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Although missing outcome data are an important problem in randomized trials and observational studies,
methods to address this issue can be difficult to apply. Using simulated data, the authors compared 3 methods
to handle missing outcome data: 1) complete case analysis; 2) single imputation; and 3) multiple imputation (all 3
with and without covariate adjustment). Simulated scenarios focused on continuous or dichotomous missing out-
come data from randomized trials or observational studies. When outcomes were missing at random, single and
multiple imputations yielded unbiased estimates after covariate adjustment. Estimates obtained by complete case
analysis with covariate adjustment were unbiased as well, with coverage close to 95%. When outcome data were
missing not at random, all methods gave biased estimates, but handling missing outcome data by means of 1 of the
3 methods reduced bias compared with a complete case analysis without covariate adjustment. Complete case
analysis with covariate adjustment and multiple imputation yield similar estimates in the event of missing outcome
data, as long as the same predictors of missingness are included. Hence, complete case analysis with covariate
adjustment can and should be used as the analysis of choice more often. Multiple imputation, in addition, can
accommodate the missing-not-at-random scenario more flexibly, making it especially suited for sensitivity analyses.

confounding; loss to follow-up; missing data; multiple imputation; randomized trials

Abbreviations: MAR, missing at random; MCAR, missing completely at random; MNAR, missing not at random; OR, odds ratio.

Missing data are a frequently encountered problem in epi-
demiologic research (1, 2). Although a lot of effort is put into
collecting complete data, even well-designed and -conducted
randomized trials suffer from missing data; for example, sub-
jects are lost to follow-up and, thus, data on study endpoints
will be missing. Such loss to follow-up may depend on certain
patient characteristics. In a trial among geriatric patients, for
example, those who suffer from dementia may be less likely
to move to another location and are, thus, less likely to be
lost to follow-up. Here, we focus on methods that deal with
missing outcome data in randomized trials and observational
studies and, in particular, those situations in which the out-
come of interest is the occurrence of an event that is mea-
sured only once (i.e., no repeated measures). Examples
include the occurrence of fatal or nonfatal cardiovascular
events in trials on statin therapy or recurrence of a tumor
in an oncology trial.

Several methods have been proposed to handle missing
data. One (and still the most widely used) approach is to
include only those subjects without missing observations
for analysis, which is known as available or complete case
analysis (1–4). This approach, however, results in less preci-
sion and often biased estimates (5–7). Alternatives to complete
case analysis are single and multiple imputation, in which in-
formation on observed (baseline) covariates is used to impute
the value of the missing outcome using regression techniques
(2, 8–10).

Guidelines on the conduct of randomized trials indicate
that adjustment for covariates can be considered to reduce
bias and increase precision and should be prespecified in the
trial protocol (11, 12). In observational studies, covariate
adjustment is applied to control for confounding. Interestingly,
in both cases, models that are used for covariate adjustment
are typically of the same class of (regression) models as the
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ones that are used for imputation of missing outcome data. If
the same variables are included in both models, the models
may, in fact, be identical. This has been put forward in the
statistical literature (13–18) but has not received appropriate
attention in epidemiologic literature. In this paper, we will
show that multiple imputation and complete case analysis
with covariate adjustment yield similar results in terms of
bias and precision in data with missing outcomes. We illus-
trate this using simulation studies on randomized trials and
observational studies.

MATERIALS AND METHODS

Missing data

When subjects with missing outcomes are a random sub-
set of the individuals in a particular study, the missing data
are called missing completely at random (MCAR) (2, 3, 5, 6).
In that case, complete case analysis yields unbiased estimates
of the treatment effect (2, 3, 5, 6). If, however, missing data
are not MCAR, but missingness is related to other observed
or documented patient data, this is called missing at random
(MAR) (2, 3, 5, 6). For example, if treated women are more
likely to have missing outcome data than untreated men,
missingness is related to treatment and sex, and complete
case analysis may yield biased estimates of the treatment
effect (3). Observed patient data can be used as predictors of
the values for the missing outcomes. The missing data can
then be imputed with predicted values from a multivariable
(regression) model that includes these observed patient data.
For continuous outcome data, the most likely value based on
the multivariable model can be imputed for the missing ob-
servation (also known as conditional mean imputation). For
missing dichotomous outcomes, the multivariable model
yields a probability of a Bernoulli process that is used to
generate values for the outcome data (i.e., imputing from
a conditional probability distribution) (19). This probability
can then be used to impute the missing outcome value by,
for example, rounding it to the nearest integer (0 or 1) or by
sampling from a Bernoulli distribution. In both situations,
however, the single imputed values are not actually observed
but, rather, predicted, and imputing the most probable value
therefore overestimates the precision and distorts the distri-
bution of the data (8–10, 18, 19). The latter might even induce
bias. The imprecision due to imputation rather than observa-
tion, however, can be accounted for by means of multiple
imputation (2, 3, 6, 8–10). In multiple imputation rather than
a single (most likely) value, multiple values (e.g., 10) are
sampled from an estimated distribution and imputed (3).
Hence, multiple data sets with imputed outcomes are created.
Each data set can then be analyzed and, subsequently, results
are pooled by using standard techniques taking into account
the variation between imputed data sets (8–10).

When missingness of outcome data is not MCAR or MAR,
data are said to be missing not at random (MNAR). For
example, if missingness is related to unobserved patient data
or only to the value of the unobserved outcome, missing data
are MNAR, and the aforementioned methods cannot handle
data that are MNAR by default. In a clinical setting, however,
it seems unrealistic that missing data are completely MNAR,

and probably missingness of data partly depends on observed
characteristics as well (MAR), in which case applying mul-
tiple imputation still results in less biased estimates than not
addressing missing data at all (e.g., conventional complete
case analysis without covariate adjustment) (20).

Complete case analysis with covariate adjustment

Suppose that a randomized trial is conducted on the effects
of a certain lipid-lowering drug on total cholesterol levels and
that 1 baseline covariate (e.g., sex) is observed. If all data are
observed (i.e., no missingness), 2 (linear) models can be fitted
to the data:

TC ¼ b0 þ b1drug þ e ð1Þ

and

TC ¼ b0 þ b1drug þ b2sex þ e; ð2Þ

where TC is total cholesterol. In a randomized trial, con-
founding is not an issue, so the population value of b1 is the
same in the 2 models. Suppose that the outcome (total choles-
terol) is not observed in every subject and that this missingness
is related to both treatment and sex, such that, for example,
female treated subjects are more likely to have missing out-
come data. In that case, missingness is random conditional on
treatment and sex (i.e., MAR). Thus, if missingness depends
on treatment and sex, missingness is completely at random
(MCAR) after conditioning on treatment and sex, that is,
within the strata of treatment and sex. Hence, a comparison of
treated and untreated within-sex strata including only subjects
without missing outcome data then yields unbiased estimates
of the treatment effect (3). Stratifying on sex or including sex
as a covariate in a regression model is essentially the same.
Thus, if missingness indeed depends only on treatment and
sex, model 2 will give an unbiased estimate of b1.

In the case of multiple covariates, the aforementioned
models can simply be generalized to the following:

TC ¼ b0 þ b1drug þ b2X1 þ b3X2 þ . . .þ bnþ1Xn þ e; ð3Þ

with X1, X2, . . ., Xn a set of covariates (e.g., sex, age, co-
morbidity status, and so on). If missingness of the outcome
is related to these observed covariates (i.e., variables that are
part of the set (X1, X2, . . ., Xn)), this again means that data
are missing at random (MAR). Hence, conditional on X1,
X2, . . ., Xn missingness of the outcome is completely at ran-
dom, and complete case analysis yields unbiased estimates.

Thus, complete case analysis with covariate adjustment
yields unbiased estimates when missing outcome data are
MAR, and predictors of missingness of the outcome are
included as covariates in the adjustment model. Similarly,
multiple imputation will also yield unbiased estimates when
outcome data are MAR, when the same or more information
is used to impute missing outcome values.

The same argument holds for observational studies, in
which confounding by other covariates (X1, X2, . . ., Xn) may
bias the estimated effect of the etiologic factor or treatment
under study. In that case, model 1 will give biased estimates
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of b1, but model 3 provides valid estimates, as long as all
confounders are included in the model and missing outcome
data are MAR (i.e., missingness depends at most on the
observed characteristics).

Simulation study

Above, we showed that both complete case analysis with
covariate adjustment and multiple imputation will yield
unbiased estimates when outcome data are MAR. We also
conducted a simulation study to show how methods to handle
missing outcome data (complete case analysis, single imputa-
tion, and multiple imputation; all 3 with and without covariate
adjustment) perform under different scenarios. The scenarios
focused on continuous or dichotomous missing outcome data
and mimicked a randomized trial (i.e., treatment was not re-
lated to baseline covariates) or an observational study (i.e.,
confounding present).

For each scenario, 5,000 data sets were generated of 250
subjects each, of whom 125 were treated and 125 were not
treated. These data sets consisted of 3 variables: a dichoto-
mous treatment, an outcome, and a covariate. In the event of
continuous outcome data, a continuous covariate was simu-
lated. The outcome and the covariate were standard normally
distributed variables and related (Pearson’s correlation ¼ 0.7)
and sampled from a multivariate normal distribution. In the
event of dichotomous outcome data, a dichotomous covariate
was simulated, which increased the risk for the outcome
(marginal odds ratio (OR) ¼ 4, or OR ¼ 9). To mimic
a randomized trial, the treatment and the covariate were not
related. When simulating an observational study, the covariate
and the treatment were related to induce a confounding effect,
such that when the covariate (or confounder) was present,
the probability of receiving treatment was increased (OR ¼ 4).

When quantifying treatment effects by means of odds ratios
in the absence of confounding, we found that the unadjusted
and the adjusted odds ratios may differ because of noncol-
lapsibility of the odds ratio (21, 22). Consequently, the ad-
justed odds ratio of the treatment-outcome association will
tend to be further from the null (i.e., OR ¼ 1) than the
unadjusted odds ratio, except if there is no treatment effect
(OR ¼ 1). To get around this potential problem, we decided
to first evaluate methods to handle missing data in the absence
of a treatment effect (OR ¼ 1). Additionally, we simulated
a randomized trial with dichotomous outcomes and a nonnull
treatment effect (i.e., OR ¼ 0.9, OR ¼ 0.8, or OR ¼ 0.7).

In each data set, missingness on the outcome was created
on the basis of either a MAR mechanism or a mechanism that
was MNAR. When missing outcome data were created on
the basis of a MAR mechanism, the probability of missingness
was either 2 or 5 times larger in treated subjects with positive
covariate status or with untreated subjects with negative
covariate status, compared with untreated subjects with posi-
tive covariate status or treated subjects with negative covariate
status, respectively. In the event of continuous covariates,
missingness was 2 or 5 times larger for treated subjects with
covariate values that were smaller than average and for un-
treated subjects with covariate values that were larger than
average. Suppose higher outcome and covariate values indicate
better clinical conditions. Then, the aforementioned scenarios

of missingness mimic, for example, a trial in which treated
subjects with relatively favorable covariate values and un-
treated subjects with relatively severe comorbidity were
more likely to be lost to follow-up, because of either little
need to continue or little perceived effect, respectively. Over-
all, the proportion of missingness was set at 15% or 30%.

We also performed simulations based on an MNAR mech-
anism, which was assumed to be a mixture of MAR and
MNAR. Therefore, in half of the subjects, missingness was
related to treatment and the observed covariate (MAR), while
in the other half missingness was related to the value of the
outcome variable only (MNAR). The probability of (MAR)
missingness was set to be 5 times larger for treated subjects
with values for covariates that were larger than average and
for untreated subjects with covariate values that were smaller
than average (compared with untreated subjects with covari-
ate values that were larger than average and treated subjects
with covariate values that were smaller than average). The
probability of (MNAR) missingness was set to be 5 times
larger when the outcome variable was larger than its average
(compared with subjects with outcome values lower than
average).

Statistical analyses

In each simulated data set, the methods that were applied
to handle missing outcome data were 1) complete case analy-
sis, 2) single imputation, and 3) multiple imputation (all 3 with
and without covariate adjustment). For complete case analysis,
subjects with missing outcome data were excluded from the
analysis. In the event of single imputation, first a regression
model (a logistic model for dichotomous outcomes and a lin-
ear model for continuous outcomes) including treatment and
the covariate was fitted, and missing values were imputed by
the estimated value (for continuous missing outcome data)
or by sampling from a Bernoulli distribution (for dichotomous
missing outcome data), for which the probability of success
was defined by the probability of the outcome. Multiple im-
putation was similar to single imputation, in that a regression
model was fitted. However, the regression coefficients of the
imputation model estimating the missing outcome values
were not constant (as was the case in single imputation) but
were sampled from the estimated multivariable distribution
of the coefficients. Furthermore, in the event of continuous
missing outcome data, a random residual was added to each
predicted value. For each data set with missing outcome
values, 10 imputed data sets were created using a multivariate
imputation by chained equations (MICE) algorithm (23).

Treatment effects were estimated by linear (continuous
outcomes) or logistic (dichotomous outcomes) regression
analysis. Both unadjusted and adjusted treatment effects
(adjusted for the covariate) were estimated. For all methods,
the mean treatment effects were estimated (mean of the
regression coefficients across simulations), including 95%
confidence intervals (based on the mean of the lower and
upper boundaries of the estimated 95% confidence interval
of the regression coefficients across simulations). For di-
chotomous outcomes, estimated treatment effects and cor-
responding 95% confidence intervals were exponentiated to
calculate odds ratios. Finally, coverage (i.e., the proportion
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of estimated 95% confidence intervals in which the true
treatment effect was included) was calculated. All simula-
tions and analyses were performed in R for Windows, version
2.10.1 (24). The simulation code is available on request of
the corresponding author.

RESULTS

Continuous missing outcome data

In simulations of randomized trial data with missing contin-
uous outcomes, conventional complete case analysis without
covariate adjustment yielded biased estimates of the treatment
effect (Table 1), that is, mean treatment effect � 0.32 instead
of 0, which is in line with the simulated missing outcome
scenario. Complete case analysis with covariate adjustment,
however, yielded unbiased estimates (mean treatment effect,
0.00). Analyses after single imputation or multiple imputation
gave unbiased estimates as well (both for unadjusted and
adjusted analyses).

The 95% confidence intervals were smaller (i.e., more pre-
cise) when applying complete case analysis with covariate
adjustment than when estimating an unadjusted treatment
effect after single or multiple imputation. In studies with

continuous outcomes, adjustment for covariates that are re-
lated to the outcome results in an increased precision (25, 26).
This is also clearly shown in the reference data. Still, in the
event of missing outcome data, complete case analysis with
covariate adjustment resulted in wider confidence intervals
than when data were completely observed, as expected (ref-
erence). Coverage was close to 95% for both complete case
analysis with covariate adjustment (95.1%) and multiple
imputation (93.1%). Single imputation resulted in lower
coverage (81.9%) due to a bias in the estimated standard
errors that are systematically underestimated (i.e., too small)
in single imputation, leading to confidence intervals that were
too narrow (3, 8–10). For different scenarios on the MAR
mechanism and the proportion of missingness, similar pat-
terns for bias and precision were observed (Web Table 1, the
first of 3 Web tables posted on the Journal’s Web site (http://
aje.oupjournals.org/)). When outcome data were MNAR,
complete case analysis with covariate adjustment yielded
similar estimates as did single or multiple imputation (with
or without covariate adjustment), but all methods gave biased
estimates (Table 2). When applying covariate adjustment after
single imputation or multiple imputation, we found that this
did not affect the size of the estimated regression coefficient
(i.e., same bias), precision increased, and confidence intervals

Table 1. Results of Methods to Handle Missing Continuous

Outcome Data (MAR) From Simulations of a Randomized Triala

Method

Average
Estimated
Regression
Coefficient

95% CI
Coverage,

%b

Referencec

Unadjusted 0.00 �0.25, 0.25 94.8

Adjusted 0.00 �0.18, 0.18 94.6

Complete case
analysis

Unadjusted �0.32 �0.61, �0.03 41.8

Adjusted 0.00 �0.22, 0.22 95.1

Single (conditional
mean) imputation

Unadjusted 0.00 �0.23, 0.23 89.2

Adjusted 0.00 �0.15, 0.15 81.9

Multiple imputation

Unadjusted 0.00 �0.28, 0.27 93.6

Adjusted 0.00 �0.22, 0.21 93.1

Abbreviations: CI, confidence interval, based on the mean of the

lower and upper boundaries of the estimated 95% confidence intervals;

MAR, missing at random.
a Numbers are based on 5,000 simulations of data sets of 250

subjects each, in which outcome data were missing in approximately

30% of the observations, and the probability of missingness was 5 times

larger when the treatment and covariate were both absent or both

present, compared with untreated subjects with positive covariate

status or treated subjects with negative covariate status.
b ‘‘Coverage’’ indicates the proportion of estimated 95% confidence

intervals in which the true value (i.e., 0 in this simulation study) was

included.
c ‘‘Reference’’ is based on completely observed data sets, without

missing observations.

Table 2. Results of Methods to Handle Missing Continuous

Outcome Data (MNAR) From Simulations of a Randomized Triala

Method

Average
Estimated
Regression
Coefficient

95% CI
Coverage,

%b

Referencec

Unadjusted 0.00 �0.25, �0.25 95.1

Adjusted 0.00 �0.04, �0.04 94.9

Complete case
analysis

Unadjusted �0.85 �1.12, �0.58 0.0

Adjusted �0.37 �0.62, �0.12 16.2

Single (conditional
mean) imputation

Unadjusted �0.37 �0.57, �0.17 12.2

Adjusted �0.37 �0.52, �0.23 3.1

Multiple imputation

Unadjusted �0.39 �0.68, �0.09 26.2

Adjusted �0.39 �0.65, �0.13 15.8

Abbreviations: CI, confidence interval, based on the mean of the

lower and upper boundaries of the estimated 95% confidence intervals;

MAR, missing at random; MNAR, missing not at random.
a Numbers are based on 5,000 simulations of data sets of 250

subjects each, in which outcome data were missing in approximately

30% of the observations based on a mixture of MAR and MNAR

mechanisms.
b ‘‘Coverage’’ indicates the proportion of estimated 95% confidence

intervals in which the true value (i.e., 0 in this simulation study) was

included.
c ‘‘Reference’’ is based on completely observed data sets, without

missing observations.
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became narrower, and thus coverage decreased (e.g., from
26.2% to 15.8% in the event of multiple imputation).

Dichotomous missing outcome data

For dichotomous missing outcome data (MAR) in a random-
ized trial, findings were similar to the scenario of continuous
missing outcome data. For a 0 treatment effect, unadjusted
complete case analysis yielded biased estimates of the treat-
ment effect (OR ¼ 0.57), but complete case analysis with
covariate adjustment as well as single imputation and multiple
imputation resulted in unbiased estimates (Table 3).

When we simulated a nonnull treatment effect, the results
were the same: Complete case analysis with covariate ad-
justment yielded unbiased estimates (Table 4). Because of
the noncollapsibility of the odds ratio, however, the adjusted
and unadjusted effect estimates differed. This difference be-
came more apparent with an increase in the treatment effect.

In contrast to continuous outcomes when outcome data
are dichotomous, adjustment for covariates that are related to
the outcome results in wider confidence intervals. Hence, the
confidence interval for the adjusted complete case analysis

was wider than the confidence interval for the unadjusted
analysis following multiple imputation. Again, coverage was
close to 95% for both complete case analysis with covariate
adjustment and multiple imputation. As was expected, cov-
erage was substantially lower for single imputation.

In the presence of confounding, again with missing outcome
data that were MAR, all unadjusted analyses gave biased
estimates of the treatment effect (Table 5). Complete case
analysis resulted in the largest bias of the unadjusted analyses
(OR ¼ 3.11, instead of OR ¼ 1), and consequently coverage
was poor (7.1%). After covariate adjustment, all studied
methods provided correct estimates of the treatment effect.
Complete case analysis with covariate adjustment and multiple
imputation followed by covariate adjustment yielded similar
confidence intervals and coverages (95.0% and 96.1%,
respectively).

For different scenarios on the MAR mechanism, the pro-
portion of missingness, and the strength of the association
between the covariate and the outcome, similar patterns were
observed (Web Tables 2 and 3).

DISCUSSION

In the event of missing outcome data that are missing at
random (MAR), complete case analyses with covariate ad-
justment, single imputation, and multiple imputation all yield
unbiased estimates. This applies to both continuous and di-
chotomous outcomes and to randomized trials as well as
observational studies. The advantage of complete case analysis
with covariate adjustment over the other 2 methods is that it is
easier to apply and more transparent. Furthermore, complete
case analysis was at least as efficient as multiple imputation,
which could be expected since the imputation process adds
random variation to the data (18). When missing outcome data
were MNAR, the 3 methods gave similar, yet biased, results.
Still, applying these methods resulted in less bias than when
applying complete case analysis without covariate adjustment.

The results from this study could not have been obtained
using empirical data with missing outcomes, since then the
mechanism of missingness and the true (unbiased) treatment
effect would be unknown. The results from our simulations
could, to some extent, have been predicted by the properties
of the methods, and we used the simulations to illustrate the
performance of the different methods. The main assumption
underlying most of our simulations was that missing out-
comes were MAR. It has been hypothesized that it is most
probable that missing outcomes are related to earlier ob-
served patient data, and therefore missing data are indeed
MAR (8–10, 16). Unfortunately, this assumption can never be
tested in real data. When missingness of the outcome is fully
related to unobserved covariates or missing outcome status
itself (MNAR), all methods discussed here yield incorrect
estimates. However, it seems unlikely that missingness of
outcome data in a randomized trial or observational study is
fully explained by an MNAR mechanism. It seems more
realistic that, even in a worst-case scenario, the mechanism
underlying the missing outcome data is a mixture of MAR
and MNAR (a situation still indicated as MNAR). Handling
missing outcome data using the methods discussed will then
at least give less biased estimates than not addressing the

Table 3. Results of Methods to Handle Missing Dichotomous

Outcome Data (MAR) From Simulations of a Randomized Triala

Method Odds Ratiob 95% CI
Coverage,

%c

Referenced

Unadjusted 0.99 0.58, 1.71 95.1

Adjusted 0.99 0.54, 1.83 95.0

Complete case
analysis

Unadjusted 0.57 0.29, 1.11 61.8

Adjusted 1.00 0.46, 2.15 94.9

Single (conditional
mean) imputation

Unadjusted 0.99 0.57, 1.71 86.8

Adjusted 1.00 0.54, 1.84 84.6

Multiple imputation

Unadjusted 0.98 0.50, 1.94 95.4

Adjusted 0.99 0.45, 2.21 95.1

Abbreviations: CI, confidence interval, based on the mean of the

lower and upper boundaries of the estimated 95% confidence intervals;

MAR, missing at random.
a Numbers are based on 5,000 simulations of data sets of 250

subjects each, in which outcome data were missing in approximately

30% of the observations, the probability of missingness was 5 times

larger when the treatment and covariate were both absent or both

present compared with untreated subjects with positive covariate status

or treated subjects with negative covariate status, and the covariate

increased the risk of the outcome by odds ratio ¼ 9.
b Exponentiated average of the estimated regression coefficients.
c ‘‘Coverage’’ indicates the proportion of estimated 95% confidence

intervals in which the true value (i.e., odds ratio ¼ 1 in this simulation

study) was included.
d ‘‘Reference’’ is based on completely observed data sets, without

missing observations.
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Table 4. Results of Methods to Handle Missing Dichotomous Outcome Data (MAR) From Simulations of

a Randomized Trial Under a Nonnull Treatment Effecta

Method Odds Ratiob 95% CI Coverage, %c

Treatment effect (odds ratio ¼ 0.9)

Referenced

Unadjusted 0.91 0.51, 1.63 95.5

Adjusted 0.90 0.48, 1.67 95.4

Complete case analysis

Unadjusted 0.70 0.36, 1.45 91.8

Adjusted 0.90 0.42, 1.91 94.8

Single (conditional mean) imputation

Unadjusted 0.91 0.51, 1.63 87.3

Adjusted 0.90 0.48, 1.68 86.1

Multiple imputation

Unadjusted 0.90 0.44, 1.84 95.4

Adjusted 0.90 0.41, 1.95 95.1

Treatment effect (odds ratio ¼ 0.8 )

Reference

Unadjusted 0.82 0.46, 1.46 95.1

Adjusted 0.80 0.43, 1.48 95.4

Complete case analysis

Unadjusted 0.65 0.32, 1.31 91.9

Adjusted 0.80 0.37, 1.70 95.0

Single (conditional mean) imputation

Unadjusted 0.82 0.45, 1.46 86.8

Adjusted 0.80 0.43, 1.49 86.2

Multiple imputation

Unadjusted 0.82 0.40, 1.67 95.2

Adjusted 0.80 0.36, 1.75 95.5

Treatment effect (odds ratio ¼ 0.7 )

Reference

Unadjusted 0.72 0.40, 1.29 94.8

Adjusted 0.69 0.37, 1.29 94.9

Complete case analysis

Unadjusted 0.57 0.28, 1.16 92.4

Adjusted 0.69 0.32, 1.47 94.8

Single (conditional mean) imputation

Unadjusted 0.72 0.40, 1.30 87.0

Adjusted 0.69 0.37, 1.30 86.0

Multiple imputation

Unadjusted 0.72 0.35, 1.48 95.1

Adjusted 0.69 0.31, 1.51 95.3

Abbreviations: CI, confidence interval, based on the mean of the lower and upper boundaries of the estimated 95%

confidence intervals; MAR, missing at random.
a Numbers are based on 5,000 simulations of data sets of 250 subjects each, in which outcome data were missing

in approximately 30% of the observations, the probability of missingness was 5 times larger when the treatment and

covariate were both absent or both present compared with untreated subjects with positive covariate status or treated

subjects with negative covariate status, and the covariate increased the risk of the outcome by odds ratio ¼ 4.
b Exponentiated average of the estimated regression coefficients.
c ‘‘Coverage’’ indicates the proportion of estimated 95% confidence intervals in which the true value (i.e., odds ratio¼ 1

in this simulation study) was included.
d ‘‘Reference’’ is based on completely observed data sets, without missing observations.
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missing outcome data at all (i.e., complete case analysis
without covariate adjustment), because obviously at least
the MAR part of the missing outcome data is addressed. We
stress that numerous MNAR scenarios are possible and that
results from our simulations on 1 MNAR scenario do not
necessarily apply to other MNAR scenarios. Assumptions
on the MNAR mechanism can be incorporated in multiple
imputation and, given the (correctness of these) assumptions,
this will give unbiased estimates. Thus, multiple imputation is
more flexible than complete case analysis with covariate ad-
justment and can therefore play an important role in sensitivity
analyses.

Some of the simulated scenarios were quite extreme (e.g.,
30% missing outcome data in a randomized trial is quite
exceptional). Nevertheless, we explicitly chose these scenarios
to clearly illustrate the performance of the different methods to
handle missing outcome data.

In randomized trials in which covariate distributions are
balanced, adjustment for covariates is expected not to affect
the estimated treatment effect. Because of the noncollapsibil-
ity of the odds ratio, however, the unadjusted (or marginal) and

the adjusted (conditional) odds ratios may still differ (21, 22).
Thus, in the event of missing outcome data, complete case
analysis with covariate adjustment using logistic regression
will not (directly) provide an unbiased estimate of the marginal
treatment effect but, rather, an unbiased estimate of the con-
ditional treatment effect. When multiple imputation is first
applied and subsequently the treatment effect is estimated, it
is possible to directly estimate marginal treatment effects.
However, conditional models allow for estimating marginal
treatment effects as well (27).

In randomized trials with continuous outcomes, adjustment
for baseline covariates increases the precision of the estimated
treatment effect but does not affect its size (25, 26). Also,
misspecification of the adjustment model for continuous co-
variates will not bias the estimated treatment effect, because
treatment and covariate are not related (due to the randomi-
zation) (28). Similarly, when missing outcome data are MAR,
a complete case analysis with covariate adjustment yields
unbiased estimates when conditioning on the predictors
of missingness (e.g., baseline covariates), even when the
adjustment model is misspecified.

We did not consider missing values for baseline covariates.
Obviously, even without missing outcomes, subjects with
missing covariate values can’t be included in a complete case
analysis with covariate adjustment. In observational data,
this will typically result in biased estimates. In randomized
trials, however, missingness of covariates is typically indepen-
dent of treatment (the result of randomization), and complete
case analysis both with and without covariate adjustment will
yield unbiased estimates. When both baseline covariates and
outcomes have missing values that are MAR, conditioning on
baseline covariates to account for the missing outcomes be-
comes problematic, and multiple imputations can be a valid
alternative.

In this study, we focused on missing data of outcomes that
were measured only once. In studies with repeated (i.e.,
multiple) measurements of the outcome, the last observation
can be used to impute the missing observation, called ‘‘last
observation carried forward’’ (29, 30). However, this last
observation carried forward does not take possible reasons
for missingness into account and, in general, the method
results in biased estimates (7, 30). Mixed models are a valid
alternative, in which possible reasons for missingness (i.e.,
baseline covariates, as well as postrandomization measure-
ments of the outcome) can be included.

We considered only situations without noncompliance with
allocated treatment and, therefore, did not distinguish between
intention-to-treat and per-protocol analyses. However, in the
event of noncompliance, intention-to-treat and per-protocol
analyses can yield different results. The aim of intention-to-
treat analysis is to compare 2 randomized groups. Therefore,
in intention-to-treat analysis, all subjects that are randomized
should be included in the analysis and analyzed as random-
ized (i.e., according to treatment assignment). When patients
are lost to follow-up and their outcome status can’t be obtained
through external sources, their outcome status is missing, and
we can include these subjects in the analysis (and thus conduct
an intention-to-treat analysis) only if we assume that those
who were lost to follow-up are either nonresponders or have
experienced the outcome of interest (7, 29, 31). Such an

Table 5. Results of Methods to Handle Missing Dichotomous

Outcome Data (MAR) From Simulations in the Presence of

Confoundinga

Method Odds Ratiob 95% CI
Coverage,

%c

Referenced

Unadjusted 1.92 1.10, 3.35 37.5

Adjusted 0.99 0.52, 1.90 95.0

Complete case
analysis

Unadjusted 3.11 1.60, 6.06 7.1

Adjusted 0.98 0.42, 2.32 95.0

Single (conditional
mean) imputation

Unadjusted 1.93 1.10, 3.38 40.1

Adjusted 0.98 0.51, 1.89 83.2

Multiple imputation

Unadjusted 1.94 0.99, 3.80 52.1

Adjusted 0.99 0.40, 2.42 96.1

Abbreviations: CI, confidence interval, based on the mean of the

lower and upper boundaries of the estimated 95% confidence intervals;

MAR, missing at random.
a Numbers are based on simulations of 5,000 data sets of 250

subjects each, in which outcome data were missing in approximately

30% of the observations, the probability of missingness was 5 times

larger when the treatment and covariate were both absent or both

present compared with untreated subjects with positive covariate status

or treated subjects with negative covariate status, and the covariate

increased the risk of the outcome by odds ratio ¼ 9.
b Exponentiated average of the estimated regression coefficients.
c ‘‘Coverage’’ indicates the proportion of estimated 95% confidence

intervals in which the true value (i.e., odds ratio ¼ 1 in this simulation

study) was included.
d ‘‘Reference’’ is based on completely observed data sets, without

missing observations.
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assumption is essentially a type of imputation, which typically
results in biased estimates of the intention-to-treat treatment
effect. In per-protocol analyses, however, patients that do
not adhere to the protocol are not included in the analyses
at all. In both cases, however, if loss to follow-up is related
to observed patient characteristics, missing outcome data
are MAR, and we can therefore handle such data using the
methods discussed in this paper.

In conclusion, complete case analysis with covariate ad-
justment and multiple imputation yield similar estimates in
the event of missing outcome data that are MAR, as long as
predictors of missingness are included. This holds for random-
ized trials as well as observational studies. Hence, complete
case analysis with covariate adjustment can and should be
used as the analysis of choice more often. Multiple imputation,
in addition, can accommodate MNAR scenarios more flexibly,
making it especially suited for sensitivity analyses.
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