
Guide to Using R code 

 

Inputs and description of the code: 
 

We have written the code for this modeling method in the statistical programming 

software “R” (R Core Team; 2014).  R is a user-friendly, open-source software package 

used for high-level statistical analyses and free for download on any computer platform.  

We have attached the input code as well as a “how-to” file with explicit directions. Below 

are step-by-step directions. 	

	

First download the R software package (http://www.r-project.org/) and install for your 

platform.  A user-friendly software package called RStudio is also available but not 

necessary for use of our R script.   

 

Start 

Data should be saved in a .csv file in the EXACT following format (see the example data 

set in Table S1 as an example).  The data should have a header row and the following 

columns, in this EXACT order: Spot name, 
207

Pb/
235

U ratio, 1 sigma 7/35, 
206

Pb/
238

U 

ratio, 1 sigma 6/38, rho, 
207

Pb/
206

Pb Age (in Myr).  If any of these are incorrectly 

formatted the file will not read into the program properly.   

 

Install Libraries: 
Once R is opened, click on “Packages & Data” on the top menus and select “Package 

Installer”.  In the search bar type the following: RColorBrewer and click Get List.   

You will be asked to select a CRAN mirror.  Select whichever you prefer and then select 

the RColorBrewer package in the menu.  Click Install Selected.   

 

Repeat this procedure for the packages cardidates, data.table and reshape2.   

 

Open the .R file in the supplementary information, or copy and paste the code from the R 

code.docx file into the R console.  This code may be run line by line or all as one.   

 

Define input parameters: 
Input the starting parameters.   

1. Data Set Name:  This is changed in the DataTitle function (LINE 7).  Within the 

quotations replace “YOURDATA” with “yourfilename”.  Any characters will be 

accepted.   

2. File location:  In the read.csv() function (LINE 8) enter the location of the file to 

be modeled (note that R does not read single backslashes properly therefore only 

use “/” or “\\” to separate folders). Replace 

“YOUR/FILE/LOCATION/IN/CSV/FORMAT” with the location of the file to 

be modeled.  Use the “\\” if you are running the code on a Windows platform  and 

“/” on a Mac platform to separate directories.  

3. Working Directory:  In the setwd() function (LINE 9) put your preferred 

directory in place of “YOUR/WORKING/DIRECTORY”.   

 



One other parameter that may be changed is the node spacing (see Figure 2 for a 

graphical depiction of this).  We find that 5–10 myr spacing is suitable for finding peaks, 

however, some may prefer a smaller or larger grid spacing depending upon the data set.  

This is changed in the Tstep function (Line 12).  Currently this is set at 5 * 10^6 (5 myr) 

but this may be changed to any number.   

 

Stacked probability plots: 
One other output parameter we have defined is maximus, which is the maximum 

likelihood that will be plotted on the normalized upper and lower intercept plots.  This is 

to be used for making stacked probability plots as many workers currently use for 

concordant probability density functions.  This value will be the pre-defined height of 

each plot.  Therefore, you should have some idea of what the maximum normalized 

likelihoods will be throughout the suite of sample to be compared and maximus should 

be greater than the maximum normalized likelihood.     

 
Run: 

Once these steps are complete, highlight the entire sequence of code and select Edit -> 

Execute.  In our experience, an average-sized data set with ~150 analyses will run in 

under ten minutes on most computers using a 2 myr node spacing. This will obviously 

change with the number of analyses and the node spacing.   

 

For example, using a MacBook Pro (2.9GHz processor, 16 GB RAM with 1867 MHz 

DDR3) the Sydgletcher data set (Morris et al., 2015) containing 63 data points runs in <3 

minutes.   

 
Outputs:  

The automatic outputs are as follows: 

1. YourTitle.csv: a runfile containing relevant information regarding the modeling 

run including runtime and number of data points 

2. YourTitle results.csv: The raw output data file containing upper intercept, lower 

intercept, summed probability density, and normalized likelihood.  This may be 

used for plotting using other resources if necessary.  

3. YourTitle upper intercept.csv: The file containing upper intercept ages and binned 

likelihood 

4. YourTitle lower intercept.csv: The file containing lower intercept ages and binned 

likelihood 

5. YourTitle Peak Location and Width.csv:  The file containing all the significant 

local maxima (i.e., maxima that have likelihoods greater than 1/3 the maximum 

likelihood) in the two-dimensional likelihood map discussed below.  Included 

with each maximum is the position of the upper intercept, positions of the lower 

intercept, and the width of the Gaussian fit in each direction.  For both directions 

the number of points used in the Gaussian fit are used, as well as the likelihood 

measured at the maximum.  Supplementary Figure S1 may help visualize this 

process.   

6. YourTitle 2D Histogram.pdf: The two-dimensional likelihood map produced 

during the analysis 



7. YourTitle XYIntercepts.pdf: This file contains the plot of normalized upper and 

lower intercept likelihoods 

8. YourTitle XYInterceptsnorm.pdf: This file contains the plot of normalized upper 

and lower intercept likelihoods but with the maximum defined by the maximus 

input parameter.  These plots can be used for creating stacked probability plots as 

workers currently do with probability density functions.    

9. YourTitle compare.pdf: A file containing the normalized binned upper and lower 

intercept likelihoods with the maximum of the y-axis predefined in the code (see 

above) as well as the 2D heat map.  To be used for stacked comparisons.   

10. YourTitle plate.pdf: This is the final combined output containing several of the 

above plots.  This is identical to Figures 3–5 in the paper.   

11. YourTitle Concordia.pdf: A Concordia plot of the input data set.   

 



Bootstrapping method for determining reproducibility: 

True uncertainty propagation in a modelling method such as we proposed here is 

a complex and intricate issue.  Therefore we have attempted to address this issue by 

performing a ‘pick and replace’ bootstrapping procedure to the Sydgletcher dataset, 

giving us an estimate of the reproducibility of the modelling procedure with variable data 

inputs.  This entailed using the reported Sygletcher dataset of Morris et al. (2015) as the 

true dataset, and randomly sampling n = 63 analyses from this dataset.  The ‘pick and 

replace’ selects each of the n = 63 selections at random from the Sydgletcher dataset, no 

matter which analysis was picked prior.  In this way, we generate a random selection of 

63 analyses from the Sydgletcher population (assumed to represent the true population), 

some of which will be duplicates.  We performed this random sampling ~6000 times to 

produce ~6000 datasets randomly generated from the original Sydgletcher dataset.  We 

then run our modeling procedure on each of the 6000 randomly generated datasets and 

record peak locations.  This provides us with an effective reproducibility measure, in that 

the standard deviation of a population (n = 6000) about any one major peak gives us an 

estimate of the affect of sampling bias on the model outputs.  Unfortunately, this 

bootstrapping method is very computationally expensive (6000 runs took over 4 days on 

a moderately fast desktop computer) and not likely to be widely used by the detrital 

zircon community.  Nevertheless, we have included the code for bootstrapping as well as 

a description of the method in the supplementary materials so that interested parties may 

experiment with or improve the R code efficiency (see below for code).  The results of 

our bootstrapped modelling procedure are documented below using two lower intercept 

peaks.   



	
Figure S1: Results of bootstrapped resampling of the Sydgletcher datset. A. Results for the 

Sydgletcher dataset, expanded to show the region of high likelihood in more detail.  B. A histogram of 

calculated peak centers for each bootstrapped dataset (n = ~6000) showing the reproducibility of the peak 

location given variable input data.  C. A likelihood cross-section at a set upper intercept age across the peak 

of interest from the modelling output using the actual Sydgletcher dataset.  This plot shows the likelihood 

at various lower intercept ages.  Also shown are the Gaussian fit parameters of peak center and peak width 

at the fit.  D. Histogram of peak locations of each of the n = ~6000 bootstrapped datasets.  The standard 

deviation of the population of peak centers is around the same amount as the peak width measure defined 

by the Gaussian fit in (E).  E. A plot showing how likelihood varies with lower intercept age across the 

highest peak in the dataset.  Also shown are the Gaussian fit parameters of peak center and peak width.   

 

	

R code for bootstrapping procedure: 

 

Copy and paste the blue text into R in order to run the bootstrapping procedure.  

 
rm(list = ls()) 

 

# Data should have format as follows 

# sample name, ratio 7/5, 1sigma75, ratio 6/8, 1sigma 68, rho, age76 in Ma 

 

# download data file and view and define Npoints for future calculations 

Data.raw   <- read.csv("Your File") 

DataTitle  <- "Your Title" 



setwd("Your Location") 

 

## Create the index and info for the bootstrapping loop 

B               <- 5                                  # number of times to run it through 

N               <- length(Data.raw[, 1])              # number of data to draw (all of them) 

P               <- 30                                 # number of potential peaks 

means           <- rep("mean", B * P) 

stor.peaks.up   <- data.frame(matrix(NA, B, P))       # store upper intercept peaks 

stor.peaks.dn   <- data.frame(matrix(NA, B, P))       # store lower intercept peaks 

colnames(stor.peaks.dn)    <- rep("mean", P) 

colnames(stor.peaks.up)    <- rep("mean", P) 

 

 

# set input variables, these all are used for the main 'grid' not the dataset.  

Tstep         = 10*10^6 

# define the maximum of the y-axis 

maximus       = 75 

# number of data points in each block 

Number        = 25 

 

# activate necessary libraries 

library(RColorBrewer) 

library(reshape2) 

library(cardidates) 

library(data.table) 

library(raster) 

 

# definitions that should be outside the loop 

deltaT                = 100*10^6 

concTstep             = 100*10^3 

f                     = 2 

Tmin                  = 0.0; 

Tmax                  = 4.5*10^9; 

concNlines            <- Tmax/concTstep + 1; 

 

Lambda238             <- 1.55125*10^(-10) 

Lambda235             <- 9.8485*10^(-10) 

 

# extra stuff outside the loop 

Npoints               <- Number 

 

# start the clock 

ptm <- proc.time() 

 

# Creating files and equations outside the loop 

a                          <- as.vector( seq( from = 0, to = Tmax - Tstep, by = Tstep )) 

b                          <- as.vector( seq( from = Tmin + Tstep, to = Tmax, by = Tstep)) 

DiscGrid                   <- expand.grid( a, b ) 

DiscGrid2                  <- subset( DiscGrid, Var1 < Var2) 

DiscGrid3                  <- DiscGrid2[ with( DiscGrid2, order( Var1 )), ] 

DiscGridTable              <- DiscGrid3 

colnames(DiscGridTable)    <- c( "Lower Intercept", "Upper Intercept" ) 

 

aff            <- function(x1, y1, x2, y2)  {(y2 - y1)/(x2 - x1) 

} 

bff            <- function(x1, y1, x2, y2)  {y2 - x2*(y2 - y1)/(x2 - x1) 



} 

afff           <- function(t1, t2) {aff(exp(Lambda235 * t1) - 1, exp(Lambda238 * t1) - 1, 

                                        exp(Lambda235 * t2) - 1, exp(Lambda238 * t2) - 1) 

} 

bfff           <- function(t1, t2) {bff(exp(Lambda235 * t1) - 1, exp(Lambda238 * t1) - 1, 

                                        exp(Lambda235 * t2) - 1, exp(Lambda238 * t2) - 1) 

} 

 

DiscGridTableA                <- mapply(afff, DiscGridTable["Lower Intercept"],  

                                        DiscGridTable["Upper Intercept"]) 

colnames(DiscGridTableA)      <- "Slope"  

DiscGridTableB                <- mapply(bfff, DiscGridTable["Lower Intercept"],  

                                        DiscGridTable["Upper Intercept"]) 

colnames(DiscGridTableB)      <- "Yintercept"  

DiscGridTableFinal            <- cbind(DiscGridTable[1:2], DiscGridTableA, DiscGridTableB) 

DiscGridTableFinal            <- DiscGridTableFinal[c(3, 4, 1, 2)] 

row.names(DiscGridTableFinal) <- seq_len(nrow(DiscGridTableFinal)) 

DiscGridTableFinal$ID         <- seq(1, nrow(DiscGridTableFinal), 1) 

Discline                      <- nrow(DiscGrid)    

Disclines                     <- Discline                                     

Pro  <- function(a, b, Xi, sX, Yi, sY, rho, disc) { abs(disc) * (1 / (2 * pi * sX * sY)) * 

    exp((-1 / 2) * ((((b + a * Xi - Yi) / (cos(atan((2 * rho * sX * sY) / 

                                                      (sX ^ 2) - (sY ^ 2)) / 2) + a * sin(atan((2 * rho * sX * sY) / 

                                                                                                 (sX ^ 2) - (sY ^ 2)) / 2))) / sY) ^ 2 / (1 + (sX / sY 

* ((a *  

                                                                                                                                                             

cos(atan((2 * rho * sX * sY) / (sX ^ 2) - (sY ^ 2)) / 2) - 

                                                                                                                                                             

sin(atan((2 * rho * sX * sY) / (sX ^ 2) - (sY ^ 2)) / 2)) / 

                                                                                                                                                            

(cos(atan((2 * rho * sX * sY) / (sX ^ 2) - (sY ^ 2)) / 2) + a * 

                                                                                                                                                               

sin(atan((2 * rho * sX * sY) / (sX ^ 2) - (sY ^ 2)) / 2)))) ^ 2))) 

} 

Prob   <- function(p1, p2) { 

  p1 = as.list(p1); p2 = as.list(p2) 

  Pro(p1$Slope, p1$Yintercept, p2$r75, p2$sigma75, p2$r68, 

      p2$sigma68, p2$rho, p2$discordance) 

} 

 

BigFunction  <- function (x) { 

  Npoint                    <- dim(Data.new) 

  Npoints                   <- (Npoint[1]) 

  indexdisc      <- CJ(indexdisc1 = seq( nrow( DiscGridTableFinal )),  

                       indexdisc2 = seq( nrow( x ))) 

  sumdisc        <- indexdisc[,`:=`(resultdisc = Prob( DiscGridTableFinal[indexdisc1, ],  

                                                       x[indexdisc2, ]), 

                                    Group.1 = rep( seq( nrow( DiscGridTableFinal )),  

                                                   each = nrow( x )))][,.(sumdisc = sum( resultdisc )), 

                                                                       by = Group.1] 

  sumdisc                <- as.data.frame( sumdisc ) 

   

  colnames(sumdisc)      <- c("ID", "Likelihood") 

  Resultdisc             <- merge(DiscGridTableFinal, sumdisc, by = "ID", all.x = TRUE) 

  row.names(Resultdisc)  <- seq_len(nrow(Resultdisc)) 

  rm(indexdisc, sumdisc) 



  assign(paste("Resultdisc"), Resultdisc) 

} 

 

 

# Gaussian fit function 

fitG = 

  function(x,y,mu,sig,scale){ 

     

    f = function(p){ 

      d = p[3] * dnorm( x, mean = p[ 1 ], sd = p[ 2 ] ) 

      sum( ( d - y ) ^ 2) 

    } 

    optim( c( mu, sig, scale ), f ) 

  } 

 

# try to fit the gaussian fit function to the data array  

# x is data array, y is the lower intercept location,  

# z is the upper intercept location 

fitG.upper   <- function (x, y, z) { 

  i <- 1 

  repeat { 

    i                 <- i + 1 

    z1                <- z - 100 + i 

    z2                <- z + 100 - i 

    if (z2 > nrow(aa)) { 

      z2 <- nrow(aa) 

    } 

    newdata           <- data.frame( x[ z1:z2, y] ) 

    rows              <- c( seq( z1 * Tstep, z2 * Tstep, Tstep )) 

    newdata           <- data.frame( cbind( rows, newdata )) 

    n                 <- nrow( newdata ) 

    colnames(newdata) <- c( "Intercept", "Likelihood" ) 

    newfit            <- fitG( newdata$Intercept, newdata$Likelihood, 3.0e9, 200e7, 1) 

    pred.likelihood   <- data.frame( Intercept = newdata$Intercept, 

                                     Predicted = newfit$par[3]* dnorm(newdata$Intercept,  

                                                                      newfit$par[1], newfit$par[2])) 

    deviates          <- pred.likelihood$Predicted - newdata$Likelihood 

    deviates.2        <- deviates ^ 2 

    sum.dev.2         <- sum(deviates.2) / x[z, y] 

    if (sum.dev.2 < 0.05 & n > 11 | 

        sum.dev.2 < 1 & n > 3 & n < 11 | 

        i > 98) 

      break 

  } 

  list(mean = newfit$par[1]) 

} 

fitG.lower   <- function (x, y, z) { 

  i <- 1 

  repeat { 

    i                 <- i + 1 

    y1                <- y - 100 + i 

    y2                <- y + 100 - i 

    if (y1 < 1) { 

      y1 <- 1 

    } 

    newdata           <- data.frame( x[ z, y1:y2 ] ) 



    rows              <- c( seq( y1 * Tstep, y2 * Tstep, Tstep )) 

    newdata           <- data.frame( cbind( rows, newdata )) 

    n                 <- nrow( newdata ) 

    colnames(newdata) <- c( "Intercept", "Likelihood" ) 

    newfit            <- fitG( newdata$Intercept, newdata$Likelihood, 1.0e9, 200e7, 1) 

    pred.likelihood   <- data.frame( Intercept = newdata$Intercept, 

                                     Predicted = newfit$par[3]* dnorm(newdata$Intercept,  

                                                                      newfit$par[1], newfit$par[2])) 

    deviates          <- pred.likelihood$Predicted - newdata$Likelihood 

    deviates.2        <- deviates ^ 2 

    sum.dev.2         <- sum(deviates.2) / x[z, y] 

    if (sum.dev.2 < 0.05 & n > 11 | 

        sum.dev.2 < 1 & n > 3 & n < 11 | 

        i > 98) 

      break 

  } 

  list(mean = newfit$par[1], width = round(n * Tstep / 1e6),  

       points =  n, deviation = round(sum.dev.2, 6)) 

} 

 

 

 

 

# analyze the main data set to find the dominate peaks, then use those as a guide  

# within the for loop 

 

Data.new              <- Data.raw 

colnames(Data.new)    <- c("Spot", "r75", "sigma75", "r68", "sigma68", "rho", "age76") 

Data.new["sigma75"]   <- median( Data.new[ , "sigma75"]) 

Data.new["sigma68"]   <- median( Data.new[ , "sigma68"]) 

 

datapoints            <- nrow(Data.new) 

 

discordance           <- matrix( c( abs(1 - (Data.new$r68 / (exp( Lambda238 * Data.new$age76 *  

                                                                    1000000) - 1))))) 

Data.new              <- data.frame(cbind(Data.new$Spot, Data.new$r75, Data.new$sigma75,  

                                          Data.new$r68,  

                                          Data.new$sigma68, Data.new$rho, discordance)) 

colnames(Data.new)    <- c("Spot", "r75", "sigma75", "r68", "sigma68", "rho", "discordance") 

 

nfiles                <- ceiling(nrow(Data.new)/Number) 

grouping              <- as.data.frame(c(rep(1:(nfiles - 1), each = Number),  

                                         rep(nfiles, times = nrow(Data.new) -  

                                               (as.integer(Number*(nfiles - 1)))))) 

Data.new              <- cbind(Data.new, grouping) 

colnames(Data.new)    <- c("Spot", "r75", "sigma75", "r68", "sigma68", "rho", "discordance", "GROUP") 

 

data.split            <- split(Data.new, Data.new$GROUP) 

 

bigdata              <- by(Data.new[, 1:7], Data.new$GROUP, BigFunction) 

splitfun   <- function(x) { 

  bigdata[[x]]$Likelihood 

} 

for (k in 1:nfiles) { 

  assign(paste("res", k), as.data.frame(splitfun(k))) 

} 



 

 

likelis               <- do.call(cbind, lapply(paste("res", 1:nfiles, sep=" "), get)) 

totallikelihood       <- apply(likelis, 1, sum)  

Resultdisc            <- cbind(bigdata$`1`[, 1:5], as.data.frame(totallikelihood)) 

colnames(Resultdisc)  <- c("ID", "Slope", "Yintercept", "Lower Intercept", "Upper Intercept",  

                           "Likelihood") 

normalized            <- Resultdisc [, "Likelihood"] / datapoints 

Resultdisc            <- cbind(Resultdisc, normalized) 

upperdisc             <- aggregate (Resultdisc$normalized,  

                                    by = list (Resultdisc [, "Upper Intercept"]), max) 

colnames(upperdisc)   <- c("Upper Intercept", "Likelihood") 

 

lowerdisc             <- aggregate (Resultdisc$normalized,  

                                    by = list(Resultdisc[, "Lower Intercept"]), max) 

colnames(lowerdisc)   <- c("Lower Intercept", "Likelihood") 

 

 

### Uncertainty analysis 

 

 

 

# Fit the Gaussian curves to the peaks identified in the 'lowerpeak' file 

aa           <- acast(Resultdisc, `Upper Intercept`~`Lower Intercept`, value.var = "normalized",  

                      fun.aggregate = mean) 

 

# filter by peak height, only using data that are > 1/3 the max value 

aaa          <- ifelse( aa < max(aa / 3, na.rm = TRUE), NA, aa) 

colnames(aa) <- c(seq(1, ncol(aa), 1)) 

rownames(aa) <- c(seq(1, nrow(aa), 1)) 

 

## Convert it to a raster object 

r         <- raster(aaa) 

extent(r) <- extent(c( 0, ncol(aaa), 0, ncol(aaa) ) + 0.5) 

 

## Find the maximum value within the 9-cell neighborhood of each cell and put it in the  

# group of 9 cells 

f          <- function( X ) {max (X, na.rm = FALSE)} 

localmax   <- focal( r, w = matrix( 1, 3, 3 ), fun = f, pad = TRUE, padValue = NA) 

 

## Does each cell have the maximum value in its neighborhood? 

r2         <- r == localmax 

 

## Get x-y coordinates of those cells that are local maxima 

maxXY            <- data.frame(xyFromCell( r2, Which(r2==1, cells=TRUE))) 

colnames(maxXY)  <- c("A", "B") 

heights          <- rep(0, nrow(maxXY)) 

for (m in 1:nrow(maxXY))  { 

  heights[m]  <- aa[nrow(aa) - maxXY$B[m], maxXY$A[m]] 

} 

maxXY             <- data.table(cbind(maxXY, heights)) 

maxXY             <- setorder(maxXY, -`heights`) 

 

 

uncert  <- data.frame(       Upeak = rep(0, nrow(maxXY)),  

                             Uwidth = rep(0, nrow(maxXY)), 



                             Upoints = rep(0, nrow(maxXY)), 

                             Udeviation = rep(0, nrow(maxXY)), 

                             Lpeak = rep(0, nrow(maxXY)),  

                             Lwidth = rep(0, nrow(maxXY)), 

                             Upoints = rep(0, nrow(maxXY)), 

                             Udeviation = rep(0, nrow(maxXY)), 

                             `normalized likelihood` = rep(0, nrow(maxXY))) 

 

for (i in 1:nrow(maxXY)) { 

  uncert[i, 5:8] <- fitG.lower( aa, maxXY$A[i], nrow(aa) - maxXY$B[i]) 

  uncert$normalized.likelihood[i]  <- aa[nrow(aa) - maxXY$B[i], maxXY$A[i]] 

} 

uncert$Lpeak             <- round(uncert$Lpeak / 1e6) 

 

for (i in 1:nrow(maxXY)) { 

  uncert[i, 1:4] <- fitG.upper( aa, maxXY$A[i], nrow(aa) - maxXY$B[i]) 

} 

uncert$Upeak             <- round(uncert$Upeak / 1e6) 

 

 

# remove stuff 

# rm(aa, r2, r, f, localmax, aaa, lowerdisc, upperdisc, Resultdisc, normalized) 

 

 

 

 

#### Start the bootstrapping loop 

 

 

 

for ( i in 1:B)  { 

  indx    <- sample(1:N, N, replace = TRUE) 

   

# Start dealing with the data 

Data.new    <- Data.raw[ indx, ] 

colnames(Data.new)    <- c("Spot", "r75", "sigma75", "r68", "sigma68", "rho", "age76") 

Data.new["sigma75"]   <- median( Data.new[ , "sigma75"]) 

Data.new["sigma68"]   <- median( Data.new[ , "sigma68"]) 

 

datapoints            <- nrow(Data.new) 

 

discordance           <- matrix( c( abs(1 - (Data.new$r68 / (exp( Lambda238 * Data.new$age76 *  

                                                                    1000000) - 1))))) 

Data.new              <- data.frame(cbind(Data.new$Spot, Data.new$r75, Data.new$sigma75,  

                                          Data.new$r68,  

                                   Data.new$sigma68, Data.new$rho, discordance)) 

colnames(Data.new)    <- c("Spot", "r75", "sigma75", "r68", "sigma68", "rho", "discordance") 

 

nfiles                <- ceiling(nrow(Data.new)/Number) 

grouping              <- as.data.frame(c(rep(1:(nfiles - 1), each = Number),  

                           rep(nfiles, times = nrow(Data.new) -  

                                 (as.integer(Number*(nfiles - 1)))))) 

Data.new              <- cbind(Data.new, grouping) 

colnames(Data.new)    <- c("Spot", "r75", "sigma75", "r68", "sigma68", "rho", "discordance", "GROUP") 

 

data.split            <- split(Data.new, Data.new$GROUP) 



 

bigdata              <- by(Data.new[, 1:7], Data.new$GROUP, BigFunction) 

splitfun   <- function(x) { 

  bigdata[[x]]$Likelihood 

} 

for (k in 1:nfiles) { 

  assign(paste("res", k), as.data.frame(splitfun(k))) 

} 

 

 

likelis               <- do.call(cbind, lapply(paste("res", 1:nfiles, sep=" "), get)) 

totallikelihood       <- apply(likelis, 1, sum)  

Resultdisc            <- cbind(bigdata$`1`[, 1:5], as.data.frame(totallikelihood)) 

colnames(Resultdisc)  <- c("ID", "Slope", "Yintercept", "Lower Intercept", "Upper Intercept",  

                           "Likelihood") 

normalized            <- Resultdisc [, "Likelihood"] / datapoints 

Resultdisc            <- cbind(Resultdisc, normalized) 

upperdisc             <- aggregate (Resultdisc$normalized,  

                                    by = list (Resultdisc [, "Upper Intercept"]), max) 

colnames(upperdisc)   <- c("Upper Intercept", "Likelihood") 

 

lowerdisc             <- aggregate (Resultdisc$normalized,  

                                    by = list(Resultdisc[, "Lower Intercept"]), max) 

colnames(lowerdisc)   <- c("Lower Intercept", "Likelihood") 

 

 

### Uncertainty analysis using x,y coordinates from the real data set analysis 

### This allows for the identification of the same peak everytime, although some will be  

### way off.  Oh well.  

 

# Fit the Gaussian curves to the peaks identified in the 'lowerpeak' file 

aa           <- acast(Resultdisc, `Upper Intercept`~`Lower Intercept`, value.var = "normalized",  

                      fun.aggregate = mean) 

 

for (j in 1:nrow(maxXY)) { 

  stor.peaks.dn[i, j] <- fitG.lower( aa, maxXY$A[j], nrow(aa) - maxXY$B[j]) 

} 

for (j in 1:nrow(maxXY)) { 

  stor.peaks.up[i, j] <- fitG.upper( aa, maxXY$A[j], nrow(aa) - maxXY$B[j]) 

} 

 

 

####  End the loop  

} 

 

 

# Gaussian fit of each peaks location 

 

# t.test(stor.peaks.dn$mean.2, alternative = c("two.sided")) 

  

setwd("C:/Users/jwaldronlab/Desktop") 

 

write.table(stor.peaks.dn, file = paste(DataTitle, "Peak Location Lower.csv"),  

            row.names = FALSE, quote = FALSE, sep = ",") 

write.table(stor.peaks.up, file = paste(DataTitle, "Peak Location Upper.csv"),  

            row.names = FALSE, quote = FALSE, sep = ",") 



 

 

 

 

# Stop the clock 

runtime = proc.time() - ptm 

 

runfile  <- matrix( c( "Data set Title", DataTitle, "Bootstrapping number", B, 

                       "Node Spacing (myr)", Tstep, "Number of gridlines", Discline, 

                       "Run time (sec)", runtime[3]), 5, 2, byrow = TRUE) 

colnames(runfile)    <- c( "Information", "This run") 

 

write.table(runfile, file = paste(DataTitle, ".csv"), row.names = FALSE, 

            col.names = FALSE, quote = FALSE, sep = ",") 

## END! 

 

 

End of the code for bootstrapping procedure.   


