
Guide to Using R code

Inputs and description of the code:

We have written the code for this modeling method in the statistical programming

software “R” (R Core Team; 2014). R is a user-friendly, open-source software package

used for high-level statistical analyses and free for download on any computer platform.

We have attached the input code as well as a “how-to” file with explicit directions. Below

are step-by-step directions. 	

	

First download the R software package (http://www.r-project.org/) and install for your

platform. A user-friendly software package called RStudio is also available but not

necessary for use of our R script.

Start

Data should be saved in a .csv file in the EXACT following format (see the example data

set in Table S1 as an example). The data should have a header row and the following

columns, in this EXACT order: Spot name,
207

Pb/
235

U ratio, 1 sigma 7/35,
206

Pb/
238

U

ratio, 1 sigma 6/38, rho,
207

Pb/
206

Pb Age (in Myr). If any of these are incorrectly

formatted the file will not read into the program properly.

Install Libraries:
Once R is opened, click on “Packages & Data” on the top menus and select “Package

Installer”. In the search bar type the following: RColorBrewer and click Get List.

You will be asked to select a CRAN mirror. Select whichever you prefer and then select

the RColorBrewer package in the menu. Click Install Selected.

Repeat this procedure for the packages cardidates, data.table and reshape2.

Open the .R file in the supplementary information, or copy and paste the code from the R

code.docx file into the R console. This code may be run line by line or all as one.

Define input parameters:
Input the starting parameters.

1. Data Set Name: This is changed in the DataTitle function (LINE 7). Within the

quotations replace “YOURDATA” with “yourfilename”. Any characters will be

accepted.

2. File location: In the read.csv() function (LINE 8) enter the location of the file to

be modeled (note that R does not read single backslashes properly therefore only

use “/” or “\\” to separate folders). Replace

“YOUR/FILE/LOCATION/IN/CSV/FORMAT” with the location of the file to

be modeled. Use the “\\” if you are running the code on a Windows platform and

“/” on a Mac platform to separate directories.

3. Working Directory: In the setwd() function (LINE 9) put your preferred

directory in place of “YOUR/WORKING/DIRECTORY”.

One other parameter that may be changed is the node spacing (see Figure 2 for a

graphical depiction of this). We find that 5–10 myr spacing is suitable for finding peaks,

however, some may prefer a smaller or larger grid spacing depending upon the data set.

This is changed in the Tstep function (Line 12). Currently this is set at 5 * 10^6 (5 myr)

but this may be changed to any number.

Stacked probability plots:
One other output parameter we have defined is maximus, which is the maximum

likelihood that will be plotted on the normalized upper and lower intercept plots. This is

to be used for making stacked probability plots as many workers currently use for

concordant probability density functions. This value will be the pre-defined height of

each plot. Therefore, you should have some idea of what the maximum normalized

likelihoods will be throughout the suite of sample to be compared and maximus should

be greater than the maximum normalized likelihood.

Run:

Once these steps are complete, highlight the entire sequence of code and select Edit ->

Execute. In our experience, an average-sized data set with ~150 analyses will run in

under ten minutes on most computers using a 2 myr node spacing. This will obviously

change with the number of analyses and the node spacing.

For example, using a MacBook Pro (2.9GHz processor, 16 GB RAM with 1867 MHz

DDR3) the Sydgletcher data set (Morris et al., 2015) containing 63 data points runs in <3

minutes.

Outputs:

The automatic outputs are as follows:

1. YourTitle.csv: a runfile containing relevant information regarding the modeling

run including runtime and number of data points

2. YourTitle results.csv: The raw output data file containing upper intercept, lower

intercept, summed probability density, and normalized likelihood. This may be

used for plotting using other resources if necessary.

3. YourTitle upper intercept.csv: The file containing upper intercept ages and binned

likelihood

4. YourTitle lower intercept.csv: The file containing lower intercept ages and binned

likelihood

5. YourTitle Peak Location and Width.csv: The file containing all the significant

local maxima (i.e., maxima that have likelihoods greater than 1/3 the maximum

likelihood) in the two-dimensional likelihood map discussed below. Included

with each maximum is the position of the upper intercept, positions of the lower

intercept, and the width of the Gaussian fit in each direction. For both directions

the number of points used in the Gaussian fit are used, as well as the likelihood

measured at the maximum. Supplementary Figure S1 may help visualize this

process.

6. YourTitle 2D Histogram.pdf: The two-dimensional likelihood map produced

during the analysis

7. YourTitle XYIntercepts.pdf: This file contains the plot of normalized upper and

lower intercept likelihoods

8. YourTitle XYInterceptsnorm.pdf: This file contains the plot of normalized upper

and lower intercept likelihoods but with the maximum defined by the maximus

input parameter. These plots can be used for creating stacked probability plots as

workers currently do with probability density functions.

9. YourTitle compare.pdf: A file containing the normalized binned upper and lower

intercept likelihoods with the maximum of the y-axis predefined in the code (see

above) as well as the 2D heat map. To be used for stacked comparisons.

10. YourTitle plate.pdf: This is the final combined output containing several of the

above plots. This is identical to Figures 3–5 in the paper.

11. YourTitle Concordia.pdf: A Concordia plot of the input data set.

Bootstrapping method for determining reproducibility:

True uncertainty propagation in a modelling method such as we proposed here is

a complex and intricate issue. Therefore we have attempted to address this issue by

performing a ‘pick and replace’ bootstrapping procedure to the Sydgletcher dataset,

giving us an estimate of the reproducibility of the modelling procedure with variable data

inputs. This entailed using the reported Sygletcher dataset of Morris et al. (2015) as the

true dataset, and randomly sampling n = 63 analyses from this dataset. The ‘pick and

replace’ selects each of the n = 63 selections at random from the Sydgletcher dataset, no

matter which analysis was picked prior. In this way, we generate a random selection of

63 analyses from the Sydgletcher population (assumed to represent the true population),

some of which will be duplicates. We performed this random sampling ~6000 times to

produce ~6000 datasets randomly generated from the original Sydgletcher dataset. We

then run our modeling procedure on each of the 6000 randomly generated datasets and

record peak locations. This provides us with an effective reproducibility measure, in that

the standard deviation of a population (n = 6000) about any one major peak gives us an

estimate of the affect of sampling bias on the model outputs. Unfortunately, this

bootstrapping method is very computationally expensive (6000 runs took over 4 days on

a moderately fast desktop computer) and not likely to be widely used by the detrital

zircon community. Nevertheless, we have included the code for bootstrapping as well as

a description of the method in the supplementary materials so that interested parties may

experiment with or improve the R code efficiency (see below for code). The results of

our bootstrapped modelling procedure are documented below using two lower intercept

peaks.

	
Figure S1: Results of bootstrapped resampling of the Sydgletcher datset. A. Results for the

Sydgletcher dataset, expanded to show the region of high likelihood in more detail. B. A histogram of

calculated peak centers for each bootstrapped dataset (n = ~6000) showing the reproducibility of the peak

location given variable input data. C. A likelihood cross-section at a set upper intercept age across the peak

of interest from the modelling output using the actual Sydgletcher dataset. This plot shows the likelihood

at various lower intercept ages. Also shown are the Gaussian fit parameters of peak center and peak width

at the fit. D. Histogram of peak locations of each of the n = ~6000 bootstrapped datasets. The standard

deviation of the population of peak centers is around the same amount as the peak width measure defined

by the Gaussian fit in (E). E. A plot showing how likelihood varies with lower intercept age across the

highest peak in the dataset. Also shown are the Gaussian fit parameters of peak center and peak width.

	

R code for bootstrapping procedure:

Copy and paste the blue text into R in order to run the bootstrapping procedure.

rm(list = ls())

Data should have format as follows

sample name, ratio 7/5, 1sigma75, ratio 6/8, 1sigma 68, rho, age76 in Ma

download data file and view and define Npoints for future calculations

Data.raw <- read.csv("Your File")

DataTitle <- "Your Title"

setwd("Your Location")

Create the index and info for the bootstrapping loop

B <- 5 # number of times to run it through

N <- length(Data.raw[, 1]) # number of data to draw (all of them)

P <- 30 # number of potential peaks

means <- rep("mean", B * P)

stor.peaks.up <- data.frame(matrix(NA, B, P)) # store upper intercept peaks

stor.peaks.dn <- data.frame(matrix(NA, B, P)) # store lower intercept peaks

colnames(stor.peaks.dn) <- rep("mean", P)

colnames(stor.peaks.up) <- rep("mean", P)

set input variables, these all are used for the main 'grid' not the dataset.

Tstep = 10*10^6

define the maximum of the y-axis

maximus = 75

number of data points in each block

Number = 25

activate necessary libraries

library(RColorBrewer)

library(reshape2)

library(cardidates)

library(data.table)

library(raster)

definitions that should be outside the loop

deltaT = 100*10^6

concTstep = 100*10^3

f = 2

Tmin = 0.0;

Tmax = 4.5*10^9;

concNlines <- Tmax/concTstep + 1;

Lambda238 <- 1.55125*10^(-10)

Lambda235 <- 9.8485*10^(-10)

extra stuff outside the loop

Npoints <- Number

start the clock

ptm <- proc.time()

Creating files and equations outside the loop

a <- as.vector(seq(from = 0, to = Tmax - Tstep, by = Tstep))

b <- as.vector(seq(from = Tmin + Tstep, to = Tmax, by = Tstep))

DiscGrid <- expand.grid(a, b)

DiscGrid2 <- subset(DiscGrid, Var1 < Var2)

DiscGrid3 <- DiscGrid2[with(DiscGrid2, order(Var1)),]

DiscGridTable <- DiscGrid3

colnames(DiscGridTable) <- c("Lower Intercept", "Upper Intercept")

aff <- function(x1, y1, x2, y2) {(y2 - y1)/(x2 - x1)

}

bff <- function(x1, y1, x2, y2) {y2 - x2*(y2 - y1)/(x2 - x1)

}

afff <- function(t1, t2) {aff(exp(Lambda235 * t1) - 1, exp(Lambda238 * t1) - 1,

 exp(Lambda235 * t2) - 1, exp(Lambda238 * t2) - 1)

}

bfff <- function(t1, t2) {bff(exp(Lambda235 * t1) - 1, exp(Lambda238 * t1) - 1,

 exp(Lambda235 * t2) - 1, exp(Lambda238 * t2) - 1)

}

DiscGridTableA <- mapply(afff, DiscGridTable["Lower Intercept"],

 DiscGridTable["Upper Intercept"])

colnames(DiscGridTableA) <- "Slope"

DiscGridTableB <- mapply(bfff, DiscGridTable["Lower Intercept"],

 DiscGridTable["Upper Intercept"])

colnames(DiscGridTableB) <- "Yintercept"

DiscGridTableFinal <- cbind(DiscGridTable[1:2], DiscGridTableA, DiscGridTableB)

DiscGridTableFinal <- DiscGridTableFinal[c(3, 4, 1, 2)]

row.names(DiscGridTableFinal) <- seq_len(nrow(DiscGridTableFinal))

DiscGridTableFinal$ID <- seq(1, nrow(DiscGridTableFinal), 1)

Discline <- nrow(DiscGrid)

Disclines <- Discline

Pro <- function(a, b, Xi, sX, Yi, sY, rho, disc) { abs(disc) * (1 / (2 * pi * sX * sY)) *

 exp((-1 / 2) * ((((b + a * Xi - Yi) / (cos(atan((2 * rho * sX * sY) /

 (sX ^ 2) - (sY ^ 2)) / 2) + a * sin(atan((2 * rho * sX * sY) /

 (sX ^ 2) - (sY ^ 2)) / 2))) / sY) ^ 2 / (1 + (sX / sY

* ((a *

cos(atan((2 * rho * sX * sY) / (sX ^ 2) - (sY ^ 2)) / 2) -

sin(atan((2 * rho * sX * sY) / (sX ^ 2) - (sY ^ 2)) / 2)) /

(cos(atan((2 * rho * sX * sY) / (sX ^ 2) - (sY ^ 2)) / 2) + a *

sin(atan((2 * rho * sX * sY) / (sX ^ 2) - (sY ^ 2)) / 2)))) ^ 2)))

}

Prob <- function(p1, p2) {

 p1 = as.list(p1); p2 = as.list(p2)

 Pro(p1$Slope, p1$Yintercept, p2$r75, p2$sigma75, p2$r68,

 p2$sigma68, p2$rho, p2$discordance)

}

BigFunction <- function (x) {

 Npoint <- dim(Data.new)

 Npoints <- (Npoint[1])

 indexdisc <- CJ(indexdisc1 = seq(nrow(DiscGridTableFinal)),

 indexdisc2 = seq(nrow(x)))

 sumdisc <- indexdisc[,`:=`(resultdisc = Prob(DiscGridTableFinal[indexdisc1,],

 x[indexdisc2,]),

 Group.1 = rep(seq(nrow(DiscGridTableFinal)),

 each = nrow(x)))][,.(sumdisc = sum(resultdisc)),

 by = Group.1]

 sumdisc <- as.data.frame(sumdisc)

 colnames(sumdisc) <- c("ID", "Likelihood")

 Resultdisc <- merge(DiscGridTableFinal, sumdisc, by = "ID", all.x = TRUE)

 row.names(Resultdisc) <- seq_len(nrow(Resultdisc))

 rm(indexdisc, sumdisc)

 assign(paste("Resultdisc"), Resultdisc)

}

Gaussian fit function

fitG =

 function(x,y,mu,sig,scale){

 f = function(p){

 d = p[3] * dnorm(x, mean = p[1], sd = p[2])

 sum((d - y) ^ 2)

 }

 optim(c(mu, sig, scale), f)

 }

try to fit the gaussian fit function to the data array

x is data array, y is the lower intercept location,

z is the upper intercept location

fitG.upper <- function (x, y, z) {

 i <- 1

 repeat {

 i <- i + 1

 z1 <- z - 100 + i

 z2 <- z + 100 - i

 if (z2 > nrow(aa)) {

 z2 <- nrow(aa)

 }

 newdata <- data.frame(x[z1:z2, y])

 rows <- c(seq(z1 * Tstep, z2 * Tstep, Tstep))

 newdata <- data.frame(cbind(rows, newdata))

 n <- nrow(newdata)

 colnames(newdata) <- c("Intercept", "Likelihood")

 newfit <- fitG(newdata$Intercept, newdata$Likelihood, 3.0e9, 200e7, 1)

 pred.likelihood <- data.frame(Intercept = newdata$Intercept,

 Predicted = newfit$par[3]* dnorm(newdata$Intercept,

 newfit$par[1], newfit$par[2]))

 deviates <- pred.likelihood$Predicted - newdata$Likelihood

 deviates.2 <- deviates ^ 2

 sum.dev.2 <- sum(deviates.2) / x[z, y]

 if (sum.dev.2 < 0.05 & n > 11 |

 sum.dev.2 < 1 & n > 3 & n < 11 |

 i > 98)

 break

 }

 list(mean = newfit$par[1])

}

fitG.lower <- function (x, y, z) {

 i <- 1

 repeat {

 i <- i + 1

 y1 <- y - 100 + i

 y2 <- y + 100 - i

 if (y1 < 1) {

 y1 <- 1

 }

 newdata <- data.frame(x[z, y1:y2])

 rows <- c(seq(y1 * Tstep, y2 * Tstep, Tstep))

 newdata <- data.frame(cbind(rows, newdata))

 n <- nrow(newdata)

 colnames(newdata) <- c("Intercept", "Likelihood")

 newfit <- fitG(newdata$Intercept, newdata$Likelihood, 1.0e9, 200e7, 1)

 pred.likelihood <- data.frame(Intercept = newdata$Intercept,

 Predicted = newfit$par[3]* dnorm(newdata$Intercept,

 newfit$par[1], newfit$par[2]))

 deviates <- pred.likelihood$Predicted - newdata$Likelihood

 deviates.2 <- deviates ^ 2

 sum.dev.2 <- sum(deviates.2) / x[z, y]

 if (sum.dev.2 < 0.05 & n > 11 |

 sum.dev.2 < 1 & n > 3 & n < 11 |

 i > 98)

 break

 }

 list(mean = newfit$par[1], width = round(n * Tstep / 1e6),

 points = n, deviation = round(sum.dev.2, 6))

}

analyze the main data set to find the dominate peaks, then use those as a guide

within the for loop

Data.new <- Data.raw

colnames(Data.new) <- c("Spot", "r75", "sigma75", "r68", "sigma68", "rho", "age76")

Data.new["sigma75"] <- median(Data.new[, "sigma75"])

Data.new["sigma68"] <- median(Data.new[, "sigma68"])

datapoints <- nrow(Data.new)

discordance <- matrix(c(abs(1 - (Data.new$r68 / (exp(Lambda238 * Data.new$age76 *

 1000000) - 1)))))

Data.new <- data.frame(cbind(Data.new$Spot, Data.new$r75, Data.new$sigma75,

 Data.new$r68,

 Data.new$sigma68, Data.new$rho, discordance))

colnames(Data.new) <- c("Spot", "r75", "sigma75", "r68", "sigma68", "rho", "discordance")

nfiles <- ceiling(nrow(Data.new)/Number)

grouping <- as.data.frame(c(rep(1:(nfiles - 1), each = Number),

 rep(nfiles, times = nrow(Data.new) -

 (as.integer(Number*(nfiles - 1))))))

Data.new <- cbind(Data.new, grouping)

colnames(Data.new) <- c("Spot", "r75", "sigma75", "r68", "sigma68", "rho", "discordance", "GROUP")

data.split <- split(Data.new, Data.new$GROUP)

bigdata <- by(Data.new[, 1:7], Data.new$GROUP, BigFunction)

splitfun <- function(x) {

 bigdata[[x]]$Likelihood

}

for (k in 1:nfiles) {

 assign(paste("res", k), as.data.frame(splitfun(k)))

}

likelis <- do.call(cbind, lapply(paste("res", 1:nfiles, sep=" "), get))

totallikelihood <- apply(likelis, 1, sum)

Resultdisc <- cbind(bigdata$`1`[, 1:5], as.data.frame(totallikelihood))

colnames(Resultdisc) <- c("ID", "Slope", "Yintercept", "Lower Intercept", "Upper Intercept",

 "Likelihood")

normalized <- Resultdisc [, "Likelihood"] / datapoints

Resultdisc <- cbind(Resultdisc, normalized)

upperdisc <- aggregate (Resultdisc$normalized,

 by = list (Resultdisc [, "Upper Intercept"]), max)

colnames(upperdisc) <- c("Upper Intercept", "Likelihood")

lowerdisc <- aggregate (Resultdisc$normalized,

 by = list(Resultdisc[, "Lower Intercept"]), max)

colnames(lowerdisc) <- c("Lower Intercept", "Likelihood")

Uncertainty analysis

Fit the Gaussian curves to the peaks identified in the 'lowerpeak' file

aa <- acast(Resultdisc, `Upper Intercept`~`Lower Intercept`, value.var = "normalized",

 fun.aggregate = mean)

filter by peak height, only using data that are > 1/3 the max value

aaa <- ifelse(aa < max(aa / 3, na.rm = TRUE), NA, aa)

colnames(aa) <- c(seq(1, ncol(aa), 1))

rownames(aa) <- c(seq(1, nrow(aa), 1))

Convert it to a raster object

r <- raster(aaa)

extent(r) <- extent(c(0, ncol(aaa), 0, ncol(aaa)) + 0.5)

Find the maximum value within the 9-cell neighborhood of each cell and put it in the

group of 9 cells

f <- function(X) {max (X, na.rm = FALSE)}

localmax <- focal(r, w = matrix(1, 3, 3), fun = f, pad = TRUE, padValue = NA)

Does each cell have the maximum value in its neighborhood?

r2 <- r == localmax

Get x-y coordinates of those cells that are local maxima

maxXY <- data.frame(xyFromCell(r2, Which(r2==1, cells=TRUE)))

colnames(maxXY) <- c("A", "B")

heights <- rep(0, nrow(maxXY))

for (m in 1:nrow(maxXY)) {

 heights[m] <- aa[nrow(aa) - maxXY$B[m], maxXY$A[m]]

}

maxXY <- data.table(cbind(maxXY, heights))

maxXY <- setorder(maxXY, -`heights`)

uncert <- data.frame(Upeak = rep(0, nrow(maxXY)),

 Uwidth = rep(0, nrow(maxXY)),

 Upoints = rep(0, nrow(maxXY)),

 Udeviation = rep(0, nrow(maxXY)),

 Lpeak = rep(0, nrow(maxXY)),

 Lwidth = rep(0, nrow(maxXY)),

 Upoints = rep(0, nrow(maxXY)),

 Udeviation = rep(0, nrow(maxXY)),

 `normalized likelihood` = rep(0, nrow(maxXY)))

for (i in 1:nrow(maxXY)) {

 uncert[i, 5:8] <- fitG.lower(aa, maxXY$A[i], nrow(aa) - maxXY$B[i])

 uncert$normalized.likelihood[i] <- aa[nrow(aa) - maxXY$B[i], maxXY$A[i]]

}

uncert$Lpeak <- round(uncert$Lpeak / 1e6)

for (i in 1:nrow(maxXY)) {

 uncert[i, 1:4] <- fitG.upper(aa, maxXY$A[i], nrow(aa) - maxXY$B[i])

}

uncert$Upeak <- round(uncert$Upeak / 1e6)

remove stuff

rm(aa, r2, r, f, localmax, aaa, lowerdisc, upperdisc, Resultdisc, normalized)

Start the bootstrapping loop

for (i in 1:B) {

 indx <- sample(1:N, N, replace = TRUE)

Start dealing with the data

Data.new <- Data.raw[indx,]

colnames(Data.new) <- c("Spot", "r75", "sigma75", "r68", "sigma68", "rho", "age76")

Data.new["sigma75"] <- median(Data.new[, "sigma75"])

Data.new["sigma68"] <- median(Data.new[, "sigma68"])

datapoints <- nrow(Data.new)

discordance <- matrix(c(abs(1 - (Data.new$r68 / (exp(Lambda238 * Data.new$age76 *

 1000000) - 1)))))

Data.new <- data.frame(cbind(Data.new$Spot, Data.new$r75, Data.new$sigma75,

 Data.new$r68,

 Data.new$sigma68, Data.new$rho, discordance))

colnames(Data.new) <- c("Spot", "r75", "sigma75", "r68", "sigma68", "rho", "discordance")

nfiles <- ceiling(nrow(Data.new)/Number)

grouping <- as.data.frame(c(rep(1:(nfiles - 1), each = Number),

 rep(nfiles, times = nrow(Data.new) -

 (as.integer(Number*(nfiles - 1))))))

Data.new <- cbind(Data.new, grouping)

colnames(Data.new) <- c("Spot", "r75", "sigma75", "r68", "sigma68", "rho", "discordance", "GROUP")

data.split <- split(Data.new, Data.new$GROUP)

bigdata <- by(Data.new[, 1:7], Data.new$GROUP, BigFunction)

splitfun <- function(x) {

 bigdata[[x]]$Likelihood

}

for (k in 1:nfiles) {

 assign(paste("res", k), as.data.frame(splitfun(k)))

}

likelis <- do.call(cbind, lapply(paste("res", 1:nfiles, sep=" "), get))

totallikelihood <- apply(likelis, 1, sum)

Resultdisc <- cbind(bigdata$`1`[, 1:5], as.data.frame(totallikelihood))

colnames(Resultdisc) <- c("ID", "Slope", "Yintercept", "Lower Intercept", "Upper Intercept",

 "Likelihood")

normalized <- Resultdisc [, "Likelihood"] / datapoints

Resultdisc <- cbind(Resultdisc, normalized)

upperdisc <- aggregate (Resultdisc$normalized,

 by = list (Resultdisc [, "Upper Intercept"]), max)

colnames(upperdisc) <- c("Upper Intercept", "Likelihood")

lowerdisc <- aggregate (Resultdisc$normalized,

 by = list(Resultdisc[, "Lower Intercept"]), max)

colnames(lowerdisc) <- c("Lower Intercept", "Likelihood")

Uncertainty analysis using x,y coordinates from the real data set analysis

This allows for the identification of the same peak everytime, although some will be

way off. Oh well.

Fit the Gaussian curves to the peaks identified in the 'lowerpeak' file

aa <- acast(Resultdisc, `Upper Intercept`~`Lower Intercept`, value.var = "normalized",

 fun.aggregate = mean)

for (j in 1:nrow(maxXY)) {

 stor.peaks.dn[i, j] <- fitG.lower(aa, maxXY$A[j], nrow(aa) - maxXY$B[j])

}

for (j in 1:nrow(maxXY)) {

 stor.peaks.up[i, j] <- fitG.upper(aa, maxXY$A[j], nrow(aa) - maxXY$B[j])

}

End the loop

}

Gaussian fit of each peaks location

t.test(stor.peaks.dn$mean.2, alternative = c("two.sided"))

setwd("C:/Users/jwaldronlab/Desktop")

write.table(stor.peaks.dn, file = paste(DataTitle, "Peak Location Lower.csv"),

 row.names = FALSE, quote = FALSE, sep = ",")

write.table(stor.peaks.up, file = paste(DataTitle, "Peak Location Upper.csv"),

 row.names = FALSE, quote = FALSE, sep = ",")

Stop the clock

runtime = proc.time() - ptm

runfile <- matrix(c("Data set Title", DataTitle, "Bootstrapping number", B,

 "Node Spacing (myr)", Tstep, "Number of gridlines", Discline,

 "Run time (sec)", runtime[3]), 5, 2, byrow = TRUE)

colnames(runfile) <- c("Information", "This run")

write.table(runfile, file = paste(DataTitle, ".csv"), row.names = FALSE,

 col.names = FALSE, quote = FALSE, sep = ",")

END!

End of the code for bootstrapping procedure.

