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Abstract

In real-world applications, inferring the intentions of expert agents (e.g., human operators) 

can be fundamental to understand how possibly conflicting objectives are managed, help-

ing to interpret the demonstrated behavior. In this paper, we discuss how inverse reinforce-

ment learning (IRL) can be employed to retrieve the reward function implicitly optimized 

by expert agents acting in real applications. Scaling IRL to real-world cases has proved 

challenging as typically only a fixed dataset of demonstrations is available and further 

interactions with the environment are not allowed. For this reason, we resort to a class of 

truly batch model-free IRL algorithms and we present three application scenarios: (1) the 

high-level decision-making problem in the highway driving scenario, and (2) inferring the 

user preferences in a social network (Twitter), and (3) the management of the water release 

in the Como Lake. For each of these scenarios, we provide formalization, experiments and 

a discussion to interpret the obtained results.

Keywords Inverse reinforcement learning · Model-free IRL · Truly batch IRL · IRL for 

real life · Multiple experts IRL · Non-stationary IRL

1 Introduction

Reinforcement learning (RL, Sutton and Barto 2018) is nowadays an established approach 

to address a variety of real-world sequential decision making problems. Successful results 

have been achieved in numerous fields such as robotics  (eg., Kober et  al. 2013; Levine 

et al. 2016), recommender systems (eg., Shani et al. 2005; Warlop et al. 2018), financial 

trading (eg., Dempster and Romahi 2002; Nevmyvaka et al. 2006; Buehler et al. 2019), and 

autonomous driving (eg., Kiran et al. 2020).
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The crucial component of any application of RL is the definition of the reward function, 

which evaluates the quality of the agent’s action in each state. In real-world scenarios, it 

is often difficult to design a suitable reward function, able to induce the desired behavior. 

This is because the reward function is a succinct representation of the task  (Sutton and 

Barto 2018), more abstract and connected to “what” objectives (or intentions) the agent is 

optimizing rather than “how”. Indeed, it is typically easier to observe the behavior of an 

expert agent, possibly a human operator, who plays an optimal policy w.r.t. an unknown 

reward function. The goal of Inverse reinforcement learning (IRL, Ng and Russell 2000a; 

Abbeel and Ng 2004) is to recover a reward function that explains the expert’s behavior. 

IRL can be of enormous importance in real-world applications as it might help justify and 

interpret the expert’s choices and identify some trade-offs that a hypothetical human opera-

tor makes, even implicitly. Even more than RL, IRL roots its natural motivations in real-life 

applications. Indeed, the experts are usually humans and the demonstrations come from 

observing the human who is performing the task. While imitating human behavior is rela-

tively simple, interpreting its decisions is a rather complex task, also considering that for a 

human being to communicate precisely these motivations might be hard.

IRL belongs to the broader class of Imitation Learning (IL, Osa et al. 2018) algorithms, 

whose high-level purpose is to “learn from demonstrations”. While IRL has the goal of 

producing a reward function, other techniques, such as Behavioral Cloning  (BC, Argall 

et  al. 2009), are meant to output an imitating policy, i.e., a policy that performs actions 

similarly, in some metric sense, to those demonstrated by the expert. Although BC is typi-

cally simpler and can be cast into a supervised learning problem, the produced policy is 

typically non-transferable to different environments. Instead, the reward function generated 

by an IRL method encodes the general expert’s intentions and, therefore, can be employed 

even under shifts in the environment dynamics. Thus, contrary to the imitating policy, such 

a reward function can be employed to perform forward RL in the original environment, 

transferred to different domains, or used in simulation. For a detailed review of the state of 

the art in IL refer to the recent survey (Osa et al. 2018).

Despite its potential benefits, scaling IRL to real-world applications has historically 

demonstrated to be more challenging than RL. The most widespread applications are 

limited to the domains where the environment can be accessed or based on simulation, 

such as robotics (eg., Ratliff et al. 2006), path planning (eg., Ziebart et al. 2008; Boularias 

et al. 2011), or simulated car driving (eg., Abbeel and Ng 2004). The fundamental reasons 

behind this slower development can be ascribed to the peculiar requirements needed for 

applying IRL to real-world scenarios, which are frequently not met by common IRL algo-

rithms. Those requirements can be summarized as follows:

– Batch setting.  When dealing with a real application, we cannot always assume to have 

access to the environment. Thus, we must account for the fact that only a batch of dem-

onstrations collected by observing the expert is available. Further interaction with the 

environment might be impossible, even for just collecting additional data.

– Model-Free setting.  In addition to the batch requirement, in real-world applications, no 

model of the environment dynamics is usually available (even if available it might be 

overly simplified to be used effectively) and no interaction is allowed to learn it implic-

itly or explicitly.

Consequently, the range of IRL algorithms that can be actually employed for these 

applications is rather small, which we refer to as truly batch model-free. At the best of 

our knowledge, they are limited to two categories: the ones that make use of structured 
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classification (Klein et al. 2012, 2013) and those based on the policy gradient (Pirotta and 

Restelli 2016; Metelli et al. 2017; Tateo et al. 2017; Ramponi et al. 2020). The previous 

requirements are necessary for most real-world scenarios; however, there may be additional 

challenges:

– Multiple experts.   The available data might come from different experts (e.g., differ-

ent human operators), possibly by playing different policies and/or optimizing different 

objectives. Therefore, the IRL algorithm should be able to group/cluster agents based 

on the demonstrated intentions.

– Non-Stationarity.  The environment in which the data collection process is carried out 

might change over time as well as the policy demonstrated by the expert. Thus, a viable 

IRL method must identify the time points at which the agent’s intention changes and 

deal with them appropriately.

In this paper, we present three case studies of IRL in real-world scenarios. We employ �

-GIRL (Ramponi et al. 2020), a newly introduced batch model-free IRL approach that is 

based on the policy gradient and extends GIRL  (Pirotta and Restelli 2016), taking into 

account the uncertainty of the gradient estimates, that is presented in Sect. 3.1. Then, we 

introduce two extensions of �-GIRL: the first one for dealing with the multiple-intention 

setting (MI-�-GIRL, Sect.  3.2) that was already introduced in  Ramponi et  al. (2020) 

and the second one to address the non-stationarity of the reward function (NS-�-GIRL, 

Sect. 3.3), which is a novel algorithmic contribution of this work. The subsequent sections 

are devoted to the illustration of the case studies. For each of them, we present the setting, 

the modelization, the design of the reward function class, the experimental results and their 

interpretation. We start with two scenarios in which we address the problem of IRL from 

multiple experts. In Sect. 5, we aim at inferring the intentions of humans driving along the 

highway; while in Sect. 6, we consider multiple Twitter users that act in the social network 

by reposting tweets. Then, we move to a case study in which we tackle the non-stationarity 

of the expert’s objectives. This application, presented in Sect. 7, consists in recovering the 

intentions of a human operator in charge of controlling the water release of the Como Lake 

dam. Finally, we present in Sect. 8 a discussion of the obtained results, highlighting the 

strengths and weaknesses of our approach and possible open questions.

2  Preliminaries

In this section, we introduce the basic concepts about sequential decision-making problems 

(Sect. 2.1), we formalize the RL and IRL problems (Sect. 2.2), and we introduce the spe-

cific parametric setting we will employ (Sect. 2.3). Given a set X  , we denote with P(X) the 

set of all probability distributions over X .

2.1  Sequential decision‑making

We model the agent-environment interaction by means of a Markov Decision Pro-

cess (MDP, Puterman 1994). An MDP is a 6-tuple M = (S, A, P, R, � ,�) , where S and 

A are the state space and the action space respectively, P ∶ S × A → P(S) is the transi-

tion model that for each state-action pair (s, a) ∈ S × A provides the probability distri-

bution of the next state P(⋅|s, a) , R ∶ S × A → ℝ is the reward function that provides 
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the reward R(s,  a) collected by the agent when performing an action a ∈ A in state 

s ∈ S , � ∈ [0, 1] is the discount factor, and � ∈ P(S) is the probability distribution of 

the initial state. We denote with M ⧵ R the MDP devoid of the reward function and with 

R = {R ∶ S × A → ℝ} being the set of all reward functions for a given MDP M.

The behavior of an agent acting in an MDP M is modeled by means of a Marko-

vian stationary policy � ∶ S → P(A) that provides for each state s ∈ S the probability 

distribution of the action played by the agent �(⋅|s) . A policy � is deterministic if it 

prescribes a single action for each state. We denote with � the set of all Markovian sta-

tionary policies.

The execution of a policy � ∈ � in an MDP M generates a sequence of state-action 

pairs denoted by � = (S0, A0,… , S
T−1, A

T−1, S
T
) and called trajectory such that S

0
∼ � , 

A
t
∼ �(⋅|S

t
) , S

t+1 ∼ P(⋅|S
t
, A

t
) for all t ∈ {0,… , T − 1} and T denotes the trajectory length.

2.2  Reinforcement learning and inverse reinforcement learning

We now focus on the formalization of the reinforcement learning (RL, Sutton and Barto 

2018) and the inverse reinforcement learning (IRL, Ng and Russell 2000a) problems.

Let M ⧵ R be an MDP without reward function, given a policy � ∈ � and a reward 

function R ∈ R , we define the expected return JM(�, R) as the expected discounted sum 

of the rewards collected by executing � in the environment:

where we made the unusual choice of making explicit the dependence on the reward func-

tion R, which will turn useful in the following. For a fixed reward function R ∈ R , we can 

look at the expected return JM(�, R) as an index of the performance of a policy � ∈ � in 

the MDP M . This viewpoint directly leads to the standard formulation of the RL problem.

(RL Problem) Let M ⧵ R be an MDP without reward function and let RE
∈ R be a 

reward function. The RL problem consists in finding an optimal policy, i.e., any policy 

�
∗

RE
∈ � maximizing the expected return JM(�, R

E):

We made explicit the dependence of the optimal policy �∗

RE
 on the reward function RE since 

different reward functions may induce different optimal policies. The problem presented 

above admits, in general, multiple solutions (Sutton and Barto 2018), although a determin-

istic Markovian stationary optimal policy always exists (Puterman 1994). Typically, when 

tackling the RL problem, we are interested in finding just one optimal policy and not the 

whole set of optimal policies.

In the IRL setting, however, we take a different perspective. We are given an expert’s 

policy �E , i.e., the policy of an agent who behaves optimally w.r.t.  some unknown 

reward function RE . Our goal consists in finding a reward function, not necessarily equal 

to RE , such that �E turns out to be an optimal policy. We will refer to these reward func-

tions as compatible.

(1)

JM(�, R) = �

S0 ∼ �

A
t
∼ �(⋅|S

t
)

S
t+1 ∼ P(⋅|S

t
, A

t
)

[
+∞∑

t=0

�
t
R(S

t
, A

t
)

]
,

(2)�
∗

RE ∈ arg max
�∈�

JM(�, RE).
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(IRL Problem) Let M ⧵ R be an MDP without reward function and let �E
∈ � be an 

expert policy. The IRL problem consists in finding a compatible reward function, i.e., any 

reward function R∗

�
E
∈ R that makes the expert’s policy �E optimal:

Like the RL problem, the IRL problem admits multiple solutions. However, in the IRL 

setting the multiplicity of solutions is more critical, leading to the well-known ambi-

guity problem  (Ng and Russell 2000a, b). For instance, the constant reward function 

R(s, a) = c ∈ ℝ for all (s, a) ∈ S × A makes any policy (so also �E ) an optimal policy. 

Clearly, among all the possible reward functions that make �E optimal, not all of them have 

the same ability to “discriminate”, i.e., to capture that variations of �E must be subopti-

mal.1 As a consequence, assessing the quality of a reward function is a challenging task, 

especially when, as in real-world scenarios, it is not possible to use the recovered reward to 

perform forward learning.

In practice, however, the RL problem cannot be solved exactly as the dynamics of the 

environment modeled by P and the reward function R are unknown. Thus, interaction with 

the environment is necessary to learn the optimal policy. Similarly, in the IRL setting the 

expert’s policy �E is unknown, but a set of demonstrated trajectories D = {�
i
}n

i=1
 generated 

by running �E in the environment M is usually available.

2.3  Parametric setting with linear reward

In many real-world scenarios, especially when dealing with continuous state spaces (and 

possibly continuous action spaces), it is convenient to resort to a parametric representation 

of the policy space (Deisenroth et al. 2013). More formally, a policy �
�
 belongs to a space 

of parametric differentiable policies, defined as:2

where � is the policy parameter space. As in Pirotta and Restelli (2016), we restrict our 

treatment of IRL to the case in which the expert’s policy �E can be represented within �
�
 , 

i.e., there exists �E such that �E(⋅|s) = �
�

E (⋅|s) almost surely for all s ∈ S.

Similarly, we model the reward function as a parametric mapping R
�
 , and we enforce 

the additional constraint of being a linear mapping defined in terms of a feature function � . 

More formally, we define a space of linear reward functions as:

where � ∶ S × A → ℝ
q is a (state-action) feature function. The simplex constraint on the 

reward weights � (i.e., � ∈ ℝ
q

≥0
 and ‖�‖

1
= 1 ) allows to avoid the ambiguity of rescaling 

rewards by a constant (Pirotta and Restelli 2016).3

(3)R∗

�E ∈

{

R ∈ R ∶ �
E ∈ arg max

�∈�

JM(�, R)

}

.

(4)�� =
{

�
�
∶ S → P(A), � ∈ � ⊆ ℝ

d
}

,

(5)R =

�
R� = �T� ∶ � ∈ ℝ

q

≥0
, ‖�‖1 = 1

�
,

1 This problem has been partially formalized in the notion of policy rank (Metelli et al. 2017).
2 The differentiability requirement will be necessary for employing policy gradient methods (Sutton et al. 

2000; Peters and Schaal 2008).
3 For any � ∈ ℝ

>0
 , the reward functions R and �R induce the same optimal policies.
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In this setting, we abbreviate the expected return JM(�
�
, R

�
) as JM(�,�) , highlighting 

the dependence on the policy parameters � and on the reward parameters � . Exploiting the 

linearity of the reward function, the expected return decomposes as:

where �(�) denotes the feature expectations (Abbeel and Ng 2004), which are defined in 

terms of the feature function � and on the played policy �
�
 as:

Thus, the expected return is a linear combination, through the weights � , of the feature 

expectations. This view allows JM(�,�) to be interpreted as a linear scalarization of a 

multi-objective problem, in which the different objectives (or intentions in the IRL jargon) 

are represented by �(�).

3  Gradient‑based inverse reinforcement learning

In this section, we revise the class of IRL algorithms, named truly batch model-free, which 

employ techniques based on the policy gradient  (Sutton et  al. 2000; Peters and Schaal 

2008) to recover the reward function optimized by the expert  (eg., Pirotta and Restelli 

2016; Metelli et al. 2017; Tateo et al. 2017; Ramponi et al. 2020). The main advantage of 

these approaches that make them suitable for tackling real-world scenarios is that they do 

not need to have access to the environment (or to a model of it) and are able to output a 

reward function using only a dataset of trajectories generated by the expert’s policy. Unlike 

widely known IRL methods, they do not need to solve the forward RL problem in order to 

assess the quality of each candidate reward function (thus saving a lot of computational 

time, especially in complex and high-dimensional RL problems) and no interaction is nec-

essary to collect additional data. If �
�
∈ �

�
 is differentiable w.r.t. to its parameters � , the 

policy gradient can be expressed as (Sutton et al. 2000; Peters and Schaal 2008):

(6)

JM(�,�) = �

S0 ∼ �

A
t
∼ ��(⋅|St

)

S
t+1 ∼ P(⋅|S

t
, A

t
)

[
+∞∑

t=0

�
t
R�(St

, A
t
)

]
= �T�(�),

(7)

�(�) = �

S0 ∼ �

A
t
∼ ��(⋅|St

)

S
t+1 ∼ P(⋅|S

t
, A

t
)

[
+∞∑

t=0

�
t�(S

t
, A

t
)

]
.

∇�J(�,�) = �

S0 ∼ �,

A
t
∼ ��(⋅|St

),

S
t+1 ∼ P(⋅|S

t
, A

t
)

[ +∞∑

t=0

�
t
R�(St

, A
t
)

t∑

l=0

∇� log��(Al
|S

l
)

]
= ∇��(�)�,
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where ∇��(�) =
(
∇��1

(�)|… |∇��q(�)
)
∈ ℝ

d×q is the Jacobian matrix of the feature 

expectations �(�) w.r.t.  to the policy parameters � . When the expert’s policy �
�

E ∈ �
�
 

is an optimal policy for the reward function R
�

E , �
E is a stationary point of the expected 

return J(�,�E) =
(

�E
)T

�(�) and, thus, the gradient of ∇�J(�E
,�E) = ∇��(�E)�E must 

vanish (first-order necessary conditions for optimality Nocedal and Wright 2006). In other 

words, the weight vector �E , associated to the reward function optimized by the expert, 

belongs to the null space of the Jacobian ∇��(�E) . This leads to the condition:4

We call all the �E reward vectors that satisfy the above equation weak compatible, respect 

to Eq. (3). There are two problems that have to be addressed before applying this condition, 

both deriving from the fact that we have access neither to the explicit representation of the 

expert’s policy �E nor to the environment model, but just to a dataset D = {�
i
}n

i=1
 of trajec-

tories of length T generated by the expert’s policy �
�

E : 

(1) Behavioral cloning.  To compute the Jacobian ∇��(�E) it is necessary to have access 

to a parametric representation of the expert’s policy, to calculate the scores ∇
�

log�
�

E . 

Starting from the dataset of trajectories D = {�
i
}n

i=1
 generated by �

�
E , we can employ 

a Maximum Likelihood (ML) procedure to get an estimate �̂
E

 of the expert’s policy 

parameters �E

 The ML estimate is known to be consistent under mild assumptions, i.e.,  �̂
E

→ �
E 

as the number of trajectories n grows to infinity  (Casella and Berger 2002). Other 

approaches based on Bayesian techniques (e.g., maximum a posteriori) are suitable 

when prior information on �E is available (Tateo et al. 2017).

(2) Jacobian estimation.  Given a policy parametrization � , it is possible to get an unbiased 

estimate of the Jacobian matrix by resorting to sample-based estimators for standard 

policy gradient methods, such as REINFORCE (Williams 1992) and G(PO)MDP (Bax-

ter and Bartlett 2001). For the sake of completeness, we report below the G(PO)MDP-

like estimator, defined for all u ∈ {1,… , d} and v ∈ {1,… , q} as:5

(8)if �E ∈ arg max
�∈�

JM(�,�E) then �E ∈ null
(

∇��(�E)
)

.

(9)�̂
E

∈ arg max
�∈�

n∑

i=1

T−1∑

t=0

log�
�
(A

i,t|Si,t).

4 In principle, it is not guaranteed that the null space contains a unique vector even under the simplex con-

straint (Eq. (5)). The multiplicity of the solutions is typically a symptom of a bad feature design. Indeed, it 

is always possible to remove one or multiple features to obtain a unique weight vector fulfilling the condi-

tion.
5 The concentration properties of this estimator, being a straightforward extension, can be derived from 

those of G(PO)MDP (Papini et al. 2019).



2548 Machine Learning (2021) 110:2541–2576

1 3

 where b
uvt

 is a baseline that can be employed to reduce the variance of the estimate 

and obtained extending the classical one employed in G(PO)MDP (Deisenroth et al. 

2013 Equation 2.17) for the Jacobian: 

 where the expectation is taken w.r.t. the randomness of the trajectories. Being an average 

of n independent trajectories, ∇̂��(�) concentrates around its true value ∇��(�) as n grows 

to infinity. Furthermore, thanks to the central limit theorem, its distribution is asymptoti-

cally Gaussian (Casella and Berger 2002).

The approximations introduced by estimating the expert’s policy parameters �E via 

behavioral cloning and by using samples to compute ∇̂��(�) prevent the direct application 

of condition (8) for the determination of the expert’s weights. This is due to the fact that 

the estimated Jacobian ∇̂��(�) might result full rank even if the true Jacobian has a rank 

smaller than q, leading to a zero-dimensional null space. We will discuss in the following 

section how to deal with this problem.

3.1  ̇ ‑gradient inverse reinforcement learning

In this section, we revise the recently presented �-Gradient inverse reinforcement learn-

ing (�-GIRL, Ramponi et al. 2020), which is able to solve the IRL problem in a fully batch 

model-free setting, accounting also for the uncertainty on the Jacobian estimate. The basic 

idea is to look at the Jacobian estimate ∇̂��(�) as a noisy version of the true Jacobian 

∇��(�) . For this purpose, we model ∇̂��(�) as a Gaussian random matrix N
(

�,
1

n

�

)

 , 

which is justified by the central limit theorem, being the estimated Jacobian a sample mean.

Since there exists a weight vector �E , which defines the reward function optimized by 

the expert, such that ∇̂��(�)�E = 0 , whenever ∇̂��(�) is full rank, we are allowed to move 

its components in order to get a new estimate � having non-empty null space. Using the 

Gaussian likelihood model, we formulate the IRL problem as the problem of finding the 

weights � and the new Jacobian � that jointly maximize the likelihood of the estimated 

Jacobian.6 This leads to the optimization problem:

where ⊗ denotes the Kronecker product and I
d
 is the identity matrix of order d. Clearly, 

we need to specify the noise model encoded by the covariance matrix � . In practice, the 

sample covariance matrix �̂ is often used in the experiments after applying some necessary 

(10)∇̂��uv
(�) =

1

n

n∑

i=1

T−1∑

t=0

(
t∑

l=0

∇�u
log��(Ai,l|Si,l)

)
� t
(
�

v
(S

i,t, A
i,t) − b

uvt

)
,

b
uvt

=

�

��∑t−1

l=0
∇�u

log��(Al
�S

l
)

�2

�
t�

v
(S

t
, A

t
)

�

�

��∑t−1

l=0
∇�u

log��(Al
�S

l
)

�2
� ,

min
� ∈ ℝ

q

≥0

‖�‖1 = 1

���∇̂��(�)�
���

2
�
(�⊗Id)

T
�(�⊗Id)

�−1 , (�-GIRL)

6 Refer to Section 4 in Ramponi et al. (2020)) for the detailed derivation.
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correction to enforce the well-conditioning (Ledoit and Wolf 2004). For a specific choice 

of � , we reduce to the objective function of GIRL (Pirotta and Restelli 2016):

Finally, we can employ the Gaussian likelihood model to define the likelihood of dataset 

D, used to compute ∇̂��(�) , given the weight vector � . We will denote this quantity as 

p(D|�):7

where vec denotes the vectorization operator, that, given a matrix, recovers a vector 

obtained by stacking its columns.

Remark 1 (On the Suboptimality of the Expert) In principle, if no knowledge about the 

reward function optimized by the expert is available, we are unable to detect whether the 

expert is suboptimal. This is because, we can always design a reward function in which 

the demonstrated behavior is optimal (unless the expert’s contradicts itself). Instead, if we 

assume that the reward function optimized by the expert lies in our class of reward func-

tions, i.e., it is linear, and we are unable to find a weight vector making the gradient van-

ish, we can conclude that the expert is suboptimal. In such a case, similarly to Pirotta and 

Restelli (2016), instead of looking at the null space of the Jacobian, we will recover the 

reward that induces the minimum change in the policy parameters, i.e., the reward that bet-

ter explains the expert demonstrated behavior.

min
� ∈ ℝ

q

≥0

‖�‖1 = 1

�
�
�
∇̂��(�)�

�
�
�

2

2
. (GIRL)

(11)
p(D��) = max

� ∈ ℝ
d×q

�� = 0

√
n

√
(2�)dq det(�)

e
−

n

2

����
vec

�
∇̂��(�)−�

�����

2

�−1 ,

7 The notation is taken from (Barratt 2018).

3.2  Dealing with multiple experts and intentions

In several applications, we have access to demonstrations generated by multiple experts 

who possibly optimize different objectives (i.e., different reward functions). The corre-

sponding IRL problem, which consists in recovering the reward function optimized by each 
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expert, is commonly refered to as IRL about multiple intentions (MI-IRL, Babes et  al. 

(2011)). Formally, suppose we have a set {E1,… , E
m
} of m experts, each of which demon-

strates a policy �E
i ∈ �

�
 by means of n

i
 trajectories, D

i
= {�1,… , �

n
i

} . Furthermore, there 

exist k ≤ m unknown reward functions {R
�1

,… , R
�

k
} such that the i-th expert optimizes 

R
�

ri

 , where r
i
∈ {1,… , k} are the unknown expert-intention assignments. The goal is to 

recover the set of k rewards together with the corresponding assignments (Fig. 1). In the 

remaining, we assume that we know the identity of the expert who generates each trajec-

tory and the number of intentions k.

We now revise the approach by Ramponi et  al. (2020), which extends the �-GIRL 

algorithm to the MI-IRL setting. We note that a simple solution would be to run �-GIRL 

(or any other IRL algorithm) independently on the sets of trajectories demonstrated by 

each different expert. However, this solution is likely to yield poor performance when 

each expert provides very small amounts of data, as is common in real-world scenarios. 

A more data-efficient solution is to cluster the given trajectories (or equivalently the 

experts) according to their underlying intention (Babes et al. 2011) so that it is possible 

to run the IRL algorithm on larger datasets (the clusters). Ramponi et al. (2020) build 

exactly on top of this idea. Since computing the clusters requires the intentions to be 

known and vice versa, the authors propose an expectation-maximization (EM) frame-

work that maximizes the total likelihood of the data. In the E-step, the algorithm uses 

the current estimates of the reward weights to compute the probabilities zij that the i-th 

expert optimizes the j-th estimated reward. In the M-step, the algorithm uses the current 

probabilities zij to update the reward weights. This can be done, for each reward weight, 

by solving a weighted version of the �-GIRL objective:

The two steps are then repeated until convergence. The final output of the algorithm are 

the estimated reward weights together with the corresponding “soft” expert assignments 

(i.e., the probabilities zij ). Refer to Algorithm 1 for the pseudocode of Multiple-Intention �

-GIRL (MI-�-GIRL).

3.3  Dealing with non‑stationary experts

In many real-world scenarios, the expert who controls a system (e.g., a human operator) 

might modify its behavior over time. This is because its objectives might change or the 

environment might evolve. We can interpret this phenomenon as a form of non-stationarity 

(12)

min
�j ∈ ℝ

q

≥0
‖‖‖
�j
‖‖‖1

= 1

m∑

i=1

zijni
‖‖
‖
�∇�� i(�)�j

‖‖
‖

2

[
(�j⊗Id)� i(�j⊗Id)

T
]−1 , j ∈ {1,… , k}.

Fig. 1  Plate notation of the 

probabilistic model employed 

for the clustering procedure. 

�j with j ∈ {1,… , k} are the 

prior probabilities on the cluster 

assignment
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in the expert’s intentions. In this section, we formalize the problem of IRL with a non-sta-

tionary expert’s reward function. Our setting assumes that we have access to a lifelong tra-

jectory � = (�
1
|… |�

T
) obtained from the concatenation of T trajectories D = {�

i
}T

i=1
.8 

Within the lifelong trajectory � the expert displays a non-stationary behavior since it opti-

mizes k ≤ T  reward functions R = (R
�1

,… , R
�

k
) , where k is referred to as number of 

regimes. In particular, there exists a set of indexes T = {t0, t1,… , t
k
} with 

1 = t
0
< t

1
< ⋯ < t

k−1
< t

k
= T  , inducing the intervals Ij = {tj−1,… , tj − 1} , such that for 

each j ∈ {1,… , k} the set of trajectories Dj = {�i}i∈Ij
 , made of nj = tj − tj−1

+ 1 trajecto-

ries, are generated by the expert who optimizes the same reward function R
�j

 . We assume 

to know the number of regimes k, the subdivision of the lifelong trajectory � in the T trajec-

tories D = {�
i
}T

i=1
 , but not the set of indexes T  , nor the reward functions R . Clearly, we 

expect that for different intervals Ij not only the reward function changes, but also the pol-

icy performed by the expert (Fig. 2).

A naïve solution would be to treat this problem as a multiple-intention IRL problem in 

which each expert E
i
 generated the dataset consisting of a single trajectory D

i
= {�

i
} for 

i ∈ {1,… , T} . However, this approach has at least two drawbacks. First, the estimate of 

the reward function will likely be very noisy since only one trajectory is available for each 

expert. Second, we are totally disregarding that the expert’s intention changes sequentially. 

Thus, it would be unrealistic to cluster non-contiguous intervals.

For these reasons, we take inspiration from the change-point detection algo-

rithms (Aminikhanghahi and Cook 2017) and we adapt it to the non-stationary IRL setting. 

Given a dataset D of trajectories and a reward weight � we employ the likelihood function 

p(D|�) defined in Eq. (11), we define the likelihood of the lifelong trajectory � as the prod-

uct of the likelihoods of the individual trajectories �
i
:

where � = (�1,… ,�
k
, t1,… , t

k−1) is the concatenation of the parameters. Now we can 

derive the objective function that we seek to optimize for the parameters �:

(13)L(�|�) = p(�|�) =

T∏

i=1

k∑

j=1

p(�i|�j)�{i∈Ij}
,

Fig. 2  Plate notation of the 

probabilistic model employed 

for the change-point detection 

procedure

8 The granularity of the subdivision of the lifelong trajectory to the T sub-trajectories is a design choice, 

based on the knowledge of the environment. For instance, in the Como Lake case study, given the cycle-

stationarity of the environment, each sub-trajectory is associated to one year of data. The length of the sub-

trajectories determines the agent’s planning horizon employed in the IRL process.
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where we recall that Dj = {�i}i∈Ij
 . In order to optimize the objective function Q(�) we 

adapt the change-point detection algorithm Opt which employs a dynamic programming 

approach to determine the optimal solution to the identification of the change points 

T  (Bellman 1958; Aminikhanghahi and Cook 2017; Truong et al. 2020). The adaptation of 

this algorithm to our non-stationary IRL problem is reported in Algorithm 2, which we 

name Non-Stationary �-GIRL (NS-�-GIRL). It is worth noting that the optimization of 

such objective consists in solving O(T2) IRL problems, one for each 1 ≤ u < v ≤ T:

Q(�) = log L(�|�) =
k∑

j=1

T∑

i=1

�{i∈Ij}
log p(�i|�j)

=

k∑

j=1

∑

i∈Ij

log p(�i|�j)

=

k∑

j=1

log p(Dj|�j),

(14)
min

�uv ∈ ℝ
q

≥0

‖‖�uv
‖‖1

= 1

(v − u)

v−1∑

i=u

‖
‖‖
�∇�� i(�)�uv

‖
‖‖

2

[(�uv⊗Id)� i(�uv⊗Id)
T]

−1
.
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4  Related works

In recent years, there have been several successful applications of imitation learning meth-

ods to real-world problems. Robotics is perhaps the most common example (Osa et  al. 

2018). In this setting, learning policies on real robots is often prohibitive due to both sam-

ple-complexity and safety reasons, while expert demonstrations are fairly simple to obtain. 

Due to their simplicity, behavioral cloning (BC) methods have received considerable atten-

tion. Kober and Peters (2009) trained a robotic arm to hit a ball in the table-tennis game. 

The arm was guided by a human expert to generate trajectories and the ball-hitting pol-

icy was learned directly via BC on these demonstrations. Englert et al. (2013) addressed 

the same problem but with an under-actuated robot using a model-based BC technique. 

Abbeel et al. (2010) trained policies to drive an RC helicopter from human-teleoperation 

trajectories. A similar problem was considered by Ross et al. (2013), who trained a control-

ler for an unmanned aerial vehicle capable of avoiding obstacles (e.g., trees in a forest). 

Zhang et al. (2018) trained policies for several robotic manipulation tasks (e.g., grasping 

or pushing objects) directly from images, with demonstrations generated in virtual reality. 

Finn et al. (2017) used meta-learning to train image-based controllers that adapt to several 

manipulation tasks using only a single visual demonstration. For a thorough discussion of 

the applications of BC methods, we refer to the recent surveys by Hussein et al. (2017) and 

Osa et al. (2018).

Although IRL methods have also enjoyed many success stories in complex robotics 

problems, their application in this context is considerably more difficult than BC. In fact, 

as mentioned in the introduction, in this kind of problems, a model of the environment is 

hardly ever available in practice, it is difficult or unsafe to interact with the real system, 

and expert demonstrations are often very limited. Therefore, many traditional IRL tech-

niques are not applicable and model-free and data-efficient (e.g., batch) methods are typi-

cally preferred. Among the notable applications, Boularias et al. (2011) used a model-free 

variant of MaxEnt IRL to learn the “ball-in-a-cup” task, in which a robot must swing a ball 

connected to a rope into a cup. The task was demonstrated by a human expert only a very 

small number of times and the resulting controller was shown successfully on a real robot. 

Bogert and Doshi (2014) proposed an IRL method for a real patrolling problem in which 

a robot must penetrate the perimeter patrolled by other robots inferring their intentions. 

Finn et  al. (2016) learned about house-keeping tasks (such as moving dishes and pour-

ing liquids) using a model-free IRL algorithm with non-linear reward functions and visual 

demonstrations.

Autonomous driving is another field where the application of imitation learning (and, 

in particular, IRL) techniques has received increasing interest. This setting presents even 

more complications than robotics problems and, thus, the focus is typically on learning 

policies in simulation. However, there have been many attempts to integrate real-world 

driving demonstrations and to deploy the resulting controllers to real cars. Several BC 

approaches have been proposed for learning end-to-end car-driving policies (which map 

raw sensor data to actions) directly from expert demonstrations. These approaches provide 

significant evidence of the capabilities of neural network-based controllers but are typically 

difficult to deploy on real cars due to safety and interpretability reasons. Codevilla et al. 

(2018) and Dosovitskiy et al. (2017) trained end-to-end image-based policies for complex 

urban driving domains. The trained models were evaluated in the real-world using a toy 

car. Similarly, Pan et al. (2017) adopted an end-to-end imitation learning method for off-

road autonomous driving that was successfully tested using toy cars.
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The application of IRL methods is typically on specific driving problems. Ziebart et al. 

(2008) considered the problem of predicting driving behavior and route preferences. The 

authors applied their MaxEnt IRL algorithm to a large dataset of real GPS data from dif-

ferent taxi cabs and showed that it was able to capture the route choices of the drivers. A 

similar problem was considered by Wulfmeier et  al. (2017) who extended the approach 

of Ziebart et al. (2008) to learn non-linear reward functions. Silver et al. (2013) proposed 

a maximum-margin method to learn driving maneuvers from human demonstrations and 

successfully tested the resulting controller on a real-world vehicle. Kuderer et al. (2015) 

employed the MaxEnt IRL algorithm to learn driving styles from demonstrations in order 

to optimize the comfort perceived by passengers in the autonomous vehicle. The approach 

uses data obtained by recording real drivers with different driving styles.

5  Case study 1: Highway driving

5.1  IRL from multiple experts

Highway driving is a widely employed benchmark for RL and IRL algorithms, thanks 

to the potentially simple representation of the environment and the “few-constrained” 

possibility in choosing the action. Here we focus on the problem of high-level control, 

where the main decision the agent has to make is when to change lanes. This is a quite 

common scenario, close to the setting considered in real autonomous vehicles, where 

the presence of a low-level controller, which assures compliance with the safety dis-

tance with other vehicles, managing the speed accordingly and maintaining the center 

of the lane, is assumed. Therefore, the lane-change problem consists in controlling the 

ego vehicle on the highway and deciding when it is convenient to perform a lane change 

on the left to overtake, or a lane change on the right, to occupy the rightmost free lane.9 

Driver agents in this setting typically aim at proceeding along the highway as fast as 

possible, while displaying a “natural” behavior, respectful of driving rules.

In this case study, we consider a mixed real/simulated setting. The demonstrations 

are collected by human drivers, but the environment in which humans operate is simu-

lated. We employ SUMO simulator, an open-source, highly portable, microscopic and 

continuous road traffic simulation package designed to handle large road networks (Kra-

jzewicz et  al. 2012). SUMO focuses on high-level control of the car, integrating an 

internal system that controls the vehicle dynamics. This mimics the low-level controller 

of autonomous vehicles. Slight changes have been made to the simulator to ensure that 

the car-follower models employed in the simulator are aligned with low-level controllers 

used in real autonomous driving systems. For this reason, we believe that our setting is 

not significantly different from the fully real environment. Furthermore, since we are 

interested in recovering a reward function which is a transferable element, rather than an 

imitating policy, the simulated environment is less critical than in the BC case.

In this kind of driving problems, the use of classical IRL algorithms is extremely chal-

lenging, since any interaction with the environment (e.g.,  to learn the optimal policy for 

a candidate reward function) must be performed in simulation and must account for the 

9 We use the right-hand traffic rules.
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differences with the real vehicle.10 �-GIRL, on the other hand, requires only agents’ dem-

onstrations and can identify the reward function that the expert optimizes without interact-

ing with the environment. More specifically, we consider the case where we have interac-

tions from multiple agents and we can identify which agent each of our demonstrations 

belongs to. The goal is to cluster agents based on their intentions.

The immediate application of the results of IRL in this scenario is in the field of autono-

mous driving. Specifically, we can exploit the clustering of agents based on their intentions 

to identify agents that demonstrate unwanted behaviors. This allows removing from the 

dataset demonstrations that would result in an imitation policy showing these unwanted 

behaviors, such as unsafe driving or non-compliance with driving rules, with a possible 

benefit in subsequent BC applications. Furthermore, and most importantly, we can use the 

Fig. 3  Range in which the car in front is considered for front distances, highlighted in blue. The value 

recorded is highlighted in yellow (Color figure online)

Fig. 4  The ego vehicle lane occupancy during a lane change (Color figure online)

10 Our method uses trajectories collected by human experts in simulation, but we never interact with the 

simulator to perform forward RL. Thus, the presence of the simulator is less critical for our approach.
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identified reward functions to understand the different trade-offs performed by human driv-

ers. Consequently, those rewards can be employed to train an autonomous controller that 

replicates (and possibly improves) the human behavior, only using the demonstrations of 

agents that optimize a “safe” reward function. In the following sections, we will refer to the 

controlled vehicle as the ego vehicle.

5.2  System modeling

We present here details about the state representation considered in the lane change sce-

nario. We focus on three-lane highways, but the state space can be generalized to an arbi-

trary number of lanes. The state is composed of 25 high-level features extracted by the 

observations of the environment. For two vehicles in each lane, one at the front and one 

at the rear of the ego vehicle, we record the distance from the ego vehicle. The distance 

considered is the one from the front bumper of the following vehicle to the rear bumper of 

the leading vehicle, as shown in Fig. 3. A vehicle is considered in front of the ego vehicle 

as long as its front bumper is in front of the rear bumper of the ego vehicle. We also record 

their speeds and their lateral positions inside the corresponding lanes, to know if they are 

making lane changes. The variables that represent the state of the ego vehicle are its speed, 

its position over the lanes, a flag indicating whether the ego vehicle is changing lanes, and 

two flags that check whether the ego vehicle has the free-left or the free-right. The free-left 

and the free-right are evaluated only for vehicles visible by the sensors, therefore within the 

visibility range, otherwise, they are true. The position of the ego vehicle in the lanes is rep-

resented as occupancy weights. For each lane of the highway, we record in what percentage 

the ego vehicle is in each lane, considering the offset between the front bumper of the vehi-

cle and the center of the lane. Figure 4 shows an example of a lane change from the third 

lane to the second lane (lanes ordered from right to left), together with the corresponding 

occupancy arrays. In Fig. 4a the offset between the front bumper of the car (highlighted in 

blue) and the center of the lane (highlighted in yellow), is highlighted in green. In this case, 

the vehicle is 60% in the third lane and 40 % in the second lane.

The action space in the lane-change highway scenario consists of three actions, car_fol-

lowing, lane_change_right and lane_change_left . The car_following action leaves con-

trol of the car to the low-level controller which follows the planned route, cornering when 

necessary, but does not make lane changes. Furthermore, it controls the vehicle speed to 

avoid collisions and maintains a safe distance with the vehicle in front. The controller sets 

the safety speed considering the vehicles that are in sight of the sensors only and adjusts 

it respecting the maximum practicable deceleration and acceleration. The remaining two 

actions are the lane changes, left or right. These maneuvers are non-interruptible, once 

issued, they cannot be reverted. For more details on the environment modelling see Lik-

meta et al. (2020).

5.3  Reward design

The lane change scenario is a classic example of a multi-objective task. Humans consider 

several objectives, corresponding to the reward features, while driving along highways, 

including: (1) going as fast as possible, (2) occupying the rightmost free lane, (3) avoiding 

useless lane changes, and (4) keep safety distances with other vehicles. To encode these 
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objectives we employ three reward features. All the features are meant as punishment, so 

they have negative values:

– Free-right ( �R ): to encode the objective of occupying the rightmost lane we use a 

binary feature, activated during the timesteps when the agent could perform a lane 

change on the right.

– Lane-change ( �L ): a binary feature is used to encode the objective of avoiding too many 

lane changes. Since the lane change is non-interruptable and lasts 3s (30 timesteps), 

this punishment is given entirely at the beginning of the lane change and has a high 

value (30).

Fig. 5  3D inteface used to collect the human demonstrations

Fig. 6  Feature expectations of the human agents in the highway task
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– Distance front ( �D ): a feature to encode both the safety objective and the maintenance 

of the high-speed profile. This is a feature that incorporates the distance of the ego 

vehicle from the vehicle in front of it. It grows linearly with the distance to the front 

vehicle, the higher the distance of the ego vehicle from the vehicle in front the higher 

is its value. It has the highest value (0) when there is no vehicle in front. This objective 

also encodes the high-speed objective, since it is the low-level controller that regulates 

the speed of the ego vehicle when it is about to violate safety distances. Without any 

vehicle ahead, the ego vehicle continues to accelerate until it reaches the maximum 

allowed road speed.

5.4  Data description

In the SUMO simulator, we model scenarios with different road topologies and traf-

fic intensities, randomizing the flow of vehicles, to ensure the generation of sufficiently 

general and realistic situations. We set the control frequency to 10 Hz for all our experi-

ments, which means that we choose an action to be performed every 100 ms. During the 

simulation, SUMO provides information about the other vehicles around the ego vehicle. 

More specifically, we can query SUMO for the positions and velocities of all the cars in 

the simulation. This information is also available for the decision-making module in a real 

car, being provided by the sensing module. To collect the dataset we built a 3D-interface 

on top of the SUMO traffic simulator, connected to the traffic simulator. The 3D interface, 

shown in Fig. 5, was used by human drivers to collect trajectories. The dataset consists of 

demonstrations provided by 10 different drivers. Each set of demonstrations consists of 50 

trajectories each of 400 steps, recorded at 10 Hz, resulting in trajectories equal to 40 s of 

driving time, for a total of 5.5 hours of driving.

The agents show different behaviors. To grasp an initial understanding of the differ-

ences, we show in Fig. 6 the feature expectations for all the agents considered. In Appen-

dix A.1, we also show some 2D visualizations of the trajectories of some of the experts. 

Fig. 7  Distributions of lane changes for each agent. The y-axis reports the fraction of demonstrated actions 

where either a lane change to the left (in blue) or one to the right (in orange) was performed (Color figure 

online)
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Finally, it is worth noting that the distribution of the actions in the dataset is highly unbal-

anced. We want to identify the intentions that drive human agents in changing lanes while 

driving, but most of the actions in the dataset are car-following. Figure 7 shows the distri-

butions of lane changes for each agent.

5.5  Results

The BC phase is performed by means of a one-layer neural network, with 8 hidden units 

and a Boltzmann output layer to represent the policy model for the AD task. Different 

architectures were explored, but the simpler models were unable to accurately predict the 

agents’ behaviors and more complex models did not offer substantial improvements. We 

recall that in this task, the BC dataset is highly unbalanced, with most of the actions in 

the dataset being car-following (NOP) and only a small portion being lane changes. To 

deal with this problem, we employed oversampling over the minority classes. Figure  8 

shows the accuracy of all agents’ policies derived via BC, for each action separately. We 

can notice that the BC models generally predict the agents’ behaviors well, except for the 

4th agent, which seems to have a more non-deterministic response to the state. For agents 

Craig and Judy, the column corresponding to the lane-change left is not represented since 

the respective agents never performed that action.

Fig. 8  Accuracy (fraction of correctly-predicted actions) of the BC models in the AD task (Color figure 

online)

Fig. 9  IRL loss (Eq. 12) in the 

Highway domain as a function of 

the number of clusters
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Table 1  The reward weights 

learned by �-GIRL in the AD 

task

Reward features N. agents

Free-right Lane-change Distance front

Cluster 1 0.76 0.00 0.24 3

Cluster 2 0.09 0.00 0.91 5

Cluster 3 1.00 0.00 0.00 1

Cluster 4 0.19 0.81 0.00 1

Table 2  Cluster assignment 

made by �-GIRL in the AD task
Agents

Cluster 1 Eve, Grace, Alice

Cluster 2 Carol, Erin, Bob, Dan, Chuck

Cluster 3 Craig

Cluster 4 Judy

(a) (b) (c)

Fig. 10  Visualization of the weights of the clusters (Color figure online)

Fig. 11  Intra-cluster BC evaluations (Color figure online)
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Clustering results   We employ Multiple-Intention �-GIRL, as described in Sect.  3.2, 

with k = 4 clusters. The results are summarized in Tables  1 and 2, with a visualization 

of the reward weights in Fig.  10a. We can identify four clear clusters. The first cluster 

includes three agents showing the “best” behavior. These agents keep the right lane while 

overtaking slow vehicles. This translates into a high weight for the free-right objective, 

since it is a binary feature activated when we could perform a lane change to the right, and 

some weight for the distance-front objective. As we mentioned earlier, the distance-front 

objective is related to maintaining high speed, as the low-level controller starts to deceler-

ate to maintain safety distances when the front vehicles are too close. In fact, they start 

overtaking vehicles only when the low-level controller starts to slow down. It is also inter-

esting to note that the change-lane objective is not given any weight, since changing lanes 

without motivation is already suboptimal because it decreases speed while changing lane 

and creates unnecessary free-rights. The next cluster contains agents who rarely occupy the 

right lane but focus on maintaining a high-speed profile that provides most of the weight 

to the front-distance feature. Again, useless lane changes are implicitly optimized, because 

they affect the speed of the ego vehicle and are advantageous only when you employ them 

to overtake a slow vehicle. Finally, we have two clusters composed of single agents. One 

of them tends to keep the right lane, but changes lanes more rarely and takes longer time 

to decide to change lanes, while the last agent focuses only on the free right features and 

changes lane to the right immediately when given the possibility.

To investigate the robustness of clustering through �-GIRL, we increase the number of 

clusters. By construction, the clustering loss function will always separate clusters (Fig. 9). 

The remarkable behavior of MI-�-GIRL in this problem is that an overestimation of the 

number of clusters can be easily detected since the weights of the separated clusters will 

not differ much from the original one. This can be seen in Fig. 10b and c where the newly 

added clusters are close to the existing ones.
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Fig. 12  Average return of the policy trained with the reward function of each cluster and mean of the aver-

age return of the experts divided based on whether they have been assigned to the cluster (Color figure 

online)
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BC fails to generalize We investigate how transferable the BC policies are between 

agents belonging to the same cluster. To this purpose, we took the policies trained to imi-

tate each agent separately and tested them on all demonstrations of their identified clusters 

(excluding their own). Figure 11 shows the accuracies of the BC policies of each agent. We 

only show 8 agents as the other two are alone in their respective clusters. We can clearly 

see that BC may easily fail to generalize across agents who might show slightly different 

behaviors while optimizing the same reward functions. Recall, in fact, that for any reward 

function, there might exist multiple optimal policies. Hence, agents with the same intent 
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Fig. 13  Average return of the policy trained with the reward function of each cluster and average return of 

each expert evaluated with the reward function of each cluster (Color figure online)
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can demonstrate different policies, and BC tends to “overfit” to the specific behavior. IRL 

methods, on the other hand, can correctly group different behaviors into the same intent.

Next we investigate how “good” the recovered reward functions fit the behaviour of the 

agents assigned to them. Unfortunately, since we do not have the “true” rewards it is hard 

to do a quantitative evaluation of the results since we cannot compute the error on the 

recovered weights. Nonetheless, given the presence of the simulator, we can train agents 

that optimize the recovered reward functions. We used the methods described in Likmeta 

et  al. (2020), which use parametrized rule-based policies to represent the agent’s policy, 

and have shown good performance in this Highway environment. We trained one agent for 

each cluster and we compare the expected return of these trained policies, with the average 

return of each agent in that specific reward function. For details on the training procedure 

see Appendix A.2. The results are shown in Fig. 12. Here we show for each of the 4 clus-

ters, the return of the policy trained in the environment with the reward function of the 

cluster in pink, compared to the average return of the agent assigned to that cluster under 

the reward function of the cluster in green and the return of the other agents (assigned 

to other clusters) under the same reward function, in blue. So every subplot of the figure 

shows performances of different policies all evaluated with the same reward which means 

that their performances are comparable (comparisons accross clusters cannot be made 

since they have different reward functions). As can be expected, in all clusters, the agents 

not assigned to that cluster perform poorly. The best performing policy is generally the 

policy explicitly optimizing that reward function, except in Cluster 2 where the RL training 

procedure failed to recover a good policy. And finally the returns of the policies assigned 

to the cluster, have a policy close to the policies which explicitly optimize that return. The 

results of Cluster 2, where the trained policy is the one performing the worst, show also the 

general difficulty of evaluating the reward functions recovered from our algorithms, since 

we are not guaranteed that an agent trained with the given reward functions will achieve 

the optimal performcance. Figure  13 shows in detail the performances of each agent in 

each cluster.

Clustering via feature expectations Finally, we compare the clustering performed using 

�-GIRL, with a clustering based on the features expectations of the agents. To this end, we 

cluster the feature expectations of the agents using a K-means with k = 4 clusters. Table 3 

shows the results of this clustering. Compared to the clustering done by IRL, we can see 

that the first cluster contains agents that show very heterogeneous behaviors. This cluster 

contains the three “good” agents, identified by the IRL clustering, together with two agents 

that show a greater preference for keeping a high-speed profile (Bob and Dan). It also sep-

arates agent Chuck from the other agents who show a preference towards maintaining a 

high-speed and the left lane, because her feature expectations are “far” from the others, 

even though the objectives are the same.

Table 3  Cluster assignment 

based on the feature expectations
Agents

Cluster 1 Bob, Alice, 

Dan, Eve, 

Grace

Cluster 2 Carol, Erin

Cluster 3 Craig, Judy

Cluster 4 Chuck
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6  Case study 2: Twitter IRL from multiple experts

Social networks like Twitter and Facebook are actively used by millions of users every day. 

Inferring the users’ interests and intentions is a relevant problem in this context with a vari-

ety of possible applications (Piao and Breslin 2018). For instance, understanding why users 

perform certain actions, like posting a message or clicking on an ad, and what their pref-

erences are, allows the system to provide personalized recommendations and, in general, 

improve the user experience. Similarly, inferred intentions might help detect and counter 

dangerous agents, such as bots or fake profiles, who could harm the system or its users. 

Several learning-based techniques have been designed for this problem (Saravia et  al. 

2017; Song et al. 2015; Xu et al. 2011; Sadri et al. 2019). We refer the reader to an inter-

esting survey by Piao and Breslin (2018). To the best of our knowledge, the only previous 

work that has applied IRL to this problem is Das and Lavoie (2014), in which the authors 

presented an IRL-based algorithm to infer the intentions of Reddit users. Although almost 

no previous work has been proposed in this direction, we believe that IRL is a natural and 

relevant alternative to address this problem. In fact, common existing techniques typically 

focus on learning the users’ behavior, i.e., how users will respond to certain stimuli, in 

order to understand what their interests are. However, form our perspective, social network 

users are learning agents who act in order to maximize certain objectives, and inferring 

these objectives is what really informs us about their interests and behavior.

Here we explore the adoption of IRL methods, precisely the MI-�-GIRL algorithm, to the 

problem of inferring the users’ intentions on Twitter. In particular, we try to answer the fol-

lowing questions: “Why does a user decide to retweet a post? What is her intention in deciding 

to post the tweet?” This problem poses several challenges from the IRL perspective. First, we 

do not have a simulator of the environment and the interaction with the social network might 

be time-prohibitive and, in some cases, illegal. Therefore, model-free and batch algorithms are 

required. Furthermore, although lots of data are available for free, collecting this data is very 

time-consuming and requires significant preprocessing (cleaning, filtering, anonymizing, etc.). 

Finally, the problem involves a huge amount of agents whose behaviors and intentions depend 

on those of other agents.

6.1  System modeling

We now describe our simplified model of the user-Twitter interaction. Among the several 

actions that a user can perform on Twitter, we restrict our attention to the most common one: 

re-tweeting a post. In our model, a user observes a tweet (generated by another user) and has 

to decide whether to re-tweet it or not. Intuitively, this simple model allows us to capture most 

of the relevant interests and intentions of Twitter users. In fact, there exist several reasons why 

a user might decide to re-tweet a post or not. For instance, the user might be personally inter-

ested in the content/topic of the post, or she might think that the post would be appreciated by 

other Twitter users, or she might simply intend to re-tweet everything (e.g., a spam bot).

In each episode of interaction with the social network, the agent observes a sequence of 

tweets and must decide for each one whether to retweet it or not. The state encodes informa-

tion about the last observed tweet and about the agent’s past behavior. It is modeled by three 

variables: the popularity of the tweet, the number of retweets recently performed by the agent, 

and the retweet time. The popularity score encodes the likelihood that the general community 
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will like the last observed tweet. It is computed as the average of the number of likes to the 

tweet and the number of retweets,

and then normalized by the average popularity-score of the user’s tweets. The num-

ber of retweets performed by the agent is computed on a retweet window of T = 10 

steps, i.e., the last 10 observed tweets. Finally, the retweet time is a measure propor-

tional to the time elapsed since the last retweet performed by the agent. It is computed as 

�
time

= 0.1 ⋅ (t − t
0
) − 1 , where t is the first time the agent receives a tweet that she decides 

to retweet after having retweeted at time t
0
< t . State transitions work as follows. The next 

tweet does not depend on the current one or the agent’s actions since it is generated natu-

rally by the environment (i.e., by other users). Note, however, that the popularity score 

of the retweet might, in fact, depend on the past actions since, for example, agents that 

retweet interesting content might increase their number of followers and thus the popular-

ity of their retweets. The retweet time is reset to zero if the agent performed a retweet in 

the current step or updated accordingly as described above if the agent did not retweet, and 

similarly for the number of retweets.

6.2  Reward design

In this domain, the reward features are the same as the state ones, except that the Pop-

ularity-score is set to zero whenever the agent does not re-tweet. Intuitively, these fea-

tures allow us to capture different interesting intentions. For instance, users who want 

Popularity-score =

Nlike + Nretweet

2
,

Table 4  The reward weights 

learned by �-GIRL: popularity 

score of a retweet, number of 

retweets in a window T, and 

retweet time ( �
time

)

Reward features N. agents

Popularity N. retweets �
time

Cluster 1 0.56 0.00 0.44 4

Cluster 2 0.16 0.19 0.65 6

Cluster 3 0.78 0.03 0.19 4

Fig. 14  Twitter clustering statistics. Average number of followers (left), followings (center) and retweets 

(right) for each cluster
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to share content that is interesting to the community typically focus on the popularity 

score while keeping reasonable values for the other two features (so that they do not 

appear spammers). On the opposite side, users who want to spam every tweet focus on 

the number of retweets, ignoring their popularity.

6.3  Data collection and processing

The dataset was collected using the tweepy API (http:// docs. tweepy. org), a Python library 

for accessing the Twitter API. We selected 14 Twitter accounts, and we obtained all of 

their followed accounts (5745 in total), using the API. For every of these 5759 ( 14 + 5745 ) 

accounts we collected their tweets and re-tweets from November 2018 to the end of Janu-

ary 2019 using a crawling process. We obtained a total number of 468304 tweets posted 

by these accounts on the Social Network. We assumed that each user only observes tweets 

from the accounts she follows, hence ignoring those coming from general (not followed) 

Twitter users. Furthermore, since a (human) Twitter user is very unlikely to view all the 

tweets from her followings while generating trajectory data we considered a probability 

of 0.01 that the agent sees each tweet. We used this process to split the tweet data for each 

agent into trajectories of 20 tweets, which were used directly to run MI-�-GIRL.

6.4  Results

We perform behavioral cloning on the agents’ demonstrations employing a two-layer neu-

ral network (8 neurons each). Then, we divide the demonstrations in trajectories of size 20, 

which gives us exactly one retweet window in every trajectory. We apply MI-�-GIRL with 

Fig. 15  Map of the Lake Como basin

http://docs.tweepy.org
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k = 3 clusters. The results are shown in Table 4, while Fig. 14 reports some statistics of the 

three clusters found.

We can observe that the users in the first cluster seem to be interested in retweeting 

posts with high popularity at a high frequency, i.e., they aim at maximizing the popular-

ity score while minimizing the retweet time. This cluster can be interpreted as a grouping 

of standard Twitter users. This is also confirmed by Fig.  14, which shows that users in 

this cluster follow many other users while having fewer followers, the standard situation 

in the social network. The second cluster, on the other hand, groups users who do not aim 

at retweeting too often. These are users who do not frequently use the social network, as 

they have few retweets and follow a small number of people. The last cluster is perhaps 

the most interesting one: these agents tend to retweet all popular tweets. After inspecting 

the users assigned by the algorithm to this cluster, we found that they are mostly commer-

cial accounts (e.g., bots, companies, or two HR managers). Not surprisingly, they show the 

intention to post popular tweets, but they are uninterested in following other accounts, as 

Fig. 14 highlights. For completeness, we show in Appendix B.1 the results of clustering 

based on feature expectations.

7  Case study 3: Como Lake Dam IRL from non‑stationary expert

Lake Como is a sub-alpine lake in northern Italy, characterized by an active storage capac-

ity of 254 Mm3 fed by a 4552 km2 catchment (Fig. 15). The main tributary and only emis-

sary of the lake is the Adda river, the fourth longest Italian river, whose sublacual part 

originates in the southeastern branch of the lake and feeds eight run-of-the-river hydroelec-

tric power plants and serves a dense network of irrigation canals belonging to four irriga-

tion districts, with a total irrigated area of 1400 km2 . The southwestern branch of the lake 

constitutes a dead-end exposed to flooding events, particularly in the city of Como which 

is the lowest point of the lake shoreline. The hydro-meteorological regime is characterized 

by scarce discharge in winter and summer, and peaks in late spring and autumn due to 

snowmelt and rainfall, respectively. Snowmelt from May to July is the most important con-

tribution to the seasonal lake storage. The agricultural districts downstream prefer to store 

snowmelt in the lake to satisfy the peak summer water demands, when the natural inflow is 

insufficient to meet irrigation requirements. Yet storing such water increases the lake level 

and, consequently, the flood risk, which could instead be minimized by keeping the lake 

level as low as possible. The lake regulation has, therefore, to balance flood protection to 

the lake shores and water supply to downstream users.

While the objectives that the human operator in charge of deciding the water release are 

known, their relative importance is unknown and it might change over time. In this setting, 

IRL can help in understanding the operator preferences. This knowledge could lead to the 

future development of artificial systems helping the operator by suggesting a suitable water 

release amount or even a fully automatic controller. Additionally, exploiting NS-�-GIRL, 

we can capture the possible variations in the operator preferences over time.

While RL is receiving growing attention in the water community, the application IRL 

is still in its infancy. In Mason (2018), the Cutting-Plane Inverse Reinforcement Learning 

algorithm (Pirotta 2016) is first tested in a synthetic case study; the experiments show that 

CPIRL is able to identify the specific tradeoff underlying a simulated control policy and to 

distinguish among different formulations of the same objective. The same algorithm is also 

used to identify changes in the operations of an Alpine hydropower reservoir in response 
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to the transition from a regulated electric energy market to a free setting. In Mason et al. 

(2018), a multilateral negotiation process replaces IRL in the identification of the prefer-

ence among multiple objectives. The method assumes that multiple virtual agents, which 

independently optimize different objectives, periodically negotiate a compromise policy 

for the operation of the system. The authors also model preference dynamics via periodic 

negotiations where the agents’ attitudes in each negotiation step are determined by the 

recent system performance.

7.1  System modeling

The system is modeled as a discrete-time, periodic, nonlinear, stochastic MDP with 

a continuous state variable representing the water stored in the lake S
t
 , a continuous 

action that controls the water released a
t
 , a state-transition function affected by the sto-

chastic lake inflow qt+1
 to describe the mass balance equation of the lake storage, i.e.

where S
t
 is the lake storage at time t; qt+1

 the inflow in the time interval [t, t + 1) , r
t+1

 the 

water volume released in the same interval, which coincides with the action a
t
 corrected, 

where appropriate, with a non-linear release function determining the minimum and maxi-

mum releases feasible for the time interval to respect physical and legal constraints (e.g., 

spills when the lake level exceeds the maximum capacity). In the adopted notation, the 

time subscript of a variable indicates the time instant when its value is deterministically 

known. The reservoir storage is known at time t by measuring the lake level h
t
 and thus is 

denoted as S
t
 , while the net inflow is denoted as qt+1

 because it can be known only at the 

end of the time interval.

7.2  Reward design

We model the competing interests of flood control and water supply using the following 

reward functions, with a specific feature accounting for intense drought events:

(15)St+1 = St + qt+1 − rt+1(St, at, qt+1)

Fig. 16  Lake level and flood thresholds (left); cyclostationary average inflow, release and demand (right). 

Shaded areas refer to the historical variability over the 1946–2010 period
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– Water supply deficit ( �D ): the daily water deficit between the lake release r
t+1

 and the 

water demand d
t
 of the downstream system: 

– Flood risk ( �F ): a penalization function that is large for small releases associated to 

high lake levels: 

 with r
F
= 120 and rF

= 5.

(16)�D

t
= max(r

t
− d

t
, 0).

(17)�F

t
=

⎧
⎪⎨⎪⎩

0 if r
t+1 > r

F

−

�
r

F
−r

t+1

r
F
−rF

�2

if r
F ≤ r

t+1 ≤ r
F

−1 otherwise

,

Fig. 17  Graphical representation 

of the weights recovered for one 

(left) and five (right) regimes. 

The crosses use the same color 

coding as the intervals in Fig. 20 

(Color figure online)

Fig. 18  Comparison of the historical regulation (red square) with the set of Pareto optimal control poli-

cies (gray circles) exploring the trade-off between flood control and water supply obtained in Giuliani et al. 

(2019). The historical regulation reveals a preference for reducing floods, as confirmed by our results in 

Fig. 17 (Color figure online)
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– Drought risk ( �L ): a penalization that is large for large releases associated to low lake 

levels: 

 with r
L
= 500 and rL

= 5:

7.3  Data description

The dataset is composed of the historical trajectory of lake levels, inflows, and releases 

over the period 1946–2010, which are illustrated in Fig. 16. All data are daily and were 

provided by Consorzio dell’Adda (www. addac onsor zio. it). In Fig.  16 we show the lake 

level, together with the inflow and release for a year, averaged over the considered time 

interval (1946–2010).

(18)�L

t
=

⎧⎪⎨⎪⎩

0 if r
t+1 < r

L

−

�
r

t+1−r
L

r
L
−rL

�2

if r
L ≤ r

t+1 ≤ r
L

−1 otherwise

,

Fig. 19  IRL and BC losses as 

a function of the number of 

regimes. The IRL loss is the 

one of Eq. 14. The BC loss is 

the cross-entropy of the same 

intervals computed by IRL

Fig. 20  Identified year intervals for different number of regimes (Color figure online)

http://www.addaconsorzio.it
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7.4  Results

We employed as state representation the concatenation of the lake level h
t
 , the inflow of the 

previous day qt , the demand of the current day d
t
 and the actions of the previous two days 

a
t−1

 and a
t−2

:

For the preliminary BC phase, we employed a Gaussian policy with fixed variance �2
= 1 

and mean which is linear in the state s
t
.

The human operator has a set of preferences that are unknown. First of all, we focus 

on the IRL results without any time interval subdivision, i.e., when considering just one 

regime. The weights recovered in this case are shown in Fig. 17 left. We notice a slight 

predominance of the interest in controlling the floods, whose feature �F is weighted with 

�
F
= 0.47 , whereas the remaining weight is divided between the feature of the demand �D 

( �D
= 0.34 ) and the control of the drought events �L ( �L

= 0.19 ). These preferences can 

be validated by comparing the historical data with the set of Pareto optimal control policies 

exploring the tradeoff between flood control and water supply obtained in Giuliani et al. 

(2019). The mapping of the historical regulation and of the Pareto optimal solutions in the 

space of water supply deficit and flood control illustrated in Fig. 18 shows how the opera-

tor is almost Pareto efficient and the historical regulation attains very good performance in 

terms of flood control at the cost of high values of water supply deficit.

Since the available data span a time period of 65 years, we investigate whether the 

behavior of the lake operator displays a stationary intention or the underlying preferences 

change over time. As many environmental systems, the Lake Como is a non-stationary sys-

tem that has undergone several alterations over time, which might have changed the prefer-

ences of the regulator. For this purpose, we employ NS-�-GIRL, described in Sect. 3.3, 

by considering a single trajectory the sequence of states and actions observed along a one 

year period. The results are shown in Fig. 19 and 20. First of all, looking at the IRL loss 

(Fig. 19) we observe a significant improvement moving from one regime to two, then the 

loss keeps reducing but with smaller benefits. From an elbow analysis, we can conclude 

that a number of regimes of 4 or 5 result suitable for the problem. Looking at the BC loss, 

we notice an overall reduction as well, although not monotonic.

Concerning the interval subdivision, according to the properties of the real domain and 

the events that occurred, we believe that the most interpretable one is the case with five 

regimes. The first two time periods (1946–1949 and 1950–1959) can be seen as set-up 

periods in which the operator tries different policies and learns how to operate the dam, 

which was constructed in 1946. Overall, this period displays a preference towards reducing 

flood risk. Moving to the third period (1960-1988) we appreciate a notable change in the 

intentions trade-off. Indeed, the estimated weights increase the preference toward satisfy-

ing the downstream water demand ( �D
= 0.47 ) while reducing the interest in avoiding the 

floods ( �F
= 0.33 ). The notable length of this period can be interpreted as an indicator 

of the fact that the human regulator has converged to a stable policy. However, starting 

from 1989 we notice a significant variation of trade-off that becomes largely driven by 

flood control. In the time interval 1989–2002, most of the weight (0.94) is given to the 

feature �F . This change of intention can be justified by the large flood event that occurred 

in 1987, registering the highest level in the historic records. This event was followed by 

other floods, which might have further consolidated this conservative behavior that mini-

mizes flood risk. In recent years, the climatic conditions in the region have manifested a 

(19)st =

(

ht, qt, dt, at−1, at−2

)

.
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drying trend inducing a further modification of the operator’s preferences. The summer of 

2003–2005–2006 represent extreme, unprecedented drought events (Giuliani et al. 2016). 

Our results capture this transition, with the period (2003–2010) that is associated with a 

new regime that assigns a high weight to reducing drought risk ( �L
= 0.59 ) and supplying 

water demand ( �D
= 0.41 ) while reducing the importance of flood control.

This analysis allows grasping a general overview of how the operator’s preferences, 

which are modeled via intentions, change over time. However, several questions remain 

open. First, the choice of a suitable number of regimes, by just observing the data is chal-

lenging. The elbow analysis can provide some suggestions, but still, we needed the domain 

expert’s knowledge to understand whether a subdivision is reasonable. Second, the five 

regime setting allows us to provide some interpretation but displays limits as well. Spe-

cifically, the subdivision is sometimes inaccurate. We may wonder why the fourth interval 

(the one in which the flooding control objective is predominant) begins in 1989 instead 

of 1988, being that the Como flooding event occurred in 1987. Third, the results are sig-

nificantly dependent on the choice of the features. A suitable feature design is an iterative 

process that needs to account for both the domain peculiarities and the characteristics of 

the employed IRL algorithms.

8  Discussion and conclusions

We tackled the problem of inferring the intentions of human operators in several real-world 

scenarios via IRL algorithms. In these settings, it is important to have algorithms that oper-

ate in a model-free, batch manner, since, in most applications, the model of the environ-

ment is not available and there is no possibility of interaction as well. We applied the MI-�

-GIRL algorithm to the Twitter and AD tasks, identifying multiple clusters of agents with 

different reward functions. Furthermore, we proposed an extension to the �-GIRL algo-

rithm to deal with non-stationary intentions of the expert and applied it to the real-world 

case of the Lake Como dam operation, identifying multiple operating regimes. We inter-

preted these regimes with the evolution of the dam environment supported by historical 

data on the climatic events that occurred in the geographical area of the dam.

Although we were able to employ these algorithms in real-life scenarios, it is worth not-

ing that their application should not be seen as a black-box. Being in a fully-batch setting, 

without further interaction with the environment, these algorithms depend heavily on the 

system modeling phase. A bad design of the state, action, policy and most importantly, 

reward space can highly affect the final results. We witnessed this phenomenon in all our 

applications, and we believe that it is a price to pay when giving away the possibility to 

interact with the environment. Typically, a bad state, action and policy space design can 

be detected in the behavioral cloning phase, as usually the accuracy of the imitating policy 

is low. Reward design is a more delicate phase, as with most of the IRL algorithms. In 

general it is important to avoid features that can cause a constant expected return under 

every policy. An example of these kind of features are constant features, features and its 

negation and constant conic features combination. We have observed that usually a poor 

reward design results in “extreme” reward weights, where all the weight goes to one of the 

features. For these reasons, the application of this kind of algorithms requires a close inter-

action with experts of the specific field of application.

As future work, we intend to extend our approach to deal with settings in which the 

action space of the demonstrations differs from the action space of the task in which 
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the reward functions will be applied. For instance, in the car driving problem, we might 

consider the case where demonstrations come from the low-level control of the vehi-

cle, but the reward function will be applied for the high-level control. Furthermore, we 

might consider a more extreme scenario, when we do not observe the actions performed 

by the expert but only their effects on the state of the environment.
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