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Abstract

Aim

Site occupancy probabilities of target species are commonly used in

various ecological studies, e.g. to monitor current status and trends in

biodiversity. Detection error introduces bias in the estimators of site

occupancy. Existing methods for estimating occupancy probability in

the presence of detection error use replicate surveys. These methods

assume population closure, i.e. the site occupancy status remains

constant across surveys, and independence between surveys. We

present an approach for estimating site occupancy probability in

the presence of detection error that requires only a single survey

and does not require assumption of population closure or indepen-

dence. In place of the closure assumption, this method requires cova-

riates that affect detection and occupancy.

Methods

Penalized maximum-likelihood method was used to estimate the

parameters. Estimability of the parameters was checked using data

cloning. Parametric boostrapping method was used for computing

confidence intervals.

Important Findings

The single-survey approach facilitates analysis of historical datasets

where replicate surveys are unavailable, situations where replicate

surveys are expensive to conduct and when the assumptions of clo-

sure or independence are not met. This method saves significant

amounts of time, energy and money in ecological surveys without

sacrificing statistical validity. Further, we show that occupancy

and habitat suitability are not synonymous and suggest a method

to estimate habitat suitability using single-survey data.
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INTRODUCTION

The ability to accurately measure the distribution and abun-

dance of species is at the core of ecological research and moni-

toring (Krebs 1999). Understanding and quantifying species

distributions are essential to predict the effects of global climate

change, colonization by exotic species or changes in land use.

Many sampling methods and statistical analyses have been

developed to estimate species abundance. Most methods are

designed to measure density, i.e. the number of individuals

per unit area. While density is a desirable state variable to report,

there are numerous practical problems in estimating density

(Krebs 1999). Even when it is possible to measure density accu-

rately, the economics of doing so can be prohibitive for large-

scale applications. This has led many research programs and

monitoring initiatives to rely on rates of occurrence to get coarse

measures of species abundance.

Collecting presence–absence data at a series of locations has

become a preferred method of evaluating ecological status and

trends because of the simplicity of data collection. Analysis of

presence–absence data is often done to estimate the relation-

ship between site occupancy probability and site characteristics

and then use these models to predict the number of sites in

a larger landscape that are occupied by that species. Most appli-

cations of species presence–absence data use logistic regression

or contingency table analysis to associate species with tempo-

ral, habitat or spatial covariates. The assumption inherent in

this approach is that the proportion of sites where a species
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is detected is equivalent to the actual occupancy rate. Occu-

pancy rate is the true proportion of sites where a species occurs.

It can only be estimated when the detection probability

is equal to 1. The statistical analysis of presence–absence data

and the ability to draw conclusions from such data has been

questioned (MacKenzie et al. 2002) because detection is

seldom perfect; hence, true occupancy rates are generally

underestimated.

Detection probability is the probability that a species is ob-

served, when it was present, at a particular site during the sur-

vey period. Detection probability can be less than one for

a variety of reasons. Observers may be unable to detect the

presence of the species due to survey-specific conditions such

as rain, temperature or lack of visibility at the time of the sur-

vey. Detection rate can vary between habitats because the

structure of the habitat may alter the ability of an observer

to detect a species. Imperfect detection, if not taken into

account, leads to a biased estimator of occupancy probability

(MacKenzie et al. 2002). Recently, several researchers (Gu and

Swihart 2004; MacKenzie et al. 2002; Martin et al. 2005;

Stauffer et al. 2004; Tyre et al. 2003) have developed methods

for estimating occupancy probability when the probability of

detection is less than 1.

A common requirement for current methods to estimate

occupancy probability when detection probability is less than

1 is that sites must be sampled repeatedly to estimate detection

error rate. Repeated sampling can take the form of visiting

multiple locations within a larger area of interest or by visiting

the same location at different times. Using a repeated-visit

approach, the target species is recorded as being detected or

not detected at each visit. At locations where the species is

present, detection error will occasionally result in species

not being detected even though it is present at the site. Assum-

ing true occupancy status does not change over the duration of

repeated visits, called the closed-population assumption,

changes in the detection and non-detection at a particular site

can be attributed to detection error. This allows estimation of

detection probability, which can be used to correct biases in the

naı̈ve estimator of occupancy probability.

Repeatedly visiting sites to estimate detection error is not

always feasible. Returning to a site more than once multiplies

the cost of most monitoring and research programs. For exam-

ple, if an observer has to return on different days, which may

be required to ensure the additional assumption of indepen-

dence of surveys is met, the cost of travel is effectively doubled.

Requirement of multiple visits reduces the number of sites that

can be visited within a given sampling season for the same cost,

reducing the generality of the results to broader areas. Re-

peated visits to study sites can also have an adverse effect

on the survival of the individuals under observation (Rotella

et al. 2000) making multiple visits undesirable from a conser-

vation perspective. Analysis of the vast historical datasets (i.e.

monitoring data) that did not conduct multiple visits is also not

possible in this context (Hirzel et al. 2002). Validity of the re-

peated visit methodology depends crucially on the assumption

that the population is closed, i.e. site occupancy status remains

the same throughout the study period. To ensure closure,

many researchers have used very short-time intervals between

revisits. However, the closure assumption can be violated,

even on very short-time scales, because of within territory

movement. Replicate visits also require statistical indepen-

dence. For plant ecologists, this will typically require different

observers to return to sites to ensure that observers do not

‘remember’ where they found rare species. Bayne, Lele and

Solymos (unpublished manuscript) show that within-territory

movement by birds can introduce severe biases in occupancy

estimates. Replicate visit methodology also assumes statistical

independence between surveys, which is likely to be violated

with shorter durations between revisits (Kendall and White

2009).

There is a growing belief among ecologists that repeat sur-

veys are essential if predictive species-habitat models are to be

useful. For example, Bolker (2008, p. 333) claims: ‘there is

no way to identify catchability—the probability that you will

observe an individual—from a single observational sample;

you simply don’t have the information to estimate how many

animals or plants you failed to count’. We whole-heartedly

agree that ecologists need to be more rigorous in reporting ac-

curate occupancy rates so that rigorous comparisons can be

made across studies. However, does this mean that single-visit

data and the resulting inferences are without value or is there

something that can be done with single-visit data that allows

us to account for detection error?

Fortunately, multiple surveys are not essential for estimat-

ing site occupancy parameters in the presence of detection

error. In general, site occupancy and detection probability

parameters can be estimated using a single survey provided

(i) probability of occupancy and probability of detection

depend on covariates and (ii) the set of covariates that affect

occupancy and the set of covariates that affect detection differ

by at least one variable. We surveyed nearly 100 papers on site

occupancy and found that, when covariates were used for

modeling occupancy and detection, most of them satisfied

these conditions. Clearly, the conditions needed for the single

survey-based estimation are not esoteric and are often satisfied

in practice. In the following, we describe a methodology for

dealing with detection error in single survey, present simula-

tion results that show how the methodology works and

present an analysis of a common type of data for which only

single-survey data have been available for over 50 years

(Breeding Bird Survey (BBS)).

STATISTICAL MODEL AND ESTIMATION
PROCEDURE

Let us assume that there are N sites that will be surveyed in the

study area. Let Yi=1 if the ith site is occupied and Yi=0 if the ith

site is unoccupied. These are the true states that areunobserved.

LetWi=1 if the ith site is ‘observed to be occupied’ and Wi=0 if

the ith site is ‘observed to be unoccupied’. The probability of
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occupancy is denoted by PðYi=1Þ=wi and the probability of

detection by PðWi=1jYi=1Þ=pi. We assume that if the species

is not present, it will not be misidentified and hence

PðWi=0jYi=0Þ=1. Simple probability calculations show that

PðWi=0Þ=1 � piwi and PðWi=1Þ=PðWi=1jYi=1ÞPðYi=1Þ=piwi.

These probabilities can depend on the habitat and other cova-

riates. Let X denote the set of covariates that affect occupancy,

and Z denote the set of covariates that affect detection. Some

covariates may affect only detection, some covariates may

affect only occupancy and some covariates may affect both

detection and occupancy. For example, type of forest cover

may affect both occupancy and detection, whereas time of

the day or weather conditions may affect only detection. Thus,

some of the covariates in the sets X and Z might be the same.

With this notation, wi=wðXi; bÞ and pi=pðZi; hÞ. These functions

should be such that 0<wðXi; bÞ<1 and 0<pðZi; hÞ<1.

The necessary conditions under which the parameters ðb; hÞ
are identifiable using single-survey data W are (i) there should

exist at least one numeric (not categorical) covariate that

affects probability of detection and probability of occupancy

and (ii) the set of covariates X and Z should be such that there

is at least one covariate that is in one set but not the other.

From a survey of previous applications of site occupancy

models, it seems that most practical situations satisfy these

conditions. In fact, for 94 out of 100 cases, the covariates that

affect detection and covariates that affect occupancy were dis-

joint. A limitation of our methodology is that the case of con-

stant probability of occupancy and constant probability of

detection cannot be estimated. However, it appears that this

restriction is not important in practice as in most papers we

have reviewed the probability of occupancy and detection

both were seldom constant. It is not possible to provide general

result about identifiability conditions under every possible

model. However, the data cloning method (Lele et al. 2007,

2010) can be used for both estimation and detection of possible

non-estimability. The parameters are estimable if and only if

the posterior variance converges to zero as the number of

clones increases. This test is built into our software for the anal-

ysis of single-survey site occupancy data (Solymos and Moreno

2010).

The goal of the statistical analysis is to estimate ðb; hÞ given

the observations W�=fW1;W2; . . . ;WNg. The likelihood func-

tion for these data is:

L

 
b; h;W

!
=
YN
i=1

ðwðXi; bÞpðZi; hÞÞWið1 � wðXi; bÞpðZi; hÞÞ1�Wi :

Maximum likelihood estimators (MLEs) are obtained by

maximizing this function with respect to ðb; hÞ. If the sample

size is large, one can use any numerical optimization tech-

nique to obtain the MLE. However, for small samples, this like-

lihood function is not a well-behaved, concave function. The

problem of ill-behaved likelihood function is not unique to sin-

gle-survey situation. In Moreno and Lele (2010), it is shown

that even in the multiple-survey approach used by Mackenzie

et al. (2002) that when the number of sites and/or number of

surveys is small the likelihood function is ill-behaved and will

not reach the proper solution. Moreno and Lele (2010) use

penalized likelihood to obtain estimators from a multiple visit

approach that are somewhat biased in small samples but have

substantially smaller mean-squared error than the MLE. They

also show that the confidence intervals based on the penalized

likelihood estimators are substantially shorter and have close

to nominal coverage than using the standard likelihood. The

concept of maximum penalized likelihood estimator (MPLE),

its intuitive justification and simulation results comparing its

properties with the usual maximum-likelihood estimator un-

der various sample sizes and different levels of occupancy and

detection error are presented in Moreno and Lele (2010).

Similar improvements over the standard maximum-likelihood

estimator are obtained using the penalization idea in the sin-

gle-survey situation as well. We emphasize here that the dif-

ference between MPLE and MLE vanishes as the sample size

increases. The penalization simply stabilizes the likelihood

function for small sample sizes. The penalized likelihood esti-

mators in the single-visit case are obtained using the following

steps:

Step 1: Obtain the MLE forðb; hÞ by maximizing the likeli-

hood function in Equation (1). Let us denote these by ðbM; hMÞ.
Step 2: Obtain the naı̈ve estimator of b by maximizing:

L

 
b;W

!
=
YN
i=1

wðXi; bÞWið1 � wðXi; bÞÞ1�Wi :

This estimator, denoted by b̂naive, is based on the assumption

that there is no detection error. This is stable but biased with

the magnitude of bias depending on how large the detection

error is.

Step 3: Obtain the naı̈ve estimator of h by maximizing:

L

 
h;W

!
=
YN
i=1

pðZi; hÞWið1 � pðZi; hÞÞ1�Wi :

This estimator, denoted by ĥnaive, is based on the assumption

that all sites are occupied. This estimator is stable but biased.

Step 4: Maximize the penalized likelihood function with

respect to ðb; hÞ:

logPLðb; h;WÞ= logLðb; h;WÞ � k1jb � b̂naivej � k2jh � ĥnaivej;

where k1=
�
1 � ŵnaive

�
p̂M

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
trðVarðĥMÞÞ

q
and k2=

�
1 � p̂naive

�
ŵ3

M

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
trðVarðb̂MÞÞ

q
and ðp̂naive; ŵnaiveÞ and ðp̂M; ŵMÞ denote the av-

erage occupancy and detection probabilities under the naı̈ve

method of estimation and MLE, respectively. Justification

for this penalty function is along the same lines as described

in Moreno and Lele (2010). The confidence intervals for MPLE

can be based on the bootstrap technique and are shown

to have good coverage (Moreno and Lele 2010). A computer

program written in R to implement this method is available in

Solymos and Moreno (2010).
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SIMULATION RESULTS

These simulations have two goals. The first goal is to support

the claim of estimability of the parameters using a single sur-

vey. If the parameters are consistently estimable then, as we

increase the sample size, the estimates should converge to

the true values. The second goal is to show that these estima-

tors give reasonable inferences in practical situations.

To achieve this goal, and for the purpose of considering

a variety of scenarios commonly found in this type of analysis,

a total of 54 cases were simulated. These cases were defined by

considering different levels for factors such as the sample size,

the type of link function, the probability of occupancy and

detection and the configuration of the covariates, i.e. whether

or not there was a common covariate for both occupancy and

detection.

For each case, 100 datasets were generated using two covari-

ates for occupancy and two covariates for detection. For the

case with no common covariates, the probability of occupancy

was calculated using the logistic linkwi=
expðb0+b1Xi1+b2Xi2Þ

1+expðb0+b1Xi1+b2Xi2Þ where

covariate values were generated usingX1i;Normalð0; 1Þ and

X2i;Bernoullið0:55Þ. Similarly, the probability of detection

was calculated using either the logistic link pi=
expðh0+h1Zi1+h2Zi2Þ

1+expðh0+h1Zi1+h2Zi2Þ
or the log–log link pi=expð�expðh0+h1Zi1+h2Zi2ÞÞ where covari-

ate values were generated using Z1i;Normalð0; 1Þ and

Z2i;Bernoullið0:65Þ.
For the common covariate cases, the covariate for the occu-

pancy model was taken as the common one for both. For in-

stance, if the common covariate is a continuous one and the

link for both occupancy and detection is the logistic link, the

probability of occupancy for the site i is wi=
expðb0+b1Xi1+b2Xi2Þ

1+expðb0+b1Xi1+b2Xi2Þ

and the probability of detection is pi=
expðh0+h1Xi1+h2Zi2Þ

1+expðh0+h1Xi1+h2Zi2Þ.

The set of parameters was selected to obtain the desired level

of occupancy and detection required according to the case and

the estimates were obtained by using the MPLE described in

the Section 2 of this paper. Figures 1 and 2 present the results

from two representative cases obtained from the simulations.

Figure 1 shows the box plots of the estimated parameters

when the mean probability of occupancy is 0.27, the mean

probability of detection 0.27 and the covariates for occupancy

and detection are separable. Clearly as the sample size

increases, the distributions of the parameters become more

symmetric and their centers are closer to the true value. It

is also observed that as the sample size increases, the spread

of the distributions decreases. Figure 2 presents the results

obtained for the case in which there is a discrete covariate that

is common to both occupancy and detection. Again, in this

case, the mean probability of occupancy and detection are

low (0.27 and 0.31, respectively). Similar to the separable

covariates case, as the sample size increases, the centers of

the density functions get closer to the true value, and also, that

the variance decreases as the sample size increases.

For most of the situations considered in our simulations the

mean occupancy and mean detection probability can be

estimated reasonably well at sample sizes of 100–200, whereas

a good estimation of regression coefficients occurs at sample

sizes of 300 or larger. See Fig. 3 for an example. If the main

goal of an analysis is estimation of mean occupancy rate,

one does not have to worry as much about sample size as when

accurate estimation of the regression coefficient per se is the

objective.

These results along with the results in the Appendix show

that the occupancy and detection parameters are identifi-

able using single survey data. This holds even when the

set of covariates for occupancy and detection have some

overlap.

Figure 1: simulations showing estimability of the parameters using

a single survey when the covariates that affect occupancy and

detection are distinct. The parameters
�
b0;b1;b2

�
correspond to the

occupancy and
�
h0;h1;h2

�
correspond to the detection models. As

the sample size increases, the estimates converge to the true value.
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AN ILLUSTRATION OF THE METHOD

To illustrate the estimation of the parameters for an occupancy

model using a single survey, we consider detected–not

detected data for Ovenbirds (Seiurus aurocapilla). Data were

collected in 1999 using BBS Protocols (Downes and Collins

2003) in the boreal plains eco-region of Saskatchewan. The

goal of the study was to determine whether the occupancy

of this species was influenced by the amount of forest around

each survey point. Data were collected along 36 BBS routes

each consisting of 50 survey locations with survey locations

separated by 800 m. To increase independence of observations,

we used every second survey point along each route (thus each

point was 1.6 km apart) in our analysis (n = 900 survey loca-

tions). Attributes about the forest type and amount of forest

remaining with a 400-m radius were estimated from the

Saskatchewan Digital Land Cover Project (MacTavish 1995).

The habitat requirements of the Ovenbird are well-

understood (Hobson and Bayne 2002) and we expected that

the probability a location was occupied by the Ovenbird would

be positively influenced by the amount of deciduous forest

remaining (forest deciduous proportion). We also included

longitude as the study covered an east–west gradient over

1000 km in length although a priori we were not sure what

effect this would have on occupancy.

We expected four factors to influence detection probability:

observer, time of day, time of year and amount of forest.

Observers differ in their ability to hear birds in part not only

because of skill but also because of fundamental differences in

the distance over which they hear things. In general, male

songbirds sing very regularly early in the breeding season

making it easy to detect individuals that are present. As the

breeding season progresses, however, the males spend less time

singing as they focus on other activities. This often results in

lower detectability later in the breeding season. We included

Julian date as a variable influencing detection error. Male song-

birds also have a tendency to sing earlier in the day, shortly after

sunrise and then later in the morning focus on guarding the

Figure 2: Simulations showing estimability of the parameters using

a single survey when there is a categorical common covariate that af-

fect occupancy and detection. The parameters
�
b0;b1;b2

�
correspond to

the occupancy and
�
h0;h1;h2

�
correspond to the detection models. As

the sample size increases, the estimates converge to the true value.

Figure 3: Simulations showing estimability of the mean occupancy

and detection for both cases: using separable covariates, and using

a categorical common covariate that affects occupancy and detection.
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mate or foraging. To account for this, we included time of the

day as a factor influencing detectability. Detectability can also

be influenced by habitat attributes. In more open environ-

ments, it is plausible that birds can be heard from long distan-

ces increasing the chance an individual is detected (Schieck

1997). Alternatively, in areas with more forest, the chance

of multiple males singing may be higher, increasing

detection probability relative to areas with less forest where

only one individual may exist.

We considered several different models and used Akaike in-

formation criterion (AIC) to select the final model. We also

used the receiver operating curve (ROC) and the area under

the ROC (AUC) to heuristically compare the fit of the full

model, detection and occupancy together. Table 1 gives the

details on the various models that were considered and the cor-

responding AIC and AUC values. The final model has AUC of

0.82 indicating a fairly good predictive capacity for the full

model, detection and occupancy together. It also has a smaller

AIC value relative to other candidate models. Table 2 presents

the estimated parameters, the 90% confidence intervals and

the estimated standard errors for occupancy and detectability.

Figure 4 depicts graphically how the probability of occupancy

and detection vary with the covariates. The confidence inter-

vals and the standard errors were estimated using 200 boot-

strap samples. As expected, the proportion of deciduous

forest has a positive effect on the probability of occupancy. This

relationship was best fit using a log transformation of forest

deciduous proportion. Longitude was not statistically signifi-

cant but it suggested that Ovenbird occupancy rate increased

as surveys were done further west.

The amount of forest cover was the strongest predictor of

detection probability. Detection probability was highest in

areas with higher forest cover. This suggests that increased

numbers of birds in areas with more forest increase the prob-

ability of detecting the species while in areas, with low forest

cover the reduced numbers of birds means the chances of

detecting the species given they are present is considerably

lower. Although not strictly statistically relevant according

to AIC (and, hence not included in the final model), detection

probability did differ among observers and was affected by the

time of the day and Julian date in a sensible fashion (Fig. 5).

One observer (S.V.Wilgenburg) was much more likely to de-

tect birds in areas with less forest than the others. Previous ex-

perience in other projects has demonstrated that this

individual is able to hear birds over far greater distances than

other people so this result was not unexpected. Detection

probability was negatively related to Julian date indicating de-

creased singing activity later in the season was reducing ob-

server ability to detect birds given they were present. Time

of day had a positive relationship with detection probability.

This was somewhat unexpected. However, time of day was

the least significant effect and surveys were done in a very nar-

row time window (4:00 AM to 9:00 PM local time). The esti-

mated mean probability of occupancy for all the sites, based on

the final model, was 0.523, with a mean probability of detec-

tion of 0.466. The mean probability of occurrence without cor-

recting for detection error, on the other hand, was 0.297.

OCCUPANCY AND HABITAT SUITABILITY

An occupancy survey answers the question: At the time of the

survey, was the site occupied? Such information is useful for

monitoring studies where one wants to know the current sta-

tus of the study area. However, researchers should be aware

that occupancy status of a location depends not only on its

habitat suitability but also on the overall population density.

For example, if the population density is low, even in a highly

suitable habitat only a few of the sites will be occupied. In such

Table 1: models for the ovenbird data sorted from smallest to largest AIC

Model Occupancy model covariates Detection model covariates AUC AIC BSIC

1 Log (proportion of deciduous forest) Proportion of forest 0.823 825.500 844.656

2 Log (proportion of deciduous forest) Proportion of forest, Julian date, time of day 0.826 826.550 855.283

3 Log (proportion of deciduous forest); log

(non-deciduous forest)

Proportion of forest 0.823 827.129 851.074

4 Proportion of deciduous forest, longitude Proportion of forest, Julian date, time of day,

observer

0.828 827.907 875.797

5 Log (proportion of deciduous forest), longitude Proportion of forest, Julian date, time of day 0.826 828.490 862.013

6 Log (proportion of deciduous forest), longitude Proportion of forest, Julian date, time of day,

observers

0.827 830.775 878.664

7 Log (proportion of agricultural area), longitude Proportion of forest, Julian date, time of day,

observers

0.818 841.286 889.175

8 Proportion of agricultural area, longitude Proportion of forest, Julian date, time of day,

observers

0.820 843.457 891.347

We also provide the Schwarz Information Criterion (BIC) and the AUC. Smaller the AIC or BIC, better is the model fit; larger the AUC, better

is the fit.
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a situation, unoccupied sites are unoccupied not because they

have unsuitable habitats but because there are not enough

individuals to occupy them. Qualitatively such unoccupied

sites are different than the sites that are unoccupied because

they are truly unsuitable. Presence–absence data cannot differ-

entiate between these two kinds of unoccupied sites. Similarly,

when the population size is high, even sites with low-quality

habitats are occupied. In the extreme, if all sites are occupied,

although occupancy can be estimated, it is mathematically

impossible to distinguish between suitability of different sites.

Lele, Merrill, Keim and Boyce (submitted manuscript) provide

a detailed discussion of the mathematical relationship between

selection, habitat suitability and occupancy. Researchers using

occupancy surveys should be aware that a naı̈ve interpretation

of the results of the occupancy model as ‘habitat suitability’ is

incorrect and can be misleading.

Although presence–absence data are uninformative about

habitat suitability, count data (e.g. number of birds), abun-

dance data (e.g. plant biomass) or ordinal data (e.g. low, me-

dium or high level of invasion) are useful to determine habitat

suitability. For such data, the extra zeros arising out of low

population size can be modeled using zero-inflated distribu-

tions. On the other hand, in the presence of high population

size, the relationships between values 1 and beyond provide

information about habitat suitability. For example, for count

data, one can model extra zeros arising because of low popu-

lation sizes using zero inflated Poisson distribution or zero-

inflated negative binomial distribution. For ordinal data,

one can model these extra zeros using zero-inflated multino-

mial models. In the Appendix, we show that one can correct

for zero inflation along with detection zeros by using the

method of conditional likelihood. We discuss the mathemati-

cal details for computing conditional likelihood for the general

case in the Appendix. P. Solymos et al. (2012, in press) study

the statistical performance of this method. They use zero-

inflated Poisson distribution for analyzing the ovenbird count

data and compare the results with the results in this paper. A

detailed application to multinomial data to study the spread of

invasive plants is discussed elsewhere.

Figure 4: (a) Probability of occupancy, (b) probability of detection

and (c) receiver operating curve for the Ovenbird data.

Figure 5: Estimates of the effects of the observers, Julian date and

time of the day over the probability of detection for the Ovenbird data.

Table 2: estimated parameters, confidence intervals and standard

errors for the occupancy and detection model for Ovenbird

occupancy survey data

Model Covariates

Point estimate (90%

confidence interval)

Occupancy model Intercept �0.255 (�0.843, 0.566)

Log (proportion of

deciduous forest)

1.546 (0.836, 3.561)

Detection model Intercept 0.476 (0.047, 1.127)

Proportion of forest area 0.951 (0.588, 1.763)

Average occupancy probability 0.496 (0.405, 0.643)

Average detection probability 0.489 (0.377, 0.608)

Naı̈ve estimate of average occupancy 0.297 (0.278, 0.318)
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Habitat suitability is also commonly studied using the ‘pres-

ence-only data’ (Lele and Keim 2006; Phillips et al. 2006). Al-

though vastly popular, presence-only data is uninformative

about habitat suitability. Mathematically speaking, analyzing

presence-only data is an ill-conditioned (non-identifiable)

problem. The only way to make inference about habitat suit-

ability using presence only data is to assume complete knowl-

edge of the available distribution (Lele and Keim 2006; Manly

et al. 2002). The choice of available distribution is arbitrary and

its validity cannot be tested. Different choices lead to vastly dif-

ferent conclusions about habitat suitability with no recourse

to knowing which one is better supported by the data. The

mathematical details and practical implications of this non-

identifiability issue are discussed in a separate publication.

DISCUSSION

Ecologists have long relied on single surveys to estimate the

relative abundance of organisms between habitats. The key as-

sumption underlying this approach is that by randomizing

sources of detection error across the variables of primary inter-

est that the correct relative pattern of habitat suitability is

revealed even though the absolute abundance or occupancy

rate is underestimated. However, multiple survey techniques

have demonstrated that patterns in habitat selection can be

strongly influenced by detection error when habitat conditions

influence the ability todetect an organism. Inaddition,multiple

survey methods have been useful in shifting ecologists away

from relative measures to absolute estimates of abundance,

facilitating informed decision making and better ecological in-

ference. When the crucial assumptions of population closure

and independence of surveys are satisfied and costs are not

a major issue, then multiple survey methods will generally

provide statistically more efficient estimators than a single sur-

vey-based approach. However, multiple survey methods have

assumptions that, if not met, will result in biased estimates of

occupancy rate.

The concept of a closed population is clear in some situa-

tions. For stationary organisms, the assumption of population

closure is met quite naturally because detection error cannot

be due to movement of the organism out of the sampling area.

Detection error in such situations is clearly due to sampling

conditions such as weather, date, time of day, observer effects

or the ability to see a species in one habitat over another. For

mobile organisms, on the other hand, a closed population is

difficult to define. For example, many wildlife ecologists record

species presence using point surveys whereby individuals

heard or seen within a given radius of the observer’s location

are counted. For species that are not territorial and move

widely across the landscape, multiple visit methodologies

could fail to provide accurate estimates of occupancy rate.

Even for territorial species, the issue of spatial scale of sampling

relative to spatial scale of movement of the animal creates

problems for multiple-visit surveys. For example, when only

part of an individual animal’s territory is within the sampling

area, an observer may detect the animal imperfectly over

multiple visits simply because the animal is in a part of its ter-

ritory that is outside the sampling area during one visit and

inside the sampling area during another visit. E. Bayne et al.

(unpublished manuscript) show that within-territory move-

ment can introduce biases in occupancy estimates that dra-

matically overestimate density. See also Rota et al. (2009)

for other factors that result in the assumption of closure being

violated.

Financial and logistical costs are pivotal in the design of

effective monitoring and scientific studies to track biodiversity.

Proponents of multiple visit methods often suggest the in-

creased costs of multiple visits to be negligible. Admittedly,

if the repeated visits occur on the same day, the travel costs

to a site will be relatively small. However, whether such an

approach will achieve independence of visits is not well-

established. In addition, monitoring programs such as the

BBS already maximize the number of stops that an observer

can do during the ideal period of observations for birds. Requir-

ing multiple visits would force the BBS and other monitoring

programs to return to the same locations on a different day.

Returning to a site on a different day increases travel costs

and personnel time, which will typically reduce the total num-

ber of sites that can be visited during a survey season in direct

proportion to the number of sites that have to be revisited. We

estimate that a shift from a single visit to four visits for a bird

monitoring program we are involved with in northern Alberta,

where many sites are visited by helicopter, would increase

the annual costs of monitoring 720 stations per year from

;$180,000 to ;$700,000 per year.

The development of the single-survey approach provides an

additional tool to ecologists that allows for correction of detec-

tion error, does not have the critical assumption of population

closure and has the logistical flexibility of conventional single-

survey designs.
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APPENDIX

COMPUTATIONAL ISSUES FOR
PENALIZED LIKELIHOOD ESTIMATION

As described in Moreno and Lele (2010), because trðVarðhMÞÞ/0

and trðVarðbMÞÞ/0 as the sample size increases, the penali-

zed likelihood function approaches the likelihood function if

Lele et al. | Single survey site occupancy estimation 29

 at T
he U

niversity of A
lberta on January 16, 2012

http://jpe.oxfordjournals.org/
D

ow
nloaded from

 

http://jpe.oxfordjournals.org/


the number of sites is large. Penalization simply stabilizes the

likelihood function for small sample sizes. If the MLE of aver-

age detection probability is high, naı̈ve estimates of the occu-

pancy are reasonable. In this case, the first component of the

penalty function is large, thus shrinking the occupancy param-

eters toward their naı̈ve estimates. Similarly, if the MLE of the

average occupancy is high, naı̈ve estimates of the detection

parameters are reasonable. In this case, the second component

of the penalty function is large, thus shrinking the detection

parameters toward their naı̈ve estimates.

In Step 1 of the penalized likelihood estimation algorithm,

we need to compute the MLE and its variance. If the number of

sites is smaller than 100, using a gradient-based optimization

technique to find the location of the maximum tends to be

tricky as it tends to lead to nearly singular Hessian matrices

(Moreno and Lele 2010). Hence, we cannot use the inverse

of the Hessian matrix to approximate the variance of the

MLE. Instead of using a local, gradient-based technique to find

the MLE and its variance in Step 1, we use a global stochastic

search method, a variant of the well-known simulated anneal-

ing method, called data cloning (Lele et al. 2007, 2010). In data

cloning, as in simulated annealing, the MLE is obtained as the

mean of the posterior distribution. This avoids the task of

numerically differentiating a non-smooth function. To obtain

the variance of the MLE, one can either use the bootstrap

(Efron and Tibshirani 1993) or it can also be approximated

by the variance of the posterior distribution (Lele et al.

2007, 2010). This avoids the problem of inverting a nearly

singular Hessian matrix to approximate the variance of the

MLE. The penalized likelihood function (Step 4) is maximized

using the standard numerical optimization techniques.

ZERO-INFLATED DISTRIBUTIONS,
DETECTION ERROR AND CONDITIONAL
LIKELIHOOD

This Appendix describes the mathematics behind the condi-

tional likelihood approach for dealing with zero-inflated distri-

butions in the presence of detection error. A detailed study of

the performance of the conditional likelihood estimators for

the zero-inflated Poisson model is provided in Solymos et al.

(2012, in press). Throughout this description, as in the paper,

we assume availability of covariates for detection and occu-

pancy models. In the following, for pedagogical convenience,

we assume that the response variable is a discrete random vari-

able. These results can be generalized to continuous response

variables.

Let Y � denote a random variable that takes values in the set

S=f0; 1; 2; . . . ;Kg where K>2 and which can potentially be in-

finity. For example, Y �can be a Poisson, negative binomial or

a multinomial random variable. Let Xdenote the covariates

and b denote the regression coefficients. Let PðY=yjX=xÞ=
cðy; x;bÞ for y 2 f0; 1; 2; . . . ;Kg denote the probability mass

function (p.m.f.). The regression coefficients b in this model in-

form us about the habitat suitability of various covariates. Letus

denote the zero-inflated version of the random variable Y � byY .

Its p.m.f. is given by P
�
Y=y

�
=
�
1 �f

�
c
�
y; x;b

�
+fIðy=0Þ. The pa-

rameter f corresponds to the proportion of additional unoccu-

pied sites because of low population size in the study area.

Because of detection error, the true status of the site cannot

be observed. For example, observed counts might be different

than the true counts. In the case of the multinomial response,

the observed class might be different than the true status, e.g.

a medium abundance site may be observed as low abundance

because one may miss some of the invasive plants. It is also

possible that true low abundance be classified as ‘medium

abundance’ if there is a big patch of invasive plants near the

observer location. Let W denote the observed status. This vari-

able also takes values in the set S=f0; 1; 2; . . . ;Kg: We assume

that if species is absent, observer does not imagine its existence.

That is, if Y=0 then W=0 with probability 1.

The p.m.f. of W depends on the true status of the site ðYÞ as

well as the conditions at the time of observation and other

habitat characteristics of the site (Z). We denote the p.m.f.

of W by PðW=wjY=y; Z=z; dÞ=pðw; y; z; dÞ. Basic probability

laws show that for w 6¼ 0, PðW=wjX=x; Z=zÞ= +
y2S

PðW=wjY=y; zÞ PðY=yÞ =
�

1 � /
�
+
y2S

pðw; y; z; dÞwðy; x; bÞ and

P

�
W=wjW>0

�
=

+
y2S

pðw;y;z;dÞwðy;x;bÞ

+
K

w=1

+
y2S

pðw;y;z;dÞwðy;x;bÞ
:

Notice that this conditional probability does not depend on

the zero-inflation parameter f. The habitat suitability param-

eters b and detection parameters u can be estimated using only

the data from the non-zero sites by maximizing the conditional

likelihood function: CLðb; h;wÞ=
Qn
i=1

fPðWi=wijW>0ÞgIðwi 6¼0Þ .
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