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Abstract

Sharp discontinuities in depth, or depth edges, are very
important low-level features for scene understanding. Re-
cently, we have proposed a solution to the depth edge de-
tection problem using a simple modification of the capture
setup: a multi-flash camera with flashes appropriately po-
sitioned to cast shadows along depth discontinuities in the
scene. In this paper, we show that by varying illumination
parameters, such as the number, spatial position, and wave-
length of light sources, we are able to handle fundamen-
tal problems in depth edge detection, including multi-scale
depth changes and motion. The robustness of our methods is
demonstrated through our experimental results in complex
scenes.

1. Introduction
A great deal of computer vision tasks rely on intensity edges
as low-level features. Edge-based methods, however, are
limited to reveal scene structure: many sharp intensity tran-
sitions are produced by texture or illumination variations
that are not aggregated along geometric curves. In addi-
tion, important gray level discontinuities along occlusion
boundaries might have low contrast or appear blurred due to
the imaging process. As a result, intensity edge maps may
include undesirable edges (due to albedo changes, specu-
larities or shadows), or miss edges along important shape
boundaries (see Figure 8b).

Ideally, we should describe discontinuities in the phys-
ical surfaces rather than edges in the image intensities.
The latter are somewhat arbitrary and do not always cor-
respond to physical properties of surfaces; the former are
well-defined and real [7].

Our work addresses the problem of detection of discon-
tinuities in depth, also known as depth edges or occluding
contours. Depth edges are directly related to the 3D scene
geometry and provide extremely important low-level fea-
tures for image understanding, since they tend to outline
the boundaries of objects in the scene. In fact, they com-
prise one of the four components in the well-known 2 1/2-D
sketch of Marr’s computational vision model [10].

Reliable detection of depth edges clearly facilitates seg-
mentation, establishes depth-order relations, and provides

valuable features for visual recognition [5], tracking, and
3D reconstruction [3]. It can also be used for camera con-
trol, and non-photorealistic rendering [12].

Most previous approaches proposed for detection of
depth discontinuities treat them as an annoyance, rather
than as a positive source of information [2]. The reason
is that the majority of 3D reconstruction methods produce
inaccurate results near depth discontinuities, due to occlu-
sions and the violation of smoothness constraints. Recently,
steady progress has been made in discontinuity preserving
stereo matching [1], mainly with global optimization algo-
rithms based on belief propagation or graph cuts (see [16]
for a comparison). However, these methods fail to cap-
ture depth edges associated with sufficiently small changes
in depth. Moreover, obtaining clean, non-jagged contours
along shape boundaries is still a challenging problem even
for methods that rely on more expensive hardware [8].

Instead of having to estimate the full 3D coordinates of
points in the scene, and then look for depth discontinu-
ities, our technique bypasses geometry acquisition, and di-
rectly detects depth edges. Recently, we have proposed a
method that relies on a simple modification of the capture
setup: a multi-flash camera is used with flashes appropri-
ately positioned to cast shadows along depth discontinuities
in the scene. We have demonstrated applications in non-
photorealistic rendering [12], fingerspelling recognition [5],
specular reflection reduction [4], medical imaging [15], and
stereo vision [3]. The main contributions of this paper are
listed below:

• We exploit multi-flash imaging in a more general
way, showing that by varying illumination parameters, such
as the number, spatial position, and wavelength of light
sources, we are able to better approach the problem of depth
edge detection. In this sense, our previous work (described
in Section 2) is a particular instance of the framework pre-
sented in this paper.

• Within this multi-flash imaging framework, we pro-
vide a detailed analysis of the problem of multi-scale depth
changes (Section 3), which was briefly introduced in our
previous work [12].

• A novel algorithm for detecting depth edges in dy-
namic scenes is then proposed, relying on the wavelength
variation of the light sources. (Section 4).
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Figure 1: (a) Imaging Geometry. (b) Our implementation
setup with four flashes.

2. Depth Edges with Multi-Flash

Our method to capture shape features [12] is motivated by
the observation that when a flash (close to the camera) il-
luminates a scene during image capture, thin slivers of cast
shadow are created at depth discontinuities. Thus, if we can
shoot a sequence of images in which different light sources
illuminate the subject from various positions, we can use
the shadows in each image to assemble a depth edge map
using the shadow images.

In order to capture the intuitive notion of how the posi-
tion of the cast shadows is dependent on the relative position
of the camera and light sources, we examine the imaging
geometry, illustrated in Figure 1a. Adopting a pinhole cam-
era model, the projection of the point light source at Pk is
at pixel ek on the imaging sensor. We call this image of the
light source the light epipole. The images of (the infinite set
of) light rays originating at Pk are in turn called the epipolar
rays, originating at ek.

There are two simple observations that can be made
about cast shadows: (1) a shadow of a depth edge pixel is
constrained to lie along the epipolar ray passing through that
pixel and (2) when a shadow is induced at a depth discon-
tinuity, the shadow and the light epipole will be at opposite
sides of the depth edge.

These two observations suggest that if we can detect
shadow regions in an image, then depth edges can be lo-
calized by traversing the epipolar rays starting at the light
epipole and identifying the points in the image where the
shadows are first encountered.

Our approach for reliably detecting shadows in the im-
ages is to position lights so that every point in the scene that
is shadowed in some image is also captured without being
shadowed in at least one other image. This can be achieved
by placing lights appropriately so that for every light, there
is another on the opposite side of the camera to ensure that
all depth edges are illuminated from two sides.

To detect shadows in each image, we first compute a
shadow-free image, which can be approximated with the
maximum composite image, which is an image assembled
by choosing at each pixel the maximum intensity value
among the image set. The shadow-free image is then com-
pared with the individual shadowed images. In particu-

Figure 2: From left to right: photo, ratio image, plot along
an epipolar ray (the arrow indicates negative transitions)
and detected edges.

lar, for each shadowed image, we compute the ratio image
by performing a pixel-wise division of the intensity of the
shadowed image by the intensity of the maximum image.
The ratio image is close to 1 at pixels that are not shadowed,
and close to 0 at pixels that are shadowed. This serves to ac-
centuate the shadows and remove intensity transitions due
to surface material changes.

The final step of our algorithm is to traverse the ratio im-
ages along the correspondent epipolar rays and mark nega-
tive transitions as depth edges. In our implementation, we
used four flashes at left, right, top and bottom positions (see
Figure 1b). This setup makes the epipolar ray traversal effi-
cient. For the left-right pair, the ray traversal is along hori-
zontal scan lines and for the top-bottom pair, the traversal is
along vertical direction. Figure 2 illustrates the ratio image
traversal and depth edge detection.

We refer to our previous work [12] for more details
on the algorithm and discussion with related methods. In
spite of the robustness of our method in real-world scenes,
it has limitations to detect multi-scale depth changes, and
fails with object motion. Next we will describe these prob-
lems and provide solutions in a common multi-flash imag-
ing framework.

3. A Multi-Baseline Approach
Depth discontinuities in real world scenes are associated
with different amounts of depth changes, referred as “jumps
of discontinuities” by Birchfield [2]. Ideally, we want a
method that is able to detect depth edges at different scales,
ranging from tiny to large changes in depth. We will show
how to deal with this problem by taking advantage of the
spatial position of the light sources, in our multi-flash imag-
ing framework.

3.1. Baseline Tradeoff
Depth edges associated with small changes in depth might
be missed due to an undetectable narrow shadow width,
caused by a small camera-flash baseline. On the other hand,
a larger baseline may cause detached shadows (separated
from the object), leading to false depth edges.

In order to analyze this problem in more detail, we look
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Figure 3: (a) Relationship between baseline and shadow
width. (b) Conditions for undetectable shadow and shadow
detachment.

(a) (b)

Figure 4: (a) Our multi-baseline camera prototype. (b) Our
implementation setup with two baseline levels.

at the imaging geometry of the shadows, depicted in Fig-
ure 3a. The variables involved are f (camera focal length),
B (camera-flash baseline), z1, z2 (depths to the shadow-
ing and shadowed edges), D (shadow width) and d (the
shadow width in the image plane). We have that d

f = D
z2

and D
z2−z1

= B
z1

. It follows that the shadow width in the

image can be computed as d = fB(z2−z1)
z1z2

. For small depth
changes in the scene, far away from the camera, it is possi-
ble that fB(z2 − z1) < z1z2. In this case, the shadow will
not appear in the image, leading to missing depth edges.

We note that there are two ways of solving this prob-
lem: either we improve camera resolution, with larger focal
length f , or we use a wider camera-flash baseline B, which
is more convenient, since camera resolutions are limited.
However, a larger baseline may cause detached shadows,
mainly in narrow objects. Let T be the width of the object.
Analyzing Figure 3a, we note that as we increase the base-
line, point P1 moves towards point P2. Shadow detachment
will occur when point P1 passes over point P2. When they
are at the same position, from the imaging geometry, we
have that T

z2−z1
= B

z2
. It follows that if the amount of depth

change z2 − z1 > Tz2
B , the shadow will be separated from

the object and a false depth edge will be marked. Figure 3b
illustrates the two main conditions of the baseline tradeoff.

Figure 5: Analysis of the four cases related to the baseline
tradeoff, considering a narrow object.

3.2. Proposed Solution
Our approach to handle the baseline tradeoff is to use
a multi-baseline photometric method, where extra light
sources are placed at different baselines, as shown in Fig-
ure 4a. With this new configuration, we are able to detect
depth edges associated with small changes in depth (using
large baselines), without creating shadow separation in nar-
row objects (using small baselines).

The main question is how to combine the information
of the images taken with flashes at different baselines. A
simple, yet effective way is to just take the minimum com-
posite among the images. Provided that the light sources
are sufficiently close to each other, the shadows in differ-
ent baselines will merge, avoiding detached shadows, while
preserving sufficiently large shadow widths.

In our implementation setup, we used two different base-
lines (see Figure 4b). Let FS and FL be the small and
large baseline flashes, respectively. There are essentially
four cases we need to consider at depth edges (Figure 5):(i)
FS creates an undetectable narrow shadow and FL creates a
detectable shadow; (ii) FS creates a detectable small width
shadow and FL creates a larger width shadow; (iii) FS cre-
ates a detectable shadow but FL creates a detached shadow
that overlaps with FS shadow; (iv) same as (iii) but the shad-
ows of FS and FL do not overlap.

Note that in the first three cases, the minimum composite
solution is suitable, but in the fourth case, there is a non-
shadowed region between the shadows created by FS and
FL. This would lead to a false depth edge along the shadow
created by FL. Next we describe an algorithm to handle this
problem.

3.2.1 Eliminating Detached Shadows

Our algorithm is based on the observation that if the start
point of a shadow created by FS is not the start point of
a shadow created by FL, then the next shadow along the
epipolar ray created by FL is a detached shadow. Figure 6
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Figure 6: Algorithm for eliminating detached shadows
when the light sources are not sufficiently close to each
other.

shows the values of the ratio images along a scanline for FS

and FL, when shadow detachment occurs. Our algorithm
can be summarized in the following steps:

• Traverse along the epipolar rays the ratio images RS

and RL, associated with FS and FL, respectively.

• If a depth edge appears in RS and not in RL (see points
A1 and A2 in Figure 6) :

– Traverse RL along the epipolar ray until the next
detected depth edge (see point B2 in Figure 6).

– If at this position there is no correspondent depth
edge in RS (see point B1 in Figure 6), we mark
this edge as a spurious, detached shadow edge.

The last step is important to confirm the presence of a
detached shadow as well as to ensure that no edges detected
with the small baseline flash FS will be marked as spurious.

Note that using this algorithm eliminates the problem in
case (iv), when shadows of FS and FL do not overlap. This
solution will fail to detect depth discontinuities when even
FL does not create a detectable shadow or for very thin ob-
jects, where even FS creates a detached shadow. In this
case, extra light sources could be added to our setup.

3.3. Multi-Scale Depth Edges in Real-World
Scenes

Figure 7a shows an image captured with a small camera-
flash baseline. Since there are very small depth changes in
the interior region of the pinecone, depth edges are missed
in this region (Figure 7b). On the other hand, if we use a
large baseline, the shadow gets detached from the basket
(Figure 7c), leading to a false depth edge (Figure 7d). Us-
ing our multibaseline approach with two levels of baseline,
we are able to eliminate detached shadows, and still pre-
serve depth edges associated with small changes in depth,
as shown in Figure 7e.

A more complex example is depicted in Figure 8a, which
shows the image of a car engine, containing depth edges as-
sociated with different amounts of depth changes. Figure
8b shows intensity edge detection for this image, using the
Canny operator. Note that important shape boundaries are

missing due to low contrast variations, while edges due to
texture variations not associated with occluding edges con-
found scene structure.

We compared our multibaseline approach with the naive
single-baseline algorithm in such complex scene (Figures
8c and 8d). Note that our method captures depth edges as-
sociated with tiny and larger changes in depth, which is not
possible with our previous setup. Figure 8e better illustrates
this comparison, zooming into a specific part of the engine.

In our implementation setup, the baselines are about
50mm and 100mm. Using a 4.0 MegaPixel Canon G3,
we verified that we can capture depth discontinuities with
changes in depth as small as 5mm at a distance no larger
than 2000mm from the camera. We can handle large depth
changes in room-sized environments, unless the object is
sufficiently narrow to cause shadow detachment with the
small baseline flash. In this case, extra light sources could
be placed at smaller baselines to handle this problem. We
do not address here the case where no shadows are created
due to a distant background, although we have discussed
this issue in our previous work [12].

4 Variable Wavelength

So far, our method requires taking multiple pictures of the
same static scene. This clearly poses a problem for detect-
ing depth edges in motion. Due to the lack of simultaneity,
the base maximum composite image will have misaligned
features, leading to spurious edges.

In order to handle this problem, we could use a high
speed camera, with flashes triggered in a rapid cyclic se-
quence, syncronized with the camera video frames. We
note that a high speed camera can reduce the amount of
motion between frames, but still the frame simultaneity can-
not be assumed. A reasonable approach is to apply motion
compensation techniques to correct the introduced artifacts.
Finding optical flow and motion boundaries, however, is a
challenging problem, mainly in textureless regions [2].

As in the static case, we bypass the hard problem of
finding the rich per-pixel motion representation and focus
directly on finding the discontinuities i.e., depth edges in
motion. Our approach is part of our common multi-flash
framework, relying on the variation of the wavelength of the
light sources. Very little attention has been given to photo-
metric vision methods that make use of flat colored lights.
We demonstrate here that by using light sources with differ-
ent colors, we can trigger them all at the same time, in one
single shot, and then exploit the colored shadows to extract
depth edges.

Figure 9a shows our setup with three lights of different
color: red, green and blue. When the lights are triggered
at the same time, they sum to white light. We appropriately
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Figure 7: (a) Small baseline image and (b) correspondent depth edges. (c) Large baseline image with shadow detachment
and (d) correspondent depth edges. (e) Our final result using our multibaseline approach.

Figure 8: (a) Complex scene with different amounts of changes in depth. (b) Canny edge detection. (c) Depth edges computed
with one single camera-flash baseline. (d) Depth Edges computed with our multibaseline approach. (e) Part of the engine
zoomed in to compare single-baseline depth edges (top) with our multibaseline method (bottom).

Figure 9: (a) Our setup for dynamic scenes with different
wavelength light sources. (b) Input image. Note the shad-
ows with different colors. (c) Depth edge detection.

placed the lights to produce shadows along all depth discon-
tinuities in the scene: one is positioned below the camera,
while the others are placed on the left and right upper diag-
onals of the camera center of projection.

Our algorithm to detect depth edges using this setup fol-
lows a similar idea of the algorithm described in section 2.
Given the input image with colored shadows, we need to
first distinguish which shadows were created by which light
source. With this information, we can traverse the image
along the correspondent epipolar rays, marking depth edges
at shadows associated with correspondent light sources. In
our setup, for the lights placed along the camera diagonal,
the traversal is not aligned with the pixel grid. For effi-
ciency, we may keep the traversal along the pixel grid, but
detecting negative transitions with e.g., steerable kernels
tuned to specific directions.

A simple way to distinguish the shadows created by each

light would be to decompose the input image into the red,
green and blue channels. However, finding shadows in each
channel is not an easy problem. In this case, the maximum
composite image of the three channels is not suitable for
computing a shadow-free image, due to the fact that non-
shadowed regions of each channel may have different in-
tensities, depending on the albedo of the objects.

In the following section we will describe an approach
to segment shadows using a reference image of the scene,
captured with white light sources. This method does not
solve the motion problem, but considerably reduces acqui-
sition time, allowing motion compensation algorithms to
work better. Then, in section 4.2, we rely on shadow detec-
tion from a single image to extract depth edges in dynamic
scenes. Although separating shadow edges from reflectance
edges is a difficult problem for general scenes, we show that
our technique can be useful for specific applications, such as
extracting internal hand contours or lip segmentation from
video.

4.1 Using a Reference Image

The basic idea of our method based on a reference image
is to take two pictures of the scene, one with the three red,
green, and blue lights triggered at the same time, and the
other with white light sources. At non-shadowed regions,
the ratio between the images should be close to one, due to
the fact that red, green and blue sum to white light. The ratio
in each channel can be used to distinguish which shadows
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were created by which light source.

We now describe this idea in more detail. First con-
sider the RGB color ρk, k = R, G, B formed at a partic-
ular pixel, for illumination with spectral power distribution
E(λ) impinging on a surface with spectral reflectance func-
tion S(λ). If the three camera sensor sensitivity functions
form a set Qk(λ), k = R, G, B, then we have:

ρk = σ

∫
E(λ)S(λ)Qk(λ) dλ, k = R, G, B (1)

where σ is Lambertian shading, i.e. the inner product be-
tween lighting direction and surface normal at a particular
surface point. Assuming that camera sensitivities are Dirac
delta functions, Qk(λ) = qkδ(λ − λk), then equation 1 is
simplified:

ρk = σE(λk)S(λk), k = R, G, B (2)

The capture process of our technique consists in first tak-
ing an image Icolor of the scene with three light sources
red, green, and blue triggered at the same time. Then, we
replace the colored lights with white lights of same inten-
sity and capture a reference image Iwhite. The white light
sources could be placed near the colored lights (to avoid
replacing the lights), provided that the scene depth is suffi-
ciently large when compared to the baseline between cam-
era and lights. We assume the two images are properly reg-
istered or the scene is static between the shots. Note that
we keep all imaging parameters constant, except the spec-
tral power distribution of the light sources. By taking the
ratio between each channel of Icolor and Iwhite, we have:

Sk =
Icolork

Iwhitek

=
σEcolor(λk)S(λk)qk

σEwhite(λk)S(λk)qk

=
Ecolor(λk)
Ewhite(λk)

, k = R, G, B (3)

where Ecolor and Ewhite correspond to the combined spec-
tral distribution of the three colored and white light sources,
respectively. As we can see from the equation above, the re-
flectance term is canceled, which is important for detecting
shadows without depending on the albedo of objects in the
scene.

Given that the light sources may have different inten-
sities, we convert Icolor and Iwhite to a chromatic space
before taking the ratio in equation 3. More specifically,
we define I ′colork

= IcolorkP
i=R,G,B Icolori

and I ′whitek
=

IwhitekP
i=R,G,B Iwhitei

for k = R, G, B. These intensity normal-

ized images are shown in Figures 10b and 10c. The ratio
I′

color

I′
white

is shown in Figure 10d. Ratio values greater than one
are clamped to one. Note that shadows can be easily seg-
mented in this image for depth edge detection. The reason is
that at non-shadowed regions, the ratio between the images
is close to one, due to the fact that red, green and blue sum

Figure 10: (a) Image Icolor taken with red, green and
blue light sources. (b) Image Iwhite taken with white light
sources. (c) Conversion to chromatic space: I ′color (d)
I ′white (e) ratio between I ′color and I ′white. The color of
the segmented shadows indicates which light source corre-
sponds to each shadow.

to white light and thus Ecolor ≈ Ewhite. On the other hand,
at shadowed regions, at least one of the light sources does
not illuminate the local region, implying a drop in the ratio
image due to the different spectral distribution of Ecolor and
Ewhite.

For red, green and blue lights, we used 50W Ushio
Popstar MR-16 Halogen light bulbs, with 12◦ beam angle
spread. For white light sources, we used three 50W Ushio
Whitestar MR-16 Halogen light bulbs, also with 12◦ beam
angle spread. The presence of some artifacts in Figure 10d
are mostly due to the narrow beam angle spread of light
sources. Since the lights are not precisely calibrated, parts
of the scene may have more incidence of light sources at
specific wavelengths. This may create spurious transitions
on the ratio image, leading to false shadow segmentation
(such as along the horse foot).

4.2 Learning Shadow Color Transitions

We now turn to the problem of detecting depth edges with
a single image, captured with red, green and blue light
sources triggered at the same time, as shown in Figure 9a. In
this case, detection of depth edges can be achieved by using
algorithms that detect shadows [6] or separate illumination
from reflectance using a single image [17].

Finlayson et al. [6] proposed a method to remove shad-
ows from images by deriving a 1D illumination invari-
ant image representation based on log-chromaticity coordi-
nates. Tappen et al. [17] use color information and a classi-
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Figure 11: (a)-(c) Sample frames of a video sequence and
correspondent depth edge detection. (d) Comparison with
Canny edge detection.

Figure 12: Lip contour extraction using two red and blue
lights placed above and below the camera.

fier trained to recognize gray-scale patterns in order to clas-
sify image derivatives as being caused by reflectance or illu-
mination changes. The retinex algorithm [9] addresses the
same problem, but relying on the assumption that the gra-
dients along reflectance edges have larger magnitude com-
pared to those caused by illumination variation.

Although these algorithms could be exploited to segment
shadows in general scenes, we have implemented a simpler
method that relies on learning the color transitions between
object and shadows. This allows us to distinguish which
light source created a specific shadow. More specifically, in
a training stage we collect sample pixels along the shadow
transitions and project a support vector machine classifier
for each light source. During the epipolar ray traversal,
we use the output of the correspondent classifier to mark
depth edges. Anisotropic diffusion [11] was applied as pre-
processing for noise filtering.

Our method may generate false positives along re-
flectance edges with similar learned color transitions. De-
pending on the background albedo, shadow color transitions
may differ from the learned model, thus leading to false
negatives. Despite these limitations, our technique can be
useful for diferent applications. For example, extracting
depth edges due to finger occlusions is extremely impor-
tant for hand gesture analysis and recognition. In fact, we
have recently demonstrated that knowlege about occluding
edges in the hand significantly improves recognition rate
over standard intensity edges [5]. Other examples include
extraction of lip contours and interior edges of the ear for
recognition.

Figures 9b and c shows an input image and our final

result, respectively. Note that we are able to capture the
self-occluding thumb finger edge, while eliminating tex-
ture edges such as wrinkles in the hand. This would not
be possible with intensity edge detectors. Although back-
ground clutter could be a source of noise for our method,
the hand could be extracted using standard segmentation
techniques (e.g., based on skin color or background subtrac-
tion), while applying our technique just to extract interior
occluding contours.

When video sequences are available, we use space-time
consistency to improve depth edge detection. We basi-
cally consider the depth edge frames as a 3D surface, filling
out edge gaps among frames to ensure surface smoothness.
Figure 11 shows sample frames of a video sequence cap-
tured with our light sources with different wavelength. We
compare our results with intensity edges detected with the
Canny operator. Note that Canny edges include undesirable
texture edges, such as wrinkles and nails, while missing im-
portant self-occluding edges due to low intensity variations.

Another example is shown in Figure 12, using only two
red and blue lights, placed below and above the camera,
respectively. Note that we are able to reliably detect the
upper and lower lip contours, while reducing noise inherent
in intensity edge detection. Lip contour extraction would
not be possible if the mouth is closed, but still detecting
whether the mouth is open or not could be useful for speech
analysis or facial expression recognition. Only two lights
are sufficient for this example, since lip contour edges are
mostly horizontal. We also extract the facial contour, which
is a challenging task for intensity edge detectors due to the
low contrast variation between the face and neck area.

4.3 Discussion

In our previous work [12], we have addressed the problem
of detecting depth edges in motion using light sources trig-
gered in a rapid cyclic sequence, syncronized with the cam-
era video frames. However, this method assumes that mo-
tion is monotonic with small magnitude, which may cause
spurious edges for thin structures or objects with high fre-
quency texture in the scene.

Most approaches that use active colored illumination in
computer vision aim to recover the full 3D information of
the scene through structured lighting. Tajima and Iwakawa
[14]use a rainbow pattern for pixel coding and triangulation.
Sa et al. [13] adopt color coding along projected colored
stripe boundaries in time, which is useful for 3D reconstruc-
tion from dynamic scenes. Compared to these techniques,
our approach offers the advantage of being simple, inexpen-
sive, and easily built into a self-contained device. It could
also complement existing stereo techniques to obtain depth
edge preserving 3D reconstruction.
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4.3.1 Limitations

Our method is not suitable for distant objects or outdoor
scenes, where the intensity of the light sources may be in-
sufficient compared to the sun light. Objects very close to
the camera may suffer from pixel saturation, also violating
the assumption that the scene depth is significantly larger
than the camera-light baseline. Another problem occurs
when the color of the shadow is the same as the background.
For example, if a background pixel has color yellow and is
not illuminated by the blue light source, an yellow shadow
(formed by the combination of red and green lights) would
not be detectable.

Our technique based on a single shot capture using lights
with different wavelength (section 4.2) is limited to handle
general scenes, as false negatives and positives may arise
due to the albedo of objects in the scene. Research on
shadow segmentation and intrinsic image computation from
a single frame [17, 6] is very important to achieve a more
general solution to the problem. We also believe that solu-
tions involving new camera setups would be possible. For
example, infra-red lighting could be used (with different
wavelength light sources) to capture an image with shad-
ows, while using another camera at the same viewpoint (this
is possible using a beamsplitter) to capture an ambient im-
age simultaneously. This ambient image could be used as
reference to segment shadows more reliably.

5. Conclusions
In this paper, we demonstrated that we are able to handle
fundamental problems in depth edge detection - including
multi-scale depth changes and motion - in a common frame-
work, based on the variation of illumination parameters,
such as the number, spatial position, and wavelength of the
light sources.

As future work, we plan to analyze other illumination
parameters (such as controlling the intensity/power and du-
ration of the flashes, or using linear light sources) to im-
prove depth edge detection. We also intend to do a more
systematic evaluation and extend our multi-flash imaging
framework to handle the general problem of classification
of discontinuities according to their physical origin, i.e, dis-
criminating discontinuities in depth, reflectance, illumina-
tion and surface normal.
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