
This may be the author’s version of a work that was submitted/accepted
for publication in the following source:

Tian, Glen & Levy, David
(2008)
Dealing with network complexity in real-time networked control.
International Journal of Computer Mathematics, 85(8), pp. 1235-1253.

This file was downloaded from: https://eprints.qut.edu.au/224571/

c© Consult author(s) regarding copyright matters

This work is covered by copyright. Unless the document is being made available under a
Creative Commons Licence, you must assume that re-use is limited to personal use and
that permission from the copyright owner must be obtained for all other uses. If the docu-
ment is available under a Creative Commons License (or other specified license) then refer
to the Licence for details of permitted re-use. It is a condition of access that users recog-
nise and abide by the legal requirements associated with these rights. If you believe that
this work infringes copyright please provide details by email to qut.copyright@qut.edu.au

Notice: Please note that this document may not be the Version of Record
(i.e. published version) of the work. Author manuscript versions (as Sub-
mitted for peer review or as Accepted for publication after peer review) can
be identified by an absence of publisher branding and/or typeset appear-
ance. If there is any doubt, please refer to the published source.

https://doi.org/10.1080/00207160701697354

https://eprints.qut.edu.au/view/person/Tian,_Glen.html
https://eprints.qut.edu.au/224571/
https://doi.org/10.1080/00207160701697354

QUT Digital Repository:
http://eprints.qut.edu.au/

Tian, Yu-Chu and Levy, David (2008) Dealing with network complexity in real-
time networked control. International Journal of Computer Mathematics
85(8):pp. 1235-1253.

 © Copyright 2008 Taylor & Francis
This is an electronic version of an article published in [International Journal of
Computer Mathematics 85(8):pp. 1235-1253]. [International Journal of Computer
Mathematics] is available online at informaworldTM with
http://dx.doi.org/10.1080/00207160701697354

September 10, 2007 5:56 International Journal of Computer Mathematics TianCompNetV2

International Journal of Computer Mathematics
Vol. 00, No. 00, September 2007, 1–18

Dealing with Network Complexity in Real-Time Networked

Control

Yu-Chu Tian∗† and David Levy‡
†Faculty of Information Technology, Queensland University of Technology, GPO Box

2434, Brisbane QLD 4001, Australia
‡ School of Electrical and Information Engineering, The University of Sydney, Sydney

NSW 2006, Australia

(Received ????, 2007)

This paper addresses complex real-time networked control systems (NCSs). From our re-
cent effort in this area, a general framework is developed to deal with network complexity.
When the complex traffic of real-time NCSs are treated as stochastic and bounded variables,
simplified yet improved methods for robust stability and control synthesis can be developed
to guaranteed the stability of the systems. From the perspective of network design, over-
provisioning of network capacity is not a general solution as it cannot provide any guarantee
for predictive communication behaviour, which is a basic requirement for many real-time ap-
plications. Co-design of network and control is an effective approach to simplify the network
behaviour and consequently to maximise the performance of the overall NCSs. To implement
such a co-design, a queuing protocol is applied to obtain predictable network traffic behaviour.
Then, the predictable network-induced delay is compensated through the controller design,
and any dropped control packet is also estimated in real-time using past control packets. In
this way, the network-induced delay can be limited within a single control period, significantly
simplifying the network complexity as well as system analysis and design.

Keywords: Complex networks; Real-time systems; Networked control systems; Queuing
protocol; packet dropout

1. Introduction

Networked systems and applications are not a new concept. However, systematic
investigations into the interactions among network components and the complex
dynamics of network systems did not occur until recently. With much effort in
this area, some basic concepts and approaches of complex networks have been de-
veloped in recent years to describe the connectivity, structure, and dynamics of
complex systems. Recent reports on complex networks include [1] in which a spe-
cific hybrid system has been investigated, and [2] that focuses on efficient packet
routing in complex network, and many others. It has been realised that networked
environment introduces challenges to system analysis and development, and the
distributed nature of many system components and services requires new tech-
nologies to guide the system design.

This paper is devoted to developing a framework to deal with network complexity
in real-time networked control systems (NCSs). Supporting real-time traffic is an es-
sential requirement in such networked applications. Many reports have been found
in the open literature in this area, e.g., [3–7], and references therein. Networked

∗Corresponding author. Email: y.tian@qut.edu.au

International Journal of Computer Mathematics
ISSN: 0020-7160 print/ISSN 1029-0265 online c© 2007 Taylor & Francis

http://www.tandf.co.uk/journals
DOI: 10.1080/0020716YYxxxxxxxx

tian
Vol. 85, No. 8, pp. 1235-1253, August 2008, DOI: 10.1080/00207160701697354

September 10, 2007 5:56 International Journal of Computer Mathematics TianCompNetV2

2 Yu-Chu Tian and David Levy

control systems (NCSs), which implement control over communication networks,
are becoming increasingly important in industry due to the increasing demand on
large-scale integration of information, communications, and control. As shown in
Figure 1, an NCS consists of a plant to be controlled, sensors, actuators, and con-
trollers. Sensors, controllers, and actuators are interconnected via a communication
network. Introduction to the fundamentals of NCSs can be found in [8–16] and ref-
erences therein. We have recently analysed the complex behaviour of the network
traffic in real-time NCSs, and have found the multifractal nature of the network
traffic [3]. The characteristics of non-uniform distribution of the network-induced
delay [17] has been used to improve NCS stability analysis by Peng and Tian [18].

Figure 1. Diagram of networked control systems.

It is well realised that control over data networks faces two challenging prob-
lems: network-induced delay, and packet dropout. The network-induced delay is
time-varying and unpredictable, and thus affects the accuracy of timing-dependent
computing and control of the NCSs. The packet loss results from network traffic
congestions and limited network reliability, and forces the controller and/or actu-
ator to make a decision on how to control the system when a control packet is
lost.

Effort has been made to solve these two challenging problems. From Figure 1, it is
natural that many control scientists and engineers have focused on the study on the
controller side while the network quality-of-service (QoS) conditions are considered
as constraints. When the network-induced delay is treated as a stochastic variable,
models can be developed to describe the network-induced delay and packet loss,
separately or simultaneously. A simultaneous description of both network-induced
delay and packet loss in a unified model is considered in [19], and has been shown to
be more effective to deal with the network stability and control synthesis [20–25].
With the developed model, stability criteria, which relate to the upper bound of the
time delay, are derived that guarantee the stability of the overall NCS [19,22,26,27].
Controller synthesis is also carried out to determine the controller settings under
the stability criteria. Packet dropout is considered in some references for estab-
lishing the stability conditions, but is not compensated at all. Overall, approaches
developed from the perspective of the controller design provide stability condi-
tions, but do not directly deal with the real-time requirement of the NCS network
communications. Therefore, conservative control is usually designed in order to
guarantee the stability of an NCS.

Conventionally, “throwing bandwidth” was an effective method to resolve many
problems in network communications. Therefore, some network engineers are op-
timistic that over-provisioning of network capacity can easily resolve the challeng-
ing problems of both network-induced delay and packet dropout. It has not been
well recognised in the control community, and also in the networking community,
that a high bandwidth does not necessarily mean predictable communication be-
haviour, and real-time control does not necessarily require fast data transmission.
Deterministic communication behaviour is essential in real-time NCS applications.
Over-provisioning may work for some applications, but is not a general solution.
The reasons are discussed below.

September 10, 2007 5:56 International Journal of Computer Mathematics TianCompNetV2

LATEX2ε Dealing with Network Complexity in Real-Time Networked Control 3

(i) There have been many industrial control systems implemented in fieldbus net-
working, e.g., Controller Area Network (CAN) [7]. However, the fieldbus tech-
nology has not been widely accepted in industry so far [28]. Moreover, like
all other technologies, fieldbus also has its technical limitations. For example,
DeviceNet, a popular fieldbus technique based on CAN provides up to 1Mbps
bandwidth with the maximum end-to-end transmission distance of 40m. For
1.3km transmission distance, the bandwidth on the bus is down to 50kbps,
implying that only about 25 devices can be interconnected in order to achieve
similar performance to that in peer-to-peer networking where each peer-to-peer
connection can have up to 1.92kbps bandwidth with RS232 asynchronous com-
munications for about 1km (when using 0-10mA direct current transmission).
Over-provisioning of the capacity of such networks is a very expensive solution,
if it is not impossible, especially for large scale control systems.

(ii) Effort has been made to promote Ethernet based networking for simple and
cost effective NCS applications [16, 28, 29]. With recent advances in network
technologies, high-speed IP networks have been commercialised with the band-
width as high as 100Mbps, 1Gbps, and even 10Gbps, so the transmission speed
of data in IP networks is no longer a major problem for most industrial appli-
cations. However, deterministic and predictable communication performance is
not guaranteed in IP networks. If network-induced delay is comparable with the
process delay, the performance of the Ethernet based NCS will be largely depen-
dent on the networking. Although high speed Ethernet has very small commu-
nication latency [28], it has not been recommended for time-critical NCSs [16]
because of its limited real-time QoS.

(iii) Our recent studies [10] have shown that for some IP-based NCS networks,
simply increasing the network capacity may result in more packet losses for
periodic control tasks. We have interpreted this as the consequence of the burst
traffic of multiple periodic control tasks. This is not acceptable in many real-
time applications, e.g., safety-critical systems.

(iv) A large number of sensors and actuators employed in various applications,
especially in small and battery-powered embedded control systems, have limited
computing power and do not support high communication bandwidth.

(v) In wireless networked applications, over-provisioning of the bandwidth is impos-
sible or very expensive in most cases because of the tight bandwidth recourses.

Therefore, a general solution to the challenging problems of network-induced delay
and packet loss cannot reply on the over-provisioning of the network capacity.

From our recent development, this paper aims to develop a general framework to
deal with the NCS network complexity. The basic idea is the co-design of network
and control. The procedure of the framework is summarised below.

• Step 1. Apply a real-time queuing protocol [10,30] in the NCS network to make
the behavior of the network traffic predictable, thus simplifying the network
dynamics. The most important achievement is the predictability of the network-
induced delay.

• Step 2. Configure the worst-case communication delay (WCCD) under accept-
able level of packet loss rate to significantly reduce the network-induced delay in
networked control [31].

• Step 3. For any control packet loss, activate a packet dropout compensator,
e.g., [4, 32], to predict the lost control signal. A control packet that is received
after the control period ends is treated as a lost packet in that control period.

• Step 4. Through the above three steps, the network-induced delay is limited
within a single control period, largely simplifying the system analysis and design.

September 10, 2007 5:56 International Journal of Computer Mathematics TianCompNetV2

4 Yu-Chu Tian and David Levy

Then, the predictable network-induced delay is compensated through controller
design. Many controller strategies can be used for predictable delay compensa-
tion, e.g., [33, 34]

The rest of the paper is organised as follows. In Section 2, we rectify our recent
development of real-time queuing protocol for networked applications. Section 3
extends our packet dropout compensation scheme. The general framework for deal-
ing with NCS network complexity is summarised and demonstrated through case
studies in Section 4. Section 5 concludes the paper.

2. Real-Time Queuing Protocol for Networked Control

2.1. Queuing Protocol

A few NCS control methodologies have been developed [13]. Among various NCS
control methodologies, the ‘queuing methodology’ [35–37] is the only one that aims
to develop NCSs with predictable communication timing. The method proposed
by Luke and Ray [35, 36] depends crucially on the accuracy of the plant model,
and the method by Chan and Özgüner [37] is based on probabilistic predictions.
However, both have not explicitly addressed the requirement of the predictive tim-
ing behaviour of real-time NCS. They have tried to compensate for packet dropout
through sophisticated computation at the controller, but these algorithms may not
be feasible for implementation at actuators that have limited computing power.
Due to these problems, a reference in the open literature to report a successful
application of the queuing methods has not been found.

Queuing packets to smooth out network-induced delay is not a new idea in mul-
timedia and even in NCS [36,37]. However, the requirement in multimedia applica-
tions is different from that in NCS control. For example, throughput is important
in video streaming, but is not the focus in networked control as many measurement
and control packets are very small. For packet dropout, the existing stability based
NCS control methodology does not provide compensation at all; and existing queu-
ing methods have not shown success in real applications. This paper will rectify
our real-time queuing protocol to deal with both network-induced delay and packet
dropout.

Our basic ideas in development of the queuing protocol are:

(i) Keep the general networks unchanged at the transport, network, data-link and
physical layers to maintain the simplicity, scalability, and interconnectivity of
the networks. However, a real-time queuing protocol is introduced on top of the
transport layer to meet the real-time communication requirement.

(ii) Use two queues to smooth out the network induced-delay and and to compen-
sate for packet dropout.

The queuing architecture shown in Fig. 2 implements the above mentioned ideas
[10,30].

Figure 2. Real-time queuing architecture for networked control.

September 10, 2007 5:56 International Journal of Computer Mathematics TianCompNetV2

LATEX2ε Dealing with Network Complexity in Real-Time Networked Control 5

Compared with conventional networked control shown in Figure 1, the proposed
NCS scheme in Figure 2 has two parallel queues, Q1 and Q2, at the actuator.
Queue Q1 stores only one control packet, and is used to enqueue the received control
packet. The enqueued control packet is dequeued from the queue and output to the
actuator at a fixed time instant in a control period. In this way, network-induced
delay and jitter can be smoothed out. Consequently, the network-induced delay
becomes predictable, favorable to real-time networked control. Queue Q2 is a first-
in-first-out (FIFO) queue, with a capacity of a few, e.g., two or three, packets. If
a control packet is lost, a control signal is estimated from the past control packets
stored in Q2. Using these two queues, we are able to limit the network-induced
delay within a single control period, significantly simplifying the NCS analysis and
design.

2.2. Events and Timelines

For periodic control tasks, the events and timelines of the queuing protocol in
a control peiod are depicted and explained in Figure 3 [10, 30]. In Figure 3, the
earliest possible time instant TE , at which the control packet arrives at queue Q1,
is described by

TE = TO + min(tsc) + tctr + min(tca) (1)

where min(·) means the lower bound; tsc, tctr, and tca are sensor-to-controller delay,
the worst case control computation time, and controller-to-actuator delay, respec-
tively. Without packet dropout, the latest possible time instant TL, at which the
control packet reaches queue Q1, is,

TL = TE + tj (2)

where tj is the sum of sensor-to-controller and controller-to-actuator jitters, i.e.,

tj = max(tsc)−min(tsc) + max(tca)−min(tca) (3)

where max(·) represents the upper bound.

Figure 3. Timelines for the queuing architecture.

September 10, 2007 5:56 International Journal of Computer Mathematics TianCompNetV2

6 Yu-Chu Tian and David Levy

2.3. Timeline Requirements

The basic requirements among these timeline parameters for real-time systems are:

TO < TE < TL ≤ TC < TD ≤ T. (4)

Eqn. (4) can be interpreted differently for hard and soft real-time systems, respec-
tively. Hard real-time systems require that Eqn. (4) is always met. Any network
design and configurations that do not satisfy Eqn. (4) will not allow the applica-
tions of the proposed method in hard real-time systems. However, for soft real-time
systems, Eqn. (4) can be occasionally missed out, e.g., TL > T occurs occasion-
ally. This explains why Ethernet has some applications in soft real-time control of
industrial processes [28].

It is seen from Figure 3 that TE − TO represents the fixed part of the network-
induced delay and control computing time tctr. It is necessary to optimise control
algorithms and network architectures in order to reduce this fixed time delay.

The latest time instant for actuators to receive control packets and enqueue
them, TL, is chosen such that it covers the major part of the jitter or its full range
if possible. In [31], we have shown show how to achieve such a TL under acceptable
level of packet loss rate.

At time instant TC ≥ TL, check whether queue Q1 is empty or full. For ease of
theoretical analysis, we may simply set TC = TL.

At time instant TD, dequeue the control packet from Q1 and output the control
signal to the plant. The choice of TD relies on how much time is required to deal
with control packet dropout. The constraint is that the computing of the algorithm
dealing with packet dropout should complete within the time interval TD − TC for
hard real-time systems. This constraint can be alleviated occasionally for soft real-
time systems.

2.4. Estimate of Timeline Parameters

In order to check whether the requirements of Eqn. (4) are fulfilled, it is necessary
to estimate any two parameters of TE , TL, and tj . Two possible solutions to the
parameter estimation are: theoretical calculations and simulation analysis.

Eqns. (1) - (3) are expressions of the timing parameters; while more detailed
descriptions are required for actual calculations. Theoretical calculations of time
delay for simple networks are possible under simplified assumptions [28]. However,
such calculations have significant limitations for NCS design. For example, they
depends crucially on the configurations of the networks and thus do not scale well.

Therefore, we propose to estimate the key timing parameters through network
modelling and simulation analysis. With network modelling and simulation, it is
easy to analyse the best and worst communication delays under various conditions
of network traffic and configurations, such as the timing parameters in Eqns. (1)
- (4): TE , TL, max(tsc), min(tsc), max(tca), min(tca), etc. Moreover, modelling
and simulation can also help evaluate the timing behaviours of the NCS network
communications. This will be shown in Section 4 through case studies.

September 10, 2007 5:56 International Journal of Computer Mathematics TianCompNetV2

LATEX2ε Dealing with Network Complexity in Real-Time Networked Control 7

3. Dealing with Packet Dropout

3.1. The Concept of Packet Dropout

Packet dropout results from unreliable network interconnections or traffic conges-
tions over the NCS network. Therefore, the problem of packet dropout should be
first considered in NCS network design. This is a better option than implementing
sophisticated control algorithms to compensate for packet dropout in the control
module of the NCS. As a result, sustained sequences of successive dropped packets
will unlikely happen under normal conditions in an NCS.

From this understanding, substantial packet dropouts might be an indication
of abnormal conditions or an unsatisfactory system NCS network design, and
should be addressed together with system stability analysis (e.g., [19, 22, 26]) and
alarm/safety control modules. This is an issue of the integrated architecture design
for the overall NCS, and is beyond the scope of this paper. In the following, we
only deal with occasional packet dropouts in an NCS.

Basically, there are two types of packet dropouts in an NCS. One is the mea-
surement packet dropout from the sensor to the controller. The other is the con-
trol packet dropout from the controller to the actuator. With powerful computing
ability, the controller can deal with the measurement packet dropout easily, e.g.,
through employing complicated predictive algorithms as in [36, 37]. Therefore, we
will not discuss how to deal with measurement packet dropout in this paper. We
will focus on dealing with control packet dropout.

The complicated predictive algorithms in [36, 37] are not directly applicable for
control packet dropout. A commonly used methodology to deal with control packet
dropout is to derive the maximum allowable network induced delay for NCS sta-
bility, e.g., in [19, 22, 26]. However, no any directly compensation has been made
for control packet dropout in this methodology - simply do nothing when a control
packet dropout happens. In contrary to these existing methods, strategies will be
developed in this paper to directly compensate for the control packet dropout.

3.2. Philosophy for Compensation of Control Packet Dropout

Control packet dropouts refer to the situation where, in a control period, no control
packet is received by the actuator before TL, the latest time instant to enqueue a
control packet to queue Q1.

Before developing strategies to deal with control packet dropout, we would like
to clarify the following two aspects, which are crucial for our development:

(i) How much computing power and other resources are available for calculations
of packet dropout compensation?

(ii) How much chance will various packet dropout scenarios likely occur?

To answer the first question we have noted that smart actuators normally have
limited computing power and resources, and consequently sophisticated algorithms
are difficult to implement in the actuators. Therefore, we have aimed to develop
simple and model-free methods to resolve the control packet dropout problem. In
this paper, we will further extend our solution presented in [10,30].

The following discussions help answer the second question. As mentioned pre-
viously, an NCS network should be designed such that the packet loss rate is low
and sustained sequence of successive dropped packets will unlikely happen under
normal conditions. Therefore, it is senseless to discuss how to compensate for, say
50%, packet loss rate, which simply means a bad network design. For a rough quan-
titative analysis, if the packet loss rate of the network is lr, the rate of s successive

September 10, 2007 5:56 International Journal of Computer Mathematics TianCompNetV2

8 Yu-Chu Tian and David Levy

packet losses can be estimated as (lr)s. For example, 5% packet loss rate (this is
significant for NCS networks), two and three successive packet losses will happen
with the chance of 2.5% and 1.25%, respectively. This tells us to focus on the com-
pensation for a single packet loss and two/three successive packet dropouts; there
is only a small chance for four or more successive packet dropouts to occur.

Compared with the existing methodologies, which either are not directly appli-
cable to control packet dropout compensation (e.g., [36, 37]) or only provide the
maximum allowable network induced delay (e.g., [19, 22, 26]), the strategies that
will be developed below is innovative in the sense that the control packet dropout
is explicitly compensated at the actuators.

3.3. Strategies to Deal With Control Packet Dropout

The key concepts in our simple solution are:

(i) To use the FIFO queue Q2 to buffer a few, e.g., two or three, control packets
to allow the smart actuator to recover a dropped control packet; and

(ii) To construct a control signal from Q2 when a control packet dropout occurs.

Suppose that the control packet in a control period k is not received before
time TL, but that there are three control packets, uk−1, uk−2 and uk−3, in queue Q2.
We can use these three control packets to construct a packet ûk for use in the current
control period k. The accent over ‘u’ implies that the packet is an estimate. A simple
and general form of ûk can be

ûk = f(uk−1, uk−2, uk−3), (5)

where f : R → R is a nonlinear function.
A particular choice of f in Eqn. (5) is

ûk = uk−1 + α∆uk−1, (6)

where ∆uk−1 = uk−1−uk−2, and α ∈ [0, 1] is a proportional coefficient. Two special
cases of Eqn. (6) are: (1) α = 0; this means ûk = uk−1, i.e., the actuator simply
reuses the last control packet queued in Q2 when a control packet fails to arrive;
(2) α = 1; it follows that ûk = 2uk−1 − uk−2, i.e., the actuator makes a one-step
ahead prediction to the control through a linear extrapolation from the last two
control packets queued in Q2.

We have recently analysed the dynamic behaviour of Eqn. (6) through functional
analysis using model checking [32]. Duplicating the last control packet, i.e., setting
α = 0 in Eqn. (6), provides a conservative control to the plant. Linear extrapolation,
i.e., α = 1 in Eqn. (6), gives better control in most cases, but may result in
unacceptable behaviour in the presence of repetitive pattern of dropped packets.
However, as analysed previously, sustainable and repetitive pattern of dropped
packets will unlikely happen under normal conditions (or may happen in very low
probability), the simple linear extrapolation is a good choice for compensation for
control packet dropout.

We have also proposed an adaptive linear extrapolation, which is a further im-
provement to the linear extrapolation, to predict the control when a control packet
is not received by the actuator [32]. The basic idea is to calculate the estimate error
which is the difference between the estimate control and the actually received one,
and then to use this error to adjust the extrapolated value when a control packet
is dropped.

September 10, 2007 5:56 International Journal of Computer Mathematics TianCompNetV2

LATEX2ε Dealing with Network Complexity in Real-Time Networked Control 9

More work on packet dropout compensation has also been reported in our re-
cent paper [4], in which past control packets and their derivative information are
employed to estimate the lost control packet. As a common industrial practice, pre-
processing of measurements and past control packets is necessary in the presence
of noises when applying these strategies for packet dropout compensation.

3.4. Further Analysis of the Strategies

The linear extrapolation strategy shown in Eqn. (6) looks simple. One may argue
that this does not seem to be particularly attractive, innovative, or sophisticated
either. However, the use of such a simple linear extrapolation can be justified from
the following two aspects:

(i) The existing methodologies for networked control either do not compensate for
control packet dropout at all, e.g., in [19, 22, 26], or attempt to compensate
for control packet dropout at the central controller through sophisticated algo-
rithms that may not be feasible for implementation at actuators [36, 37]. The
former gives conservative results through robust stability guarantee, while for
the latter after 10 years there has been still no reference in the open literature
to report a successful application. The simple linear extrapolation proposed
in this paper aims to directly compensate for control packet dropout at the
actuator that has limited computing power.

(ii) The usefulness of a strategy for industrial applications is solely justified by its
effectiveness rather than by how sophisticated it is.

To build our confidence to use the simple linear extrapolation in Eqn. (6), let
us further develop some insight into the strategy. Suppose the measurement series
of the controlled variable are yk−1, yk−2, yk−3, · · ·, and a proportional plus integral
(PI) controller is used to control the plant. The proportional coefficient and integral
time of the PI controller are K and Ti, respectively. It follows that

uk−1 = K
(
∆yk−1 + 1

Ti

∑k−1
r=−∞∆yr

)

uk−2 = K
(
∆yk−2 + 1

Ti

∑k−2
r=−∞∆yr

)

∆yr = yr − yr−1, r = · · · , k − 2, k − 1

(7)

Substituting Eqn. (7) into Eqn. (6), we have

ûk = uk−1 +
αK

Ti

[
∆yk−1 + Ti(∆t)(∆yk−1)(1)

]
(8)

where

(∆yk−1)(1) =
∆yk−1 −∆yk−2

∆t
(9)

approximates the derivative of the measurement ∆y at the time instant (k− 1)∆t,
∆t = T is the control period.

Eqn. (8) clearly shows that the predicted control action ûk is a PI+PD
(proportional-derivative) predictive control.

• The PI part is uk−1, which is given in Eqn (7); and

September 10, 2007 5:56 International Journal of Computer Mathematics TianCompNetV2

10 Yu-Chu Tian and David Levy

• The PD part is αK
Ti

[
∆yk−1 + Ti(∆t)(∆yk−1)(1)

]
with the proportional coefficient

αK
Ti

and integral time Ti(∆t), respectively. It is a one-step ahead prediction to
the control increment.

The mode of PI+PD control explains why the linear extrapolation in Eqn. (6)
can have good prediction ability. It also reveals the complicated predictive control
mechanism behind the simple linear extrapolation.

4. Case Studies

This section carries out case studies for a middle-scale process or multiple small-
scale processes to be controlled over an NCS network, and shows how the real-time
protocol proposed in this paper can be applied. The NCS to be modelled and
simulated is a TCP/IP network using IEEE802.3 protocols. Switched TCP/IP will
be adopted instead of shared-medium TCP/IP, which was investigated by Lian et
al [16]. The open source package Network Simulator ns2 [38], which is a discrete
event driven simulator for TPC/IP networks, is used to model and simulate the
NCS.

Because the focus of this paper is on real-time communications for NCSs, we
will evaluate the NCS network performance under various scenarios. The issues of
controller design and control performance are beyond the scope of this paper and
thus will not be discussed here.

4.1. System Architecture Specifications

The NCS we focus on in the case studies has a three-layer hierarchical topology, as
depicted in Fig. 4, which is typical in industrial control systems [39]. The system
has been investigated previously in our preliminary studies [10, 30]. On the top of
the hierarchy are management computers. Control computers, i.e., controllers, are
in the middle. Sensors and actuators, and the plant to be controlled, are at the
bottom. There are n smart sensors and m smart actuators, respectively. In practice,
n ≥ m. We set n = 30 and m = 20 here to simulate a middle-scale industrial process
or multiple small-scale industrial processes. Also, we use 5 control computers and
5 management computers in the NCS.

Figure 4. Hierachical topology of the modelled NCS.

For ease of discussions, we introduce the following notations to represent various
devices of the modelled NCS:

S1, S2, · · ·, Sn: Smart Sensors, n = 30
A1, A2, · · ·, Am: Smart Actuators, m = 20
C1, C2, · · ·, C5: 5 control computers
M1, M2, · · ·, M5: 5 management computers
P1, P2, · · ·, Pq: P2P connection devices, q is

configurable in our model

September 10, 2007 5:56 International Journal of Computer Mathematics TianCompNetV2

LATEX2ε Dealing with Network Complexity in Real-Time Networked Control 11

Table 1. Control Loops.

Loop 1 2 . . . 10 11 12 · · · 20
Sensor(s) 1 2 . . . 10 11 13 · · · 29

12 14 · · · 30
Actuator 1 2 . . . 10 11 12 · · · 20

Without loss of the generality, we assign C1 as the central controller, and C5 as
a local control server. C2, C3, and C4 are used for display and other purposes.

To evaluate the timing behaviour of the proposed queuing protocol in real-time
NCSs, we assume that there are 20 control loops, corresponding to the 20 actuators.
The control loops are arranged as in Table 1.

Various LAN architecture designs are possible to interconnect NCS hosts and
devices. Two such designs are considered in this work: 2Segment and 4Segments
configurations both with 10Mbps capacity. In the 2Segment architecture, put all
management and control computers in a segment, and all smart sensors and ac-
tuators in another segment. In the 4Segment design, we have four segments for
management computers, control computers, sensors, and actuators, respectively.
These two architecture designs with their representations in ns2 are shown in Figs.
5 and 6, respectively.

Figure 5. 2Segment architecture (upper) and its simplified ns diagram (lower) for the modelled NCS.

Figure 6. 4Segment architecture (upper) and its simplified ns diagram (lower) for the modelled NCS.

September 10, 2007 5:56 International Journal of Computer Mathematics TianCompNetV2

12 Yu-Chu Tian and David Levy

4.2. Traffic Flow Specifications

For traffic flow specifications, we suppose that control tasks are periodic with the
period of 200ms. Typical traffic flows in the NCS are specified below.

(i) Within a control period, each of the smart sensors sends a packet of 200 bytes
in the first 50ms to the controller (C1), and also to the local server (C5).

(ii) From 100ms to 200ms, the controller sends a control packet of 200 bytes to
each of the actuators, and a packet of 1k bytes to the local server C5.

(iii) In each control period, C5 sends packets of 2k bytes to each of C2, C3, and C4
for local information processing, monitoring, and displaying.

(iv) Each of C2, C3, and C4 sends queries to the local server C5 and gets responses
from C5 within an interval of 5s. The sizes of the queries and responses for each
of C2, C3, and C4 are 1k and 10k bytes, respectively.

(v) Within a session of 10min, each management computer sends queries of 60k
bytes to the local server C5, and gets responses of 600k bytes from C5.

From the above specifications, traffic flows are calculated and tabulated in Table 2
for the modelled NCS. It is worth mentioning that for each TCP packet transmitted
over the NCS network, there is a 40-byte overhead for TCP and IP headers.

Table 2. Traffic Flow Specifications.

No. Traffic Flow Flow Rate
TCP1. 0–50ms: each S1 ∼ Sn ⇒ C1 200 bytes → 8kbps
TCP2. 0–50ms: each S1 ∼ Sn ⇒ C5 200 bytes → 8kbps
TCP3. 100–200ms: C1 ⇒ each A1∼Am 200 bytes → 8kbps
TCP4. 100–200ms: C1 ⇒ C5 1k bytes → 40kbps
TCP5. 0–200ms: C5 ⇒ each C2∼C4 2k bytes → 80kbps
TCP6. 0–5s: each C2∼C4 ⇒ C5 1k bytes → 1.6kbps
TCP7. 0–5s: C5 ⇒ each C2∼C4 10k bytes → 16kbps
TCP8. 0–10min: each M1∼M5 ⇒ C5 60k bytes → 800bps
TCP9. 0–10min: C5 ⇒ each M1∼M5 600k bytes → 8kbps
Packet Size (bytes) - TCP1,2,3,6: 200; TCP4,5,7,9: 1k; TCP8: 100
10Mbps capacity and 4ms propagation time for all links

In all cases, assume that the network propagation time is 4ms for all LANs and
P2P links. For each of the case studies, the modelled NCS is simulated for 10s using
ns2 under Unix. All traffic flows over the network are monitored and recorded in
trace files. Then, extract information from the trace files and analyse and evaluate
the performance the NCS network.

4.3. Case Study 1: TwoSegments/10Mbps

This case study, as shown in Fig. 5 for 10Mbps capacity, has been investigated in
our preliminary work under different configurations [10,30]. Selected results of our
simulation and performance analysis are summarised in Table 3.

The first observation from Table 3 is that all measurement and control packets
are successfully delivered to their destinations. This implies that the NCS network
is reliable for NCS communications under the modelled conditions.

The second observation from Table 3 is that the sensor-to-actuator delay ranges
from 16.30ms to 93.34ms, and the controller-to-actuator delay changes from
16.93ms to 34.16ms. Considering both sensor-to-controller delay and controller-to-
actuator delay, we can see that the total NCS communication latency is between

September 10, 2007 5:56 International Journal of Computer Mathematics TianCompNetV2

LATEX2ε Dealing with Network Complexity in Real-Time Networked Control 13

Table 3. Case study 1 (2Segments/10Mbps): performance analysis.

Total number of recorded receive events: 25 600
All measurement/control packets received? Yes

Received bits/s within each local area (bps) Network Utilisation
Computer side: 1 313 760 < 13.2%

Sensor/actuator side: 901 120 < 9.1%
P2P link: 901 120 < 9.1%

Average throughput (bps): C1 C5 Aj (Actuator)
323 232 355 680 9 632

Sensor-to-controller delay and jitter (ms)
S01 S10 S20 S25 S30 All

Min delay 16.64 16.71 16.71 16.71 16.81 16.30
Max delay 69.79 77.92 93.34 91.04 56.65 93.34
Jitter 53.15 61.25 76.64 74.33 39.84 77.05
Controller-to-actuator delay and jitter (ms)

A01 A05 A10 A15 A20 All
Min delay 17.50 17.35 18.42 19.48 19.12 16.93
Max delay 28.92 29.85 31.37 32.86 34.16 34.16
Jitter 11.42 12.50 12.96 13.38 15.04 17.23

33.23ms and 127.50ms, resulting in a jitter of 94.27ms. Both the latency and jitter
are significant. Using the notations in Eqns. (1) through (4), we have

min(tsc) = 16.30ms, max(tsc) = 93.34ms
min(tca) = 16.93ms, max(tca) = 34.16ms
tj = 94.27ms

(10)

These rough estimates will be used later for calibration of timeline parameters in
our queuing protocol for real-time NCSs.

To show how significant the communication latency and jitter are in the NCS,
Figs. 7 and 8 depict the plots of sensor-to-controller delay and its distribution,
respectively. Fig. 7 shows that the sensor-to-controller delay exhibits irregular dy-
namic behaviour. Such behaviour has been traditionally treated as randomness in
NCS research. However, our recent work has revealed the multifractal nature of
the network induced time delay in such NCSs, implying that the time delay is
long-range correlated [3].

Figure 7. Sensor-to-controller delay for case study 1.

Compared with the sensor-to-controller delay, the control-to-actuator delay, as
shown in Fig. 9, exhibits more regular behaviour with small jitter. This is due to the

September 10, 2007 5:56 International Journal of Computer Mathematics TianCompNetV2

14 Yu-Chu Tian and David Levy

Figure 8. Distibution of the sensor-to-controller delay for case study 1.

same setting of the control period for all control tasks in the NCS; and the setting
means that there is no sensor-to-controller traffic sharing the network bandwidth
when the controller is sending control packets to the actuators.

Figure 9. Delay from the controller to actuator 10 for case study 1.

Now let us show how to use the rough estimates in Eqn. (10) to calibrate the
timeline parameters in our queuing protocol. We have set the control period T =
200ms. For timeline settings in Fig. 3 and Eqns. (1) through (4), let TO = 0ms.
From Eqns. (1) and (10), it follows that

TE = 33.23ms + tctr = 88.23ms (11)

where tctr = 50ms is the control computing time. We will try to cover the full
range of the communication jitter to avoid any control packet dropouts. According
to Eqns. (2), (3), (10) and (11), we need to set

TL ≥ TE + tj = 127.50ms + tctr = 177.50ms. (12)

For the control period of 200ms, it is seen from Eqns. (4) and (12) that we
still have around 22.50ms for checking the queue Q1, dealing with possible packet
dropout, and outputting the control action to the plant. In this example, we can
simply set

TC = 180ms, TD = 190ms. (13)

This will allow extra TC−TL = 2.50ms time for control computing (tctr) and packet
transmissions. We also have TD − TC = 10ms time to deal with possible packet
dropout. The total time delay for the control computation and packet transmission

September 10, 2007 5:56 International Journal of Computer Mathematics TianCompNetV2

LATEX2ε Dealing with Network Complexity in Real-Time Networked Control 15

in each of the control loops is TD = 190ms, which is fixed for all control periods. Fig.
10 shows the resulting timing behaviour of the modelled NCS (Refer to Table 1 for
control loop arrangement). It is seen from Fig. 10 that deterministic and predictable
timing behaviour is achieved for the NCS by using the proposed queuing protocol.

Figure 10. Timing behaviour of the NCS with the queuing protocol for case study 1 (‘O’: measurement
packets received by controller; ‘X’: Control packets received by the actuator; ‘*’: TC ; ‘∆’: TD).

4.4. Case Study 2: FourSegments/10Mbps

Simulation results for the case study FourSegments/10Mbps as shown in Fig. 6 are
summarised in Table 4 [10].

Table 4. Case study 2 (4Segments/10Mbps): performance analysis.

Total number of recorded receive events 34 420
All measurement/control packets received? Yes

Received bits/s within each local area (bps) Network Utilisation
Control computer side: 1 313 760 13.1%

Manag. comput. side, P2-P5: 51 040 <1.0%
Sensor side, P3-P5 link: 675 840 6.8%

Actuator side: 192 640 1.9%
P1–P5 link: 952 160 9.5%
P4–P5 link: 225 280 2.3%

Average throughput (bps): C1 C5 Aj (Actuator)
323 232 355 680 9 632

Sensor-to-controller delay and jitter (ms)
S01 S10 S20 S25 S30 All

Min delay 20.84 20.90 20.85 21.46 20.83 16.12
Max delay 52.81 50.01 81.01 76.11 60.88 90.86
Jitter 31.97 29.11 60.16 54.65 40.05 74.74
Controller-to-actuator delay and jitter (ms)

A01 A05 A10 A15 A20 All
Min delay 21.69 22.63 23.41 24.47 25.54 21.69
Max delay 53.24 54.10 55.16 56.22 57.29 57.29
Jitter 31.56 31.46 31.75 31.75 31.75 35.60

Compared with Table 3 for 2Segments/10Mbps architecture, Table 4 shows no-
ticeable performance degradation in network-induced delay and jitter when using
the 4segments/10Mbps architecture. Therefore, if the communication performance
is the first priority, the 2-segment architecture investigated in case study 1 is a

September 10, 2007 5:56 International Journal of Computer Mathematics TianCompNetV2

16 Yu-Chu Tian and David Levy

better option. However, the 4-segment architecture is good for network design and
implementation, administration, and maintenance.

From Table 4, we have the following rough estimates

min(tsc) = 16.12ms, max(tsc) = 90.86ms
min(tca) = 21.69ms, max(tca) = 57.29ms
tj = 110.34ms

(14)

Compared with the estimates in Eqn. (10) for Case Study 1, the estimates here
show larger network-induced delay (about 20ms larger) and also larger jitter (about
16ms larger). This is due to the NCS network architecture of more LANs. As in
Case Study 1 above, these rough estimates in Eqn. (14) are useful to calibration of
timeline parameters in our queuing protocol for real-time NCS applications.

Again, we set TO = 0. Using similar calibration process to that in Case Study 1
above, we have

TE = 37.81ms + tctr = 87.81ms (15)

where tctr = 50ms is the control computing time. In order to cover the full range of
the communication jitter to avoid any control packet dropout, according to Eqns.
(2), (3), (14) and (15), we need to configure

TL ≥ TE + tj = 148.15ms + tctr = 198.15ms. (16)

For the control period of 200ms, it is seen from Eqns. (4) and (12) that we still
have the flexibility of around 11.06ms to do some extra work. In this example, we
can simply set

TC = 199ms, TD = T = 200ms. (17)

This will give the NCS extra TC − TL = 850µs time for control computing (tctr)
and communication packet transmissions. We also have TD−TC = 1ms, which can
be used for computation of a predicted control action for possible control packet
dropout. The overall delay of the control computation and NCS communications is
fixed at 200ms in each of the control loops. The timing behaviour of the NCS under
the queuing protocol is shown in Fig. 11. Fig. 11 clearly show that deterministic and
predictable timing behaviour is achieved for the NCS under the proposed queuing
protocol.

Figure 11. Timing behaviour of the NCS with the queuing protocol for case study 2 (‘O’: measurement
packets received by controller; ‘X’: Control packets received by the actuator; ‘*’: TC ; ‘∆’: TD).

September 10, 2007 5:56 International Journal of Computer Mathematics TianCompNetV2

LATEX2ε Dealing with Network Complexity in Real-Time Networked Control 17

5. Concluding Remarks

It has been observed that network-induced delay in real-time NCSs is non-uniformly
distributed and has multifrctal nature [3,17]. Detailed analysis in [31] and also Fig-
ures 7, 8, and 9 have shown that in most cases, small delays are dominant while
large delays are exiguous. This means that most network-induced delays are far
below the worst-case value. Therefore, if a small level of packet loss rate can be
tolerated, we will be able to set a threshold, which is far below the real worst-case
communication delay, as a configurable worst-case communication delay for net-
worked applications [31]. If no packet is received by the time instant characterised
by this threshold, we treat this packet as dropped one. The tolerance of a small
level of packet loss rate is guaranteed through our simple strategies dealing with
packet dropout as discussed in Section 3. Integrating the method for configuring
the worst-case communication delay into the co-design framework proposed in this
paper will significantly improve the performance of the overall NCSs.

In conclusion, a general framework has been developed to deal with the complex-
ity in real-time networked control applications. It consists of four main steps: 1) Ap-
ply a real-time queuing protocol to achieve predictable network-induced delay; 2)
Configure the worst-case communication delay; 3) Activate packet loss compensa-
tion when a packet is lost; and 4) Compensate for the predictable network-induced
delay in control design. In the proposed framework, co-design of network and con-
trol has been emphasised as an effective way to simplify the network behaviour
and consequently to maximise the performance of the overall NCSs. The co-design
is implemented through employing a real-time queuing protocol to smooth out the
time-varying network-induced delay, and applying some strategies to configure the
worst-case communication delay, to estimate any lost packet, and to compensate
for the predictable communication delay. In this way, the network-induced delay
can be limited within a single control period, significantly simplifying the network
complexity as well as system analysis and design.

References
[1] L E C da Rocha and L da F Costa. An adaptive routing strategy for packet delivery in complex

networks. New J Phys, 9:108, April 2007.
[2] Huan Zhanga, Zonghua Liua, Ming Tanga, and P. M. Huib. An adaptive routing strategy for packet

delivery in complex networks. Physics Letters A, 364(3-4):177–182, April 2007.
[3] Yu-Chu Tian, Zu-Guo Yu, and Colin Fidge. Multifractal nature of network induced time delay in

networked control systems. Physics Letters A, 361(1-2):103–107, 2007.
[4] Yu-Chu Tian and David Levy. Compensation for control packet dropout in networked control systems.

Information Sciences, Submitted (under revision), 2007.
[5] S. J. Zhang, A. Burns, J. Chen, and E. S. Lee. Hard real-time communication with the timed token

protocol: Current state and challenging problems. Real-Time Systems, 27(3):271–295, September 2004.
[6] Yaqing Huang, Roch Guérin, and Pranav Gupta. Supporting excess real-time traffic with active

dropqueue. IEEE/ACM Trans on Networking, 14(5):965–977, October 2006.
[7] Robert I. Davis, Alan Burns, Reinder J. Bril, and Johan J. Lukkien. Controller area network (can)

schedulability analysis: Refuted, revisited and revised. Real-Time Systems, 35(3):239–272, April 2007.
[8] P. Antsakls and J. Baillieul. Guest editorial: Specia issue on technology of networked control systems.

Proceedings of the IEEE, 95(1):5–8, 2007.
[9] J. P. Hespanha, P. Naghshtabrizi, and Y. Xu. A survey of recent results in networked control systems.

Proceedings of the IEEE, 95(1):138–162, 2007.
[10] Yu-Chu Tian, Qing-Long Han, Colin Fidge, Moses O. Tadé, and Tianlong Gu. Communication archi-

tecture design for real-time networked control systems. In Proc of the 4th IEEE Int Conf on Com-
munications, Circuits & Systems (ICCCAS’06), pages 1840–1845, Guilin, P. R. China, 25-28 June
2006.

[11] P. Mart́ı, R. Villá, J. M. Fuertes, and G. Fohler. Networked control systems overview. In R. Zurawski,
editor, The Industrial Information Technology Handbook. CRC Press, 2005.

[12] Panos Antsakls and John Baillieul. Guest editorial: Specia issue on networked control systems. IEEE
Trans on Automatic Control, 49(9):1421–1423, September 2004.

[13] Yodyium Tipsuwan and Mo-Yuen Chow. Control methodologies in networked control systems. Control
Eng Practice, 11:1099–1111, 2003.

[14] G. C. Walsh, Y. Hong, and G. B. Linda. Stability analysis of networked control systems. IEEE Trans
on Control Syst Tech, 10:438–446, 2002.

September 10, 2007 5:56 International Journal of Computer Mathematics TianCompNetV2

18 Yu-Chu Tian and David Levy

[15] Gregory C. Walsh and Hong Ye. Scheduling of networked control systems. IEEE Control Systems
Magazine, 21:57–65, February 2001.

[16] Feng-Li Lian, James R. Moyne, and Dawn M. Tilbury. Performance evaluation of control networks:
Ethernet, ControlNet, and DeviceNet. IEEE Control Systems Magazine, 21(1):66–83, Feb 2001.

[17] Y. Tipsuwan and M. Y. Chow. Gain scheduling middleware: a methodology to enable existing con-
trollers for networked control and teleoperation I: network control. IEEE Trans on Ind Electronics,
51(6):1218–1227, 2004.

[18] Chen Peng, Yu-Chu Tian, and Moses O. Tadé. Delay distribution based robust H∞ control of net-
worked control systems with uncertainties. Automatica, Submitted (under revision), 2007.

[19] D. Yue, Q. L. Han, and C. Peng. State feedback controller design of networked control systems. IEEE
Trans on Circuits & Systems II: Analog and Digital Signal Processing, 51:640–644, 2004.

[20] Chen Peng and Yu-Chu Tian. Networked H∞ control of linear systems with state quantization. In-
formation Sciences, doi:10.1016/j.ins.2007.05.025, 2007.

[21] Chen Peng and Yu-Chu Tian. State feedback controller design of networked control systems with
interval time-varying delay and nonlinearity. Int Journal of Robust & Nonlinear Control, in press
(accepted on 24 Aug 2007), 2007.

[22] Chen Peng and Yu-Chu Tian. Robust H∞ control of networked control systems with parameter
uncertainty and state-delay. European Journal of Control, 12(5):471–480, 2006.

[23] D. Yue and Q. L. Han. Network-based robust H∞ filtering for uncertain linear systems. IEEE Trans
on Signal Processing, 54(11):4293–4301, 2006.

[24] X. Jiang and Q. L. Han. Network-induced delay-dependent H∞ controller design for a class of net-
worked control systems. Asian Journal of Control, 8(2):97–106, 2004.

[25] D. Yue, Q. L. Han, and J. Lam. Network-based robust H∞ control of systems with uncertainty.
Automatica, 41(6):999–1007, 2005.

[26] Chen Peng, Yu-Chu Tian, and D. Yue. Network quality-of-service based guaranteed cost control for
networked control systems. Dynamics of Continuous, Discrete and Impulsive Systems B - Applications
& Algorithms, 14(2):233–247, 2007.

[27] W. Zhang, M. S. Branicky, , and S. M. Phillips. Stability of networked control systems. IEEE Control
Systems Magazine, 21:84–99, 2001.

[28] Kyung Chang Lee and Suk Lee. Performace evaluation of switched Ethernet for real-time industrial
communications. Computer Standards & Interfaces, 24:411–423, 2002.

[29] Yodyium Tipsuwan and Mo-Yuen Chow. On the gain scheduling for networked PI control over IP
network. IEEE Trans on Mechatron, 9(3):491–498, September 2004.

[30] Yu-Chu Tian, David Levy, Moses O. Tadé, Tianlong Gu, and Colin Fidge. Queuing packets in commu-
nication networks networked control systems. In Proc of the 6th World Cong on Intelligent Control
& Automation (WCICA’06), pages 205–209, Dalian, P. R. China, 21-23 June 2006.

[31] Yu-Chu Tian and David Levy. Configuring the worst-case communication delay in real-time networked
control systems. In H. R. Arabnia and L T. Yang, editors, Proc of the 2007 Int Conf on Embedded
Syst & Appl (ESA’07), pages 114–120, Las Vegas Nevada, USA, 25-28 June 2007. CSREA Press.

[32] Colin Fidge and Yu-Chu Tian. Functional analysis of a real-time protocol for networked control
systems. In LNCS: ATVA 2006, volume 4218, pages 446–460, Beijing, China, 23-26 October 2006.
Springer-Verlag Berlin Heidelberg.

[33] Yu-Chu Tian and Furong Gao. A double-controller scheme for control of processes with dominant
delay. IEE Proc: Control Theory & Applications, 145(5):479–484, 1998.

[34] Yu-Chu Tian and Furong Gao. Compensation of dominant and variable delay in process systems. Ind
Eng Chem Res, 37(3):982–986, 1998.

[35] R. Luke and A. Ray. An observer-based compensator for distributed delays. Automatica, 26(5):903–
905, 1990.

[36] R. Luke and A. Ray. Experimental verification of a delay compensation algorithm for integrated
communication and control systems. Int Journal of Control, 59(6):1357–1372, 1994.

[37] H. Chan and Ü. Özgüner. Closed-loop control of systems over communications network with queues.
Int Journal of Control, 62(3):493–510, 1995.

[38] UCB/LBNL/VINT groups. ns Network Simulator. http://www.isi.edu/nsnam/ns/, accessed on 8 Oct.
2006.

[39] Yu-Chu Tian and Moses O Tadé. Processing systems engineering: successful application in an industrial
process. Dev Chem Eng Mineral Processing, 10(1):181–196, 2002.

