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Abstract 

Background: Unlike smoking-related non-small cell lung cancers (NSCLCs), 

oncogene-driven NSCLCs (including those driven by epidermal growth factor 

receptor – EGFR) are characterized by low mutational burdens and complex genomic 

landscapes. However, the clonal architecture and genomic landscape of the 

oncogene-driven NSCLCs in smokers remain unknown. Here, we investigate the 

impact of tobacco smoking on genomic and transcriptomic alterations in the context 

of oncogene-driven NSCLC. 

 

Methods: Patients undergoing resection for NSCLC at the National Cancer Centre 

Singapore were enrolled in this study. Resected tumors were divided into multiple 

regions, which then underwent whole-exome sequencing and bulk RNA sequencing. 

We investigated tumor mutational burden, intra-tumor heterogeneity, tumor phylogeny, 

mutational signatures, and transcriptomes across the regions of each tumor. 

 

Results: We studied a total of 173 tumor sectors from 48 patients. Tumors were 

classified into three groups: “oncogene-driven non-smoking” (n=25, 52%), 

“oncogene-driven smoking” (n=12, 25%) and “typical smoking” (n=11, 23%). 

Oncogene-driven smoking versus non-smoking tumors did not differ significantly in 

terms of tumor mutational burden, intra-tumor heterogeneity, and driver mutation 

composition. Surprisingly, the mutational signature caused by tobacco smoking was 

essentially absent in oncogene-driven smoking tumors, despite prominent smoking 

histories. Compared to oncogene-driven non-smoking tumors, oncogene-driven 

smoking tumors had higher activity in pathways related to regulation of cell cycle, 

especially mitotic exit. 

 

Conclusions: Oncogene-driven tumors in smokers shared similar clonal architecture 

and genomic features with archetypical oncogene-driven tumors in non-smokers. 

Oncogene-driven tumors in smokers had low tumor mutational burden and high 

intra-tumor heterogeneity and the mutational signature of smoking was largely absent. 

However, among oncogene-driven tumors, the differences in transcriptomic pathway 

activities between smokers and non-smokers suggest that smoking may foster a tumor 

phenotype distinct from that in non-smokers.  
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Highlights 

• Like oncogene-driven NSCLC tumors in smokers, oncogene-driven NSCLC 

tumors in non-smokers have low mutational burden and high intra-tumor 

heterogeneity. 

• The mutational signature of smoking was prevalent in typical smoking-related 

NSCLC but not in oncogene-driven NSCLC in smokers. 

• Oncogene-driven NSCLC in smokers had high activity of pathways related to 

cell cycle, especially mitotic exit. 

• This study highlights the genomic and transcriptomic features of 

oncogene-driven NSCLC in smokers, which suggest further investigation into 

optimizing treatment strategies. 

 

Keywords 

Oncogene-driven non-small cell lung cancer, EGFR-mutated lung cancer, 

oncogene-driven lung cancers with smoking history, tumor mutational burden, 

intra-tumor heterogeneity, mutational signature, SBS4 
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Introduction 

Lung cancer remains the most lethal cancer worldwide and causes more than 1.8 

million deaths annually, even though the worldwide prevalence of tobacco smoking is 

decreasing1,2. However, in East Asia, lung cancer in non-smokers is increasing and 

has become an emerging health problem3,4. Many of these are non-small-cell lung 

cancers (NSCLCs) that are driven by specific oncogenic mutations; usually activating 

mutations in oncogenes such as EGFR, ERBB2, or MET or activating fusions 

involving genes such as ALK, ROS1, or RET5-9. These oncogene-driven tumors 

constitute approximately half of NSCLC in East Asia10-13 and tend to have lower 

mutational burdens and favorable responses to targeted therapies such as 

tyrosine-kinase inhibitors14-21. In contrast, non-oncogene-driven NSCLCs typically 

are smoking-related and have high mutational burdens and favorable responses to 

immune checkpoint inhibitors22. While oncogene-driven NSCLCs have been most 

studied in never-smokers, in East Asia, approximately 30% to 40% of patients with 

oncogene-driven NSCLC have histories of tobacco smoking23.  

 

To investigate similarities and differences between oncogene-driven NSCLC in 

non-smokers, oncogene-driven NSCLC in smokers, and typical smoking NSCLC, we 

carried out an integrated genomic and transcriptomic study of clonal architecture and 

intra-tumor heterogeneity across 173 tumor sectors in 48 patients representing all 3 

groups. 

 

Material and methods 

Patients and clinical outcomes 

Patients diagnosed with NSCLC at the National Cancer Centre Singapore (between 

2013 and 2017) who underwent surgical resection of their tumors prior to receiving 

any form of anti-cancer therapy were enrolled in this study. Clinical information and 

histopathological features were curated by the Lung Cancer Consortium Singapore 

(Supplementary Table S1). Written informed consent was obtained from all 

participants. The study was approved by the SingHealth Centralized Institutional 

Review Board (CIRB reference 2018/2963). 

 

Definition of index oncogenes in non-smoking tumor 

To define oncogene-driven NSCLC, based on previous reports24,25, we assembled a 

list of driver mutations and gene rearrangements (index oncogenes) characteristic of 

NSCLCs in non-smokers in East Asia (Supplementary Table S2). These included 

EGFR exon 18-21 activating mutations, ALK fusions, ERBB2 exon 20 insertions, RET 
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fusions, and MET exon 14 skipping mutations. In contrast, activating mutations in the 

KRAS and BRAF genes were characteristic of NSCLCs arising from smokers.  

 

Tumor/normal sample processing and whole-exome sequencing 

Resected tumors and paired normal samples were sectioned and processed as 

previously described26. Peripheral blood, or if peripheral blood was not available, 

normal lung tissue adjacent to the tumor was taken as a normal sample. The median 

number of sectors for an individual tumor was 3 (range 2-7, Supplementary Table S1). 

For whole exome sequencing, genomic DNA was extracted with the AllPrep 

DNA/RNA/miRNA Universal Kit (Qiagen), and 500 ng to 1 µg of genomic DNA was 

sheared using Covaris to a size of 300 to 400 bp. Libraries were prepared with 

NEBNext Ultra DNA Library Prep Kit for Illumina (New England Biolabs). Regions 

to sequence were selected with the SeqCap EZ Human Exome Library v3.0 (Roche 

Applied Science) according to the manufacturer’s instructions and underwent 2 × 151 

base-pair sequencing on Hiseq 4000 (Illumina) sequencers. The median coverage of 

the capture target was 55.1X and 54.4X for normal and tumor samples, respectively 

(Supplementary Table S3). 

 

Somatic single nucleotide variation and insertion-deletion calling  

Exome reads were trimmed with trimmomatic (version 0.39) to remove 

adaptor-containing or poor-quality sequences27. Trimmed reads were mapped to the 

human reference sequence GRCh38.p7 (accession number GCA_000001405.22) 

using the BWA-mem software (version 0.7.15) with default parameters28. Duplicate 

reads were marked and removed from variant calling using sambamba (version 

0.7.0)29. Global mapping quality was evaluated by Qualimap 2 (version 2.2.1, 

Supplementary Table S3)30. Somatic single nucleotide variations (SNVs) and 

insertion-deletions (indels) were called by MuTect2 (version 4.1.6.0) and Strelka2 

(version 2.9.2) with default parameters31,32. We considered only variants called by 

both variant callers and with (i) ≥ 3 reads supporting the variant allele in the tumor 

sample, (ii) sequencing depth ≥ 20 in both the normal and tumor samples, and (iii) 

variant allele fraction ≥ 0.05. The somatic SNVs and indels were provided at 

https://github.com/Rozen-Lab/oncogene-NSCLC/supp-table-gene-mutation.csv. 

Variants were annotated by wANNOVAR (https://wannovar.wglab.org/)33. Driver 

status of genes was based on the Catalog of Somatic Mutations in Cancer (COSMIC) 

database, downloaded 24 February 2021 (https://cancer.sanger.ac.uk/census)34.  

 

We excluded 12 out of 185 sectors (6.5%) that had tumor purity < 0.1 from 

downstream analysis. We estimated tumor purity as follows: for tumors with a known 
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oncogenic EGFR, ERBB2, MET, or KRAS mutation, we used the variant allele fraction 

(VAF) for each sector as calculated by Integrative Genomics Viewer (version 2.6.3, 

https://igv.org/)35. We reasoned that these oncogenic mutations were likely clonal and 

therefore would appear in all sectors36. We also reasoned that the index oncogenic 

mutations would be present in at least one-half of the chromosomes. From this, we 

estimated the tumor purity to be 2 times the VAF of the oncogenic mutation. 

 

Definitions of truncal mutation, branch mutation, tumor mutational burden, and 

intra-tumor heterogeneity 

We refer to mutations present in every sector of a tumor as “truncal”, and we refer to 

other mutations as “branch”. We defined tumor mutational burden (TMB) as the mean 

number of unique non-silent (nonsynonymous or splice-site) mutations across all 

sectors of a tumor. We defined intra-tumor heterogeneity (ITH) as the mean 

proportion of the number of unique branch mutations across all sectors. 

 

Phylogenetic analysis  

We used the Python PTI package (https://github.com/bioliyezhang/PTI, version 1.0) 

using the input of a “binary matrix” to infer phylogenetic relationships based on 

non-silent mutations37. 

 

Mutational signature assignment and spectrum reconstruction 

Mutational signature assignment was carried out with mSigAct R package (version 

2.3.2, https://github.com/steverozen/mSigAct) and COSMIC mutational signature 

database version 3.2 (https://cancer.sanger.ac.uk/signatures/)38. To better estimate the 

impact of smoking on cancer evolution, we first used the SignaturePresenceTest 

function with default parameters on all individual sectors within each group to decide 

whether the SBS4 mutational signature (the signature of tobacco smoking) was 

present in the sector’s mutational spectrum. In brief, SignaturePresenceTest estimates 

optimal coefficients for the reconstruction of the observed spectrum using the 

mutational signatures previously detected in NSCLC39. The test does this without the 

SBS4 signature (null hypothesis) and with the SBS4 signature (alternative hypothesis). 

The test then carries out a standard likelihood ratio test on these two hypotheses to 

calculate a p-value. We then calculated Benjamini-Hochberg false discovery rates 

across all sectors of all tumors within the group. To estimate the contribution of 

signatures to each spectrum we used the SparseAssignActivity function and the 

signatures found in lung adenocarcinomas in reference39, except that SBS4 was 

included only if the false discovery rate based on the SignaturePresenceTest was < 0.5. 

We also excluded SBS3 (caused by defective homologous recombination DNA 
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damage repair mechanism) from sparse assignment after ensuring no pathogenic 

mutation of the germline and somatic BRCA1 or BRCA2 genes in all samples. 

Supplementary Table S4 and S5 show the mutational spectra and signature activity of 

each sector. 

 

Detection of fusion transcripts  

We used STAR-Fusion (version 1.10.0)40 to detect transcript fusions in the 

RNA-sequencing data with default parameters. We required candidate fusions to 

satisfy the following criteria:  

• spanning fragment count ≥ 1 

• junction read count + spanning fragment count ≥ 5 

• presence of a large anchor-support read, and  

• for intrachromosomal fusion partners, a genomic distance ≥ 1MB between 

fusion breakpoints.  

 

Of the putative transcript fusions detected, three are considered oncogenic variants 

according to the literature: EML4-ALK, KLC1-ALK, and PARG-BMS141-43. 

Supplementary Table S7 provides the full list of putative fusions. 

 

RNA sequencing and gene expression subtype 

Total RNA was extracted and processed from 103 tumor samples as previously 

described44. We used the STAR software (version 2.7.3a) to align raw RNA sequence 

reads to the human genome (GRCh38p7 build) and to estimate transcript abundance 

based on the reference transcriptome (GRCh38.85 build)45. Only the counts of 

protein-coding genes were included for downstream analysis. The raw gene 

expression matrix is provided at 

https://github.com/Rozen-Lab/oncogene-NSCLC/supp-table-gene-expression-count-

matrix.csv.  

 

Transcriptomic pathway analysis 

Raw gene expression levels were transformed to transcript levels in transcripts per 

million (TPM) values46. We computed pathway enrichment scores with the GSVA R 

package (version 1.40.1) and the Reactome subset of the Molecular Signatures 

Database (MSigDB version 7.5.1, https://www.gsea-msigdb.org/gsea/msigdb/)47-49. 

The pathway activity is provided at 

https://github.com/Rozen-Lab/oncogene-NSCLC/supp-table-pathway-activities-matri

x.csv. Differential pathway expression was conducted using limma R package 

(version 3.48.0)50. Pathways with a Benjamini-Hochberg false discovery rate < 0.05 
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were taken as significant. Assignment of gene expression subtypes (terminal 

respiratory unit, TRU, versus non-TRU) was carried out as described51. Gene 

expression values and pathway enrichment scores were transformed to Z-scores 

(mean of 0 and standard deviation of 1) before downstream analysis. Heatmaps were 

constructed with the ComplexHeatmap R package (version 2.8.0)52. Heatmap columns 

were first clustered based on all rows using ComplexHeatmap::Heatmap function 

using default arguments for clustering distance and method, and then ordered by main 

group, patient, and gene expression status accordingly.  

 

Data and code availability  

All WES and RNA sequencing data have been deposited at the European 

Genome-phenome Archive (EGA, http://www.ebi.ac.uk/ega/), under the accession 

number EGAS00001006942. R code used in this study is provided at 

https://github.com/Rozen-Lab/oncogene-NSCLC/. 

 

Results 

Clinical and histopathological characteristics 

We studied a total of 173 tumor sectors from 48 patients with resected NSCLC. 

Table 1 summarizes clinical and histopathological characteristics. We classified 

tumors into three groups: “oncogene-driven non-smoking”: tumors with index 

oncogene mutations in never-smokers (n=25, 52%), “oncogene-driven smoking”: 

tumors with index oncogene mutations in smokers (n=12, 25%), and “typical 

smoking”: tumors without index oncogene mutation in smokers (n=11, 23%). The 

smoking history was similar between oncogene-driven smoking (median 34.5 

pack-years, range 0.5-99) and typical smoking groups (median 38, range 2-168, 

Wilcoxon rank-sum test, p value = 0.5792). Besides the differences in smoking status 

and oncogene mutation, gender distribution also differed significantly across the three 

groups.  

 

Oncogene-driven NSCLC with and without smoking histories have similar 

genomic architectures 

Overall, we identified 6,251 single nucleotide variants and 314 small indels affecting 

the exons of 4,738 genes and the splicing junctions of 177 genes. Oncogene mutations 

were detected in 23 of 25 (92%) oncogene-driven non-smoking tumors. We classified 

the remaining 2 tumors (8%) as oncogene-driven because they arise in never-smokers 

and phylogenetically resemble oncogene-driven non-smoking tumors (Supplementary 

Figure S1). There were 18 tumors with EGFR mutations, 3 tumors with MET exon 14 

skipping mutations, 1 tumor with an ERBB2 mutation, and 1 tumor with an ALK 
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fusion. Table 1 details these in the oncogene-driven non-smoking tumors. Oncogene 

mutations were detected in all 12 oncogene-driven smoking tumors. Eight of these 

tumors had EGFR mutations. We identified KRAS mutations in 7 out of 11 (64%) 

typical smoking tumors (2 with G12D, 2 with G12V, 1 with G12A, 1 with G12C, and 

1 with Q61H). Mutations in EGFR, MET, ERBB2, and KRAS and ALK fusions did not 

co-occur in this study. Across all three groups of tumors, after EGFR, TP53 was the 

second most mutated gene (22 of 48, 46%), consistent with previously published 

East-Asian cohorts9,10.  

 

In this study, all EGFR, ERBB2, MET, and KRAS mutations were known oncogenic 

mutations and were truncal, underscoring their central roles in early oncogenesis 

(Supplementary Table S8). By contrast, only 1,813 out of 6,215 mutations in 

non-drivers were truncal. Two of the three presumed oncogenic fusions were also 

truncal: 1 EML4-ALK fusion in the oncogene-driven non-smoking group and 1 

KLC1-ALK fusion in the oncogene-driven smoking group (Figure 1A).  

 

Oncogene-driven smoking tumors had slightly higher TMB than non-smoking tumors 

(median 55.5 vs. 40 mutations, p = 0.039, two-sided Wilcoxon rank-sum test). By 

contrast, compared to oncogene-driven smoking tumors, typical smoking tumors had 

much higher TMB (median 144 vs. 55.5, p = 0.017, two-sided Wilcoxon rank-sum 

test), more truncal mutations (median 56 vs. 22.5, p = 0.031), and more mutations in 

COSMIC driver genes (median 14 vs. 7.5, p = 0.002, Figure 1B). Although ITH (see 

Methods) was similar across the three groups (medians 0.593, 0.543, and 0.580, for 

oncogene-driven non-smoking tumors, oncogene-driven smoking tumors, and typical 

smoking tumors, respectively, Figure 1B), “coconut-tree” phylogenies, characterized 

by a combination of high TMB (> 100) and low ITH (< 0.5), occurred exclusively 

among the typical smoking tumors (5 out of 11, Figure 2, Supplementary Figure S1). 

 

In addition to those mutations used to categorize typical-smoking versus 

oncogene-driven tumors, CSMD3 mutations were statistically more common in 

typical smoking tumors (Figure 1C, left and middle). In comparing oncogene-driven 

smoking versus non-smoking tumors, there was no significant difference in the 

prevalence of mutations in COSMIC driver genes (Figure 1C, right).  

 

Previous studies reported that whole-genome doubling (WGD) had occurred in 30% 

to 80% of NSCLC, and the WGD is associated with poor clinical outcome26,53,54. 

Moreover, cancers in which large fractions of the genome had copy number gain or 

loss (high genome instability index) and subclonal copy number change (also known 
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as subclonal allelic imbalance) were prevalent among NSCLC26,55. In the present 

study, we found no significant difference across the three groups in terms of WGD 

rate, tumor ploidy, genome instability index, and subclonal allelic imbalance index 

(Supplementary Figure S2). Supplementary Figure S3 provides details of copy 

number variation profiles for all groups collectively and individually.  

 

We also note that gender distribution differed strongly across the three groups. Among 

patients with oncogene-driven non-smoking tumors, only 32% were male, whereas 

among the oncogene-driven smoking and typical smoking groups 92% and 100% 

were male, respectively (p = 0.0011 and 0.0001 by two-sided Fisher’s exact tests 

compared to the oncogene-driven non-smoking group). We analyzed genomic 

landscapes in oncogene-driven tumors by gender and found no significant differences 

(Supplementary Figure S4). 

 

Mutational signatures of oncogene-driven versus typical smoking NSCLC 

We next investigated the impact of smoking on the mutational landscape across three 

groups. We used a signature presence test followed by signature attribution with 

mSigAct software to detect the mutational signature SBS4, which is caused by 

tobacco smoking in lung cancers (Figure 3A)39,56. We were able to detect SBS4 in 30 

of 34 (88%) typical smoking tumor sectors. Surprisingly, however, SBS4 was found 

in only 7 of 48 (15%) oncogene-driven smoking tumor sectors, significantly less than 

typical smoking tumor sectors despite similar smoking histories (two-sided Fisher’s 

exact test, p < 2.1x10-10, Figure 3B). For tumor sectors with SBS4 activity, the median 

number of mutations attributed to SBS4 was 216 for typical smoking tumors versus 

53 for oncogene-driven smoking tumors (two-sided Wilcoxon rank-sum test, p < 

9x10-5, Figure 3C). T-distributed stochastic neighbor embedding (tSNE) based on 

single-base-substitution spectra identified different mutational patterns in typical 

smoking sectors compared with oncogene-driven sectors (Figure 3D).  

 

To confirm the surprising paucity of SBS4 activity in oncogene-driven smoking 

tumors, we applied the same signature assignment algorithm to a subset of the 

TCGA-LUAD (lung adenocarcinoma) cohort57. This subset consisted of 406 tumors 

with mutational spectra reported in reference 39 and smoking-history data from TCGA. 

For each tumor, Supplementary Table S6 provides the clinical information, including 

smoking history, index oncogenes and their mutations, and signature activity. SBS4 

was found in 2 of 24 (8%) oncogene-driven non-smoking tumors, 8 of 21 (38%) 

oncogene-driven smoking tumors, and 260 of 290 (90%) typical smoking tumors 

(Supplementary Figure S5). Thus, all the genomic data indicates that oncogene-driven 
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tumors, whether in smokers or non-smokers, have origins and oncogenic histories 

distinct from those of typical smoking tumors. 

 

Previous studies found that, in NSCLC, APOBEC mutations were enriched in branch 

versus truncal mutations26,58. Thus, we investigated differences in the activities of 

APOBEC and other signatures in branch versus truncal mutations in the entire data set 

and in each of the three groups in our study (Supplementary Figure S6A, S6B). Levels 

of APOBEC mutations were elevated in branches than trunks across the entire data set 

(Supplementary Figure S6C). Unexpectedly, we found that mutations due to reactive 

oxygen species (ROS, SBS18) were significantly higher in the branches compared to 

trunks for every group of tumors (all q values < 0.0068 by two-sided Wilcoxon 

rank-sum tests with Benjamini-Hochberg correction, Supplementary Figure S6C). 

This may suggest a potential role of ROS in promoting tumor evolution and clonal 

mutagenesis in NSCLC. The smoking signature (SBS4) was a major contributor only 

in typical smoking tumors, in which it contributed similar activities in trunks and 

branches (Supplementary Figure S6C).  

 

Transcriptomic features of oncogene-driven smoking tumors 

The similarity of genomic landscapes between oncogene-driven tumors with and 

without smoking histories was surprising because many clinical studies have shown 

that smoking is an indicator of poor prognosis in patients with advanced 

EGFR-mutated NSCLC treated with tyrosine kinase inhibitors59-61. Therefore, we 

investigated whether transcriptomic factors might help reveal the reason for this 

clinical observation. To this end, we profiled the transcriptomes of 103 of the 173 

sectors from 32 out of the 48 patients. UMAP dimension reduction did not reveal a 

strong separation between oncogene-driven tumors in smoking versus non-smoking 

patients (Supplementary Figure S7A). Indeed, the primary separation seems to be 

between tumors with the terminal-respiratory-unit (TRU) subtype and those without it 

(Supplementary Figure S7B).  

 

To further explore the transcriptomic activities associated with tobacco smoking, we 

conducted differential expression pathway analysis between oncogene-driven 

non-smoking tumors and both groups of smoking tumors (typical smoking and 

oncogene-driven smoking tumors grouped together) across 1,259 pathways from the 

Reactome Database49 (Figure 4, Supplementary Figure S8, Supplementary Tables S9, 

S10). Pathways with high activities in non-smoking tumors included those related to 

NOTCH signaling and to glycosaminoglycans and arylsulfatases, which catabolize 

glycosaminoglycans. Pathways with low activities in non-smoking tumors included 
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many due to cell cycle regulation, especially mitotic exit. These observations 

underscore differences between smoking and non-smoking tumors in the activities of 

pathways related to two of the major hallmarks of cancer. 

 

It has been proposed that smoking-associated lung cancers are more likely to trigger 

an anti-tumor immune response that would confer a better response to 

immunotherapy62,63. Antitumor responses mediated by immune checkpoint inhibitors 

(ICIs) correlate with the immune repertoires of the tumor microenvironment 

(TME)64-66. “Immune-hot” tumors are characterized by the infiltration of cytotoxic T 

cells capable of recognizing and killing tumor cells, the expression of 

proinflammatory and effector cytokine genes, and higher tendencies to respond to 

ICIs64,67. Therefore, we investigated whether smoking, independent of genomic 

alterations, can foster an immune-hot TME in NSCLC. To detect immune-hot TME, 

we performed hierarchical clustering of sectors based on the transcript levels of T-cell 

inflammation and immune checkpoint genes (Supplementary Figure S9A)68-70. We did 

not see strong evidence for enrichment of the immune-hot TME in oncogene-driven 

smoking tumors (1 of 9, 11%) and typical smoking tumor sectors (1 of 5, 20%) 

compared to oncogene-driven non-smoking tumor sectors (2 of 18, 11%, 

Supplementary Figure S9B). However, we found that immune-hot TME was more 

prevalent in tumor sectors harboring a TP53 mutation (16 of 43; 37.2%) as compared 

with those without TP53 mutations (5 of 60, 8.3%, q value of 0.0023 using a 

two-sided Fisher’s exact test with Benjamini-Hochberg correction, Supplementary 

Figure S9C), which is consistent with a previous finding of pro-inflammatory 

tendencies in these tumors71. 

 

Discussion 

To our knowledge, this is the first integrated genomic study to conduct direct 

comparisons across oncogene-driven non-smoking, oncogene-driven smoking, and 

typical smoking NSCLCs through multi-region exome and RNA sequencing. 

Surprisingly, we found that tobacco smoking has almost no influence on the genomic 

features and clonal architectures of EGFR-mutated and other oncogene-driven 

NSCLCs. Despite prominent smoking histories, oncogene-driven smoking tumors were 

similar to oncogene-driven non-smoking tumors in terms of mutational burden, 

mutational signature activity, and intra-tumor heterogeneity. In contrast, compared to 

both groups of oncogene-driven NSCLC, typical smoking tumors showed higher 

TMBs. Furthermore, “coconut-tree” phylogenies, which are defined by a combination 
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of high TMB (> 100) and low ITH (< 0.5), occurred in nearly half of the typical 

smoking tumors but were absent from oncogene-driven NSCLC. 

As noted in the Results section, gender distribution differed significantly across the 

three groups. Across all groups, tobacco smoking was more prevalent among males 

compared to females (Table 1). This male preponderance reflects the extreme gender 

imbalance of smoking in East Asia. For example, in the population we studied, 6.8% 

of women are smokers compared to 20.6% of men2,72,73. Previously, oncogene-driven 

NSCLC was sometimes viewed as a disease of non-smokers, often women. This view 

may have been partly driven by this gender imbalance, due to which oncogene-driven 

tumors were particularly salient among women, since they were usually non-smokers. 

The current study confirms oncogene-driven NSCLC occurs in both smokers and 

non-smokers and in both sexes, and it shows that genomic features are similar in both 

smokers and non-smokers and in both sexes. Because of the strong differences in 

smoking rates between women and men in the study population, it is not possible to 

disentangle the effects of gender from the effects of smoking. 

 

Nevertheless, we note that available evidence suggests that oncogene-driven tumors 

are more common among women. In both non-smokers and smokers, EGFR-mutated 

NSCLC is more common among women: for non-smokers, odds-ratio 1.38 

(p < 8 � 10
��); and for smokers, odds ratio 1.40 (p < 0.006, analyses by two-sided 

Fisher’s exact tests on data from Tseng et al74).  

 

An unexpected discovery from this study was the paucity of mutations due to tobacco 

smoking in oncogene-driven smoking tumors. We confirmed this discovery in the 21 

patients with oncogene-driven smoking tumors in the TCGA-LUAD cohort57. It is 

unclear why oncogene-driven smoking tumors rarely acquire mutations caused by 

smoking, while typical smoking tumors with similar exposures have abundant 

smoking mutations. Indeed, studies suggest that the cell of origin of oncogene-driven 

NSCLC may be different from that of typical smoking NSCLC75-79. Thus, it may be 

that oncogene-driven smoking tumors are less prone to mutation because their cells of 

origin are less exposed to tobacco smoke or have more effective DNA damage repair. 

 

Although oncogene-driven smoking and non-smoking tumors have similar clonal 

architectures and genomic features, they differ in transcriptomic pathway activities, 

especially those related cell cycle and mitotic exit. Indeed, for these pathway activities, 

oncogene-driven smoking tumors are more similar to typical smoking tumors than to 

oncogene-driven non-smoking tumors (Figure 4, Supplementary Figure S8). Of note, 
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advanced EGFR-mutated NSCLCs treated with tyrosine kinase inhibitors (TKIs) had 

worse outcomes in smokers than in non-smokers60,61. The transcriptomic activities of 

oncogene-driven NSCLC in smokers might account for these cancers’ higher 

resistance to standard TKIs but could potentially lead to higher susceptibility to 

therapies such as chemotherapy or CDK4/6 inhibitors that target the cell cycle. This 

warrants further investigation regarding the selection of treatments for patients with 

advanced-stage, oncogene-driven smoking NSCLC.  

 

In summary, based on the multi-region whole-exome and RNA sequencing, we have 

elucidated the clonal architectures and genomic features of three groups of East-Asian 

NSCLC: oncogene-driven non-smoking, oncogene-driven smoking, and typical 

smoking tumors. In the context of oncogene-driven disease, we found no evidence 

that tobacco smoking affects the clonal evolution or genomic alteration of NSCLC. 

However, the transcriptomic pathway activities were more similar between 

oncogene-driven smoking tumors and typical smoking tumors than between smoking 

and non-smoking oncogene-driven cancers. The in-depth analysis of oncogene-driven 

NSCLC in smokers and non-smokers presented here may provide a guide to 

optimizing treatment approaches. 
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Table 1. Baseline clinical and genomic characteristics of patients with oncogene-driven non-smoking, 
oncogene-driven smoking, and typical smoking non-small-cell lung cancers 

Clinical or genomic 
characteristic, n (%) 

Oncogene-driv
en 

non-smoking  
(n = 25) 

Oncogene-driv
en smoking  

(n = 12) 

Typical 
smoking  
(n = 11) 

All patients  
(n = 48) 

P valueb 

Number of patients 25 
 

12 
 

11 
 

48 
  

Number of tumor 
sectors with WESa 

91 (100) 48 (100) 34 (100) 173 (100)  

Number of tumor 
sectors with RNA seq 57 (62.6) 32 (67) 14 (41) 103 (60) 0.34 

Age, median (range) 66 (44-8
2) 

70 (39-7
9) 

66 (49-7
4) 

67 (39-8
2) 

n.s.c 

Gender 
         

  Male 8 (32) 11 (91.7) 11 (100) 30 (62.5) <0.0001 

  Female 17 (68) 1 (8.3) 0 (0) 18 (37.5)  
Cigarette smoking 
status          

  Never 25 (100) 0 (0) 0 (0) 25 (52.1) <0.0001 

  Current/Former 0 (0) 12 (100) 11 (100) 23 (47.9) 
 

Pack years, median 
(range) 

0 (0-0) 34.5 
(0.5-9

9) 
38 

(2-16
8) 

0 
(0-16

8) 
0.58d 

Ethnicity          
  Chinese 22 (88) 10 (83.3) 10 (90.9) 42 (87.5) 1 

  Non-Chinese 3 (12) 2 (16.7) 1 (9.1) 6 (12.5) 
 

Stage at diagnosis 
         

  Early (I & II) 21 (84) 9 (75) 11 (100) 41 (85.4) 0.23 

  Late (III & IV) 4 (16) 3 (25) 0 (0) 7 (14.6)  
Histology 

         
  Adenocarcinoma 24 (96) 12 (100) 10 (90.9) 46 (95.8) 0.47 

  Squamous cell 
  carcinoma 

1 (4) 0 (0) 1 (9.1) 2 (4.2) 
 

Oncogene mutation 
status          

  EGFR exon 18-21 18 (72) 9 (75) 0 (0) 27 (56.3) <0.0001 

  MET exon 14 
  skipping 

3 (12) 1 (8.3) 0 (0) 4 (8.3) 
 

  ALK fusion 1 (4) 1 (8.3) 0 (0) 2 (4.2) 
 

  ERBB2 exon 20 1 (4) 1 (8.3) 0 (0) 2 (4.2) 
 

  KRAS exon 2-3 0 (0) 0 (0) 7 (63.6) 7 (14.6) 
 

  No oncogene  2 (8) 0 (0) 4 (36.4) 6 (12.5)  
 

aWES, whole exome sequencing.  
bP value by two-sided Fisher's exact tests across all 3 group within category (e.g. Gender, Cigarette smoking, 
status, etc.). 
cP values by two-sided Wilcoxon rank-sum test were insignificant among any 2 of the 3 groups.  
dP values by two-sided Wilcoxon rank-sum test were insignificant between oncogene-driven smoking and 
typical smoking groups. 
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Figure Legends  

 

Figure 1. (A) Genomic landscape of tumors and tumor sectors of (i) all branch and 

truncal mutations (ii) selected patient clinical information, (iii) whole-genome 

doubling, (iv) gene expression subtype, and (v) the presence or absence of driver 

mutations of interest. For tumors without RNA-sequencing data, there is no 

information on gene expression subtype or the 3 fusions at the bottom of the grid. (B) 

Counts of total mutations, truncal mutations, driver mutations, and levels of 

intra-tumor heterogeneity in the 3 groups. (C) Enrichment of driver mutations in 

comparisons among the 3 groups.  

 

Figure 2. Intra-tumor heterogeneity (ITH) versus tumor mutation burden (TMB) for 

each tumor. Five tumors with “coconut-tree” phylogenies are labeled. These 

phylogenies occurred only in the typical-smoking group, and the corresponding 

phylogenies are shown below. 

 

Figure 3. Single-base substitution (SBS) mutational signatures. (A) The first two 

sections show mutational-signature activity in the three groups by absolute mutation 

counts. and by proportion. The remaining sections show smoking status, the presence 

of mutations in selected oncogenes, and whether the phylogenetic pattern is a 

“coconut tree” pattern. Colors indicate various mutational signatures (e.g., SBS40, 

SBS5, etc.), as indicated by the legend above. (B) The proportions of tumor sectors 

with SBS4 (caused by tobacco smoking) by tumor group. (C) Counts of mutations due 

to SBS4 in tumor sectors that have SBS4 mutations. (D) tSNE (t-distributed stochastic 

neighbor embedding) dimension reduction based on the mutational spectra. For 

information on the mutational signatures, see COSMIC 

(https://cancer.sanger.ac.uk/signatures/). 

 

Figure 4. Heatmap of activities of the top 10 pathways up- and down-regulated in 

oncogene-driven non-smoking tumors. Each column is a tumor sector, and sectors are 

grouped by patient as shown in the row labelled “Patient”. SBS4 is the mutational 

signature of tobacco smoking in lung cancers. Z-scores are of pathway activity. The 

Benjamini-Hochberg false discovery rates (q values) of differential pathway activity 

were based on p-values calculated using limma50. Supplementary Figure S8 and 

Supplementary Tables S9 and S10 provide details. 
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Figure 4
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