pricing results can be derived via an arbitrage-free 

argument. Heston and Nandi (2000) develop a closed form solution of a GARCH 

option-pricing model. Examples of alternative option-pricing models are the bivariate 

diffusion model of Hull and White (1987), the jump-diffusion model of Naik and Lee 

(1990), the variance-gamma model of Madan and Milne (1991) and the stochastic 

volatility models of Stein and Stein (1991), Wiggins (1991) and Heston (1993). 

Our choice of the GARCH option pricing model of Duan (1995) is motivated 

by its flexibility, the recent empirical successes of the model (see among others Amin 

and Ng (1994), Heynen et al. (1994), Duan (1996), and Ritchken and Trevor (1999)) 

and the emerging availability of numerical methods for this class of option pricing 
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models (see Hanke (1997), Duan et al. (1998), Ritchken and Trevor (1999), Duan and 

Simonato (1998a&b), Heston and Nandi (2000), and Duan et al. (2001)). 

For derivative valuation models with a high degree of path dependency, 

computationally demanding Monte Carlo simulations are commonly used for valuing 

derivative securities. We use a simulation adjustment method, the empirical 

martingale simulation (EMS) of Duan and Simonato (1998a), which has been shown 

to substantially accelerate the convergence of Monte Carlo price estimates and to 

minimize the so called ‘simulation error’. The EMS reproduces the martingale 

property for the simulated sample, a characteristic of all derivative pricing models. 

As a first step in our empirical analysis we derive the dividend-adjusted spot 

rate Xt. Given a discrete dividend series D and a futures price Ft, we use the equation 
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to derive the dividend-adjusted spot rate Xt. Here T-t is the time-to-maturity of the 

future, rf the risk-free interest rate, St the spot rate and PV(D) denotes the value at time 

t of the dividends in between t and T. In a discrete-time economy the value of the 

dividend-adjusted index at time t can be assumed to follow the following dynamics: 
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where µt represents the conditional mean; Ωt-1 is the information set in period t-1 and 

the combination of β and γ captures the leverage effect. Daily returns of financial time 

series may exhibit non-zero autocorrelation. One can account for this effect by 

specifying the conditional mean as an autoregressive process40 or by allowing for a 

risk premium attached to time-varying volatility. The specification for the conditional 

                                                
40 Bauwens and Lubrano (2002) and Hafner and Herwatz (2001) discuss how this affects 
option prices. 
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mean we selected, includes the second alternative advocated by Duan (1995, 1999) 

and Heston and Nandi (2000): 

2

2
1

ttft r σλσµ −+=       (3)

where the risk premium λ is a constant parameter, and the term 2 gives additional 

control for the conditional mean. This specification completes the baseline EGARCH 

model that we use for the analysis. The parameter α measures the degree of mean 

reversion in that α=1 implies that the variance process is integrated. We also tried 

alternative specifications for the volatility dynamics, but for the ‘implied’ GARCH 

calibration we experienced frequent violations of the covariance stationary condition 

and if we control for covariance stationarity the fit was sometimes extremely bad. In 

contrast, restriction of the mean reversion parameter α in the EGARCH specification 

to values below 1 did not cause notable problems in the estimation process.  

Duan (1995) shows that under the Local Risk Neutral Valuation Relationship 

(LRNVR) the conditional variance remains unchanged, but under the pricing measure 

Q the conditional expectation of rt is equal to the risk free rate rf. Therefore, risk 

neutralization transforms the error term in the following way: 
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In the equations above t is not necessarily normal, but to include the Black and 

Scholes model as a special case we assume that t is a Gaussian random variable. The 

shift of the error term can be interpreted as an additional modification of the news 

impact curve, therefore also modifies the asymmetry in the volatility process. The 

long run stationary volatility level can be shown to be equal to: 
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in which the expected value should be evaluated numerically. 

A European call option with exercise price K and maturity T has at time t 

price equal to: 
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     (5) 

We rely on Monte Carlo simulations to evaluate the option numerically. Given the 

value of the index Xt, we generate N standard normal random numbers to advance the 

dynamics one period ahead and then make the empirical martingale adjustment. We 

repeat this procedure T-t times until maturity and arrive at N simulated prices XT. We 

calculate each of the N option payoffs, take the average and discount them back to 

period t of option valuation. Using this procedure we compute the value of an option 

for all exercise prices and all maturities. 

We calibrate the parameters of the EGARCH option-pricing model in (5) by 

minimizing the square root of the mean squared pricing error between the market 

prices and the theoretical call and put option prices. We use relative pricing errors as 

defined below, 
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where 2M is the total number of call and put options evaluated, the subscript i refers to 

the n different maturities and subscript j to the mi different strike prices in a particular 

maturity series i. We use relative instead of absolute pricing errors in order to give 

options with different levels of moneyness equal weight in the calibration process. As 

starting values for the calibration we use the time-series estimates from the EGARCH 

model using approximately three years of historical returns.  
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After we calibrated the time-series estimates41, we use two time-series 

parameter estimates for the option calibration: the long run volatility σ  and the risk 

premium parameter λ. We do so, because the large number of parameters to be 

estimated can make the calibration process unstable: especially the joint identification 

of λ and γ is cumbersome, since both parameters control for asymmetry in the news 

impact curve. Since this volatility (σ ) is not an explicit parameter in the model but 

can be derived directly from the other parameter estimates and vice versa, we 

constrain ω to: 

( ) ( ) ( )[ ]λεγλεβσαω −+−−−= −− 11

2 ||ln1 ttE    (7) 

Our choice for fixing the stationary volatility is slightly different from that of 

Duan (1996, 1999), and Heston and Nandi (2000). They perform a constrained 

calibration in which the parameters λ and the local volatility are restricted to the time-

series GARCH-estimates. We derive the local volatility from option prices, because 

time-series models have most problems in accurately forecasting short-run volatility 

fluctuations, whereas option prices can reflect new information instantaneously. In 

return, we constrain the long-run volatility to its time-series estimate because it turned 

out to be very unstable if estimated from option prices and because news has a lower 

impact on long run than on short run volatility.  

Our approach can now be summarized as follows. First, we use three years of 

historical returns to estimate the time-series GARCH process. Second, we use option 

prices to carry out a constrained calibration by restricting the risk premium parameter 

λ and the long run stationary volatility level σ  to the estimates derived from the 

history of asset prices. The final calibration yields estimates of the parameters α, β, γ

and local volatility t.

Splitting the estimation of the parameters of our model in a ‘historical’ and an 

‘implied’ part has some advantages: it is more likely that option prices contain 

information about the future, but for risk management purposes it would be 

misleading to ignore all the information contained in the history of asset prices. 

Therefore, the method readily exploits the combination of information about the time 

                                                
41 In the time-series calibration with the DAX-data we restricted the parameter ω to ensure that 
the long run volatility level was equal to the relatively stable historical standard deviation. 
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series (the volatility risk premium and the long run volatility) and the information 

about the volatility dynamics contained in option prices. 

Given the parameters from the ‘historical’ and ‘implied’ calibration we use 

the EGARCH model under probability measure P in (2) to derive a volatility forecast. 

The estimated local volatility level tσ̂  is a one-day ahead forecast, which contains 

information about the expectation of market participants about tomorrow’s volatility. 

We compare the forecasting ability of this estimate with that of the time-series 

EGARCH estimate, that we denote by 
TS

tσ̂ .

Since actual volatility is a latent variable, we have to construct an accurate 

method to evaluate our ‘historical’ and ‘implied’ forecasts. Different methods have 

been proposed to compute ex post estimates of it. The simplest and most common one 

is the square of realized return over the data. However, as Andersen and Bollerslev 

(1998) clearly point out theoretically, this method produces very noisy estimates of the 

actual volatility because of the randomness in the return process. By sampling more 

frequently the randomness effect can be reduced. Theoretically, the realized volatility 

is then closer to the actual volatility. Empirically, this is confirmed in our dataset, 

where we use 5-minute intraday returns to construct a volatility estimate, denoted by 
real

tσ . This estimate is much more stable than squared returns (see also Andersen et al. 

(2001a and 2001b)). It is based on the 5-minute log-returns of the closest-to-maturity 

index future. We use a 5-minute interval, because that yields a relatively large number 

of returns per day without notable bid-ask bounce problems, and because it is the 

frequency that Andersen and Bollerslev (1998) propose. Our first index level is the 

opening price. All subsequent levels are the closest to each 5-minute mark, ending 

with the closing price.  

There is some controversy about whether or not to include the overnight 

return. Overnight returns are relatively large in magnitude compared to the 5-minute 

returns and may disproportionately impact realized volatility. On the other hand, 

excluding overnight returns may yield a downwardly biased estimate. Since we do not 

want our definition of realized volatility affect our results, we decided to compare all 

forecasts to realized returns both including (as do Blair et al. (2001)) and excluding 

the return over the previous night.  
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8.2 Data 

We use European-style options and futures price data from the two most 

liquid European derivatives markets: the Frankfurt-based EUREX European Futures 

and Options Exchange and the London International Financial Futures Exchange 

(Liffe). A fully electronic exchange, EUREX was formally established in 1998 

following the merger of DTB Deutsche Terminbörse (German Options and Futures 

Exchange) and SOFFEX (Swiss Options and Financial Futures Exchange). In total 

number of transactions EUREX claims to be the most liquid derivatives bourse in 

Europe, but in the value of the trading volume Liffe is leading. Liffe’s successful 

trading system Liffe-Connect is largely responsible for this success and one of the 

motives for the take-over by Euronext in 2001. The two main indices of the German 

and UK stock market are the DAX-30 and the FTSE-100 respectively. The options 

and futures on these indices are the subject of our research and traded on the EUREX 

and Liffe exchanges. Below we give a description of the data, starting with the DAX-

30.  

We use closing prices of DAX-30 index options and transaction prices of 

DAX-30 futures for a period from January 2000 until August 2001. For the time-series 

analysis we need daily index levels for a period from January 1997 until August 2001. 

The raw data set is directly obtained from EUREX European Futures and Options 

Exchange. For index options the expiration months are the three nearest calendar 

months, the three following months within the cycle March, June, September and 

December, as well as the two following months of the cycle June, December. For 

index futures the expiration months are the three nearest calendar months within the 

cycle March, June, September and December. The last trading day is the third Friday 

of the expiration month, if that is an exchange trading day; otherwise it is on the 

exchange-trading day immediately prior to that Friday.  

The FTSE-100 data are similar in many respects, including the expiration 

months and last trading day regulations. From Liffe we purchased the daily option 

closing prices and intra-day transaction prices, covering the period January 1995 till 

July 2000. The futures transaction prices were downloaded from their Internet-set; the 

option closing prices were delivered on CD-ROM, but can now also be accessed 

through the Internet. For the time-series analysis we rely on Datastream FTSE-100 

index levels, including three earlier years of data as well. Figure 1 shows the daily 
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development of the DAX and FTSE-100 index levels in their respective analysis 

periods. 

Before we run the 'implied' calibration, we compute the implied interest rates 

and implied index rates from the observed put and call option prices using the method 

of Shimko (1993) based on put-call parity (see Equation (12) in the previous chapter). 

It can be shown that the put-call parity holds sufficiently well for our data. 

Alternatively, for the option calculations we could have chosen index levels from 

futures closing prices. This method would be equally safe since both markets are 

closely integrated. 

Index Levels
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Figure 8.1 Index levels
The graph shows the DAX index levels for the period January 1997 until August 2001 and the 
FTSE-100 index levels for the period January 1992 until July 2000.  
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For the ‘implied’ calibration, we estimate our model using the closing prices 

of traded call and put options every day in our sample period. We exclude options 

with less than 5 and more than 75 trading days until maturity. Furthermore, instead of 

using a static rule and exclude options with absolute ‘moneyness’ (distance between 

strike and futures price) of more than 10% (see previous chapter), we use a volume 

rule. We exclude DAX-30 options with a daily Euro turnover of less than 10,000 Euro 

and a price of less than 2 Euro. In order not to lose too much FTSE-data, especially in 

the earlier years with relatively limited trading volume, we set the trading volume 

limit for the FTSE-100 options lower. We just require that at least 10 contracts of a 

particular option series must have been traded during the day, and furthermore exclude 

options with a price below £20. The choice of these particular filter rules can be 

motivated as follows. Since we are interested in short term volatility forecasting of the 

underlying index, we are interested in the information content of short term options. 

Second, we exclude options with less than 5 trading days to avoid liquidity-related 

biases. We furthermore exclude options with a price of less than 2 Euro (DAX) and 

less than £20 (FTSE42) to avoid problems due to stale prices and problems in the 

minimization of relative pricing errors. Finally, we don’t automatically eliminate 

options whose absolute moneyness is greater than 10%, because deep in- and out-of-

the-money options may still contain useful information when they are actively traded. 

That's why we control for active trading by only using those options with a certain 

trading volume over the day. Other studies in contrast, that use a moneyness rule, run 

the risk of including options that are actually not actively traded and contain no 

information on volatilities.  

Imposition of the aforementioned filtering rules reduces the average number 

of DAX options per trading day (puts and calls) in our dataset to around 22% of the 

originally more than 580 options. On average we have 124 DAX-options (puts and 

calls) per trading day that meet the criteria, with a minimum of 56 and a maximum of 

226 options, which is by far sufficient for a reliable estimation of the four parameters. 

On every trading day we have at least two and at most four maturities with liquid 

options. On the FTSE we have fewer options per trading day, and sometimes options 

with just one maturity, especially in the early years of 1995 and 1996, where trading is 

                                                
42 The lower limit of £20 may appear high, but is not really so, because average FTSE-100 
option prices were £240. Options with a relatively low price receive a relatively large weight in 
the minimization of relative squared pricing errors. We encountered several optimization 
problems when we did not exclude them. 



 117

much thinner. On average there are 49 options per trading day, with a minimum of 6 

and a maximum of 152. Together with the long run stationary volatility level and the 

risk premium parameter that we estimate from the time-series of historical returns, we 

ensured that a sensible estimation of the implied price process was possible.  

The implied calibration is executed with the well-known Newton-Raphson or 

the Broyden-Fletcher-Goldfarb-Shanno procedure programmed in the statistical 

software package GAUSS. We use the time-series estimates as starting values in the 

estimation and simulate ten thousand price paths. Although this large number of 

simulations caused the procedure to need sometimes several minutes of computation 

time per trading day, it appeared to be necessary to ensure stable option values. Local 

optima are always possible with this type of large-scale optimizations, but 

convergence was nevertheless seldom a problem.  

As a benchmark for our volatility forecasts we use a volatility metric based on 

5-minute intra-day returns. Those returns are constructed from the contemporaneous 

index futures transaction prices. Every day in our sample there are several traded 

futures, each with a different time-to-maturity. We select the future closest to 

maturity. Since we are using transaction prices, negative autocorrelation may be 

present due to the bid-ask bounce. However, the bid-ask spreads in the two very liquid 

futures series are minimal, normally a fraction of a percentage. We do find some 

evidence for negative autocorrelation, but it is very low in magnitude and unlikely to 

have impacted the realized volatility estimates much. On the FTSE-100 for example, 

the average daily serial autocorrelation equals only –1.64%.  

FTSE-100 options and futures are traded from 8:30 till 17:30 in the first part 

of our sample till July 17, 1999. At that date trading hours were extended to 18:00. 

DAX options and futures are traded from 9:00 till 17:30 in the first part of our sample 

(January - June 2000), and till 20:00 in the rest of the sample. The first option trade 

generally takes place several minutes after opening. Therefore, for the calculation of 

FTSE-100 realized volatility we take as the first return the difference between the 

opening price and the price at 8:40. Similarly, for the DAX we take the difference 

between the opening price and the 9:15 trading price as the first return. For the rest of 

the day we take the subsequent 5-minute returns. Since there are trading prices 

available just before and just after every 5-minute stamp, we had to make some 

selection. For the FTSE-100 realized volatility we take the price just following the 5-

minute mark, whereas for the DAX we use the average of the prices preceding and 

following it. The realized volatility is computed as the square root of the sum of the 
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squared intra-day returns. We tested that other methods for defining the 5-minute 

interval return yield similar realized volatility estimates. Moreover, we constructed a 

second estimate of realized volatility that includes the return from the closing of 

previous day to the first price of that day. Obviously, overnight returns are on average 

quite a bit larger in absolute terms than intra-day 5-minute returns, so the realized 

volatility that includes the overnight return is higher on average. For the FTSE-100 the 

annualized volatility based on squared daily returns is on average 15.8% compared to 

14.1% based on 5-minute returns and 16.2% including overnight returns. For the DAX 

the statistics are 18.2% based on squared daily returns, compared to 19.3% based on 

5-minute returns and 21.7% including overnight returns. With the DAX-data as an 

example, Figure 8.2 shows that daily squared returns are a noisy estimate of volatility 

and using it as a benchmark for the forecasting exercise in Section 8.3 would be 

inappropriate (see Blair et al. (2001)). 

Figure 8.2 Squared return versus realized volatility
This figure shows the comparison of a volatility estimate based on daily squared returns and a 
volatility estimate based on intra-day returns. The graph is based on DAX-30 futures prices in 
the period January 2000 until August 2001.  
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8.3  Empirical results 

This section describes the parameter estimates and comparisons of 

explanatory power between the ‘implied’ and historical’ GARCH model.  

8.3.1 Parameter estimates 

The ‘historical’ and ‘implied’ GARCH models are estimated daily using the 

implied index levels from futures prices and index option prices, respectively. As a 

benchmark for the in-sample fit of our GARCH option-pricing model, we use the ad-

hoc Black-Scholes model of Dumas, Fleming and Whaley (1998). We allow each 

option to have its own Black-Scholes implied volatility depending on the exercise 

price K and time-to-maturity T, and use the following quadratic functional form for 

σij:

ji5

2

j4j3

2

i2i10ij TMTTMM ω+ω+ω+ω+ω+ω=σ    (8) 

where σij denotes the implied volatility and Mi the moneyness43 of an option with the 

i-th exercise price and j-th maturity. For every exercise price and maturity we compute 

the implied volatility and derive option prices using the Black-Scholes model.  

                                                
43 Moneyness is defined here as Ki/Fj, with Fj being the futures price with maturity Tj.
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Table 8.1 Parameter estimates
This table reports mean and standard deviations of the parameter estimates from the daily 
maximum likelihood or least squares estimation. Panel A contains the statistics for the DAX-
30 (January 2000 – August 2001), panel B for the FTSE-100 (January 1995 – July 2000). For 

the implied GARCH model, ω is actually a result of setting the long run volatility equal to the 
long-run volatility from the time-series estimation and therefore updated but not estimated. For 
the implied GARCH model the risk-premium parameter  is directly taken from the time-series 
estimation. Note that for the GARCH models the conditional variance (not reported) is 
estimated simultaneously with the other parameters in the optimization procedure. RMSE is 
the root mean squared error of relative pricing errors. Number of observations for the time 
series calibration = 753 trading days. 

‘Historical’ GARCH ‘Implied’ GARCH Ad-hoc Black-Scholes

Parameter Mean (SD) Parameter Mean (SD) Parameter Mean (SD)

λ 0.067 (0.044) λ 0.067 (0.044) ω0 1.615 (0.504)

ω -0.409 (0.041) ω -0.556 (0.562) ω1 -2.318 (0.931)

α 0.965 (0.004) α 0.958 (0.054) ω2 0.936 (0.456)

β 0.144 (0.013) β 0.240 (0.144) ω3 -1.202 (1.482)

γ∗β 0.050 (0.008) γ∗β 0.118 (0.063) ω4 0.735 (2.929)

ω5 1.007 (1.051)

RMSE 0.0786 (0.043) 0.0664 (0.034)

λ 0.056 (0.019) λ 0.056 (0.019) ω0 2.073 (2.008)

ω -0.246 (0.087) ω -0.813 (1.107) ω1 -3.241 (3.989)

α 0.981 (0.008) α 0.927 (0.107) ω2 1.344 (1.984)

β 0.083 (0.038) β 0.142 (0.175) ω3 -0.724 (1.407)

γ∗β 0.067 (0.017) γ∗β -0.220 (0.155) ω4 -0.128 (0.561)

ω5 0.818 (1.370)

RMSE 0.0198 (0.019) 0.0126 (0.011)

Panel B: FTSE-100

Panel A: DAX-30
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Table 8.1 reports the parameter estimates for the time-series GARCH, the 

implied GARCH and the ad hoc Black Scholes model. Note that the implied GARCH 

risk premium is taken from the time-series calibration. The results show that the 

parameter estimates vary over time, though most estimates are relatively stable. It can 

be shown that pre-specifying the mean in the mean-reverting volatility model 

stabilizes the estimation process and therefore the estimates. For the time series 

GARCH calibration the effect is known and the results are not surprising, but for the 

option implied GARCH calibration the method might be appropriate to estimate the 

parameters more efficiently and to avoid local maxima. The evaluation criteria for the 

option pricing models, the root mean squared error (RMSE) defined earlier is on 

average lower for the ad-hoc Black-Scholes model44. However, the GARCH option-

pricing model with the constraint that the long run volatility is equal to the sample 

standard deviation has a competitive fit in-sample. The results of Heston and Nandi 

(2000) show that the ad-hoc Black-Scholes model might achieve better in-sample fit 

only by overfitting the data, but underperforms GARCH option pricing models out-of-

sample. An out-of-sample pricing analysis is beyond the scope of this study, but we 

can conclude that the pricing performance of our method is reasonably accurate. The 

resulting one day ahead volatility forecast produced by the ‘historical’ and ‘implied’ 

GARCH models are presented in Figure 8.3.  

                                                
44 This is similar to the results in Chapter 7, in which we showed that the volatility curve-fitting 
methods achieved a better in-sample fit than distribution-based methods. 
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Figure 8.3 Option implied volatility forecast vs. time series volatility forecast 
The graphs show the annualized one-day ahead volatility forecasts of the option implied 
GARCH model and the time series GARCH model. The first graph is based on the DAX-30 
data in the period January 2000 until August 2001. The second graph is based on the FTSE-
100 data in the period January 1995 until July 2000.  
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8.3.2 Lead-lag relations 

It can be seen from the DAX-graph that in general both methods lead to 

different volatility predictions, but move fairly well in line. On the German market 

most of the time the ‘implied’ GARCH volatility forecast (average = 22.1%) is lower 

compared to the ‘historical’ GARCH forecast (average = 23.7%), but during some 

periods the ‘implied’ is exceeding the ‘historical’. In the UK market we observe the 

opposite: the average implied forecast (18.3%) exceeds the ‘historical’ forecast 

(16.9%). Another difference is the much lower stability of the implied forecasts on the 

UK market than on the German market. Especially during the financial turbulence in 

the second half of 1997 and 1998 we obtain largely fluctuating implied forecasts, 

sometimes exceeding 50%. This is however in line with the realized volatility 

estimates, which are high and fluctuating as well in those periods. 

Visual inspection of the first graph suggests that whenever news is entering 

the market leading to a rising volatility estimate for the ‘historical’ GARCH model 

over the following days, this news is already incorporated in the ‘implied’ volatility 

forecast and the ‘implied’ forecast is suddenly exceeding the ‘historical’ one. 

Therefore, a positive or negative jump in ‘implied’ volatility forecast seems to indicate 

that there is new information in the market, but the ‘historical’ GARCH model needs 

some days to update the volatility estimate. As a result the time series of both local 

volatility estimates suggests that the ‘implied’ forecast is leading the ‘historical’ 

forecast on the German market, but possibly not on the UK market. We want to test 

this hypothesis by conducting a Granger causality test (Granger (1969)). The method 

determines the causal directions between two variables by indicating if changes in one 

variable induce changes in the other variable or if both variables are jointly 

determined. Under the hypothesis of one variable not Granger-causing the other 

variable, the test statistic has the F-distribution and a rejection of the null hypothesis 

indicates causality. Table 8.2 reports the results for the Granger causality test.  
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Table 8.2 Granger causality test
This table presents the results of a Granger causality test for ‘historical’ and ‘implied’ volatility 
forecasts. Panel A contains the statistics for the DAX-30 (January 2000 – August 2001, 424 
observations), panel B for the FTSE-100 (January 1995 – July 2000, 1394 observations). ‘Lag’ 
is the number of lags used in the regression. ‘F-stat’ is the Wald F-statistic and ‘Prob.’ is the 
corresponding p-value. The p-values for the DAX-30 indicate that the ‘implied’ is leading the 
‘historical’, but no such relation can be established for the FTSE-100. 

The test results on the UK market have somewhat contradictory outcomes for 

the different lag lengths. It seems most safe to interpret this as that no series leads the 

other. Since the FTSE-100 covers a relatively long history with much lower liquidity 

in the early years, we performed the Granger causality test also on (roughly) the 

second half of our dataset, from January 1998 onwards. Then results point weakly to 

the implied leading the historical forecast. We can reject with p-values of 7%, 6% and 

20% the second hypothesis, while we can only reject the first hypothesis at higher p-

values of 8%, 17% and 74%. The results are not convincing enough to draw any 

definitive conclusions, but we will explore this issue further when we formally 

analyze the predictive power of the different volatilities.   

Null Hypothesis F-stat Prob. F-stat Prob. F-stat Prob.

'Historical' forecast does not Granger 

cause 'implied' forecast 1.22 0.27 1.81 0.15 2.20 0.05

‘Implied’ forecast does not Granger 

cause ‘historical’ forecast 96.30 0.00 56.20 0.00 33.40 0.00

‘Historical’ forecast does not Granger 

cause ‘implied’ forecast 12.85 0.00 0.92 0.43 0.88 0.49

‘Implied’ forecast does not Granger 

cause ‘historical’ forecast 2.85 0.09 1.54 0.20 0.99 0.42

Panel A: DAX-30

Panel B: FTSE-100

Lag = 1 Lag = 3 Lag = 5
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On the German market the results are clearer. The test strongly suggests that 

our conjecture about a causality in the German market is statistically significant: the 

hypothesis that the option implied forecast does not cause the time series forecast can 

be rejected of all reasonable significant levels, while we cannot reject the hypothesis 

that the ‘historical’ forecast does not cause the ‘implied’ forecast on a 10% 

significance level for lags equal to 1 and 3 and on a 5% significance level for a lag 

equal to 5 trading days.  

So far we conclude that the volatility estimate derived from option prices 

seems the volatility estimate using historical return data on the German market, but 

does not seem to lead nor lag in the UK market. This would mean that the options 

market is more informative when forecasting DAX-30 volatility than FTSE-100 

volatility, which we test below. 

8.3.3 Forecasting power 

In the following the out-of-sample accuracy of the volatility forecasts is 

compared. Given the ‘historical’ volatility forecast xTS,t+1 and ‘implied’ volatility 

forecast xOPT,t+1 made at time t of the realized volatility yt+1 known at time t+1, we can 

evaluate both models by comparing the multiple R2 statistics from the regression 

1t1t,OPTOPT1t,TSTS1t uxxy ++++ +β+β+α=     (9) 

The multiple R2 statistics can be interpreted as a measure of information content of the 

mixture of forecasts, which have more predictive power than univariate forecasts (Day 

and Lewis (1992)). Table 8.3 reports the (multiple) squared correlation R2 from 

regressions of realized volatility on one or two volatility forecasts. Table 8.4 reports F-

statistics of the test that only one of the predictors forecasts equally well as both the 

predictors. The results are very much in line with the Granger causality test statistics. 
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Table 8.3 Regression results
This table reports parameter estimates and t-statistics (in parentheses) from regressions of 
‘historical’ and ‘implied’ GARCH forecasts on realized volatility, both including and 

excluding overnight returns. The parameter βTS is the coefficient of the historical time-series 

GARCH volatility, βOPT of the implied GARCH local volatility (see regression 9). Panel A 
contains the statistics for the DAX-30 (January 2000 – August 2001, 424 observations), panel 
B for the FTSE-100 (January 1995 – July 2000, 1394 observations). The R2 measures the 
explanatory power of the different predictors. 

Forecasting aim Forecasting method α βTS βOPT
R

2

Realized vol. excl. overnight  'Historical'  0.035   (2.4)  0.668 (11.2) 23.00%

 'Implied'  0.030   (2.9)  0.738 (16.0) 37.90%

'Historical' + 'Implied'  0.008   (0.6)  0.194   (2.8)  0.630 (10.5) 39.00%

Realized vol. incl. overnight  'Historical'  0.013   (0.8)  0.859 (11.6) 24.20%

 'Implied'  0.002   (0.2)  0.973 (17.4) 41.90%

'Historical' + 'Implied' -0.023  (-1.4)  0.218   (2.6)  0.851 (11.7) 42.80%

Realized vol. excl. overnight  'Historical'  0.026   (7.8)  0.678 (36.5) 48.80%

 'Implied'  0.059 (21.9)  0.452 (34.1) 45.50%

 'Historical' + 'Implied'  0.025   (8.0)  0.430 (17.0)  0.238 (13.7) 54.90%

Realized vol. incl. overnight  'Historical'  0.019   (3.7)  0.848 (29.6) 38.60%

 'Implied'  0.053 (13.5)  0.602 (31.0) 40.80%

'Historical' + 'Implied'  0.017   (3.6)  0.456 (11.8)  0.375 (14.0) 46.10%

Panel A: DAX-30

Panel B: FTSE-100
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Table 8.4 Additional Forecasting Power
This table reports the results of an F-test to determine whether the two regressors 
‘historical’and ‘implied’ in equation (7) explain realized volatility better than only one 
regressor. We report the statistics for the DAX-30 (January 2000 – August 2001, 424 
observations) and the FTSE-100 (January 1995 – July 2000, 1394 observations). The p-value 
indicates the probability of rejecting the null hypothesis. 

First, it can be observed that the predictors are able to explain a large chunk of 

realized volatility. The squared correlation R2 coefficients are above or in the upper 

range of the usually reported levels of around 10-40%. We believe this is partly due to 

our definition of implied volatility, but also due to the definition of realized volatility 

that is much more accurate than squared daily returns.  

Second, we analyze whether the predictors are unbiased or not. For the 

predictors to be unbiased the regression coefficients should be equal or sum up to 

unity and the constant should be undistinguishable from zero. On the FTSE we find 

that none of the predictors is unbiased, which is in line with the existing research on 

the forecasting power of implied volatility (Fleming (1998) and Blair et al. (2001)). 

This does not mean that the historical or implied forecasts consistently over- or 

undershoot the actual volatility: their averages do not deviate much from the average 

realized volatility, as shown earlier. Biased in this setting means that in times of high 

predicted volatility actual volatility can be expected to be somewhat lower and vice 

versa in times of low predicted volatility. On the DAX however, our predictors are 

much less biased, especially if we include overnight returns. In the latter case we 

cannot reject the hypothesis that the implied and time-series forecasts are unbiased: 

the constants are close to one, and the two coefficients equal or sum up to a value 

close to one.  

Forecasting aim Null hypothesis F-stat Prob. F-stat Prob.

Realized vol. excl. overnight 'Historical' does not improve forecast 6.17 0.23% 143.65 0.00%

'Implied' does not improve forecast 147.42 0.00% 86.25 0.00%

Realized vol. incl. overnight 'Historical' does not improve forecast 4.56 1.09% 91.40 0.00%

'Implied' does not improve forecast 161.99 0.00% 136.75 0.00%

DAX-30 FTSE-100
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It is seen finally that on the German market (DAX-30) the ‘implied’ forecast 

clearly outperforms the ‘historical’ forecast. The historical GARCH method performs 

rather poorly and the incremental information of the implied method is striking: the 

value of R2 increases by 16-18% when the realized volatility estimate is regressed on 

the historical and implied forecasts instead of historical forecast alone, whilst the 

increase is only 1% when the realized volatility estimate is regressed on the historical 

and implied forecasts instead of implied forecast alone. Therefore, the information 

from the time-series provides hardly any additional information compared to the 

option-implied information (see also Table 8.4). On the UK market however, both 

predictors perform comparably well and none of the two should be disregarded in 

making volatility forecasts, since a weighted combination drives the predictive ability 

up by 5-10% to around 50%. We suspected that this difference between the German 

and UK market might have something to do with the longer history of the FTSE-data, 

but results are qualitatively unchanged in the second half of our FTSE-dataset. An 

alternative explanation is that the London option market is less efficient than the 

market in Frankfurt and does not incorporate all the information that can be inferred 

from standard time-series models, even though the predictive power of the implied is 

relatively high. However, with most experienced European traders working in 

London, this does not sound very plausible and leaves us with a puzzle. 

8.4  Concluding remarks 

This chapter is concerned with short-term volatility forecasting. We compare 

and combine the information in historical returns and the information in option prices 

to investigate what source contains most valuable information in forecasting FTSE-

100 and DAX-30 volatility in the period of January 1995 till July 2000 and January 

2000 till August 2001 respectively. More particularly, we compare the forecasts of a 

time-series EGARCH model to the forecasts of an EGARCH model whose main 

parameters are derived from contemporaneous option prices. We use the Duan (1995) 

option-pricing model to identify an option-implied EGARCH process and the 

corresponding 1-day ahead volatility forecast. A large number of simulations and 

optimizations is required to identify the parameters of the 'implied' model. Those 

parameters vary over time, but are relatively stable and provide an accurate fit to the 

option prices.  
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Our results yield different outcomes on the two markets. In the German 

market (DAX-30), the implied volatility forecast is leading the historical forecast. The 

first forecast Granger-causes the second, but not the other way round. This is an 

indication that information is more quickly compounded in option prices than in the 

most recent returns. In the UK market (FTSE-100) to the contrary, we do not find 

convincing evidence for any lead-lag relation.   

This lead-lag intuition is confirmed in the out-of-sample 1-day ahead 

volatility forecasts. We test the implied and historical forecast accuracy against a 

realized volatility estimate that is constructed with 5-minute intra-day returns. This is 

a more reliable estimate of actual volatility than the very noisy squared returns. In the 

German market, the historical forecast is able to explain around 23% of realized 

volatility, whereas the same ability of the implied estimate is 1.5 times larger. In the 

UK market both predictors perform equally well and explain between 39% and 49%, 

depending on whether we include or exclude overnight returns in constructing realized 

volatility. In the UK market it is wise to construct a weighted combination of the two 

predictors, since that explains even 8% extra, but in the German market the implied 

forecast alone contains nearly all information. Moreover, in the German market the 

implied forecast, alone or combined with the historical forecast, is a relatively 

unbiased predictor of realized volatility including overnight returns. We believe this is 

a new and important result. Our result is also new that options on the leading German 

index DAX-30 contain more (if not all) information than the history of prices, 

contrary to the UK market. Options on the main UK index FTSE-100 do not contain 

more valuable information than the history of prices, although both yield powerful 

forecasts.  

Another contribution of this study is that we introduce a different and 

theoretically sound methodology to extract the information from the option prices. 

Previous studies try to explore information from Black-Scholes implied volatilities of 

traded options to estimate and forecast future volatility without explicitly modeling the 

underlying return process. In those studies various optimal weighting schemes are 

being proposed for the different implied volatilities at different strikes. In doing so, 

those methods ignore the information contained in the volatility smile pattern, and 

probably more importantly, in the volatility term structure. We do not compare our 

method to any such method, because a severe selection bias would be in place. Since 

different Black-Scholes implied volatilities could be combined in so many ways, the 

choice for one particular method would largely impact our comparison. 
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Apart from their theoretical drawbacks, we believe the ignorance of smile and 

term structure information by Black-Scholes-based methods may hurt their forecasting 

ability, especially at longer horizons. Therefore, in further research we will extend the 

forecasting to longer horizons of up to several weeks ahead. This opens up new 

interesting fields of research that are not solely focused on the second moment. For 

example, as an application of return distribution forecasting, we plan to calculate 

Value-at-Risk estimates and analyze their accuracy. 

Another extension that we plan to make in future research is a comparison of 

our implied GARCH volatility forecasts with a forecast based on high-frequency data. 

Such a comparison seems logical given the benchmark of realized volatility (based on 

high-frequency data) we employ. Although such a high-frequency forecast is solely 

based on historical returns, it has very recently shown to yield good forecasting results 

(Martens and Zein (2002), Li (2002), Pong et al (2002)). High-frequency models are 

able to respond more quickly and accurately on market movements than GARCH-type 

specifications with returns that are aggregated on a daily basis. When a long memory 

effect is incorporated in these models, they can even compete with and sometimes 

outperform implied volatility models at longer horizons. This makes them a natural 

challenger of the implied GARCH model in future research.  
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9 Pricing the spikes in power options 45

Since the early 90’s electricity markets are being reformed worldwide from a 

highly government controlled and vertically integrated environment into competitive 

markets. Before the deregulation, government authorities fixed prices based on 

(marginal) production costs in a very predictable manner. Now that many wholesale 

markets are deregulated, market participants have to get used to an environment with 

very volatile prices and high uncertainty. Participants face the additional complexity 

that volatility far exceeds the volatility in markets that are considered relatively risky, 

such as those for stocks, bonds, and other commodities. At the same time, the number 

of available instruments to control risks has grown radically. Markets gradually extend 

trading in day-ahead physical deliveries (spot or pool), and forward contracts with 

physical deliveries, to more advanced physical and financial products, such as swaps, 

futures, options, caps, floors and spark spreads. Most derivatives trade in over-the-

counter markets, but increasingly on exchanges as well. Examples of such trading 

venues are the NYMEX, Nord Pool, European Energy Exchange, Chicago Board of 

Trade, Minneapolis Grain Exchange, Sydney Futures Exchange, and New Zealand 

Futures Exchange.  

In this chapter we focus on the valuation of options on spot46 prices. Although 

options on spot (day-ahead) electricity form only a subcategory of tradable electricity 

contracts, their valuation is an economically important topic. First, options on spot 

prices are embedded in many contracts. For example, floating-price contracts with a 

minimum or maximum (cap or floor) contain in fact a series of call or put options, and 

are increasingly popular products among end users. Their tradable counterpart is a 

daily exercisable option, with exercise opportunities each day for a period of weeks, 

                                                
45 This chapter is partly based on: C. de Jong and R. Huisman, 2002, “Option Formulas for 
Mean-Reverting Power Prices with Spikes”, ERIM research paper.  
46 With spot electricity prices, we mean the prices for electricity that are determined one day in 
advance on spot exchanges, in pool systems or over-the-counter markets. We can have prices 
for time periods ranging from individual quarters of an hour, hours, blocks of hours (e.g. peak 
and off-peak) to daily averages (baseload). 
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months or year47. Finally, the valuation of options on spot electricity is important in 

valuing real assets. Flexible energy production capacity provides an option to produce 

or not in the hours or days ahead. The value of such flexible capacity is therefore 

equal to the value of a series of call options on the spot (short-term) price48, and our 

framework provides a basis to value those assets.  

For the valuation of electricity derivatives we cannot simply rely on models 

for financial and other commodity contracts. Electricity is a pure flow commodity 

with limited storability and transportability that strongly affect the behavior of 

electricity spot and derivatives prices. This lack of flexibility causes spot prices to 

depend largely on local and temporal supply and demand conditions. If demand and 

supply would respond promptly to price movements, prices would not deviate much 

from other commodity prices. The elasticity of both supply and demand however is 

relatively limited (see for example Pirrong and Jermakyan, 2000). Only a few large 

industrial customers have the flexibility to vary their power demand in response to 

market conditions, whereas most power plants can gear up generation only with a 

significant time lag. This time lag causes occasional extreme prices, called spikes, 

which revert within hours or days to a more stable level. All this results in the well-

documented characteristics of electricity spot prices, including spikes, mean-reversion, 

large seasonal variations and extremely high volatility. 

These peculiar characteristics of electricity prices have induced researchers to 

develop special models for electricity prices. Such models are the basis for risk 

management applications, for the pricing of physical and financial contracts, and for 

the valuation of real assets. With the increasing number of tradable contracts, the main 

challenge for researchers is the development of models to price those contracts. We 

recognize two different sets of electricity contract valuation approaches. The first 

approach is most popular among academics and consists of modeling simultaneously 

spot and forward contracts. Examples are Schwartz (1997), Hilliard and Reis (1998), 

Pilipovic (1998), Pirrong and Jermakyan (1999, 2000), Deng (2000), and Lucia and 

                                                
47 Daily exercisable options are the only tradable spot option contracts (to our knowledge). 
They can either be for physical delivery or financially settled. Typically, the holder of the 
option needs to indicate in the morning before the delivery day whether to exercise or not. This 
may be before or after settlement of the spot market. In the latter case, suboptimal exercise is 
possible.  
48 If fuel costs are volatile as well, then a generation asset can be considered an option on the 
difference between the electricity price and fuel costs, the spark spread. 
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Schwartz (2002). This approach faces the difficulty that standard arbitrage principles 

cannot be applied to map spot prices to forwards and futures. Therefore, the proposed 

solutions are naturally derived from the bond or storable-commodity pricing literature. 

Risk-neutral processes are obtained either through the specification of risk premia or 

convenience yields. A theoretical drawback of models based on convenience yields is 

that electricity is not storable, and therefore the interpretation of convenience yields is 

questionable. Moreover, fitting the theoretical forward curve to market data is a 

serious problem, since data is limited and several institutional factors influence power 

forward price dynamics.  

The second approach describes how to price options on spot, forwards or 

futures, and takes the forward curve as given. We take this approach that makes option 

valuation consistent with market prices, and we believe this is necessary to bridge the 

gap between academic theory and the derivative models that are predominantly being 

used in practice (Black & Scholes (1973) and Black (1976)). For option valuation we 

simply need models that adequately describe the dynamics of spot or forward prices, 

align them with the market forward curve, and then use arbitrage or “fair-pricing” 

principles to derive option prices49. Other examples of this approach are Miltersen and 

Schwartz (1998), Clewlow and Strickland (1999), Bjerksund, Rasmussen and 

Stensland (2000) and Koekebakker and Ollmar (2001). 

Price returns of longer-term futures and forwards fulfill the conditions for 

normality relatively well, and hedging related options with forwards or futures is often 

feasible. Consequently, standard arbitrage-based pricing-formulas may yield reliable 

results for options on longer-maturity forwards and futures. Spot returns however are 

clearly not lognormally distributed (see e.g. Lucia and Schwartz, 2002) and the 

standard option pricing formulas may yield totally incorrect outcomes. That’s why we 

need a different type of pricing approach, especially for further in-the-money and out-

of-the-money options.  

This chapter presents such an approach for determining the ‘fair value’50 of 

options on electricity spot prices. It is similar in spirit to Clewlow and Strickland 

                                                
49 It should be noted that forward trading is often liquid for only a few maturity series, but 
combinations of market prices with bottom-up models (see e.g. Fleten and Lemming (2001)) 
may be used to complete the forward curve. 
50 Since spot price risk cannot be hedged (at least not financially), no arbitrage-free pricing 
results can be obtained. The pricing approach thus yields ‘fair values’ instead of ‘arbitrage-free 
values’. 
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(1999), and Lucia and Schwartz (2002) but extends their mean-reverting framework 

with the necessary spikes, modeled as a separate and independent regime51. At the 

same time it keeps the attractive feature of closed-form formulas, where other spot 

price models (Bhanot (2000), Deng (2000), Knittel and Roberts (2001), Huisman and 

Mahieu (2001), and Escribano, Pena and Villaplana (2002)) would require extensive 

simulations. The two regimes (one for the ‘normal’ process, one for the spikes) 

capture the systematic alternations between stable and unstable states of demand and 

supply. The price process takes the main dynamics of electricity prices into account, 

such as seasonality, mean-reversion and, most importantly, spikes. Furthermore, a 

major contribution of the model is that it allows for multiple consecutive spikes, 

which is important for risk management and derivative pricing purposes. Based on this 

spot price model we present closed-form formulas to price European-style options on 

spot electricity prices. We furthermore show how the underlying spot price model can 

be aligned with the observed forward curve in the market, which makes the option 

valuation consistent with market data. 

The chapter is built up as follows. First, we present a spot price model that 

incorporates the most prominent features of electricity spot prices: mean-reversion and 

spikes. Next, in Section 9.2 we estimate the model parameters for Dutch APX 

baseload, peakload and off-peak spot prices. Section 9.3 first describes how the model 

can be aligned with market forward curves in a practical manner that avoids the 

separate modeling of seasonalities and risk premia. Then it presents closed-form 

formulas for European-style options and describes how other types of options can be 

priced. We end with some concluding remarks.  

9.1  The two regimes model for spot electricity prices 

A standard mean-reverting specification is relatively successful in modeling 

commodities such as oil and gas52, but not in modeling electricity, due to the existence 

of spikes. This 'spiky' behavior of electricity prices has mainly to do with the non-

                                                
51 Deng (2000) also proposes to model spikes in a regime-switching model. He derives 
formulas for pricing futures, forwards and standard options, but requires simulations to 
evaluate the outcomes. 
52 See for example Pindyck (1999). 



 135

storability of the commodity and the relative inelasticity of demand and supply, as we 

discussed in the introduction. Parameter calibration generally leads to unrealistically 

high volatility, incorrect mean reversion parameters and too high levels to which the 

spot prices would converge. 

Modeling spikes in a satisfactory framework has turned out to be a major 

challenge for researchers and practitioners in electricity markets. The most common 

approach is the addition of a jump diffusion process to the mean-reverting process. 

Stochastic jump models allow for sudden extreme returns that lead to long-term shifts 

in price levels. They are quite successful in stock markets, but do not incorporate an 

important characteristic of electricity prices: spikes are relatively short-lived. A jump 

diffusion process model allows for large price movements, but does not deal well with 

the fact that after a spike prices quickly bounce back to normal levels. In a mean-

reverting jump diffusion process this can only be achieved by an unrealistically high 

mean reversion parameter that forces prices back to normal levels after a spike. 

9.1.1  Regime-switch models 

Regime-switch models have the potential to solve some of these deficiencies, 

since they allow for distinct time-series behavior in different periods of time. The 

basic regime model has the following specification (Hamilton, 1989): 

( ) ( )( )2,0~ln ttttt NwhereS λλ σεεµ +=     (1) 

Here λ(t) is a latent variable representing the regime of the process in time period t. 

The process can thus be in one of the regimes at each time t. Huisman and Mahieu 

(2001) propose a regime-switch model with three regimes: there is a mean-reverting 

regime with moderate mean-reversion and volatility, an initial jump regime that 

models the process when prices suddenly increase or decrease, and a subsequent jump 

regime, that describes how prices are forced back to the stable regime. The two jump 

regimes both have a more extreme expected return and volatility than the mean-

reverting regime. The subsequent jump regime has a zero probability of occurrence if 

prices in the previous time period are in the mean-reverting regime, but a probability 

of one if they are in the initial jump-regime. The main drawback of this model is that 

it does not practically allow for multiple consecutive jumps, which are a frequent 
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phenomenon in electricity markets (see Figure 9.2) and crucial for risk management 

purposes and derivative valuation. Therefore, we introduce a model with only two 

regimes: a stable mean-reverting regime, and a spike regime. It might seem surprising 

that the omission of one regime gives the model the flexibility to capture consecutive 

jumps. However, we don’t need a third regime to pull prices back to stable levels, 

because we assume that prices in the two regimes are independent from each other. 

Put differently, if there is a generator outage for example, prices may be high for some 

time period, but once the generator is repaired, prices continue as normal. We believe 

this regime specification fits well with the structure of electricity markets and is 

confirmed in the data. As a side effect of the independence of the two processes, we 

can combine closed-form formulas of mean-reverting time series, with those of 

lognormally distributed spikes to simplify derivative valuations and to circumvent 

time-consuming Monte Carlo simulations.  

9.1.2  The two-regime framework 

The first step in modeling electricity spot prices, Pt, is the separation of the 

predictable component from the stochastic component (Hamilton, 1994).  

( ) ttt xtfPp +== ln        (2) 

The first component, f(t) accounts for predictable regularities, such as any genuine 

periodic behavior and any trend, and is a deterministic function of time. Seasonalities 

can be modeled with for example sinusoidal functions or with dummy’s for different 

seasons, to which we come back in Section 9.2. The stochastic second component, xt,

is the more interesting and we continue with its specification below. In the remaining 

we refer to the stochastic part xt as the “log spot price”, but remember that in fact it is 

the log spot price from which predictable trends are removed. 

In the two-regime framework, we assume that the spot price of electricity can 

be in one out of two regimes at each time period t. The first regime reflects the normal 

behavior of electricity prices and the second reflects dynamics in case of spikes. We 

assume that the deterministic trend f(.) in (2) remains the same across regimes, since 
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spike data is too limited to warrant a separate seasonal specification. We then specify 

the two-regime model as follows: 

( ) ( ) ttt xtfp ,λ+=        (3) 

where t = 1,…,T and λ(t) = M,S. The latent variable λ(t) may assume two values. We 

refer with λ(t) = M to the mean-reverting regime and λ(t) = S to the spike regime. So, 

tMx ,  is the stochastic process for the mean-reverting regime and tSx ,  is the stochastic 

process for the spike regime. For the first regime we specify a standard mean-

reverting process. 

Mean-reverting regime: ( ) tMtMMtMtM xxx ,1,1,, εµα +−+= −−   (4) 

),0(~ 2
...

, M

dii

tM Nwhere σε

The parameter µM is the long-run stationary level for the natural logarithm of spot 

prices. It determines to what value spot prices converge. The parameter  measures the 

speed of convergence from the current to the long-run level and is related to the 

concept of half-life, a well concepts in physics: the time it takes to move on average 

halfway from the current level to the long-term level53. The spikes of the second 

regime are modeled with a simple lognormal distribution whose standard deviation 

and mean54 are higher than those of the mean-reverting process. We have the 

following specification: 

Spike regime:  tSStSx ,, εµ +=     (5) 

),0(~ 2
...

, S

dii

tS Nwhere σε

53 Half-life = ln(0.5)/(1- )
54 So-called off-peak hours (when demand is low) are characterized by negative spikes, due to 
the abundance of supply relative to demand during those periods of the day. In those cases the 
mean of the spike becomes negative.  
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At any point in time the price process is either in regime M or regime S. 

However, the model specification does not end with the two regimes, since we haven't 

defined the transition process yet. For this we use a Markov transition matrix, which 

contains the probabilities of switching from one regime to the other. With two 

regimes, the Markov transition matrix  is a 2x2 matrix. The element in column j and 

row i contains the probability ij of going from regime i in period t to regime j in 

period t+1 (i,j = M,S).  
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If spot prices are in the mean-reverting regime today, we know that with probability 

MS the next day is a spike, and with probability 1- MS the mean-reverting regime 

continues. Similarly, we know that a spike is followed by another spike with 

probability 1- SM, and otherwise the mean-reverting regime resumes. 

We stated earlier that the two regimes are independent, which holds true for 

the prices in each regime. The above probability structure however ensures that there 

is a relation between the two regimes in terms of the probability that they occur. For 

example, when we observe a spike today, then we expect a spike tomorrow with a 

larger probability than when prices were normal. This is the type of relation we 

observe in electricity markets, but does not prevent us from disentangling option 

prices into two components, as long as prices are independent.  

9.1.3  Parameter estimation 

The parameters of the two regimes can be calibrated by maximum likelihood 

when we condition on the regimes. Based on the normal distribution of the error 

terms, the loglikelihoods have the following form: 
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The two-regime specification for spot prices introduces a technical complexity 

in the calculation of the mean-reverting loglikelihood: the Equation (7) depends on the 

mean-reverting price of the previous period, which does not exist if the previous 

period was a spike. This means that if prices were in a spike yesterday, we do not 

know from what level they have to revert today (if today is a ‘normal regime’ period). 

We solve this issue as follows. First, we rewrite the loglikelihood function (7) in a 

more general form: 

( )
[ ]( )
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Conditional on information about xM,t-i, the above equation gives the loglikelihood for 

an observed price xM,t  in the mean-reverting regime. We now use the model’s 

posterior probabilities to calculate for each of the k last prevailing log spot prices (xt-1,

…, xt-k) the probability that it was the last (observed) mean-reverting price. Next, we 

calculate the loglikelihood in Equation (9) assuming alternatively that the price in 

period t-1, …., t-k was the last mean-reverting price. If we look i periods back, in the 

likelihood equation we use Et-i[xM,t] and the appropriate (higher) variance Vart-i[xM,t] to 

capture the effect that prices are stochastically mean-reverting. These expected values 

and variance can be determined recursively as follows: 

[ ] ( ) [ ]1,2,1 1 −−− ⋅−+= tMtMtMt xExE ααµ     (10) 

[ ] ( )( ) [ ]1,2

2

,1 11 −−− ⋅−+= tMttMt xVarxVar α     (11) 

and the loglikelihood of the mean-reverting regime equals the probability weighted 

sum of the conditional loglikelihoods: 
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( ) ( )[ ] ( )∑
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,, ,Pr λλ   (12) 

We set k equal to 5, because the sum of the posterior probabilities then approaches 1 

well enough in our data. This solves the latent variable problem in the original 

Equation (7). 

The likelihood of the whole process equals the weighted sum of the 

likelihoods of the two regimes. The weights are determined by each regime's prior 

probability. If we denote the prior probability of prices being in the mean-reverting 

regime at time t by Prt-1[ (t) = M] and of being in the spike regime by Pr t-1[ (t) = S], 

then the likelihood function equals: 

( )[ ] ( )[ ]∑ ⋅=+⋅== −−
t

tSttMt LLStLLMtLL ,1,1 PrPr λλ   (13) 

This completes the specification of the mean-reverting regime model with 

independent spikes. In the next section we evaluate the parameters estimated from 

Dutch day-ahead prices.  

9.2  Model estimation results 

This section reports the estimation results of the two-regime model presented 

in the previous section, as well as the Huisman-Mahieu (2001) and a standard mean-

reverting model. We discuss some data issues and evaluate the parameter estimates to 

see whether the two-regime model picks up mean-reversion and spikes sufficiently 

well. We use those parameter estimates to price options on Dutch APX55 spot prices in 

the next section. 

                                                
55 See www.apx.nl 
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9.2.1  Data 

The Dutch power market was liberalized for large consumers on January 1st

2001. From that day onwards the wholesale day-ahead prices on the Amsterdam 

Power Exchange (APX) reflect the forces of demand and supply. Trading volume on 

this electronic exchange has increased steadily, notably since January 2002, when 

medium-sized consumers became free to choose their energy-supplier as well. By 

June 2002 the APX-volume represented approximately 14% of total electricity 

consumption. We use data from January 2nd 2001 till June 30th 2002 of baseload, peak 

and off-peak day-ahead prices, totaling 545 observations for each index. The exchange 

defines baseload prices as the equally weighted average of the 24 individual hourly 

prices. The peak prices are the average of hour 8 till 23 (7:00 – 23:00); the off-peak 

prices are the average of the 8 remaining hours 1-7 and 24 (0:00 – 7:00, 23:00 – 

24:00).  

Figure 9.1 Weekday averages of APX prices
Average APX prices on individual weekdays in the period 2 January 2001  
till 14 June 2002 for baseload, peakload and off-peak hours. 

0

10

20

30

40

50

60

M
on

da
y

Tu
es

da
y

W
ed

ne
sd

ay

Th
ur

sd
ay

Frid
ay

S
at

ur
da

y

Sun
da

y

E
U

R
/M

W
h

Peakload

Baseload

Off-peak



142

The division in baseload, peakload and off-peak prices reflects part of the 

seasonality during a day, but prices also exhibit considerable seasonality during a 

week (see Figure 9.1). In general, prices (and electricity consumption) are lower 

during the weekend, especially on Sundays. At first sight there seems to be a 

downward trend from Monday to Friday, but this is probably due to some outliers56. If 

we deseasonalize the natural logarithm of spot prices by reducing them with their 

weekday average, total variance is reduced on average with 20%: weekday influences 

explain about one fifth of total variance. In terms of our mathematical equation (2) f(t) 

includes a dummy for Saturdays, and a dummy for Sundays (including public 

Holidays). In the Dutch spot prices we found only very weak evidence of seasonality 

over the year, so no specification is included for it. The seasonal component f(t) is 

estimated jointly with the stochastic model parameters.  

Prices in the Dutch market have witnessed already some serious spikes (see 

Figure 9.2). For example, the summer of 2001, which was expected to be a quiet 

period, contained some unexpected price movements. Those spikes even triggered an 

official investigation, but no irregularities were found: it was reported to be a simple 

coincidence of generator outages. Another series of high prices were observed close to 

the end of the year 2001. Since January 2002 prices were relatively stable till the 

second week of June, but June ended with some high prices.  

                                                
56 Median prices for each weekday are very stable from Monday to Friday, so the differences in 
average prices are mainly a result of a few outliers (or spikes). 
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Figure 9.2 APX baseload prices 2 January 2001 – 30 June 2002

APX prices are no exception to the phenomenon that prices in electricity 

markets are different from those in most other financial markets. This is clearly 

reflected in the summary statistics for the baseload, peakload and off-peak returns (see 

Table 9.1). All three series are characterized by a relatively high daily standard 

deviation of between 35 and 42%. For comparison: most individual stocks have daily 

standard deviations of 1-2% and only exceed 5% for the most risky stocks. The daily 

fluctuations in APX-prices can be enormous, reaching levels of over 200%. Especially 

the off-peak hours, with sometimes very low price levels, exhibit tremendous outliers. 

The extraordinary high kurtosis level of off-peak returns indicates that the fourth 

moment is probably not even defined. Returns are left-skewed, which may be 

surprising at first sight, since prices are clearly right-skewed due to the spikes. This 

indicates that prices do not only spike upwards very fast, but come down even faster, 

as the minimum and maximum returns indicate as well. This supports our choice to 

model spikes as a truly separate regime. 
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Table 9.1 Summary statistics APX returns
This table presents summary statistics for the daily logreturns of APX day-ahead baseload, 
peak and off-peak indices in the period 2 January 2001 till 30 June 2002. Weekday influences 
(see Figure 9.1) were first removed from the price series before calculating the statistics. 

9.2.2  Results 

We use the sample with one and a half year of daily observations and three 

time-series to estimate model parameters. Even though the loglikelihoods of the 

regime-switching models are relatively complex, convergence was never a problem 

and independent of starting values. Results (Table 9.2) indicate that the regime models 

improve the fit considerably compared to the mean-reverting specification. 

Apparently, spikes that destroy the loglikelihood in the mean-reverting model are 

‘transferred’ to the different spike and jump regimes where they fit considerably 

better.  

Our model picks up on average 50% more spikes than the Huisman-Mahieu57

model. This is most likely explained by the fact that their model requires that an up-

jump is immediately followed by a down-jump, and is thus more restrictive on jumps. 

The speed of mean-reversion in both regime models is below that of the mean-

reverting model; it is also lower for our model than for the Huisman-Mahieu model. 

Apparently, if strikes are not (or not so often) being detected, than a strong mean-

reversion is required to pull prices back to normal levels. So the omission of spikes in 

the model specification leads to a misspecified mean-reverting process. Moreover, 

                                                
57 In the Huisman-Mahieu (2001) model we count the frequency of spikes as the sum of the up-
and down-spikes. 

Baseload Peakload Off-peak

Standard deviation 35.9% 39.5% 41.2%

Minimum -204.4% -186.2% -452.3%

Maximum 161.3% 179.0% 396.3%

Skewness -0.17 -0.07 -0.78

Kurtosis 4.60 3.80 45.19
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since the regime models remove spikes from the stable process, their volatilities are 

considerably lower compared to the pure mean-reverting model. The mean-reverting 

volatility in our model is by far the lowest, because it transfers most erratic prices to 

the spike regime. The regime models indicate that the long-run average target levels 

for the baseload and peak spot prices are 5 and 8 €/MWh lower compared to the pure 

mean-reverting model.  

Our regime specification picks up spikes well: expected spikes are positive for 

baseload and peakload, negative for off-peak, and have a much higher volatility than 

the stable mean-reverting process. When prices were mean-reverting on the previous 

day, a spike can be expected with a probability between 8 and 14%. Overall, between 

15 and 27% of the prices are spikes, since spikes last on average around 2 days. For 

the pricing of far-out-of-the-money options, it might be considered that our regime 

model picks up small spikes too easily, and thus underestimates the magnitude of 

‘real’ spikes. This is a common problem as well for stochastic jump models, and 

partly related to parameter calibration with maximum likelihood. It is possible to 

mitigate this problem with simple weights in the likelihood function58.

The spikes in both regime models have an expected magnitude E[St | (t) = S]  

of 53-57 €/MWh, and exhibit large possible swings. There is no doubt that the spikes 

deviate largely from the stable price levels and the data show it is crucial to separate 

them properly. For example, in the mean-reverting model a baseload price of over 100 

€/MWh is nearly impossible (around 0.01% probability). In our regime-switch model 

its probability of 1.9% is much closer to the observed frequency of 2.6%.  

For risk management purposes and derivative pricing, it is important that a 

model not only allows for spikes, but also for multiple consecutive spikes, a feature 

that is not contained in the Huisman-Mahieu model. In the estimation process the 

model assigns to each price a probability of being a mean-reverting price or a spike. 

The clustering of these ex post probabilities are informative to analyze, as we did in 

Figure 9.3 for baseload prices in the period June-August 2001. This was a turbulent 

period with several high spot prices, peaking even above 250 €/MWh on 3 July 2001. 

The graphs show several clusters of spikes. Examples are the periods 25-27 June, 2-7 

July and 26-28 August 2001. Not surprisingly, these high spot prices are in general 

                                                
58 We tested that a very small adaptation to the loglikelihood function, that disfavours spikes, 
can reduce the frequency of spikes by over 50%, while at the same time keeping the 
loglikelihood within a few basis points from its maximum. We disfavoured spikes, by 
increasing the volatility in the ln( t) term by 25% in the loglikelihood specification (8). 
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labeled a spike with a higher probability than low spot prices. For example, if a trader 

had sold a daily callable option for the first week of July, a considerable loss would 

have been his fate, and the outcome would have been overlooked by a risk 

management system that ignores the clustering of spikes over time. 

Table 9.2 Estimation results (next page)
This table presents the parameter estimates and loglikelihoods of three different time series 
models for APX day-ahead baseload, peakload and off-peak hours. Estimates were obtained by 
maximum likelihood using data from 2 January 2001 till 30 June 2002. See the text for an 
explanation of all parameters and symbols.
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α 0.414 (0.035) 0.421 (0.035) 0.576 (0.040)

µ 3.414 (0.035) 3.609 (0.037) 2.795 (0.025)

σ 0.323 (0.010) 0.353 (0.011) 0.307 (0.009)

E[St] 32.018 39.292 17.154

Sunday -0.569 (0.035) -0.613 (0.038) -0.388 (0.035)

Saturday -0.231 (0.036) -0.274 (0.039) -0.058 (0.036)

loglikelihood -0.288 -0.377 -0.237

α 0.404 (0.045) 0.399 (0.029) 0.273 (0.033)

µM 3.332 (0.030) 3.496 (0.028) 2.851 (0.028)

M 0.207 (0.011) 0.209 (0.011) 0.155 (0.007)

E[St | (t) = M] 28.589 33.727 17.509

µS 0.590 (0.202) 0.583 (0.089) -0.668 (0.109)

S 0.559 (0.136) 0.570 (0.053) 0.667 (0.069)

E[St | (t) = S] 59.046 69.565 11.074

Sunday -0.501 (0.025) -0.528 (0.027) -0.284 (0.019)

Saturday -0.230 (0.026) -0.266 (0.026) -0.093 (0.018)

MS 0.066 (0.018) 0.092 (0.021) 0.071 (0.014)

% spikes 11.6% 15.6% 12.4%

loglikelihood -0.109 -0.191 0.086

α 0.356 (0.056) 0.243 (0.027) 0.170 (0.031)

µM 3.289 (0.028) 3.433 (0.029) 2.858 (0.035)

M 0.157 (0.019) 0.123 (0.008) 0.116 (0.008)

E[St | (t) = M] 27.157 31.209 17.542

µS 3.829 (0.131) 3.841 (0.058) 2.392 (0.077)

S 0.674 (0.065) 0.539 (0.039) 0.551 (0.048)

E[St | (t) = S] 57.760 53.826 12.728

Sunday -0.468 (0.027) -0.474 (0.019) -0.280 (0.021)

Saturday -0.217 (0.021) -0.252 (0.019) -0.100 (0.015)

MS 0.084 (0.028) 0.139 (0.025) 0.110 (0.022)

SM 0.473 (0.096) 0.385 (0.076) 0.599 (0.087)

% spikes 15.1% 26.6% 15.6%

Loglikelihood -0.075 -0.137 0.166
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Figure 9.3 Ex post spike probability
Baseload APX prices and their ex post probability of being a spike in the period 1 June-31 
August 2001.

9.3  Option valuation 

In this section we present a methodology for the pricing of European-style 

options on spot prices using the proposed two-regime spot price model. We present 

closed-form formulas for standard calls and puts; pricing of caps, floors and swaptions 

is then straightforward. Closed-form formulas are important for various reasons. First, 

closed-form formulas may be more insightful than simulation-based calculations. For 

example, we will obtain two option value components: one related to the mean-

reverting process, one to the spikes. Second, electricity traders often need to get quick 

answers in their day-to-day activities on the relative pricing of different options in the 

market. For them speed is often so important that it is necessary to use closed-form 
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formulas instead of simulation-based methods. Finally, closed-form formulas are very 

useful if options are being valued in a risk management application. Risk management 

statistics, such as Value-at-Risk can be computed much faster if no simulations are 

needed for the valuation of individual products in the portfolio.  

Our results apply to European-style options on the spot price, which excludes 

a range of options that are traded in the marketplace. In electricity markets we also 

observe for example options on (average-price) forwards59, and early exercise is 

sometimes allowed (American-style options). In the section with concluding remarks, 

we briefly describe how these kinds of options can be valued, within or without our 

regime framework. 

9.3.1  Option valuation in a mean-reverting framework 

For a better understanding of our approach, and to make meaningful 

comparisons between the two models, it is worthwhile to first review option valuation 

in a mean-reverting framework. Valuation of European-style options in a continuous 

time mean-reverting framework is for example described in Clewlow and Strickland 

(1999). A problem with continuous-time models is however that they cannot be 

perfectly estimated with discrete time data. Moreover, since a regime-switch model is 

inherently discrete (due to the regime switches), we have to make some adjustments to 

the aforementioned model. 

In continuous time the mean-reverting model is formulated as follows (with 

dzt a random draw from the standard Normal distribution): 

( ) tt

t

t dzdtx
x

dx
σµα +−= −1       (14) 

                                                
59 In most markets a forward contract for the period of July-02 for example, entails the delivery 
of a constant electricity flow during the whole month of July at a fixed price. The value of the 
forward does therefore not only depend on the price on some particular day in July, but on the 
average price during the whole of July. 
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For the variance of x  (the variance of the log spot price  periods from now) there 

exists a very elegant formula. Its properties are informative to analyze and similar to 

those of the variance in the discrete time model: 

( )( )ατ
α

σ
τ 2exp1

2
)(

2

−−=xVar      (15) 

Without mean-reversion, the variance of a process converges to a level equal to the 

instantaneous variance multiplied by the time to maturity. With mean-reversion, the 

future distribution remains within stricter bounds: the higher the level of mean-

reversion, the narrower is the future distribution. On forward prices this mean-

reversion has the effect that the volatility of forward prices decreases exponentially 

from the current spot price volatility towards (almost) zero for longer maturities.  

In Figure 9.4 the differences in volatility behavior are clarified between a 

standard Brownian motion and a mean-reverting time-series. In a world of Brownian 

motion the instantaneous volatility of a forward contract is independent of maturity60.

This culminates in a forward distribution at maturity with a standard deviation that is 

equal to the instantaneous volatility times the square root of maturity. In a mean-

reverting model on the other hand, this standard deviation equals the square root of 

Equation (15) for a forward with maturity . Since the last term in (15) converges to 

unity for longer maturities, this standard deviation converges to a constant. 

                                                
60 See for example stock (index) futures whose volatility is nearly constant across maturity. 
This can simultaneously be explained by arbitrage and the non-existence of mean-reversion. 
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Figure 9.4 
Forward volatilities of a Brownian motion (A) and a mean-reverting (B) continuous time 
process. The instantaneous volatility is the volatility of the forward at time 0. The end of term 
volatility is the standard deviation of the forward return from time 0 till maturity.  

Returning to the discrete time world, no elegant formulas as Equation (15) for 

the variance are available. Instead, the variance of the process must be determined 

recursively from the variance one period back. The mean-reverting model assumes 

that the one period ahead variance equals 2.  By taking the variance of Equation (4) 

we obtain the variances of x  for maturities  = 1, 2, …. : 
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Similar to the variance in the continuous time model, this variance converges to a 

constant as well (Equation 16b). For small mean-reversion parameter  the difference 

between the two approaches zero, but for increasing levels of mean-reversion, it pays 
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off not to treat a discrete time model as a continuous time model. For example, with 

mean-reversion parameter  equal to 1/2, the stationary variances are a non-negligible 

factor 1/3 apart. 

If spot prices are mean-reverting (so without spikes yet), then all ingredients 

to value options on forward contracts are now available (Clewlow and Strickland, 

1999): an end-of-term forward distribution being lognormal, market forward prices 

and the variance as defined in Equation (16). Application of the Black’s (1976) 

formula for the valuation of a European call option with maturity  and strike price K 

thus yields (N(.) is the standard normal cumulative distribution function): 

τ

τ
τ

w

w
K

F

d
2
1ln +









=                   (17a) 

( ) ( ) ( ) ( ){ }ττττ wdKNdNFrKCall −−⋅−= exp,               (17b) 

9.3.2    Option valuation in the regime switch model 

The idea behind the option valuation in the proposed regime switch model, is 

to split up the option price in a mean-reverting component and a spike component. We 

use the feature that the prices in both regimes are independent and lognormally 

distributed, even though the volatilities of both regimes may be wide apart. The 

volatility of the mean-reverting price distribution changes with maturity, as explained 

earlier, but the spike distribution is independent of maturity. Since the prices in the 

two distributions are independent an option value can be calculated for each regime, 

conditional on the price process being in that regime. The weight that each component 

receives, is determined by the probability of a spike. The reason that the two option 

components can be added up, is that the spikes are independent from the mean-

reverting prices. For example, a European-style call option on the spot Pt, with 

maturity τ and strike K has a ‘fair’ value of (ignoring time-value): 
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where πM,τ and πS,τ are the prior probability of a mean-reverting regime and spike 

regime at maturity τ respectively and λ indicates the type of regime. CallM and CallS

are the values of a call option if the process would be in the mean-reverting and spike 

regime. It is important to understand that the value of a call option is a weighted 

average of these two regime-dependent call options, because τ periods from now, the 

spot price is not a weighted combination of mean-reverting price and spike price, but 

either a mean-reverting price or a spike price61. How to calculate the values of the two 

regime-dependent call values is defined below. 

Variances in each regime 

 For the valuation of the mean-reverting component (CallM), we apply Black’s 

(1976) formula as explained in the previous section (Equation 16 and 17). For the 

valuation of the spike-component (CallS) we apply Black’s (1976) result again, 

because the spikes are lognormally distributed as well. The inputs to both formulas are 

the forward prices and the variances of the price processes in the two regimes. The 

variance of the log spot price in the spike process is independent of maturity and 

equals S
2. For the variance of the mean-reverting component we rely on the recursive 

formula in Equation (16a).  

( ) 2

,, SSS xVarw σττ ==                  (19a)

( ) 2

1,

2

,, )1( MMMMM wxVarw σα τττ +−== −               (19b)

                                                
61 The expected spot price however is a weighted combination. 
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Forward price levels in each regime 

In order to determine the forward price in the mean-reverting and spike 

regime, the expected spot prices in both regimes could be used. However, it is 

preferable to take account of market forward prices, because we don’t want our 

derivative values to deviate from market prices because we have a different view on 

forward prices, but because we have a different view on the spot price process, such as 

its volatility and level of mean reversion. Therefore, the spot price level needs to be 

aligned with market expectations. Moreover, this avoids the tedious modeling and 

estimation of all seasonal influences and risk premia. For example, in our spot price 

data we could not find significant seasonal variations over the year, but the current 

forward curve indicates that traders believe prices in the winter to be higher than in the 

summer.  

While employing market forward prices, we have the choice to adjust either 

the expected spike level to market forward price levels or to adjust the mean-reverting 

level or to adjust the relative probabilities of the regimes (or both). Each of these 

changes is defendable. We choose to adjust the expected spike level, because we 

believe it’s especially the risk of spikes that justifies risk premia in forward markets. 

Such a risk premium may cause a possible mismatch between market forward prices 

and expected spot price levels in our model.  

Our procedure works as follows. Suppose we observe market forward prices 

F  with maturities  = 1, …, N. Then we need to find the appropriate spike and mean-

reverting forward prices FM,  and FM,  such that the probability-weighted sums equal 

the market forward prices: 

τττττ ππ ,,,, MMSS FFF +=       (20) 

where πM,τ and πS,τ are the posterior probabilities of a mean-reverting regime and spike 

regime at maturity τ respectively. These probabilities of a future regime depend on the 

regime today and the regime switching probabilities. They can be calculated by τ
times premultiplying today’s posterior regime probabilities with the transition matrix 

, defined in Equation (5). We then determine recursively the mean-reverting forward 

price level, based on the result that it equals the expected spot price level in the mean-
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reverting regime (see Equation 21a below). The remaining part of the market forward 

price belongs to the spike regime (Equation 21b). 
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Option values in each regime 

With their means and variances specified, the lognormal distributions of the 

spot price processes are now completely defined. The option values conditional on 

each regime, CallM and CallS are obtained with the Black (1976) formula, as defined in 

equation (17). We thus obtain: 

( ) ( ) ( )τπτπτ ττ ,,, ,, KCallKCallKCall SSMM ⋅+⋅=    (22) 
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This completes the derivation of a European-style option value on a spot electricity 

price, where the exercise price is K and the option matures at maturity .

9.3.3 Option valuation example 

As an example we apply the above-described procedure to the forward curve 

in the Dutch market on 30 June 2002. Forward contracts in electricity markets apply to 

delivery of the commodity during a certain period. So, the forward prices depend on 

the expected average spot prices in those periods. In our model however, we need the 

price of a forward maturing on one single day. We calculate the value of options on 

the spot that mature in the middle of each delivery period and calculate the number of 

days ( ) till those dates (see Table 9.3). With the moderate preceding weekend prices, 

the model produces a spike probability of 9.0% on the first day of July for baseload 

prices and 15.5% for peakload prices. These prior probabilities are obtained by pre-

multiplying them iteratively by the transition matrix , and converge relatively fast to 

a stable 15.1% for baseload and 26.6% for peakload.  

Next, we derive the forward prices and variances for each regime. The model 

(Equation 21a) determines the mean-reverting forward price. These mean-reverting 

forward prices are some Euros below the market forward prices (Table 9.3). The 

difference between the two is due to the expectation of occasional spikes (Equation 



 157

21b), which lie in the range of 50-90 €/MWh for baseload and 75-120 €/MWh for 

peakload. The variance of the spike forward price is stable across maturity, but the 

variance of the mean-reverting forward converges to a level of 4.2% for baseload and 

3.5% for peakload.62 This is considerably lower than the spike variances of 45.5% and 

29%. Therefore, combined with their considerably higher expected level, it is not 

surprising that the spikes form an important ingredient of the option values.  

Figure 9.5 Mixture of lognormals
Probability density functions for the spot price regimes on 15 July 2002,  
based on the model estimated on 30 June 2002. 

                                                
62 The slightly higher mean-reverting variance for baseload than peakload prices may be 
explained by the relatively high frequency of spikes obtained from the peakload estimates.  
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Table 9.3 Forward curve construction

This table describes the process of moving from market forward prices to a spot price model 
that is in lign with the market. The first column contains the contract type, the second column 
the time-to-maturity in days. The third column lists the Dutch forward prices in €/MWh on 1 
July 2002 for baseload and peakload electricity respectively. Source: Platts Dutch Power 
Assessments delivered through Moneyline/Telerate. The other columns combine the parameter 
estimates with the market prices to show the probability of a spike (Pr[Spike]), and the forward 
prices and variances of each regime. 

Contract Price Pr[Spike] FM, FS, wM, wS,

Day ahead 1 27.00 9.0% 22.27 74.57 2.5% 45.5%

Week ahead 7 32.50 15.0% 24.17 79.59 4.2% 45.5%

July 15 30.25 15.1% 24.32 63.66 4.2% 45.5%

August 46 28.43 15.1% 24.32 51.56 4.2% 45.5%

Q4-02 138 30.13 15.1% 24.32 62.84 4.2% 45.5%

Q1-03 230 31.55 15.1% 24.32 72.26 4.2% 45.5%

Q2-03 319 34.25 15.1% 24.32 90.17 4.2% 45.5%

Day ahead 1 38.00 15.5% 25.79 91.58 1.5% 29.0%

Week ahead 7 41.75 26.4% 27.51 81.41 3.5% 29.0%

July 15 40.75 26.6% 27.88 76.36 3.5% 29.0%

August 46 41.25 26.6% 27.92 78.12 3.5% 29.0%

Q4-02 138 43.00 26.6% 27.92 84.71 3.5% 29.0%

Q1-03 230 46.25 26.6% 27.92 96.95 3.5% 29.0%

Q2-03 319 52.13 26.6% 27.92 119.09 3.5% 29.0%

Panel B: Peakload contracts

Panel A: Baseload contracts
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In Figure 9.5 we plot the distributions of each regime for expected 15-day 

ahead baseload prices, based on the parameter estimates in Table 9.2. The actual 

distribution is a weighted average of the two individual regime-dependent probability 

density functions. In the example this means approximately 85% weight for the mean-

reverting and 15% for the spike regime. Although a 15-day maturity is not particularly 

long, we observe in Figure 9.5 that the mean-reverting regime prices have a very 

narrow distribution, which is due to a low daily standard deviation of 20.5%. The 

expected mean-reverting spot price is with 99% probability in the range of 14 to 40 

€/MWh. The spike regime prices in contrast are much wider distributed with a 

standard deviation of 67.5%. Here a 99% confidence interval covers a range as wide 

as 9-288 €/MWh. Prices reaching very high levels are thus far more likely in the 

regime-switch model (where they occur in the spike regime) than in the mean-

reverting model (without spikes).  

In the mean-reverting model the standard deviation of the expected spot price 

is somewhere in between the mean-reverting regime and the spike regime at a level of 

39.8%. This implies that spot prices 15 days in the future will leave a bandwidth of 

20-46 €/MWh only once in 100 years. That’s why the option values that result from 

our regime-switch spot price model largely deviate from options in a mean-reverting 

framework. In Table 9.4 we make a comparison. Option values were calculated of call 

options that mature in 1, 7, 15 and 46 days, with strike prices of 20, 30, 40 and 50 

€/MWh. We take the parameter estimates and forward values of 30 June 2002 (Table 

9.2 and 9.3) and assume an interest rate of 4%. 
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Table 9.4 Call option values  
This table shows values of European-style options on power spot prices according to the mean-
reverting model (panel A) and the regime-switch model (panel B). Parameter estimates are 
taken from Table 9.2 and forward prices from Table 9.3. Option values are calculated for four 
different maturities and strikes of 20, 30, 40 and 50 €/MWh. 

For low strike prices, there is very little difference between the mean-reverting 

and the regime-switch option values. Their main value driver for low strikes prices is 

the current forward price, which explains the differences between maturities. 

Increasing the strike level progressively from 20 €/MWh to 50 €/MWh option values 

in the mean-reverting model quickly decline towards zero. As we saw earlier, there is 

not much weight in the right tail of the mean-reverting distribution, resulting in hardly 

any value for deep out-of-the-money options. In the regime-switch model however, 

the spikes take account of the right tail, which explains that option values are 

substantial even for far out-of-the-money options. This clearly leads to more realistic 

option values that take into account that spot prices can be very erratic. 

The difference between the two models is best understood if we consider 

options with a strike price of 50 €/MWh. The mean-reverting model indicates those 

options are close to worthless, although we know that it is certainly not impossible 

Maturity 20 30 40 50 20 30 40 50

1 7.71 2.34 0.57 0.13 7.46 4.18 3.43 2.84

7 12.50 4.00 0.61 0.06 12.90 7.96 6.40 5.35

15 10.27 2.59 0.28 0.02 10.66 5.73 4.30 3.43

46 8.46 1.68 0.14 0.01 8.89 4.09 2.83 2.14

1 18.13 9.77 4.52 1.90 18.01 11.72 10.08 8.68

7 21.73 11.87 4.14 0.86 21.79 14.47 11.31 9.18

15 20.71 10.87 3.41 0.59 20.77 13.32 10.11 8.05

46 21.12 11.30 3.68 0.67 21.18 13.73 10.50 8.41

Panel B: Peakload options

Mean-Reverting Model Regime-Switch Model

Strike (€/MWh)

Panel A: Baseload options
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that spot prices will reach levels above 50 €/MWh on individual days. As an 

illustration, in our sample baseload prices exceeded this level on more than 8% of the 

days and peakload prices on more than 13% of the days. So even options with high 

exercise prices have substantial value, which is entirely ignored by the mean-reverting 

model.  

For example, the costs of a maximum price (cap) would severely be 

underestimated with the mean-reverting model. Caps are equal to a series of call 

options and frequently embedded in retail electricity contracts, where they form a 

bridge between fixed and floating price contracts. Let’s consider a contract where the 

end-user pays the daily baseload APX-price on each day in July, but with a cap of 50 

€/MWh. If we take the possibility of spikes into account, such a cap would cost 

approximately 3.43 €/MWh (based on an average maturity of 15 days), whereas a 

supplier would give it away for free if the wrong model were being used.  

9.4  Concluding remarks 

In this chapter we presented a model to value options on electricity spot 

prices. It takes into account the two main features of electricity prices: strong mean-

reversion and occasional ‘spikes’. Closed-form formulas for European-style options 

were obtained by disentangling the mean-reverting spot prices from the spikes, such 

that option values can be broken down in two components that were each valued with 

Black’s (1976) formula for options on forwards and futures. We showed that it is 

crucial to include spikes in any option price formula, since they represent substantial 

value, especially for far out-of-the-money options. 

Our results apply to European-style options on the spot price, which excludes 

a range of other tradable options. In electricity markets we also observe for example 

options on individual hours, options on forwards, and early exercise is sometimes 

allowed (American-style options). We believe a regime model could work well for 

individual hours, since these are characterized by periods of spikes and stable periods 

of mean-reverting prices as well. A difficulty here is that individual hours are even 

more volatile and spiky than daily averages, exhibit strong seasonality, and that prices 

on the same day strongly interact.  

Forwards whose value depend on the average price during a certain period on 

the other hand are hardly affected by the presence of spikes, as long as the averaging 
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period is long enough. The pricing of options on those forwards can therefore best be 

done by modeling the forwards directly, instead of aggregating spot prices into 

average price forwards. Moreover, the main uncertainty for options on forwards 

emanates from variations in the long-run average price. Our model is a one-factor 

model, which means that the long-run average price is not stochastic. This is not so 

relevant for the valuation of options on the spot, but it would be incorrect to use the 

same one-factor model for long-term options on forwards.  

Early exercise is not really an issue in valuing options on spot prices. 

Naturally, the holder of the option will wait till the last moment before deciding to 

exercise or not. Therefore, in practice American-style options on the spot will behave 

like European-style options.  

Our application of Black’s formula implies that the risks of the mean-

reverting prices and the spikes can be hedged, which is not completely realistic. With 

increasing liquidity in most electricity forward markets, it might be possible to hedge 

some part of the uncertainty in option prices, but the largest uncertainty of options on 

the spot result from the spikes, and there are no financial63 strategies to hedge spikes 

properly. Therefore, the derived option values can best be regarded as fair prices if 

uncertainty is ignored64. However, market participants might be willing to price 

options somewhat higher, because spikes make especially selling options risky. The 

model makes such an adjustment relatively easy, since it yields an explicit value for 

the spike component of the option value, which may be adjusted to include a risk 

premium.   

The separation of the spikes from the mean-reverting prices ensures that only 

a limited number of parameters needs to be estimated. This is important in electricity 

markets where we have only a relatively short history of reliable prices, and markets 

are in constant change. As markets become more mature, it may be worthwhile to 

include more electricity price characteristics, such as time-varying volatility and time-

varying spike intensities. That will be the subject of future research. 

                                                
63 A way to hedge spikes physically is by keeping some reserve capacity to use when prices are 
unexpectedly high. 
64 While using market forward prices, we incorporated the risk premium in the forwards. 
Options might however justify an even larger risk premium. 
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10 Conclusion of the second part 

In the last three chapters we presented three different option pricing 

methodologies that all deviate from the standard assumption of normally distributed 

returns. We end this second part of the thesis with a brief comparison and an analysis 

of their applicability in real-world markets.  

Since the stock market crash in 1987 option prices seem to deviate from the 

assumption of constant volatility across strike and maturity. A large number of 

researchers have since investigated explanations for the observed skews, smiles and 

term structure effects. In the chapter 7 and 8, we explored two econometric 

methodologies that assume that these deviations can be explained by different 

expected distributions or price processes than the standard normal (or Brownian 

motion). Other plausible explanations were not directly dealt with in the two chapters. 

For example, transaction costs, different risk premia across strike or maturity, 

difficulties to hedge options properly, and general inefficiencies in market prices may 

just as well explain implied volatility patterns. These alternative explanations are for 

example studied in Jackwerth (2000), and Ait-Sahalia, Wang and Yared (2001). 

Indirectly however, we did investigate the role of these alternative explanations and 

even found some support for them. In Chapter 7 for example it appeared that methods 

which model the volatility curve obtained a better fit to market option prices than 

methods that model the underlying risk-neutral distribution, such as the skewed 

Student-t method we proposed. This result may lead to the conclusion that the 

distribution-methods analyzed are not flexible enough, but we believe that the focus of 

option traders on volatility numbers is a more creditworthy explanation. Volatility 

numbers are easier to understand and better comparable across different options, and 

therefore an important statistic in day-to-day trading. We believe a small 

‘inefficiency’ in market prices is the result of this, although exploiting it may be hard 

or impossible with bid-ask differences and other transaction costs in place. 

In Chapter 8 we investigated the information content of option prices relative 

to time-series data in forecasting short-term volatility. Although a more direct test on 

the efficiency of option prices, we did not label it an efficiency test, because we 

incorporated time-series information (risk parameter and long term volatility) into the 
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implied estimates as well. We did so because both options and time-series may 

contain information about future prices. Options are explicitly forward looking and 

may respond quickly to news regarding the future price process. Option prices are on 

the other hand not solely determined by the expected future distribution, but also by 

risk preferences and other ‘inefficiencies’. The implied GARCH method we proposed 

aims at using both information sources to its best, but other approaches that combine 

option and time-series information may also perform well. Especially promising in 

this area are approaches that combine both high-frequency data with implied option 

data. From a practitioner’s viewpoint however, there are still many hurdles to take. 

Huge data sets, careful data management and complicated estimation procedures of 

only the most liquid instruments will yield satisfactory outcomes. Application in day-

to-day business and beyond a few currency pairs, stock indices and commodities 

seems a long way to go. 

In electricity markets it is equally tempting, but not always practical due to 

data limitations, to employ the most advanced techniques in option pricing. In Chapter 

9 we proposed a relatively parsimonious model that describes electricity spot prices. 

Its regime switches build upon the foreign exchange literature, where this type of 

model has originally been proposed. The model fits electricity markets well, because 

the lack of storage opportunities makes spot prices largely dependent on demand and 

supply conditions at that particular point in time, creating different regimes on 

different days. On most days price formation is a rather predictable stable mean-

reverting process, but every now and then generation problems, network congestions 

or unexpectedly high demand cause prices to spike to very unpredictable levels. In a 

market that is still in a very early development phase, we hope our model adds to the 

correct management of uncertainty and pricing of real and financial assets. Correct, 

reliable and practical models may ultimately lead to greater confidence, lower risk 

aversion and a better functioning of markets in general.  
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11 Summary and concluding remarks 

This thesis provides the results of five studies on financial derivatives. In this 

final chapter we briefly summarize the results of each study and formulate some 

general conclusions.  

11.1  Summary first part 

In the first part of this thesis we investigate the impact of options trading on 

the time-series properties of the underlying asset. More precisely, we test the 

hypothesis that a derivative asset improves the efficiency in the underlying asset such 

as a stock. The two studies presented largely support this hypothesis, and clarify the 

mechanisms that lead to this result. A plausible explanation is that the presence of a 

correlated asset permits the sharing of effective price discovery across markets. 

Market makers in the stock can set more accurate prices if they learn from transactions 

in the option. 

In Chapter 3 we use a controlled trading environment, where students trade in 

a stock and a call option on the stock in markets with asymmetric information. This 

allows the observation of all information sets and all actions in a setting based on the 

Kyle (1985) framework, but beyond the reach of tractable modeling. Repeated trading 

rounds with different groups of students and different asset values make clear that an 

insider trades aggressively in both the option and the stock, with most trades directed 

to the asset that affords the most profitable trading opportunity. This leads to price 

discovery occurring in both markets, and hence important feedback effects: trades in 

the stock market imply quote revisions in the options market and vice versa. Because 

the comparison of a market with and a market without options trading leads to control 

problems (due to a different number of market participants) we decided to study the 

effect of options trading indirectly by analyzing the impact of the option’s moneyness. 

We find a significant impact of moneyness on the time-series properties of the 

underlying: when the option is in-the-money the convergence to informationally 

efficient pricing is more rapid and the volatility of transaction prices is lower. The 

tendency of insiders to trade where the magnitude of the profitable trading opportunity 
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is greatest, provides a richer set of signals to dealers than when there is only a single 

asset in which the insider can trade profitably. We show therefore that not only does 

the presence of a correlated asset effectively split price discovery across markets; it 

also fundamentally changes the process by which conditional expectations are 

updated. We furthermore show that the less strategic the insider (due to risk-aversion, 

impatience, or noisy signals), the more powerful we expect this effect to be. 

Our model in Chapter 4 provides two important extensions to the existing 

theoretical models. First, we extend a single-trade model to a dynamic multi-trade 

environment. Second, we analyze market quality under different levels of option 

leverage, the main distinguishing property of options. We start with a standard 

sequential trade model, and show that it is inherently dynamic. Because expectations 

are updated after every trade, we can simulate a sequence of trades and derive more 

precise criteria for market quality. Our model clarifies and separates two mechanisms 

following the introduction of an option. On the one hand, stock dealers learn from 

trades in the option market and set more accurate prices. On the other hand, the 

proportion of informed trading in the stock is altered depending on the option's 

effective leverage, possibly reducing some market quality statistics. Our dynamic 

model indicates that option trading always reduces price errors (difference between 

the intrinsic value and the traded price) in the underlying, because an option serves as 

an extra source from which information can be inferred. Uninformed traders benefit 

most from this reduction in price errors in a derivatives market that allows for 

relatively large (informed) trades, and in a market where the number of informed 

traders is relatively small. This corresponds to well-developed derivatives markets 

where options provide important leverage. In terms of price volatility, effective 

leverage has the opposite effect: trading in well-developed derivatives markets leads 

to higher volatility.  

11.2  Summary second part 

In the second part of this thesis we present three empirical studies on option 

pricing for assets with non-normal returns. In the first two studies we explore methods 

to infer information from market option prices. The last chapter is a more standard 

pricing study, but applied to a very non-standard and risky commodity, electricity.  

Chapter 7 presents a methodology to derive the risk-neutral distribution from 

option prices in a flexible and accurate manner. The exact shape of the implied risk-
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neutral distribution gives important information that can be used for pricing other 

options on the same underlying asset, for comparing options on different assets and 

for closely monitoring changes in the markets perception of the underlying price 

process.  We apply a skewed version of the well-known Student-t distribution to 

capture the smiles and skews frequently observed in implied volatility curves. Its main 

strength is the direct parameterization of skewness and kurtosis. In an application to 

several years of FTSE-100 index options we compare the in-sample performance of 

the skewed-t method with the normal method (constant volatility), two implied 

volatility curve-fitting methods and a trinomial tree. Although they all clearly improve 

upon the normal method, the volatility curve-fitting method that regresses implied 

volatility on option delta outperforms the trinomial tree and skewed-t methods: 

average root mean squared errors are lower and this effect strengthens over time. We 

conclude that a curve-fitting method with the option’s delta as explanatory variable is 

preferred to price European-style options outside the available trading range. 

However, even though their fit is inferior, the two methods that focus on modeling the 

distribution of asset returns do have strong appeals. The skewed-t method in particular 

has the appeal that its parameters relate directly to the moments of the distribution. 

This makes it possible to accurately monitor changes in market expectations about the 

underlying asset.  

Chapter 8 presents a method to infer from option prices a forecast of the actual 

price process, instead of the distribution at a single point in time. We use the Duan 

(1995) option-pricing model to identify an option-implied EGARCH process and the 

corresponding 1-day ahead volatility forecast. For this implied process we estimate the 

stable long-term volatility and the risk premium from the time-series of daily index 

returns. We compare the implied forecast to the forecast of a (pure) time-series 

EGARCH model on FTSE-100 and DAX-30 index data. Our results yield different 

outcomes on the two markets. In the German market (DAX-30), the implied volatility 

forecast is leading the historical forecast, but no such relation is found in the UK 

market (FTSE-100). In the German market, the historical forecast explains around 

23% of realized volatility (constructed from intraday data), whereas the same ability 

of the implied estimate is 1.5 times larger. In the UK market both predictors perform 

equally well and explain a large fraction of around 44%. In the UK market a weighted 

combination of the two predictors explains even 8% extra, but in the German market 

the implied forecast alone contains nearly all information. Finally, in the German 

market the implied forecast is a relatively unbiased predictor of realized volatility 
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including overnight returns, but not so in the UK. So even though the implied forecast 

in the UK explains a large fraction of actual volatility, it does no better than a time-

series EGARCH model. In the German market on the other hand, the implied forecast 

is clearly preferred. 

Chapter 9 presents a regime-switch model for the pricing of options on spot 

electricity prices. The spot price model incorporates the main features of electricity 

prices: seasonality, mean-reversion, high volatility and occasional spikes. A major 

contribution of the spot price model is that it allows for multiple consecutive spikes, 

which is important for risk management and derivative pricing purposes. Based on this 

spot price model we present closed-form formulas to price European-style options on 

spot electricity prices. Because the regime-switch model contains two independent 

regimes, option prices can be split up in two components: one for the stable mean-

reverting process, one for the spikes, which can both be valued with the Black (1976) 

model. Application to the Dutch APX market shows the importance to include spikes 

properly in valuing options: option prices are considerably higher and closer in line 

with historical pay-offs with the regime-switch model than with a mean-reverting 

model. This effect is especially strong for the popular out-of-the-money call options.  

11.3  Concluding remarks and future research 

Both studies in the first part of this thesis reveal the complex relations and 

dependencies with trade in two correlated assets. The experimental study indicates 

that efficiency improves, but the theoretical study clarifies that part of this result may 

depend on the exact characteristics of a market. By abstracting from real human 

behaviour, we believe that the theoretical model somewhat underestimates the benefits 

of derivatives. In the model all market participants draw exactly the same conclusions 

from each trade. As a result, there are no differences in opinion among stock and 

option dealers. In the experiments, similar to real-world markets, those differences in 

opinion (and the insider response) are particularly informative, and speed up the price 

discovery process. For a better understanding of human behavior in a market with 

correlated assets, future research should therefore be devoted to the development of 

models that allow for more realistic human behavior. Alternatively, new experiments 

can be set up with more variations in control variables.  

Regulators that control derivatives markets may use the results of the two 

studies and future research to better set the standards for derivative markets. For 
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example, regulators need to weigh the benefits of lower losses for uninformed traders 

against possibly increased market volatility. They furthermore need to decide on the 

effective leverage derivative markets may optimally provide. According to the two 

studies, the benefits of derivative trading to improved price convergence are however 

without doubt.  

In the second part of the thesis we build upon the positive conclusion of the 

first part and analyze three different option-pricing methodologies for three different 

applications. Although the seminal work of Black, Scholes and Merton has greatly 

stimulated the development of derivative markets, we show that the assumptions in 

their models need to be adjusted for more realistic option pricing. With a recent 

modeling approach we show for example that options may contain valuable 

information beyond the information in time-series returns. In the very peculiar 

electricity markets we develop a model for spot electricity prices, derived from a 

popular foreign exchange model, that yields realistic option prices. Since option 

pricing techniques and data quality are constantly evolving, future research based on 

the second part of the thesis is relatively easy to formulate. In mature markets 

especially the incorporation of high-frequency data is a promising way to go, with the 

danger however that results can be applied to only a few highly liquid commodities. In 

electricity markets option pricing and risk management are still in their infancy and 

many new techniques need to be developed to price the different types of assets. With 

better models we aim to improve the quality of derivatives markets, and enhance 

confidence among participants that should ultimately lead to a better diversification of 

risks. 
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Samenvatting (Summary in Dutch) 

Dit proefschrift beschrijft vijf onderzoeken op het gebied van financiële derivaten. 

Hier volgt een samenvatting.  

deel I: de microstructuur van derivatenmarkten 

In het eerste deel van dit proefschrift onderzoeken we de invloed van de 

handel in derivaten (zoals opties) op de handel in het onderliggende waardepapier 

(zoals aandelen). We toetsen in het bijzonder de hypothese dat een derivaat de 

efficiëntie in het onderliggende waardepapier verbeterd. De twee gepresenteerde 

studies ondersteunen grotendeels deze hypothese en verduidelijken de mechanismen 

die hiertoe leiden. Een plausibele verklaring is dat een gecorreleerd waardepapier 

ervoor zorgt dat prijsontwikkeling op twee markten tegelijkertijd plaatsvindt. Market 

makers in het onderliggende waardepapier kunnen betere prijzen afgeven als ze leren 

van de ontwikkelingen in de optiemarkt.  

In hoofdstuk 3 maken we gebruik van experimenten, een gecontroleerde 

handelsomgeving waarin studenten handelen in een aandeel en een call optie op dat 

aandeel. De handel vindt plaats onder asymmetrische informatie, wat concreet 

betekent dat maar een handelaar (de insider) de werkelijke waarde van het aandeel 

weet. De experimenten maken het mogelijk om alle informatie en alle handelingen 

nauwkeurig te observeren in een opzet die lijkt op het theoretische model van Kyle 

(1985), maar veel realistischer is dan enig theoretisch model. Herhaalde handelsrondes 

met verschillende groepen studenten en verschillende aandeelwaarden maken 

duidelijk dat een insider actief in beide markten handelt, met een voorkeur voor de 

markt die op dat moment de meeste winstpotentie biedt. Beide markten hebben zo hun 

aandeel in het naar de oppervlakte komen van de werkelijke waarde van aandeel en 

optie. Tussen beide markten vindt namelijk een continue interactie plaats: transacties 

in de ene markt leiden tot aanpassingen in de geboden en gevraagde prijzen in de 

andere markt.  

Doordat een vergelijking tussen een markt met en een zonder opties leidt tot 

controleproblemen (vanwege een verschillend aantal marktdeelnemers), hebben we 
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ervoor gekozen om de invloed van opties indirect te bestuderen. Dit bereiken we door 

onderscheid te maken tussen handelsrondes waarin de optie geen waarde heeft en 

handelsrondes waarin de optie wel een waarde heeft.  De resultaten laten zien dat dit 

onderscheid een grote invloed heeft op de prijzen in de aandelenmarkt: als de optie in-

the-money is (waarde heeft), convergeren de prijzen veel sneller en met minder 

volatiliteit naar hun werkelijke waarde. De neiging van insiders om daar te handelen 

waar de grootste winst te behalen is, zorgt voor een rijker scala aan signalen waarop 

de market makers hun prijzen kunnen baseren, dan wanneer de insider in maar een 

markt winstgevend kan handelen. Daarmee laten we zien dat een optie niet alleen het 

prijsontwikkelingsproces in tweeen splitst (aandeel is meer of minder waard dan de 

uitoefenprijs van de optie), maar ook het proces verandert waarmee de 

marktdeelnemers hun verwachtingen aanpassen. We laten bovendien zien dat dit 

effect sterker is bij een minder strategisch handelende insider (vanwege risico-aversie, 

ongeduld of slechte informatie bijvoorbeeld).  

Het model in hoofdstuk 4 biedt twee belangrijke toevoegingen aan de 

bestaande theoretische modellen over de interactie tussen aandelen en opties. Ten 

eerste breidt het de bestaande enkelvoudige handelsmodellen uit tot een meervoudig 

handelsmodel (waarbij meerdere transacties kunnen plaatsvinden). Ten tweede 

analyseren we met het model verschillende hefboomniveaus van opties; het 

hefboomeffect is immers een belangrijke onderscheidende eigenschap van opties ten 

opzichte van aandelen.  We beginnen met een standaard sequentieel handelsmodel en 

laten zien dat het dynamisch is. Doordat handelaren hun verwachtingen na iedere 

transactie aanpassen, kunnen we een reeks transacties simuleren en preciezere 

maatstaven voor marktefficiëntie bestuderen.  Het model verduidelijkt en scheidt twee 

mechanismen die volgen op het introduceren van een optie. Enerzijds leren handelaren 

en market makers van de transacties in de optiemarkt en kunnen nauwkeurigere 

prijzen afgeven. Anderzijds beïnvloedt de introductie van een optie de samenstelling 

van de handelaren: het aantal insiders verandert het aantal insiders, wat mogelijk leidt 

tot een slechter functionerende markt, afhankelijk van de gebruikte maatstaf. De 

resultaten van ons dynamische model duiden op een afname in prijsfouten (verschil 

tussen werkelijke waarde en handelsprijs) onder alle onderzochte 

parameterinstellingen. Ongeïnformeerde handelaren profiteren hiervan het meest in 

een markt waarin grote transacties kunnen worden uitgevoerd en in een markt met 

verhoudingsgewijs weinig insiders. Dit komt overeen met een goedontwikkelde 

derivatenmarkt waarin opties voor een belangrijk hefboomeffect zorgen. Dezelfde 
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kenmerken van een goed ontwikkelde derivatenmarkt hebben op de volatiliteit van het 

aandeel juist een tegengesteld (negatief) effect: de volatiliteit neemt toe.   

Deel II: Empirische studies in derivatenmarkten  

In het tweede deel van dit proefschrift komen drie empirische derivatenstudies 

aan bod die alle uitgaan van niet-normaal verdeelde rendementen. In de eerste twee 

studies onderzoeken we methoden om informatie te af te leiden uit marktprijzen van 

opties. Het laatste hoofdstuk behandelt een traditioneel optiewaarderingsonderzoek, 

maar toegepast op een ongewoon en grillig onderliggend goed, namelijk elektriciteit. 

Hoofdstuk 7 behandelt een flexibele methode om de risico-neutrale verdeling 

van het onderliggende waardepapier uit optieprijzen te herleiden. De exacte vorm van 

deze geïmpliceerde verdeling geeft belangrijke informatie die ingezet kan worden om 

andere opties op het onderliggende waardepapier te waarderen, om vergelijkingen te 

maken tussen opties op verschillende onderliggende waardepapieren, en om 

nauwgezet het sentiment in de markt te volgen. We passen een scheve variant van de 

welbekende Student-t verdeling toe om de veelvoorkomende vormen ('smiles' en 

'skews') in de de geïmpliceerde volatiliteitcurve te modelleren. De belangrijkste kracht 

van deze methode is de directe parametrisering van scheefheid en dikstaartigheid in de 

geïmpliceerde verdeling. In een toepassing op verschillende jaren van FTSE-100 

index opties vergelijken we de geschiktheid van deze methode met de normaal-

verdelingsmethode (constante volatiliteit), twee curve-methoden (die de geïmpliceerde 

volatiliteitcurve modelleren en daaruit risico-neutrale verdelingen afleiden) en een 

trinomiale boomstructuur.  

Van de onderzochte methoden levert de (standaard) normaal-

verdelingsmethode veruit het slechtste resultaat. Van de overige methoden levert de 

curve-methode (met optiedelta als verklarende variabele voor geïmpliceerde 

volatiliteit) het beste resultaat: optieprijzen uit dit model komen het sterkst overeen 

met werkelijke prijzen en dit effect bestendigt in latere jaren. Hoewel de scheve 

Student-t methode en de trinomiale boom een minder goede benadering geven van 

werkelijke prijzen, hebben ze beide belangrijke toepassingsmogelijkheden. De 

trinomiale boomstructuur is geschikt om Amerikaanse-type opties te waarderen, 

terwijl parameters van de scheve Student-t methode direct gerelateerd zijn aan de 

momenten van de onderliggende verdeling, waardoor veranderingen in 

marktsentiment goed gevolgd kunnen worden..  
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Hoofdstuk 8 beschrijft een methode om uit optieprijzen een voorspelling af te 

leiden van het werkelijke prijsproces van het onderliggende waardepapier, in plaats 

van slechts een verdeling op een enkel moment in de toekomst (zoals de methode in 

hoofdstuk 7). Aan de hand van het optiewaarderingsmodel van Duan (1995) bepalen 

we een geïmpliceerd EGARCH-proces en op basis daarvan een eendaagse 

voorspelling van de volatiliteit van de onderliggende index. We vergelijken deze 

voorspelling vervolgens met een voorspelling die geheel gebaseerd is op historische 

rendementen. Dit doen we voor de Engelse FTSE-100 en de Duitse DAX-30 index, 

waar ze tot verschillende resultaten leiden. Op de Duitse markt lopen de 

voorspellingen van het geïmpliceerde proces vooruit op de voorspellingen uit 

historische rendementen, maar dit is niet het geval op de Engelse markt. In de Duitse 

markt verklaren de historische rendementen ongeveer 23% van de werkelijke 

gerealiseerde volatiliteit (die we construeren met intra-dag rendementen), terwijl de 

geïmpliceerde voorspelling anderhalf keer meer verklaart. In de Engelse markt 

verklaren de historische en geïmpliceerde voorspelling beide niet minder dan 44% van 

de gerealiseerde volatiliteit. Hier bovenop verklaart een gewogen gemiddelde 

voorspelling in de Engelse markt zelfs nog 8% extra. In de Duitse markt daarentegen 

bevat de geïmpliceerde voorspelling nagenoeg alle informatie over de toekomst. 

Tenslotte is het vermeldenswaard dat de geïmpliceerde voorspelling in de Duitse 

markt nauwelijks vertekening vertoont in het voorspellen van gerealiseerde volatiliteit 

(inclusief nachtrendementen), maar wel vertekent is in de Engelse markt. 

Samenvattend kunnen we concluderen dat de geïmpliceerde voorspelling in Engeland 

een goede voorspeller is van gerealiseerde volatiliteit, maar niet beter is dan een 

historische voorspelling en bovendien vertekend is. In de Duitse markt verdient de 

geïmpliceerde voorspelling duidelijk de voorkeur.  

In hoofdstuk 9 beschrijven we een zogenaamd regime-switch model om opties 

te waarderen op spot elektriciteitsprijzen (prijzen voor levering een dag nadien). Het 

model bevat de belangrijkste eigenschappen van spot elektriciteitspijzen: 

seizoensafhankelijkheid, middelpunt-tenderend (mean-reverting), hoge volatiliteit en 

plotselinge pieken. Een belangrijke bijdrage van het model is dat het meerdere pieken 

na elkaar toelaat, wat belangrijk is voor risico-management toepassingen en 

waardering van derivaten. Uit dit spot prijsmodel leiden we formules af voor de 

waardering van Europese-stijl call en put opties. Doordat het regime-switch model 

bestaat uit twee onafhankelijke regimes kunnen we optieprijzen in twee componenten 

opsplitsen: een voor het stabiele middelpunt-tenderende proces, en een de pieken. 
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Beide componenten waarderen we met het model van Black (1976). In een toepassing 

op Nederlandse APX spot prijzen verduidelijken we het belang van een juiste 

modellering van pieken voor de waardering van opties: optieprijzen van het regime-

switch model zijn beduidend hoger en komen beter overeen met historische 

uitbetalingen dan prijzen van een model zonder pieken. Dit effect is het duidelijkst 

voor de veelverhandelde out-of-the-money call opties.  

Conclusie

Beide studies in het eerste deel van dit proefschrift verduidelijken de 

complexe relatie en afhankelijkheid tussen twee gecorreleerde waardepapieren, een 

aandeel en een optie. De experimenten tonen aan dat een optie ervoor zorgt dat de 

efficientie in de markt verbetert, maar het theoretische model plaatst hier de 

kanttekening bij dat dit resultaat gedeeltelijk af kan hangen van de karakteristieken 

van de markt. Zonder rekening te houden met natuurlijk menselijk gedrag onderschat 

het theoretisch model echter enigszins de zegeningen van een optiemarkt. In het model 

trekken bijvoorbeeld alle deelnemers aan een markt dezelfde conclusies uit iedere 

transactie. Daaruit volgt dat er geen verschillen van inzicht bestaan tussen market 

makers in de aandelenmarkt en die in de optiemarkt. In de experimenten, net als in de 

praktijk, zijn die verschillen (en de reactie hierop van insiders) juist erg informatief en 

bespoedigen een juiste prijsontwikkeling.  

In het tweede deel van dit proefschrift bouwen we voort op de positieve 

conclusie van het eerste gedeelte en presenteren drie optiewaarderingsmethoden. 

Hoewel het vroege werk van Black, Scholes en Merton de ontwikkeling van 

derivatenmarkten enorm gestimuleerd heeft, laten we zien dat de veronderstellingen in 

hun modellen aangepast dienen te worden voor realistischere optieprijswaarderingen. 

Op basis van een recente innovatie herleiden we bijvoorbeeld uit marktprijzen van 

opties een prijsproces dat belangrijke informatie kan bevatten over de toekomstige 

ontwikkeling van een marktindex. Voor de zeer specifieke elektriciteitsmarkt 

ontwikkelen we bovendien een model om opties op spotprijzen adequaat te waarderen. 

Met de ontwikkeling van dergelijke modellen beogen we derivatenmarkten beter te 

laten functioneren, wat leidt tot een groter vertrouwen in deze markten en een betere 

spreiding van risico's onder marktdeelnemers.  
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