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BACKGROUND: Prediction models combine patient
characteristics and test results to predict the presence of
a disease or the occurrence of an event in the future. In
the event that test results (predictor) are unavailable, a
strategy is needed to help users applying a prediction
model to deal with such missing values. We evaluated 6
strategies to deal with missing values.

METHODS: We developed and validated (in 1295 and
532 primary care patients, respectively) a prediction
model to predict the risk of deep venous thrombosis. In
an application set (259 patients), we mimicked 3 situ-
ations in which (1) an important predictor (D-dimer
test), (2) a weaker predictor (difference in calf circum-
ference), and (3) both predictors simultaneously were
missing. The 6 strategies to deal with missing values
were (1) ignoring the predictor, (2) overall mean im-
putation, (3) subgroup mean imputation, (4) multiple
imputation, (5) applying a submodel including only
the observed predictors as derived from the develop-
ment set, or (6) the “one-step-sweep” method. We
compared the model’s discriminative ability (ex-
pressed by the ROC area) with the true ROC area (no
missing values) and the model’s estimated calibration
slope and intercept with the ideal values of 1 and 0,
respectively.

RESULTS: Ignoring the predictor led to the worst and
multiple imputation to the best discrimination. Multi-
ple imputation led to calibration intercepts closest to
the true value. The effect of the strategies on the slope
differed between the 3 scenarios.

CONCLUSIONS: Multiple imputation is preferred if a pre-
dictor value is missing.
© 2009 American Association for Clinical Chemistry

Clinical prediction models or risk scores are developed
to estimate a patient’s risk of having (diagnosis) or
developing (prognosis) a particular outcome. Well-
known examples are the Apgar score (1 ) to estimate the
prognosis of newborns and the Framingham risk score
(2 ) to predict heart disease. Usually, 3 consecutive
phases can be distinguished in clinical prediction re-
search: derivation of the prediction model, validation
of the model in new subjects (testing), and application
in daily practice (3– 6 ).

Studies aimed at deriving or validating a predic-
tion model commonly are negatively affected by miss-
ing values in one or more predictors. Often researchers
conduct a so-called complete case analysis, neglecting
the data of patients with missing values. Furthermore,
predictors with (many) missing values are frequently
excluded or replaced by a reference value. These ap-
proaches lead not only to loss of power (complete case
analysis), but also to biased estimates of diagnostic or
prognostic accuracy (7–14 ). A more advanced method
is multiple imputation (7–16 ). This technique uses all
observed patient information to multivariately impute
the missing predictor values, which leads to more valid
results (7–12, 15, 16 ).

Physicians who apply prediction models to their
patients may also face the problem of a missing predic-
tor value. It is unclear how to deal with missing predic-
tor values in individual patients. For example, a model
to predict the presence of a bacterial infection in chil-
dren with acute fever includes the predictor “duration
of fever” (17 ); however, the parents may not remember
the exact duration of the fever. Applying the prediction
model without this predictor is not a sound solution, as
the relative weights of the other predictors in the model
become invalid. We compared 6 strategies to deal with
missing values when applying a prediction model to
individual patients. We used the empirical data of a
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prediction model aimed at predicting the presence of
deep vein thrombosis (DVT).

Materials and Methods

CLINICAL EXAMPLE

Timely diagnosis of DVT is important because patients
with untreated DVT may develop pulmonary embo-
lism, whereas unjustified therapy with anticoagulants
poses a risk for major bleeding (18 ). Physicians have to
decide which patients need to be referred for further
workup and which can be safely kept under their sur-
veillance without further workup. A diagnostic predic-
tion model could aid physicians in this decision.

For this analysis, we used data from a large cohort
of 2086 primary care patients suspected of DVT as de-
scribed in previous studies (19 –22 ). Because predic-
tion models are first developed from a so-called deri-
vation data set, then tested in a (usually smaller)
validation set, and finally applied in daily practice (3–
6 ), we have split our cohort into a derivation, a valida-
tion, and an application set. These 3 datasets have been
described in previous studies (19, 20, 23 ). For the pur-
pose of the current study, we completed the missing
values in the data with regression imputation. As a re-
sult, there were no missing values in the data sets.

DERIVATION AND VALIDATION OF THE PREDICTION MODEL

The derivation set consisted of 1295 patients included
in the period between January 2001 and May 2003 (Ta-
ble 1). After information was obtained on patient his-
tory, physical examination, and D-dimer test, all pa-
tients were referred for ultrasonography as a reference
standard to document the true presence or absence of
DVT. The prediction model was developed with mul-
tivariable logistic regression. Model reduction (step-
wise backward) was performed with a P value �0.157
according to Akaike Information Criterion (4, 24, 25 ),
and the final model included 7 predictors:

log � risk of DVT

1 � risk of DVT� � linear predictor

� � 14.84 � 0.81*Absence of a leg trauma

� 0.02*Age � 0.39*Vein distension

� 0.02*Duration of symptoms

� 0.34*Immobilization

� 0.80*Log(difference in calf circumference)

� 1.72*Log(D-dimer test) (1)

where �14.84 is the so-called intercept and the other
numbers the regression coefficients of each predictor.

The risk of DVT in an individual patient (scale 0%–
100%) can be calculated by

risk �
1

1 � e�linear predictor*100% (2)

We validated this prediction model in the second part
of our data, i.e., 532 equally selected and measured pa-
tients, included in the period between June 2003 and
June 2005 (see also Supplemental Data Section 1,
which accompanies the online version of this article at
http://www.clinchem.org/content/vol55/issue5).

APPLICATION OF THE PREDICTION MODEL

The application set consisted of the last 259 consecutive
patients (Table 1). This application set did not contain
any missing predictor values and served as the refer-
ence situation. We then mimicked 3 scenarios in which
predictor values were missing. First, the D-dimer test
(strongest predictor, see Table 3) was missing for all
patients. Second, the difference in calf circumference
(weaker predictor) was missing for all patients. Third,
both predictors were missing for all patients.

STRATEGIES TO DEAL WITH MISSING VALUES

We compared 6 strategies (Table 2) that can deal with
missing predictor values when a prediction model is
applied to individual patients. The first 4 strategies im-
pute the missing value, in which case the original pre-
diction model can be applied. The last 2 strategies use a

Table 1. Patient characteristics in the derivation
set, the validation set, and the application set.a

Derivation Validation Application

n 1295 532 259

Mean age, years (SD) 60 (18) 60 (17) 59 (18)

Male 465 (36) 217 (41) 86 (33)

Oral contraceptive use 129 (10) 46 (9) 29 (11)

Mean duration of
symptoms, days (SD)

8 (9) 7 (6) 9 (12)

Leg trauma absent 1104 (85) 438 (82) 213 (82)

Malignancy present 77 (6) 19 (4) 18 (7)

Immobilization 172 (13) 65 (12) 41 (16)

Recent surgery 163 (13) 66 (12) 31 (12)

Swelling whole leg 580 (45) 231 (43) 121 (47)

Vein distension 233 (18) 89 (17) 48 (19)

Log(calf
circumference)a

1.14 (0.59) 1.13 (0.58) 1.16 (0.57)

Log(D-dimer level)a 6.80 (1.21) 6.93 (1.15) 6.66 (1.28)

DVT present 289 (22) 91 (17) 35 (14)

a Data are n (%) unless noted otherwise.

Dealing with Missing Predictor Values
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modified prediction model (a submodel without the
unobserved predictors). In these submodels, the inter-
cept and regression coefficients of the remaining (ob-
served) predictors are adjusted for the exclusion of the
unobserved predictors. The submodels are derived ei-
ther from the data of the derivation set or by a method
called one-step-sweep.

1. Imputation of the value zero. The missing predictor
value was imputed with the value zero. For example, in
the first scenario, this means that the D-dimer test is
neglected, whereas the intercept and regression coeffi-
cients of the remaining predictors in Formula 1 are
used without adjustments.

2. Overall mean imputation. The missing predictor
value was imputed with the mean value of the predic-
tor, estimated from the derivation set. For example, if
the D-dimer test was missing (first scenario), the mean
log(D-dimer test) of the patients in the derivation set
was imputed.

3. Subgroup mean imputation. The missing predictor
value was imputed with a subgroup mean value, esti-
mated from the derivation set. Subgroups were deter-
mined by sex and 5 age categories. For example, if the
D-dimer test was missing for a male patient of 44 years
old, the mean log(D-dimer test) of male patients be-
tween 40 and 50 years of age in the derivation set was
imputed.

4. Multiple imputation. Multiple imputation (see also
online Supplemental Data Section 2) is a more ad-
vanced method that uses regression models to estimate

multiple values of the missing predictor, based on the
observed predictors or characteristics of that patient
(7–16 ). Multiple imputation is straightforward and
feasible when analyzing a whole dataset. To use this
method when applying a prediction model to an indi-
vidual patient, however, is less straightforward. One
needs to have access to the data of the derivation set, for
example via a website. Hence, the individual patient
with a missing value is added to the derivation set, and
the missing predictor value is (multiple) imputed. In
this study, we imputed 10 values of the missing predic-
tor for each patient. Then we calculated 10 linear pre-
dictors (Formula 1) for each patient, which we subse-
quently averaged to obtain the patient’s risk of DVT
presence (Formula 2).

5. Submodel derived from the derivation set. The sub-
model, including only the observed predictors, was de-
rived in the derivation set.

6. Submodel derived by one-step-sweep. The submodel,
including only the observed predictors, was derived
with a noniterative 1-step approximation called the
one-step-sweep that has been proposed recently (26 )
(see also online Supplemental Data Section 3). This
method can be applied without using the individual
patient data of the derivation set. The regression co-
efficients of the submodel are based on the regres-
sion coefficients of the original model (Formula 1)
and the covariance matrix obtained from the deriva-
tion set.

Table 2. Strategies to handle missing predictor values when a prediction model is applied to
individual patients.

Missing predictor values imputed

1. Zero imputation The missing predictor value is imputed with zero, implying that the predictor is ignored
and the prediction model is applied with the unadjusted regression coefficients of
the original model.

2. Mean imputation The missing predictor value is imputed with the mean value, estimated in the
derivation set.

3. Subgroup mean imputation The missing predictor value is imputed with a subgroup mean value, estimated in the
derivation set. The subgroups were determined by sex and 5 age categories.

4. Multiple imputation The missing predictor value is imputed with multiple imputation techniques. Each
patient record with missing predictor values was individually merged to the
derivation set to apply multiple imputation.

Prediction model adjusted

5. Submodel without predictors
with missing values, derived in
the derivation set

The submodel contains adjusted regression coefficients that are estimated in the
derivation set.

6. Submodel without predictor(s)
with missing values, derived
with one-step-sweep

The submodel contains adjusted regression coefficients that are estimated with the
original regression coefficients and covariance matrix.
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PREDICTIVE ACCURACY MEASURES

We estimated the accuracy of the 6 strategies by quan-
tifying the discrimination and calibration, and com-
pared it with the reference situation (no missing values
in the application set). Discrimination is the ability of
the model to distinguish between patients with and
without DVT, quantified with the area under the ROC
curve (27 ). An ROC area can range from 0.5 (no dis-
crimination) to 1.0 (perfect discrimination) (28 ). Cal-
ibration refers to the agreement between the predicted
probabilities and observed frequencies of DVT. It can
be graphically assessed with a calibration plot with the
predicted probabilities on the x axis and the observed
frequencies on the y axis. The plot shows a line that can
be described with a so-called calibration slope and cal-
ibration intercept (estimated by fitting the linear pre-
dictor of the model as the only covariate in a logistic
model with DVT as the outcome) (29, 30 ). The calibra-
tion slope and calibration intercept are ideally 1 and 0,
respectively. A slope �1 indicates too-optimistic pre-
dictions (low predicted probabilities are too low and
high predicted probabilities are too high); a slope �1
indicates that predictions are not extreme enough (low
predicted probabilities not low enough and high pre-
dicted probabilities not high enough). A calibration in-
tercept close to 0 indicates good calibration in the large
and means that the mean predicted DVT probability
equals the mean observed DVT frequency. A positive
calibration intercept indicates (on average) underes-
timated risks, whereas a negative value indicates
overestimated risks. Because the interpretation of
this calibration intercept is difficult if the calibration

slope is unequal to 1, the calibration intercept is es-
timated with the slope fixed at 1, implying that the
calibration intercept equals the difference between
the observed DVT prevalence and the mean pre-
dicted risk (29, 30 ).

Results

STRATEGY 1: ZERO IMPUTATION

This is the only strategy we could apply without addi-
tional estimations.

STRATEGY 2: OVERALL MEAN IMPUTATION

The overall mean log(D-dimer test) and log(difference
of calf circumference) in the derivation set were 6.83
and 1.14, respectively.

STRATEGY 3: SUBGROUP MEANS

The subgroup means for log(D-dimer test) and log-
(difference of calf circumference) in the derivation set
are presented in online Supplemental Table 1. For both
predictors, the subgroup means differed from the over-
all means (strategy 2) and were higher for men and
older patients.

STRATEGY 4: MULTIPLE IMPUTATION

We used the derivation data set and a multiple impu-
tation script (available on request).

STRATEGY 5: SUBMODELS ESTIMATED IN THE DERIVATION SET

Three submodels were derived (Table 3).

Table 3. Intercept and regression coefficient (SE) of the predictors of the original prediction model (applied in
strategies 1–4) and the submodels without the predictor(s) with missing values, derived in the derivation set

(strategy 5) or with one-step-sweep (strategy 6).

Predictor

Missing predictor(s)

None D-dimer level Calf circumference
D-dimer level and calf

circumference

Original
model

Derivation
set One-step-sweep

Derivation
set One-step-sweep

Derivation
set One-step-sweep

Strategies 1–4 Strategy 5 Strategy 6 Strategy 5 Strategy 6 Strategy 5 Strategy 6

Intercept �14.84 (0.95) �2.89 (0.38) �2.66 (0.46) �13.83 (0.93) �13.50 (0.93) �2.12 (0.33) �1.65 (0.41)

Absence of trauma 0.81 (0.27) 0.41 (0.23) 0.54 (0.27) 0.64 (0.26) 0.63 (0.27) 0.28 (0.22) 0.39 (0.27)

Age �0.02 (0.01) 0.001 (0.004) �0.005 (0.005) �0.013 (0.005) �0.02 (0.005) 0.005 (0.004) �0.002 (0.005)

Vein distension 0.39 (0.21) 0.39 (0.17) 0.46 (0.21) 0.38 (0.21) 0.38 (0.21) 0.42 (0.16) 0.48 (0.21)

Duration of symptoms �0.02 (0.01) �0.009 (0.01) �0.01 (0.01) �0.017 (0.01) �0.02 (0.01) �0.01 (0.01) �0.01 (0.01)

Immobilization 0.34 (0.27) 0.02 (0.22) �0.07 (0.27) 0.33 (0.26) 0.33 (0.27) 0.04 (0.21) �0.08 (0.27)

Log(calf circumference) 0.80 (0.16) 0.73 (0.13) 0.85 (0.16)

Log(D-dimer level) 1.72 (0.12) 1.68 (0.12) 1.68 (0.12)

Dealing with Missing Predictor Values
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STRATEGY 6: SUBMODELS ESTIMATED BY ONE-STEP-SWEEP

Three submodels were derived (Table 3). Online Sup-
plemental Table 2 shows the covariance matrix
(needed for this strategy) of the regression coefficients
of the original model.

ACCURACY OF THE 6 STRATEGIES

Discrimination. In the reference situation (no missing
predictor values in the application set), the ROC area of
the original prediction model was 0.90 (95% CI 0.84 –
0.96). With only the D-dimer test missing (scenario 1),
the ROC area decreased to approximately 0.70 in all
strategies (Table 4), except with multiple imputation
(ROC area 0.77). If the difference in calf circumference
was missing (scenario 2), the ROC did not decrease in
any of the strategies (ROC area 0.89 or 0.90). If both
predictors were missing (scenario 3), the ROC area de-
creased to 0.66 or lower for all strategies, except with
multiple imputation (ROC area 0.78). Zero imputa-
tion and mean imputation resulted in the largest de-
crease (ROC area 0.62).

Calibration. In the reference situation, the calibration
slope was 1.06. If the D-dimer test was missing (sce-
nario 1), the subgroup mean imputation resulted in a
calibration slope (1.02) closest to the reference slope
(Table 5). Multiple imputation resulted in a calibration
slope �1, indicating too-extreme predictions. The
other 4 strategies led to calibration slopes �1, where
strategy 5 and 6 (submodels without the predictor with
missing values) resulted in the largest deviation from
the reference slope. If the difference in calf circumfer-
ence was missing (scenario 2), all slopes were similar to
the reference slope. If the 2 predictors were missing
simultaneously (scenario 3), none of the strategies

led to calibration slopes close to the reference slope,
though subgroup imputation resulted in the smallest
deviation (slope 0.94) from the reference situation.
All imputation methods (strategies 1– 4) resulted in
calibration slopes �1.

The intercept of the calibration line in the refer-
ence situation was �0.10. In scenario 1, all strategies
led generally to insufficient calibration in the large (in-
tercept not equal to 0), apart from multiple imputation
(intercept �0.06) (Table 5). Strategy 1, simply neglect-
ing the predictor, led to the worst calibration (intercept
12.48). In scenario 2, calibration was most similar to
the reference situation for multiple imputation (inter-
cept �0.04) and for the submodel estimated in the der-
ivation set (intercept �0.03). Also in this case, neglect-
ing the predictor with missing values led to the largest
deviation (intercept 0.97). For scenario 3, all strategies
generally resulted in insufficient calibration, apart
from multiple imputation (intercept 0.01).

Discussion

When applying a prediction model to individual pa-
tients, often a particular predictor may not be mea-
sured. The question arises how to use the prediction
model in such situations. We compared 6 strategies, of
which multiple imputation of the missing values led to
the most accurate model predictions.

DISCRIMINATION OF THE MODEL

If the strong predictor D-dimer was missing, multiple
imputation resulted in a ROC area closest to the refer-
ence value, whereas all other methods led to highly un-
derestimated ROC areas. We expected that this would
occur if the predictor with missing values was ignored

Table 4. Effect of the 6 strategies on the discriminative ability of the prediction model in the application set,
expressed by the ROC area (95% CI) when the D-dimer value is missing (scenario 1), when differences in calf
circumference are missing (scenario 2), and when the 2 predictors are simultaneously missing (scenario 3).a

Predictor with missing data

D-dimer
Difference in calf

circumference
D-dimer and difference

in calf circumference

1. Zero imputation 0.70 (0.61–0.79) 0.89 (0.83–0.96) 0.62 (0.53–0.71)

2. Mean imputation 0.70 (0.61–0.79) 0.89 (0.83–0.96) 0.62 (0.53–0.71)

3. Subgroup mean imputation 0.69 (0.61–0.78) 0.90 (0.83–0.96) 0.64 (0.55–0.74)

4. Multiple imputation 0.77 (0.69–0.84) 0.90 (0.84–0.96) 0.78 (0.71–0.86)

5. Model without predictor(s) with missing values,
estimated in the derivation set

0.70 (0.62–0.79) 0.89 (0.83–0.96) 0.64 (0.54–0.74)

6. Model without predictor(s) with missing values,
estimated by one step sweep

0.70 (0.61–0.78) 0.89 (0.83–0.96) 0.66 (0.57–0.75)

a The ROC area when no data were missing in the application set (reference situation) was 0.90 (95% CI 0.84–0.96).
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without adjusting the regression coefficients of the re-
maining predictors. For imputation of the overall
mean, this was also expected, because it does not
change the rank order of patients (since every patient
receives the same imputed value). Yet this solution is
frequently used in medical research. Imputation of
subgroup mean can hypothetically improve the mod-
el’s discrimination, although this was not found in our
results. Apparently, the variability in imputed sub-
group means (compared to the overall mean) was not
large enough. Furthermore, using submodels (derived
either from the derivation set or with the one-step-
sweep method) that contain only the predictors with
observed values can hypothetically better discriminate
than strategies that impute the same value for all pa-
tients. However, this is less likely if a strong predictor is
missing, as for example the D-dimer test in our study.
Any submodel without this predictor substantially
loses discriminative ability. Indeed, if the value of a

relatively weak predictor was missing (scenario 2), all
strategies led to ROC areas similar to the reference sit-
uation. If both predictors were missing (scenario 3), we
found similar or even worse results compared to sce-
nario 1. Apparently, the discriminative ability of our
prediction model was largely based on the strong pre-
dictor, the D-dimer test.

CALIBRATION OF THE MODEL

In the case of a missing D-dimer test (scenario 1), ig-
noring the predictive effect of this strong predictor
(i.e., imputing the value zero) led to the worst calibra-
tion in the large. If this risk-increasing predictor was
ignored, all predicted risks were too low. As expected,
multiple imputation led to a calibration intercept clos-
est to the reference situation, as this strategy best ap-
proached the missing predictor values. Application of
the submodels, derived either from the derivation set
or by the one-step-sweep method, showed too-high

Table 5. Effect of the 6 strategies on the calibration of the prediction model in the application set, expressed
by the slope (95% CI) and the intercept (95% CI) when the calibration slope was fixed at 1, when the D-dimer

value is missing (scenario 1), differences in calf circumference are missing (scenario 2), or the two predictors are
simultaneously missing (scenario 3).a

Predictor with missing data

D-dimer
Difference in calf

circumference
D-dimer and difference

in calf circumference

1. Zero imputation

Slope 1.13 (0.52–1.75) 1.05 (0.74–1.36) 0.89 (0.18–1.61)

Interceptb 12.48 (12.11–12.84) 0.97 (0.52–1.41) 13.46 (13.10–13.82)

2. Mean imputation

Slope 1.13 (0.52–1.75) 1.05 (0.74–1.36) 0.89 (0.18–1.61)

Intercept 0.73 (0.36–1.10) 0.05 (�0.39 to 0.50) 0.80 (0.44–1.17)

3. Subgroup mean imputation

Slope 1.02 (0.47–1.57) 1.06 (0.74–1.37) 0.94 (0.27–1.61)

Intercept 0.72 (0.35–1.09) 0.06 (�0.38 to 0.50) 0.82 (0.46–1.18)

4. Multiple imputation

Slope 0.76 (0.40–1.12) 1.07 (0.75–1.39) 0.83 (0.47–1.19)

Intercept �0.06 (�0.38 to 0.40) �0.04 (�0.49 to 0.41) 0.01 (�0.38 to 0.40)

5. Model without predictor(s) with missing values,
estimated in the derivation set

Slope 1.47 (0.70–2.24) 1.07 (0.76–1.39) 2.14 (0.72–3.55)

Intercept �0.30 (�0.66 to 0.07) �0.03 (�0.47 to 0.41) �0.28 (�0.64 to 0.08)

6. Model without predictor(s) with missing values,
estimated by one-step-sweep

Slope 1.27 (0.62–1.92) 1.04 (0.73–1.34) 2.11 (0.80–3.42)

Intercept �0.42 (�0.79 to �0.06) 0.11 (�0.34 to 0.55) �0.42 (�0.78 to �0.06)

a The slope and intercept with the slope fixed at 1 when no data were missing in the application set (reference situation) were 1.06 and �0.10, respectively.
b Intercept when the calibration slope was fixed at 1.
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predicted probabilities (negative intercept), although
closer to the reference value than the (subgroup) mean
imputation. The effect of these strategies probably de-
pended on the data at hand and may be different in
other situations. As expected, imputation of overall
mean and subgroup mean improved this calibration
intercept, as the missing predictor value is to some ex-
tent incorporated in the risk estimation. If the differ-
ence in calf circumference was missing (scenario 2), we
found better results for all methods, though ignoring
the predictor again led to the worst results. If both pre-
dictors were missing (scenario 3), we found results
similar to those in scenario 1.

The same inferences can be drawn for the calibra-
tion slope (Table 5). If the D-dimer test was missing
(scenario 1), ignoring the predictor and overall mean
imputation resulted in a slope �1, indicating that the
predicted probabilities were not extreme enough. This
is expected, as the predicted probabilities become more
alike (less extreme). Indeed, subgroup mean imputa-
tion improved the slope to a value close to 1, as it allows
for more variation between patients. Application of the
submodels resulted in calibration slopes �1 and with
the largest deviation from the reference situation.
Again, this probably depended on the data at hand and
may be different in other situations. If difference in calf
circumference was missing (scenario 2), all slopes were
(nearly) equal to the reference slope. If both predictors
were missing (scenario 3), largely the same inferences
can be drawn as for scenario 1.

METHODOLOGICAL CONSIDERATIONS

First, our results are based on one empirical example.
Other datasets with other prediction models predicting
other outcomes may show different results. For exam-
ple, applying the submodels (without the predictor
with missing values) may lead to better results if the
remaining predictors of the model have a predictive
strength similar to the one that is missing. In our study,
the D-dimer test was such a strong predictor that esti-
mating a submodel without this predictor inevitably
led to less accurate predictions.

Second, to our knowledge, this is the first time that
multiple imputation has been studied when a predic-
tion model is applied to individual patients. We calcu-
lated 10 linear predictors (Formula 1) for each patient,
averaged these, and transformed this average to the
probability of presence of DVT. Another option would
be to first transform the 10 linear predictors to 10 prob-
abilities, and average these to a probability. Because
risks are not normally distributed, we chose the first
strategy. Yet elaborate simulation studies in which all
potential scenarios can be mimicked may be necessary
to choose the ultimate strategy.

Third, multiple imputation resulted in a calibra-
tion slope smaller than 1, indicating predicted proba-
bilities that were too extreme, which are often caused
by overfitted models. This suggests that the imputation
model may have been overfitted. Shrinkage of the im-
putation model (i.e., adjusting the model for overfit-
ting) may be a possible solution. More research should
be conducted on these methodological issues.

Fourth, the 6 strategies vary in applicability. Mean
imputation and subgroup mean imputation are easily
applicable in daily clinical practice, as these values can
easily be added to the appendix of the manuscript pre-
senting the prediction model. Additionally, the sub-
models derived from the derivation set and the covari-
ance matrix necessary for the one-step-sweep can be
presented in a manuscript. However, this can become
quite complex if many predictors have missing values.
Hypothetically, all 7 predictors of our prediction
model can be missing in practice. Accordingly, 27 �
128 submodels would have to be developed. The one-
step-sweep can more easily estimate these submodels
without the need to develop all the submodels (26 ).
Multiple imputation is the most complex strategy to
apply, as the original derivation set and the multiple
imputation models need to be stored in such a way that
they are publicly available. Storing the data at Internet
sites is a good option. Owing to the increasing intro-
duction of electronic patient records in primary and
secondary care, with its potential for built-in algo-
rithms, these strategies may be more easily imple-
mented and applied.

Fifth, there may be more strategies to deal with
missing values. For example, we could have imputed the
missing values with regression models, in which the pre-
dictor with missing values is the dependent variable and
the other predictors the independent variables. We did
not apply this single regression imputation approach, as it
is less feasible in practice. For a prediction model with 7
predictors like ours, one would need to develop and store
the 6 * 27 � 768 potential regression models.

Sixth, the gain of multiple imputation over single
regression imputation is in the correct estimation of
the standard errors of the predicted probabilities. We
did not take full profit of this advantage, as in our study
the interest was not in the confidence intervals of the pre-
dicted probabilities but in the predictive accuracy of the
model. However, in situations where the confidence in-
tervals of predicted probabilities are of interest, this will be
an extra advantage of multiple imputation.

Finally, we could have split our cohort into a deriva-
tion set and an application set (ignoring the validation
phase), which would have resulted in a larger derivation
set. In our study, however, we explicitly wanted to use an
in-between validation set to test the accuracy of the newly
developed model. Although model validation is always
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highly important, it is still rarely applied. We would like to
stress that before any clinical prediction model is applied
in practice, it needs to be tested in new patients (5, 6).

In conclusion, if a prediction model is applied in
individual patients and a predictor is missing, ignoring
that predictor is the worst strategy, as the weights of the
remaining predictors become incorrect. Imputation of
the overall mean does not improve the discrimination,
and the estimated risks may be incorrect. Imputation
of a subgroup mean may improve the discrimination,
although the predicted risks are not necessarily correct.
Using a submodel without the predictor can result in a
poor discrimination if the predictor with missing values
was a strong predictor. We found that multiple imputa-
tion resulted in the best discrimination, and, the predicted
risks were on average correct. The question of why the
models derived by multiple imputation seemed overfitted
needs to be addressed in future research.
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