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Abstract—Coronavirus (Covid-19) is spreading fast, infecting
people through contact in various forms including droplets
from sneezing and coughing. Therefore, the detection of infected
subjects in an early, quick and cheap manner is urgent. Currently
available tests are scarce and limited to people in danger of
serious illness. The application of deep learning to chest X-
ray images for Covid-19 detection is an attractive approach.
However, this technology usually relies on the availability of large
labelled datasets, a requirement hard to meet in the context of
a virus outbreak. To overcome this challenge, a semi-supervised
deep learning model using both labelled and unlabelled data is
proposed. We develop and test a semi-supervised deep learning
framework based on the Mix Match architecture to classify
chest X-rays into Covid-19, pneumonia and healthy cases. The
presented approach was calibrated using two publicly available
datasets. The results show an accuracy increase of around 15%

under low labelled / unlabelled data ratio. This indicates that our
semi-supervised framework can help improve performance levels
towards Covid-19 detection when the amount of high-quality
labelled data is scarce. Also, we introduce a semi-supervised deep
learning boost coefficient which is meant to ease the scalability
of our approach and performance comparison.

Index Terms—Semi-supervised Deep Learning, Mix Match,
Chest X-Ray, Covid-19, Computer Aided Diagnosis.

I. INTRODUCTION

Coronavirus is a common type of virus which affects

mammals, reptiles and birds, causing what is referred to as

zoonotic infections [1]. The SARS-CoV2 virus belongs to

the family of the single stranded Ribonucleic Acid (RNA)

viruses known as coronaviridae [1]. Coronaviruses (COVs)

infect the respiratory and gastrointestinal tract in a wide range

of animal species. Even though most of the individual virus

species appear to be restricted to narrow host range comprising

single animal species, genome sequencing and phylogenetic

analysis testify that COVs have successfully migrated to new

host species [3].

Zoonotic infection outbreaks are explosive in nature, in-

fecting a high number of subjects in a short period of time.

An outbreak may cause the collapse of even state-of-the-

art healthcare systems in developed countries within a few

months. A recent example is the collapse of Italy’s healthcare

system due the Covid-19 infection [5]. Italy’s public healthcare

system is amongst one of the best world-wide [24].

It is important for global organizations such as the World

Health Organization (WHO) and governments to implement

cost-effective methods to reliably detect Covid-19 infection

spread. Alternative solutions include the use of Artificial

Intelligence (AI). AI based Computer Aided Diagnosis (CAD)

systems can help identifying infected subjects quickly. In

this work we implement a semi-supervised deep learning

framework for Covid-19 detection using chest X-ray images.

Semi-supervised learning makes use of unlabelled data, which

is cheaper and more widely available. Effectively using this

data can lead to quickly deploy cost-effective deep learning

solutions for Covid-19 detection or later mutations of the virus.

Making available AI solutions to deal with subject diagnosis

in a fast manner, might help to develop a quick and effective

response to rapidly evolving virus outbreaks.

A. Covid-19 diagnosis based on X-ray images

The Real-time Reverse Transcription Polymerase Chain Re-

action (RT-PCR) test is the gold standard for robust Covid-19

virus detection [13]. This molecular based testing of respira-

tory tract samples aims to detect the nucleic acid from SARS-

CoV-2 from upper and lower respiratory regions. However,

the overall cost of the facilities for RT-PCR is rather high. The

need for consumables and trained technicians increases further

the costs. This makes mass testing frequently unfeasible even

in developed countries [25].
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Medical imaging is an alternative method for Covid-19

diagnosis. Computed Tomography (CT) of chest shows high

accuracy and sensitivity towards Covid-19 detection [17].

Medical imaging studies are becoming important for the early

detection and management of patients with Covid-19 [20].

In [6] the authors showed that the accuracy obtained using

CT scans was 97%, which was significantly higher than that

achieved with RT-PCR (75%). A database of 1014 patients

was used in this study. Fang et al. [20] reached similar

conclusions. However, CT machines are not widely available

in less industrialised countries like India [31].

X-ray chest imaging is a less expensive and more acces-

sible alternative than CT [31]. Nevertheless, X-ray can be

considered expensive when human resources are considered.

These include the availability of radiologists and medical

imaging technicians. In India, with a current population of

1.44 billion, currently there is approximately one radiologist

for every 100,000 people [10]. This makes X-ray based Covid-

19 diagnosis attractive.

In [8], authors developed a severity score based on chest

X-ray images. The study included 783 SARS-CoV-2 positive

patients. The severity score allowed to screen patients who

are likely to develop more severe symptoms. However, a

low sensitivity in a small number of cases with alterations

compatible with Covid-19 has been found by [34]. This draws

the need for an additional validation of labelled data trough

the diagnosis of multiple radiologists. With a high quality

labelled dataset, AI solutions can be developed for CAD mass

testing. However, building a large high quality dataset can be

expensive and slow.

B. Contributions

In this paper we propose the diagnosis of Covid-19 based

on X-ray images for early diagnosis and detection by us-

ing Mix Match, a novel semi-supervised learning technique

[12]. We highlight the difficulties to gather large high-quality

labeled datasets in the medical imaging domain, specially

in the context of a virus out-break. This makes the usage

of unlabelled data an attractive alternative to improve the

accuracy of deep learning architectures. To our knowledge,

this is the first work implementing semi-supervised learning

for Covid-19 detection.

The proposed model uses chest X-ray images for training

and detection. X-ray equipment is widely available, easing

the compilation of large unlabelled datasets, given the low

availability of trained technicians or radiologists to label the

data. It is vital to be able to quickly classify various types

of pneumonia based on digital X-ray images when a virus

outbreak occurs. Such outbreaks create very large volumes

of cases which have to be manually analysed by radiologist.

Early, fast, and cheap diagnosis of Covid-19 infection is key

to trace, isolate and control the disease out-break. We stress

that the use of semi-supervised deep learning can be a useful

approach when dealing with the current Covid-19 out-break

or the spread of similar viruses in future.

Finally, in this work we propose the usage of a normalized

metric, the semi-supervised learning boost coefficient, for

analyzing semi-supervised learning accuracy scalability under

different evaluation, labelled and unlabelled data settings. This

can be used as a more challenging and closer to real-world

evaluation of deep learning solutions for the detection of

Covid-19 infection.

II. RELATED WORK

A. Semi-supervised deep learning

Semi-supervised deep learning is an increasingly popular

approach to deal with scarcely labelled datasets. Typical deep

learning architectures require large labelled datasets to gen-

eralize well. This requirement frequently makes its practical

implementation in the medical domain hard, as high quality

labelled data is expensive and scarce.

Formally, in a semi-supervised setting, combination of la-

belled and unlabelled samples is used. The labelled observa-

tions Xl = {x1, . . . ,xnl
} include there corresponding labels

in the set Yl = {y1, . . . , ynl
}. The unlabelled set includes all

the observations with no labels Xu = {x1, . . . ,xnu
}.

We can categorize existing semi-supervised deep learning

architectures as follows: Pre-training [19], self-training or

pseudo-labelled [14] and regularization based. Regularization

techniques include generative based approaches, along consis-

tency loss term and graph based regularization [15].

Regularization based semi-supervised deep learning in-

cludes a regularization term using unlabelled data Su, L (S) =∑
(xi,yi)∈Sl

Ll (w,xi,yi)+γ
∑

−→x j∈Xu
Lu (w,xj), where w

corresponds to the weights of the model to estimate, Ll and

Lu correspond to the labelled and unlabelled loss terms, and

γ corresponds to the unsupervised term weight, and controls

the influence of the unlabelled data during training.

Different variations of the regularized approach have been

developed, namely graph based [42], [23], generative augmen-

tation based [35], [27], and consistency loss based [38], [37].

A deep review on semi-supervised deep learning, along key

assumptions of popular approaches, can be found in [39].

More recently, Mix Match [12] combined regularization and

pseudo-labelled based learning, with intensive data augmen-

tation. Mix Match out-performed other regularized, pseudo-

labelled and generative based semi-supervised deep learning

techniques as described in [12]. Given the recently state of the

art performance demonstrated by Mix Match, we chose it for

the developed solution in this work.

B. Semi-Supervised Deep Learning for Medical Imaging

Availability of labelled data for supervised learning is

cumbersome for narrow deep learning applications. In the

medical domain, automatic pathology diagnosis requires clin-

icians to provide a consistent ground-truth for thousands of

images. This is expensive and time consuming compared to

the generation of weak image-level labels, or unlabelled data.

Semi-supervised classification is an attractive alternative when

strong annotations are hard to come by, enabling the use of

unlabelled data to improve model accuracy.
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A recent survey on semi-supervised, multi-instance and

transfer learning for medical image analysis was published

in [40]. Authors discussed several semi-supervised learning

methods such as self-training, graph-based, co-training, and

manifold regularization. Authors concluded that the usage of

transfer learning was more frequent, given the still precarious

advantage of using semi-supervised learning in real data.

However, recent successful implementations of semi-

supervised deep learning can be found. In [30], breast masses

were both localized and classified from ultrasound data using

weakly and semi-supervised learning, self-training and VGG-

16 network. Results obtained by training the method with

10 annotated images along with weakly annotated data were

comparable to the ones achieved from 800 strongly annotated

images. Additional weakly annotated data increased the per-

formance from 80% to 84.50%.

Similarly, a graph-based semi-supervised deep learning

scheme based on Convolutional Neural Network (CNN) co-

training pseudo-labeling, for breast cancer diagnosis is pre-

sented in [36]. Authors obtained an accuracy of 82.43%

using only 100 labelled observations and the rest of the

dataset as unlabelled observations. Authors also highlighted

how the fully-supervised model accuracy grows with the size

of labelled data, but the accuracy difference decreases as the

number of labelled observations becomes larger.

A self-ensembling CNN to leverage unlabelled data was

also used for histopathology image analysis in [32]. The model

reached an accuracy of 90.5% and 89.5% using only 20% of

the labels in breast and lung cancer datasets, respectively. This

performance was comparable to train with all labelled patients.

It is worth highlighting the lack of standardized test-

ing methodologies to compare accuracy scalability of semi-

supervised deep learning based solutions under different la-

belled and unlabelled data settings. This makes the comparison

of semi-supervised deep learning frameworks less straightfor-

ward.

C. Previous work on Chest X-ray image analysis for Covid-19

Covid-19 diagnosis using X-ray images is a new challenge

as previously discussed. Therefore, scarce work around this

can be found in the use of deep learning models for its

automatic detection. For this reason we include pre-published

work, in order to provide an overview of the work in progress.

We take pre-published work as a general guideline of the work

in progress, but not as a performance reference.

The work in [29] describes the implementation of a support

vector machine classifier fed with deep features. Popular deep

learning architectures were tested for feature extraction. The

dataset used in this work is composed of 25 observations

for COVID-19 positive cases, and 25 COVID-19 negative

cases. The positive observations were taken from the Github

repository made available by Dr. Joseph Cohen from the

University of Montreal [18], and the negative observations

were obtained from the Kaggle public repository on X-ray

images with pneumonia and no findings [22]. The model with

the highest accuracy reported was ResNet50 with the proposed

support vector machine as a top model, yielding a level of

accuracy of around 95 %. The 50 images dataset was split into

60% of the images for training, 20% for the error evaluation

during training and 20% for the model test. This makes up for

a labelled to evaluation sample ratio of 30/(10 + 30) = 0.75,

with 30 images for training and 10 for testing.

In [7] authors compared different machine learning algo-

rithms. They did a performance comparison between support

vector machine, random forest and CNN models. The results

showed a superior accuracy of the CNN model, with a test

accuracy of 95.2%. The authors did not report the percentage

of data used for the evaluation of the model.

The authors in [9] used a CNN along with transfer learning

for the automatic classification of pneumonia, Covid-19 and

normal cases. They achieved an overall average accuracy

of 97.82% in the detection of Covid-19. A 10-fold cross

validation was used, corresponding to a labelled to evaluation

sample ratio of 0.9. The authors highlighted some of the

limitations of deep learning including the need of very large

amounts of high quality labelled data, which might be scarce in

the case of a new virus out-break. The dataset is a compilation

of data gathered from [2], [18], [4].

Authors in [16] developed an automatic Covid-19 pneumo-

nia detection using deep learning. The proposed system clas-

sified between Covid-19+, viral and bacterial pneumonia. The

authors implemented data augmentation techniques (namely

rotation, translation and scaling) along transfer learning to

boost model accuracy. Popular CNN models were tested, using

a combination of the datasets found in [18]. The authors

concluded that the SqueezeNet model outperforms other CNN

networks with an accuracy of 98.3%. For evaluation, a 5-fold

validation was used, corresponding to a labelled to evaluation

ratio of 0.75.

With this brief state of the art overview we can easily

distinguish the need of a high amount of labelled data of the

proposed models. The data used in the studies remains to be

validated by multiple experts. Furthermore, the dataset [22],

frequently used in the previous work found, presents important

biases towards pediatric and Chinese patients.

Using semi-supervised learning can alleviate the need for

large high quality labelled datasets. Also, the evaluation under

more challenging data scenarios, such as a low labelled

to evaluation dataset size ratio, is still not covered in the

literature. This includes non-peer reviewed work. Performing

tests in more challenging data scenarios can help to distinguish

better architectures for the problem at hand.

III. PROPOSED METHOD

In this work, we propose the use of semi-supervised deep

learning to tackle the problem of scarcely high-quality labelled

data for Covid-19 detection. We aim to evaluate the feasibility

of a semi-supervised system with different proportions of

labelled to unlabelled data, and their influence on the accuracy

boost. It is conjectured that a semi-supervised model might

boost the accuracy of Covid-19 early diagnosis from chest X-

ray images, particularly when ground truth data is limited. Our
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approach is formulated in a way that could be easily extended

to other virus outbreak pathologies.

A. Mix Match for Semi-supervised deep learning

Our semi-supervised deep learning approach is based on

Mix Match [12]. This technique estimates a set of pseudo-

labels and implements an unsupervised regularization term. In

Mix Match, the consistency loss term minimizes the distance

of the pseudo-labels and the model predictions over the

unlabelled dataset Xu. Pseudo-label estimation is performed

with the average model output of a transformed input xj :

ŷj = 1
K

∑K

η=1 f−→w (Ψη (xj)), where K corresponds to the

number of transformations Ψη applied. We used K = 2 as in

[12]. Additionally, authors argued that the estimated pseudo-

label ŷj usually presents a high entropy, leading to unconfident

estimations. To encourage confidence, the output array ŷ

was sharpened with a temperature T : s (ŷ, T )i =
ŷ
1/T
i∑
j ŷ

1/T
j

.

Similar to T → 0, the sharpened distribution ỹ = s (ŷ, T )
tends to become a Dirac function (assuming a one-hot vector

representation). The dataset with the estimated and sharpened

pseudo-labels was defined as S̃u =
(
Xu, Ỹ

)
, with Ỹ ={

ỹ1, ỹ2, . . . , ỹnu

}
.

Berthelot et al. [12] also found that data augmentation is

a key aspect in semi-supervised deep learning. To further

augment data using both labelled and unlabelled samples,

they implemented the Mix Up algorithm developed in [44]:(
S′

l , S̃
′

u

)
= ΨMixUp

(
Sl, Ŝu, α

)

The Mix Up algorithm creates new observations from a lin-

ear interpolation of a mix of unlabelled (with its corresponding

pseudo-labels) and labelled data. More specifically, it takes two

labelled (or pseudo labelled) data pairs (xa, ya) and (xb, yb).
The Mix Up method generates a new observation and its label

(x′, y′) by following these steps:

1) Sample the Mix Up parameter λ from a Beta distribution

λ ∼ Beta (α, α).
2) Ensure that λ > 0.5 by making λ′ = max (λ, 1− λ)
3) Create a new observation with a lineal interpolation of

both observations: x′ = λ′
xa + (1− λ′)xb.

4) Similarly, create the corresponding pseudo-label for such

observation y′ = λ′ya + (1− λ′) yb.

Using the augmented datasets
(
S′

l , S̃
′

u

)
, the Mix

Match training of a model f−→w can be summarized as

minimizing L (S,w) =
∑

(xi,yi)∈S′

l
Ll (w,xi,yi) +

γ
∑

(xj ,ỹj)∈S̃′

u
Lu

(
w,xj , ỹj

)
. The supervised and

semi-supervised loss terms were defined as the entropy

Ll (w,xi,yi) = δentropy (yi, fw (xi)) and the Euclidean

distances Lu

(
w,xj , ỹj

)
=

∥∥ỹj − fw (xj)
∥∥, respectively.

The coefficient γ acts as a regularization weight, controlling

the direct influence on unlabelled data. The ramp coefficient

r(t) is a scalar that increases at each epoch, as the confidence

in unlabelled data naturally grows over training. We used a

ramp coefficient of r(t+ 1) = 1/3000 + r(t).

Note that unlabelled data also influences the labelled data

term Ll, as unlabelled data is used to artificially augment the

dataset through the Mix Up algorithm.

B. Semi-supervised deep learning scalability measurement

To assess the scalability of our semi-supervised method-

ology, we propose the usage of the semi-supervised accu-

racy boost coefficient, based on the evaluation/labelled and

labelled/unlabelled data ratios.

We define the labelled / evaluation data coefficient as

ρle = nv

nv+nl
, where nv and nl are the number of vali-

dation (evaluation), and labelled observations, respectively.

Similarly, the labelled/unlabelled coefficient is formulated as

ρlu = nl

nu+nl
, where nu stands for the number of unlabelled

observations.

For semi-supervised learning we propose the usage of the

semi-supervised boost coefficient based on the previously

defined labelled/unlabelled coefficient ρlu. This coefficient

summarizes the performance boost obtained with a specific

pair of ρlu and ρle. Its formulation is depicted in Equation 1.

∆ρ =
asemi-supervised − asupervised

(ρle + ρlu) ssemi-supervised

(1)

The coefficients asupervised and asemi-supervised correspond to

the reported sample mean accuracy of the supervised and

semi-supervised learning framework, respectively. The sample

standard deviation ssemi-supervised is also added, to account for

the results distribution. Lower ρle and ρlu increase the semi-

supervised boost coefficient, as this corresponds to a more

challenging data scenario. Reporting this coefficient can ease

the comparison of semi-supervised deep learning solutions,

which are very important in the medical domain.

IV. DATASET

In this work we implement a ternary classification of Covid-

19+, pneumonia (bacterial and viral), and no lung pathology

X-ray observations.

The observations for the Covid-19+ are gathered from

the publicly available github repository available in [18].

Dr. Joseph Cohen, from the University of Montreal was the

main author of such repository. A compilation from journal

websites like radiopaedia.org, the Italian Society of Medical

and Interventional Radiology and recent publications in the

matter [18] was gathered by the authors in [18]. The dataset

contains chest X-ray images from around 100 patients, with

ages ranging from 27 to 85 years old. The patients nationalities

include Iran, China, Italy, Taiwan, Australia, Spain and the

United Kingdom. Authors warned researchers to avoid claim-

ing diagnostic performance without a proper clinical study.

Therefore, in this work we focus on exploring the possibility

of using semi-supervised deep learning to improve diagnostic

accuracy with small datasets. The need for a proper clinical

study with more data to confirm the viability of computer

aided diagnosis system for Covid-19, argued in [18]. From

this dataset, we used only Covid-19+ images, discarding

observations of Middle East Respiratory Syndrome (MERS),
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Fig. 1. From left to right: chest x-Ray of Covid-19 Patient, chest X-Ray of
pneumonia Patient and normal chest X-Ray

Acute Respiratory Distress Syndrome (ARDS) and Severe

Acute Respiratory Syndrome (SARS). Therefore a subset of

102 front chest X-ray Covid-19+ observations were used.

For the pneumonia and normal observations, we used the

data availaible in [22]. From such dataset, we selected 5856

chest X-ray images all of them from individual children. The

images represent 4273 observations of pneumonia (including

viral and bacterial) and 1583 of normal patients. All the pe-

diatric patients in this study were Chinese [22]. The base-line

dataset used in this work comprises 5958 observations. This

includes 102 observations for Covid-19+, 4273 for pneumonia

and 1583 with no lung pathology.

The aforementioned dataset combination have been exten-

sively used in recent works [26], [45], [41], [21], [28], [9].

However, we warn about a practical short-coming of this

dataset; the very different populations sampled for Covid-19

with adults (with ages between 21 and 85 years old), while

for the normal and pneumonia cases, the images were sampled

from pediatric patients. Furthermore, the nationalities of the

sampled population are also widely skewed, as for the normal

and pneumonia cases Chinese subjects were sampled. We warn

for the need of a more balanced dataset, sampling different

sub-populations equally. Formally, the diagnostic procedure

does not change for pediatric patients, but this biased data

might harm its generalization for everyday clinical use.

To avoid a class bias, in most of this work we use an under

sampled dataset, containing 102 images for each class, ran-

domly sampling the over-represented classes. Figure 1 shows

sample observations from the dataset used in this work. As

pre-processing of the data, we standardized the observations

using the mean and standard deviation of the whole dataset

V. EXPERIMENTS

The most important hyper-parameter to tune in Mix Match

is the semi-supervised loss term coefficient γ, which weights

the importance of unlabelled data as stated in [12]. Our

implementation also includes a ramp coefficient to augment

the weight of the unsupervised signal. This was recommended

by Berthelot et al. [12], since pseudo-labels yj can be

misleading at the beginning of the training process. The

chosen and empirically optimized Mix Match parameters used

in our experiments are: K = 2 number of augmentations,

T = 0.5 sharpening temperature and the distribution parameter

α = 0.5.

Our empirical study shows an important regularization ef-

fect of the unsupervised loss term Lu. Figure 2 depicts the
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Fig. 2. Difference between both validation and training losses with: γ =

1 (continuos line, highest accuracy 74.6%), γ = 25 (dotted line, highest
accuracy 76.1), γ = 100 (the line with the largest dashes, highest accuracy
79.3%). The lower and less spiky the better.

subtraction of the training and validation losses for a specific

data partition. Lower values indicate better generalization.

Moreover, we employed the Wide-ResNet architecture [43] for

the calibration experiment. Wide-ResNet yielded around 96%

of accuracy when using the entire dataset with 25% of the

data for validation, as seen in Table I. Our experiments aim

to explore the effect of γ for semi-supervised classification

accuracy.

In the preliminar testing performed, we noted a strong

influence of labelled data balance. A very imbalanced labelled

dataset practically nullifies the advantage of using unlabelled

data. Thus, we used an under-sampled baseline dataset with

102 observations for Covid-19, pneumonia (including viral and

bacterial observations) and normal cases.

For our experiments we used different number of randomly

chosen labelled observations to train the fully supervised and

the Mix Match models, using Wide-resnet in both. To test

the fully and semi-supervised models with variable number of

labelled observations, we used the undersampled dataset with

102 observations for each of the three classes, comprising a

total of 306 observations. We used 25% of the dataset for

testing, choosing randomly 306 × 0.25 ≈ 78 observations

across all the tests performed in this section, regardless the

amount of labelled data.

Using different number of labelled observations for training

allows to explore the performance of the compared models

with different ρle and ρlu coefficients. The chosen amount of

labels and the data coefficients are depicted in Table I, in its

first column. The specific values for ρle and ρlu coefficients

are also described in the first column. We argue that most

of the evaluations done in the literature regarding Covid-19

detection use a fixed 25% to 30% of test or validation data

proportion. In a CAD system like the one at hand in this work,

this proportion might not be adequate for real-world settings,

given the likely intensive usage in a short time.

The hyper-parameters of the Wide-resnet model for both

the fully and semi-supervised modes are defined as follows:

an input image size of 100× 100, an Adam optimizer with a

1-cycle policy [33], with a weight decay of 0.0001, a learning

rate of 0.0001, a batch size of 12 and a cross entropy loss

function.

5298



Fig. 3. From top to bottom: A three sample of the class activation maps for
the tested dataset. From left to right: the original image, the heatmap of the
usual supervised model, and the heatmap for the semi-supervised model. The
legend RL corresponds to the real label, PRED to the model prediction and
the array of two values is related to the output net values.

The computational hardware used in the experiments in-

cludes an NVIDIA [TITAN V] GPU memory of 12 GB, 32

GB of main system memory and an Intel(R) Xeon(R) CPU

E5-2620 0 @ 2.00GHz. Python programming language was

used for coding. The Pytorch/FastAI MixMatch implemen-

tation is based on the repository available at https://mc.ai/

a-fastai-pytorch-implementation-of-mixmatch/.

We also implemented transfer learning based on the image-

net weights and data augmentation with random flips and

rotations. For all the experiments, the model is trained for 50

epochs, with 10 replicas for each model configuration, with

randomly selected training and validation datasets.

As a preliminar qualitative experiment, we trained a binary

classification model based on the densenet201 architecture, to

discriminate between positive COVID-19 cases and normal

(no lung pathology) observations, to analyze the change in the

class activation heatmaps of both models. Figure 3 shows a

sample of the heatmaps obtained for the supervised and semi-

supervised models. Most of the heatmaps obtained reveal a

tendency on the heatmaps extracted from the semi-supervised

model to focus on more consistent features from the lung area.

As seen in Figure 3, the heatmaps of the supervised model

tend to focus on less semantically meaningful areas (namely

the corners). The semi-supervised and supervised model in

this case have been trained with 70 labels, and 68 unlabelled

observations for the semi-supervised model. We used transfer

learning (with imagenet weights), and flip and rotation data

augmentation. For the tested batch, the semi-supervised model

yielded an accuracy of 96.6% while the supervised model

91.6%, with balanced test dataset of 60 observations. We noted

in some images, that the shoulder joints present high activation

values, a feature often used to discriminate children and adult

samples. Also in Figure 3, the net raw outputs are depicted

for both semi-supervised and supervised models.

VI. RESULTS ANALYSIS

The yielded accuracy results for different γ values are

shown in Table I. To statistically compare the yielded results,

a Wilcoxon non-parametric test has been carried out, as 10

replicas comparing the results of the supervised model against

Mix Match with γ = 200, which yielded the highest sample

mean values.

As an initial observation, a rather low accuracy is reported

for an otherwise well performing model (that yielded around

96% percent when using the entire dataset, as seen in Table

I), with an evaluation/labelled data coefficients from ρle =
0.24 up to ρle = 0.39. As expected, the accuracy of the fully

supervised model increases while ρle increases.

The obtained results also show how with a lower ρlu, a

wider accuracy boost is obtained with the semi-supervised

model. The results reveal a strong and statistically significant

accuracy boost of any of the semi-supervised models tested

(with γ = 1, 100, 200) over the fully supervised model when

the labelled/unlabelled data coefficient ρlu is low. The highest

accuracy difference with statistical significance yielded comes

when γ = 200 and ρlu = 0.11, with an increase of almost 15%.

The last column in Table I describes the confidence obtained

when performing a Wilcoxon test comparing the results of

the semi-supervised model (with γ = 200) against the fully

supervised one. When p < 0.05, a statistically meaningful

accuracy boost is obtained when using the implemented semi-

supervised model. As seen in Table I, the Wilcoxon test

returned a p = 0.000236, confirming a statistically significant

accuracy boost of using the implemented semi-supervised

approach when ρlu = 0.1.

The difference of using different γ values becomes ap-

parently wider as ρlu is lower. However, by performing a

Wilcoxon test of comparing the case when γ = 1 and γ = 200
when ρlu = 0.11, we obtained p = 0.3182, making p > 0.05,

rejecting the hypothesis of significance difference between

them. With this we conclude that tweaking the γ value does not

have a statistically significant impact in our tests. This suggests

a stronger contribution from the mix up data augmentation

guided by the unlabelled observations, implemented in the first

term Ll of the loss function. The effect of the γ correlates with

the preliminary results plotted in Figure 2, demonstrating a

mild effect in the semi-supervised performance. Increasing the

value of γ marginally improves the results, by fully leveraging

the information in the unlabelled dataset.

As for the values of the proposed ∆ρ coefficient, it ap-

proaches zero when the benefit of the semi-supervised model

has no statistically significant advantage. From the executed

experiments, we can define a threshold of ∆ρ = 1.9 to achieve

a significant accuracy boost when using unlabelled data.

Figure 4 plots the ∆ρ for the tested models with γ =
1, 100, 200. The results for Mix Match using γ = 100 overall
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TABLE I
SEMI-SUPERVISED LEARNING ACCURACY (MEAN AND STD.) USING MIX MATCH (MM) FOR DIFFERENT UNSUPERVISED COEFFICIENTS VS. A FULLY

SUPERVISED MODEL (F.S). ALWAYS ρLU = 1 FOR THE FULLY SUPERVISED MODEL. THE SIXTH COLUMN DENOTES THE CONFIDENCE P-VALUE OF THE

ACCURACY DIFFERENCE BETWEEN MIX MATCH AND THE SUPERVISED MODEL.

Number of labels/coefficients Fully supervised γ = 1 γ = 100 γ = 200 F.S vs. MM (γ = 200) ∆ρ (γ = 200)

25 (ρle = 0.24,ρlu = 0.11) 0.683± 0.056 0.808± 0.053 0.816± 0.051 0.829± 0.057 p = 2.36e− 04 7.318
40 (ρle = 0.33,ρlu=0.17) 0.729± 0.048 0.828± 0.04 0.848± 0.048 0.846± 0.048 p = 0.0016 4.875
50 (ρle = 0.39,ρlu=0.21) 0.785± 0.046 0.834± 0.038 0.843± 0.047 0.843± 0.049 p = 0.0163 1.972
70(ρle = 0.47,ρlu=0.3) 0.808± 0.046 0.848± 0.053 0.864± 0.039 0.858± 0.041 p = 0.1155 1.5838

100 (ρle = 0.56,ρlu=0.43) 0.851± 0.049 0.853± 0.033 0.856± 0.051 0.854± 0.047 p = 0.5194 0.0648
All-undersampled (229) 0.896± 0.035

All-imbalanced (4468) 0.966± 0.003

0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45
0

2

4

6

8

ρlu

∆
ρ

Fig. 4. Scalability curves using ∆ρ against the ρlu. γ = 200 (triangle),
γ = 100 (circle) and γ = 1 (square).

scale slightly better. However, as previously mentioned, there

is no statistically significant difference when using different γ
values. This is reflected in how close the curves are. The series

of ∆ρ values summarize well the behaviour of the Mix Match

variations tested. To summarize semi-supervised scalability

behaviour in a scalar value, we advise the use of the area under

the curve ∆AUC. For this experiment ∆AUC,γ = 1 = 14.87,

∆AUC,γ = 100 = 16.43 and ∆AUC,γ = 200 = 15.81, confirming

a very slightly advantage of Mix Match with γ = 100 taking

into account all the data settings used.

VII. CONCLUSIONS

In this work we proposed and tested the use of a novel

semi-supervised learning framework based on the recently

proposed Mix Match technique. A virus outbreak like the

COVID-19 draws the need for quickly available and reliable

AI solutions for computer aided diagnosis. In the context of a

virus outbreak, a strong lack of high quality labelled data i.e.,

very low number of high quality labelled observations causes

severe limitations on the development of computer based

diagnosis systems. Semi-supervised deep learning makes use

of more widely available unlabelled data, which can help to

boost the accuracy of these systems.

As a contribution in this work, we proposed the usage of

the semi-supervised accuracy boost coefficient, to measure

model scalability under different proportions of evaluation

using labelled and unlabelled data. With the tested prototypical

dataset (which we warned about the fact that it is still not of

acceptable quality to be considered for real-world clinical use

given its age and race biases), a significant increase in accuracy

is achieved when the labelled/unlabelled data coefficient ρlu is

set to a low value.

We highlight how, in previous work, typical deep con-

volutional architectures yield high accuracy performances,

when using the typical 75%/25% training/evaluation data split.

We argue however that this evaluation setting might not be

accurate to estimate the real-world performance of a deep

learning CAD solution. This is specially the case for a CAD

system used in a virus out-break, where a large amount of

test data will be fed in a short-time before including new

high quality labelled data to re-train the model. For evaluating

the system scalability in different labelled/evaluation data

scenarios, we proposed the usage of the ∆ρ coefficient. As

expected, our tests revealed an important accuracy decrease

as ρel decreases, making the usage of semi-supervised deep

learning more attractive in such setting.

As future work, we plan to test semi-supervised learning

approaches with more data for Covid-19 detection. We are

building our own chest X-ray dataset from Costa Rican clinics.

We aim to extend the usage of the proposed metric ∆ρ

under different real-world settings as unbalanced labelled and

unlabelled datasets, and out of distribution unlabelled data.

We stress that scalability testing is important to estimate

the model performance under real-world operation settings.

Most of the test beds used so far in previous work can

be thought as saturated, since many of the CNN models

tested yield accuracies higher than 90% with typical testing

strategies. More extensive and demanding testing approaches

can be developed, to further assess the accuracy of the model

under different training and evaluation scenarios. This is of

special relevance given that the definition of high quality and

large enough data is still an open question for deep learning

solutions, as argued in [11].
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