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ABSTRACT
Recommender Systems (RSs) are widely used to help online users
discover products, books, news, music, movies, courses, restaurants,
etc. Because a traditional recommendation strategy always shows
the most relevant items (thus with highest predicted rating), tradi-
tional RS’s are expected to make popular items become even more
popular and non-popular items become even less popular which
in turn further divides the haves (popular) from the have-nots (un-
popular). Therefore, a major problem with RSs is that they may
introduce biases affecting the exposure of items, thus creating a
popularity divide of items during the feedback loop that occurs with
users, and this may lead the RS to make increasingly biased recom-
mendations over time. In this paper, we view the RS environment
as a chain of events that are the result of interactions between users
and the RS. Based on that, we propose several debiasing algorithms
during this chain of events, and evaluate how these algorithms
impact the predictive behavior of the RS, as well as trends in the
popularity distribution of items over time. We also propose a novel
blind-spot-aware matrix factorization (MF) algorithm to debias the
RS. Results show that propensity matrix factorization achieved
a certain level of debiasing of the RS while active learning com-
bined with the propensity MF achieved a higher debiasing effect
on recommendations.
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1 INTRODUCTION
The goal of a RS is to, given the user’s previous ratings, predict
which items the user might like. Modern RSs generally aim to
discover a constant relationship between users and items. This may
lead to a situation in which users only see a narrow subset of the
entire range of available recommendations, a phenomenon known
as the ‘filter bubble’ [9]. The relationship between users and items
is, however, a time dependent variable because the RS predicts
that some items may not be of interest to the user, and therefore
these items may never actually be seen by the user. This presents
a significant problem for RSs: we might know why a user likes an
item, but we do not know why an item is not-liked by the user.
Is it not-liked by a user because the user does not like it, or is it
simply because the user has not seen the item in the RS results?
Furthermore, if we assume the RS will continue to recommend
items to users based on biased ratings, and that users will respond
to these recommendations, the RS will slowly learn to recommend
increasingly similar items. In other words, the RS will begin to
systematically limit the users‘ ability to discover more items [15].
In this paper, we propose to model how iterated biases evolve from
the continuous user-RS feedback loop, develop a series of different
debiasing strategies, and evaluate how these algorithms impact the
predictive accuracy of the RS, as well as trends in the popularity
distribution of items over time. We also propose a novel blind spot
aware matrix factorization algorithm to debias the RS.

1.1 Objectives and Contributions
First, we argue that a RS is a chain of events in which users actively
interact with the output of a RS. Next, we introduce several debi-
asing algorithms for RSs, particularly those based on MF, during
this chain of events. To debias the RS interactions with users, we
propose to use three algorithms:

1) a unified recommendation and active learning strategy (active
recommendation) during the interaction between users and the RS
algorithm, with the goal of reducing recommendation uncertainty,
while at the same time ensuring the integrity of the algorithm‘s
performance;
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2) an exposure-based collaborative filtering recommendation
model that is also combined with an active recommendation to
further debias the RS;

3) a blind spot aware MF, which takes into account the blind
spot inherent in the learning phase of the RS.

2 RELATEDWORK
2.1 Debiasing Strategies
Work on debiasing RSs has been done from various perspectives.
Hu et al. first proposed using an implicit feedback model to measure
the level of confidence that a user will see an item [5]. This is similar
to the modern notion of a propensity score [10], which is defined
as the probability that an item will be seen by the user. Schnabel
et al. [10] argued that recommending items in a RS is analogous to
exposing a patient to a randomized treatment in a medical study,
and proposed the introduction of a propensity-scored recommenda-
tion learning system. Liang et al. proposed that a propensity score
matrix be calculated first, followed by a weighted MF based on
the propensity score matrix [6, 7]. Abdollahpouri et al. proposed a
fairness-aware regularization aiming to reduce popularity bias in
recommender system [1]. Chanely et al. observed that algorithms
increase homogeneity among users, thereby decreasing the util-
ity gained by users of the system, and presented a simulation to
illustrate how this effect occurs [2]. Yang et al. considered implicit
feedback models instead of explicit feedback models in their study,
and proposed ways to estimate a propensity matrix based exclu-
sively on popularity, which essentially describes propensity as an
estimator of the true probability distribution [17].

Singh et al. proposed a method to construct fair rankings among
relevant items, positing that the problem originates at the ranking
step (recommendation step) and not during the learning process
[12]. Their methodology ranked the items based on a calculated
utility, and added a fairness constraint based on the propensity score.
Sinha et al. considered the RS as a feedback loop, assumed that user
ratings are true prior to the feedback loop, and proposed amethod to
deconvolve this feedback mechanism, assuming that each feedback
response follows a certain mathematic relationship to previous
recommendations [13]. Nasraoui et al. considered the continuous
interaction between learning algorithms and humans as a Markov
Chain of event, and proposed several approaches to debias the
learning algorithms [8]. Shafto and Nasraoui presented a cognitive
foundation for the interaction between learning algorithms and
humans, showing how recommendation algorithms may affect the
behavior of humans within the human-recommender feedback loop,
and proposed possible cognitive models to study and debias the
interaction [11].

Unlike the above work, Our proposed strategies aim to reduce the
iterated bias that occurs during the interactions between users and
the RS without the introduction of strong assumptions. Moreover,
in contrast to the aforementioned research, we propose algorithms
that consider the RS to be a chain of events, and then focus on
debiasing the iterated bias introduced by these interactions by
using an estimated propensity score, with and without an active
learning strategy. We also employ the Gini coefficient and the blind
spot score to quantify how the interaction affects the users’ ability
to discover new items.

2.2 Propensity and Active Learning
We start by summarizing the notation used in this paper, which
follows the notation in [7, 10]:
Ru,i : An integer which indicates the ratings of user u to item i .
Ou,i : A binary value which indicates that user u provided a rating

for item i to the system, [Ou,i = 1] → [Ru,i is
observed].

Pu,i : Propensity: The probability of observing an entry. Pu,i =
P (Ou,i = 1).

NU : The total number of users.
Ni : The number of users who rated item i .

2.2.1 Propensity. Recommendations contain two sources of infor-
mation: the items which the user can see, and the user‘s recorded
preference toward those items. Propensity refers to the probability
of observing Ru,i [7, 10]. In a real-world application, what the user
sees is highly subject to selection biases. For example, in a movie
recommendation system, users watch and rate movies that they like,
and rarely rate movies that they dislike since they may not have
seen these movies. Another example would be an advertisement
recommendation system that always shows ads that it believes to
be of interest to the user. This bias is expected to deepen as a result
of the iterative interaction between users and the recommendation
outputs.

Recent research on RSs began to take into account the role of
item propensity, where user exposure to an item in a RS is viewed
as analogous to exposing a patient to a treatment in a medical study
[7, 10]. As a result, propensity indicates how probable it is that a
new treatment can or will be exposed to a patient. In both cases,
the studies try to infer the effect based on current results (whether
it be the effect of a new treatment, or a new item in a RS).

Existing approaches for RSs generally under-weight items that
are not rated in the system. It is, however, difficult to determine
whether an item is not rated by a user because the user does not
like the item, or because the user has not seen the item as a result
of the inherent selection bias in the RS [7]. The main idea behind
a propensity-based MF is to under-weight the unrated item for
recommendation by bringing into the objective function of the
model an Inverse Propensity Score, as follows [10]:

arдmin
V ,M

∑
Ou,i=1

| |R −VTM | |2

Pu,i
+ λ( | |V | |2F + | |M | |

2
F ). (1)

Here Pu,i represents the probability that a user u will see item i ,
and is also referred to as propensity score. V and M are the two
latent factors in the MF.

Estimating propensity. A simple way of estimating propensity is
to use a popularity score [7]. This assumes that Ou,i follows a
Bernoulli distribution, i.e., Ou,i ∼ Bernoulli (ρi ). Note that the
propensity score is fixed across users in this case, i.e., Pu,i = ρ̂i .
Given a rating matrix, the popularity of an item is the proportion of
items exposed to certain users among all the users (essentially, the
proportion of users who have rated the item relative to all users).

Another way of estimating propensity is to assume that Ou,i
follows a Poisson distribution [7], or Ou,i ∼ Pois (πTu γi ). πu and
γi are the two latent factors of the Gamma prior. Given a ratings
matrix, this method assigns a value of 1 to an item that was rated

646



by a user in the observational matrix O , and 0 if it is not rated. By
factoring this observational matrix, we get the propensity scores of
all user and item pairs (see Eq. 2)

Pu,i = 1 − P (Ou,i = 0|πu ,γi ) ≈ 1 − exp
{
−E[πTu γi ]

}
. (2)

2.2.2 Active Learning . Active Learning (AL) is a special case of
semi-supervised learning in which the system has the ability to
interactively prompt users to label (or rate) items in order to im-
prove the accuracy of the model [3]. One of the advantages of AL
is that the targeted knowledge the system acquires helps acceler-
ates the speed in which the system learns the model. One way to
implement AL is to actively prompt users to rate items that have
been underweighted by the RS in order to improve the quality of
the ratings of this subset of items. In a rating system with range
from Rmin to Rmax , the active learning can be formalized directly
as follows [18]: Select the next item xact that satisfies

xact = arдmin
xi

[θ − ŷ |xi ]. (3)

Here, ŷ is the rating predicted by the RS given an item xi . θ controls
the degree of active learning, ranging from the midrange rating
of 0.5(Rmin + Rmax ) to the maximum rating Rmax . It can be seen
that θ = Rmax recovers pure recommendation (select the most
relevant item, hence the item with highest predicted rating), while
θ = 0.5(Rmin+Rmax ) recovers pure active learning (select the item
with most uncertain relevance to the user based on the predicted
rating, hence an item that is far from both being very relevant (ŷ =
Rmax ) and very non-relevant (ŷ = Rmin )). Cognitive experiments
have shown that an active recommendation system can cover a
wider choice of items, while maintaining the accuracy of the results
[18].

3 PROPOSED METHODS TO DEBIAS
RECOMMENDER SYSTEMS

We first introduce our interactive recommender system framework,
which considers a RS as a continuous chain of events. First the
initial RS suggests items to each user based on the initial training
ratings and it is assumed that the users have 100% agreement with
the recommendation. We then retrieve the true ratings from our
masked ratings and add to the new training ratings. After that, a
new recommendation based on new training data will be issued.
This interaction will continue until a maximal number of itera-
tions is reached. Algorithm 1 shows the details of our interactive
recommender system with human in the loop.

We propose several recommendation strategies based on well-
known algorithms to simulate real-life user-recommendation sys-
tem interaction.

Conventional MF:
This model is trained using conventional MF (same as Eq.
1 with Pu,i = 1), and the system always selects the top
predicted item for each user, and adds it to the next (new)
training set. In other words, there is no active learning.

Conventional MF + Active Learning:
This model is trained using conventional MF (Eq. 1 with
Pu,i = 1), but the system selects the active recommendation
items with θ = 4.5 for each user in Eq. (3). θ = 4.5 is chosen

Algorithm 1: Interactive Recommendation System with the
Human-Recommender System Feedback Loop Debiasing Mech-
anism
Data: Rating matrix R′ui , λ, Learning rate η,MAXinteration ,

Iterations=0, Size of selection
Result:MAE, RMSE, Gini Coefficient
The system trains the initial Matrix Factorization model and
computes predictions R̂;

while Iterations < Max Feedback Loop Iterations do
1 for all users u in the system {

1.1. The system selects top-N items to recommend
from the predicted ratings R̂ based on a specialized
recommending strategy;

1.2. User u picks the selected top-N items and gives
rating Rnewu,i (from ground-truth complete data) for each
item i;

}
2. The system records the popularity Pi = Ni/NU after the
new ratings are taken in.
3. The system records the metrics such as the RMSE and
the Gini index of the popularity given the current rating
matrix;

4. The system retrains the model with the new rating
matrix using steps gradient descent updates (Eq. 4 or Eq.
8 depending on the recommendation strategy chosen,
and recomputes the predictions).
5. Iterations++

end

to be between θ = 0.5(Rmin + Rmax ) = 3 (pure AL) and
θ = Rmax = 5 (pure recommendation).

Popularity Propensity MF:
This model is trained with propensity MF (Eq. 1) [10]. Here
the propensity Pu,i is estimated based on popularity. The
system always selects the top predicted item for each user,
and adds it to the next (new) training set. In other words,
there is no active learning.

Popularity Propensity MF + Active Learning:
This model is trained with propensity MF (Eq. 1) [10]. Here
the propensity Pu,i is estimated using popularity. The system
selects the active recommendation items with θ = 4.5 for
each user in Eq. (3).

Poisson Propensity MF:
The model is trained with propensity MF (Eq. 1). Here the
propensity Pu,i is estimated based on Poisson MF (2) [7]
on the exposure matrix. The system always selects the top
predicted item for each user, and adds it to the next (new)
training set. In other words, there is no active learning.

Poisson Propensity MF + Active Learning:
The model is trained with propensity MF (Eq. 1). Here the
propensity Pu,i is estimated using Poisson MF (Eq. 2) [7]
on the exposure matrix and the system selects the active
recommendation items using (Eq. 3) with θ = 4.5 for each
user (again chosen to be between θ = 0.5(Rmin +Rmax ) = 3
(pure AL) and θ = Rmax = 5 (pure recommendation)).
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In this preliminarywork, we use both popularity and Poissonmatrix
factorization (PMF) to estimate the propensity. To minimize the
objective function, we use stochastic gradient descent, which has
been used successfully to solve MF with big datasets. For a given
training rating ri j , the updates for Vu andMi can be shown to be:

Vu ← Vu + η(2euiMi − λVu )

Mi ← Mi + η(2euiVu − λMi ).
(4)

Here eui =
(r̂ui−V T

u Mi )
Pu,i , r̂ui is the predicted rating and η is the

learning rate for gradient descent. With a proper choice of step size,
gradient descent converges to a local minimum. Propensity Pu,i is
computed as follows:

Pu,i =



1.0 f or Conventional MF
Ni /NU f or Popular ity Propensity MF

1 − P (Ou,i = 0 |πu , γi ) f or Poisson Propensity MF
(5)

This means that Pu,i = 1 for the first two (Conventional MF,
with or without AL) recommendation strategies. Pu,i is estimated
using popularity for Popularity Propensity MF (with or without
AL) strategies and it is estimated using Eq. 2 for Poisson Propensity
MF (with or without AL) strategies.

In addition to the above proposed debiasing strategies above,
a seventh algorithm called Blind Spot Aware Matrix Factoriza-
tion is introduced. In this paper, we define the blind spot size as the
number of item with a predicted ratings ˆRu,i that is smaller than a
threshold δ , i.e., Du

δ = {i ∈ I | R̂u,i < δ }. Note that because each
user has their own blind spot, we define a threshold for each user.
The threshold is used to set a percentile cut-off for each user, 95%
in our experiments. Therefore, We define the blind spot for user u
as

Du
ϵ = {i ∈ I | R̂u,i < maxu,i (R̂u,i ) ∗ ϵ }. (6)

Here ϵ is a cut-off which controls the threshold.
Our proposed Blind Spot Aware MF tries to limit the blind spot

when trying to optimize the cost function of the conventional ma-
trix factorization. The cost function for blind spot aware MF is as
follows:

J =
∑
u,i ∈R

| |ru,i −V
T
u Mi | |

2 +
λ

2
( | |Vu | |

2 + | |Mi | |
2)

+
β

2
| |Vu −Mi | |

2.︸            ︷︷            ︸
Blind Spot Aware T erm

(7)

To minimize the objective function, we use stochastic gradient
descent, which has been used successfully to solve MF for CF with
big datasets. For a given training rating ri j , the updates for Vu and
Mi can be shown to be:

Vu ← Vu + η(2euiMi − λVu − β (Vu −Mi ))

Mi ← Mi + η(2euiVu − λMi + β (Vu −Mi )).
(8)

Here eui = r̂ui − V
T
u Mi , r̂ui is the predicted rating, and η is the

learning rate for gradient descent. With a proper choice of step size,
gradient descent converges to a local minimum.

IntuitionBehindBlind SpotAwareMF:ConventionalMatrix
Factorization aims to predict ratings by approximating the existing
ratings by the dot product between user and item. The RS tries

Figure 1: Conventional Matrix Factorization vs. Blind Spot
Aware Matrix Factorization. Figure (A) indicates Conven-
tional Matrix Factorization, in which the algorithm aims to
find items that are close to users through differentiation.
The top of Figure (A) indicates how items are distributed
around a user in the latent space under Conventional MF,
the bottom of (A) shows the similarity between the user and
all items in latent space. Figure (B) shows how the proposed
Bias-aware Matrix Factorization finds items close to users
while keeping the items that are close to each other in the
latent space. The top of Figure (B) indicates how items are
distributed around a user in the latent space , the bottom of
(B) shows the similarity between the user and all items in
latent space.

to differentiate different items for each user as much as possible
(see Figure 1). Given the same proportional range of similarity,
blind spot aware MF aims to recommend more items to explore
(with high relevance scores). Conventional MF has more limited
choices to recommend to users given the predicted ratings range
[0.8R̂max , R̂max ], where R̂max is the maximum predicted rating
for a user.

On the other hand, Blind Spot Aware MF tries to match the
existing rating, while bringing items close to each other so that a
user has a higher chance to explore more items, so that the overall
blind spot size is decreased (see figure 1).

4 EXPERIMENTS
4.1 Data Set
We use item response theory to generate a sparse rating matrix
Ru,i using the model proposed in [4]. Assume au to be the center
of user u’s rating scale, and bu to be the rating sensitivity of user u.
Finally let ti be the intrinsic score of item i . We generate a user-item
rating matrix as follows,

Ru,i = L[au + buti + ηu,i ], (9)

where L[ω] is the discrete level function, assigning a score in
the range Rmin = 1 to Rmax = 5 : L[ω] = max(min(round(ω),
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5), 1) and ηu,i is a noise parameter. In our experiments, we draw
au ∼ N (3.4, 1), bu ∼ N (0.5, 0.5), tu ∼ N (0.1, 1), and ηu,i ∼
ϵN (0, 1); where N is a standard normal density, and ϵ is a noise
parameter, we set up ϵ = 0.5. We generate a rating matrix R with
500 users and 500 items, therefore we have 250,000 ratings in total.

4.2 Evaluation
In order to assess the accuracy of the prediction of the RS during the
interactive recommendation, we compute the Root Mean Square
Error (RMSE). To check the impact of the debiasing mechanism,
we compute the Gini coefficient of the popularity scores of all
items. The Gini coefficient is used to measure the inequality of a
distribution [14]. Let Pi be the popularity of each item after training
the model. For a population with n values Pi , i = 1 to n, that are
indexed in non-decreasing order ( P(i ) ≤ P(i+1) ), the Gini coefficient
can be calculated as follows [14]:

G = (

∑n
i=1 (2i − n − 1)P(i )

n
∑n
i=1 P(i )

). (10)

The higher the Gini coefficient, the more unequal are the values in
the dataset. The Gini coefficient of the popularity of items shows
how the recommendation system’s output affects the exposure
distribution of items. Traditional RS’s are expected to make popular
items become even more popular and non-popular items become
even less popular because a traditional recommendation strategy
always shows the most relevant items (thus with highest predicted
rating), which further divides the haves (popular) from the have-
nots (unpopular).

4.3 Method
We first randomly selected 25 items for each of the 500 users from
the completed rating matrix and started our initial training.We then
select 20% of the ratings as the test set. Note that the testing set is
later fixed, and will not be changed. All other ratings are considered
as candidate ratings: they are used to simulate the feedback loop of
RS and human interaction, and will be added based on the selection
mechanism of the recommendation strategy in each iteration/loop.
Figure 2 shows the approach for splitting our data. We record the
RMSE and the Gini coefficient of predicted item popularity of each
testing set.

In each simulation of a feedback loop, we use one of the rec-
ommendation strategies listed in Section 3 to recommend items to
each user. After that, we simulate the users’ response by assuming
that they responded to items that are recommended and provide
the true ratings for the top-N ratings (top-N=10). After new ratings
are taken in, we update the recommender system. We then simulate
runs of Max Feedback Loops = 20 iterations in Algorithm 1 where
a single iteration (or loop) consists of the algorithm providing a
recommendation, the user labeling the recommendation, and the
algorithm updating its model of the user’s preferences.

For each of the recommendation strategies in section 3, we set
the number of items (top-N) selected after each recommendation
to 10. For the blind spot aware MF and conventional MF with and
without AL models, we use stochastic gradient descent to optimize
the objective function. For all the Matrix Factorization methods, we
set the dimension of the latent space to 20. For all the four propensity

based MF algorithms, we optimize the objective function following
coordinate gradient descent update rules to learn the model [16].
For all gradient descent optimization updates, we set the number
of learning iterations steps = 200, regularization weight λ = 0.02
and learning rate η = 0.002 for training the matrix factorization
model. All the results are from the average of 10 independent runs.

We also report the results for random selection as baseline. This
means that the items are selected randomly by the user to rate
after the recommendations are made by using the Conventional
MF model (meaning essentially an open loop).

For the Blind Spot Aware MF 7, We determine the blind spot
aware term weight coefficient β by grid search, i.e., running the ma-
trix factorization (Eq. 7) with different β = [0.002, 0.02, 0.05, 0.1, 0.5, 0.8]
on the initial rating data (before the completion). Finally, we choose
β as 0.2 for the Blind Spot Aware term.

...

...

...

...

Initial train ratings (5%)

Test ratings (20%)

Candidate ratings (75%)

Completed rating matrix

Figure 2: The splitting of the completed rating matrix. The
completed rating matrix is split into 3 parts: 1) Initial rat-
ings; 2) Test ratings; and 3) Candidate ratings. The candidate
ratingswill be added to the training ratingswhen queried by
the system.

4.4 Results
Figure 3 shows the RMSE of each recommendation strategy during
the iterative recommender system for the training ratings. The
conventional MF and the conventional MF with AL show similar
trends in the RMSE (identical on the plot). However, the conven-
tional MF with random selection starts with a high RMSE, but this
decreases with each iteration when more ratings are collected. All
propensity based MF methods, with or without AL, show a sim-
ilar trend for the training RMSE as well as the blind spot aware
MF. At iteration 1, all six algorithms have the same initial training
ratings. The reason why they have large differences on training
RMSE lies in the fact that all the propensity MF strategies do not
minimize the RMSE; instead they minimize the primary loss term
consisting of the square error loss between the prediction r̂ui and
the true rating rui , inversely weighted by 1

Pu,i (see Eq. 1). On the
other hand, conventional MF directly minimizes RMSE, i.e. does
not weight this error in the primary loss term (which is equivalent
to setting Pu,i = 1). Note that random baseline means that the
items are selected randomly after the recommendations (meaning
essentially an open loop).

We also record the RMSE on the testing ratings, as shown in
Figure 4. The RMSE for the testing set increases dramatically in the
early stages for all propensity based MFs, but then drops to a low
level. On the other hand, random selection and conventional MF
approaches have a strictly decreasing trend in RMSE with more
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Figure 3: Training primary loss term with different debias-
ing mechanisms for each iteration on synthetic data. The x-
axis represents the feedback loop iteration number, and the
y-axis represents the RMSE for the training set. The conven-
tional MF and the conventional MF with AL show a similar
trend during each iteration. All four propensity based MFs
also show a similar trend as well as the blind spot aware MF.
Note that random baselinemeans that the items are selected
randomly after the recommendations (meaning essentially
an open loop).

iterations, however with a higher value compared to other algo-
rithms. The blind spot aware MF algorithm has the lowest testing
error compared to other algorithms.

Gini Coefficient. As stated in section 2, we computed the Gini coef-
ficient of the item popularity after each feedback loop iteration to
assess how different debiasing mechanisms affect the distribution
of popularity. A higher Gini index indicates more heterogeneity
of the popularity, essentially meaning a bigger popularity divide
between the items, leading to a wider gap between the haves and
the have-nots. Figure 5 shows the Gini coefficient distribution. Con-
ventional MF increases the inequality of the popularity of items,
which indicates that the conventional MF will boost some popular
items. On the other hand, the pure Propensity based MF has a high
Gini coefficient at an early stage which then decreases with each
feedback loop iteration. Propensity based MF with AL results in
a low Gini coefficient across all feedback loop iterations. Random
selection appears to have the lowest Gini coefficient since all items

Figure 4: Testing RMSE with different debiasing mecha-
nisms for each iteration on synthetic data. The x-axis rep-
resents the feedback loop iteration number, and the y-axis
represents the RMSE for the testing set. Conventional MF,
with and without AL, show a similar trend during each it-
eration, and they are similar to random selection. All four
propensity based MFs also show a similar trend with lower
RMSE, as well as the blind spot aware MF.

have the same probability of being explored. Blind Spot Aware MF
has a lower Gini coefficient compared with Conventional MF.

Figure 5: Gini coefficient vs. feedback loop iteration on the
synthetic data. The Gini coefficient increases for the Popu-
larity PropensityMFwithoutAL, but then quickly decreases.
On the other hand, the Gini coefficient score of the Propen-
sity MF with AL continues to decrease. Note that a higher
Gini index indicates more heterogeneity of the popularity,
essentially meaning a bigger popularity divide between the
items.

Based on the observed trends of the RMSE and the Gini coef-
ficient analysis, we conclude that: 1) Propensity MF achieves a
significant level of debiasing on the recommendations in terms
of Gini coefficient (pvalue < 0.05); 2) Active Learning combined
with Propensity MF results in low testing RMSE and a high debi-
asing effect on recommendations; 3) Conventional MF increases
the popularity bias which eventually affects the ability to discover
new items, but decreases the bias when combined with an Active
Learning strategy; 4) Blind Spot Aware MF achieves one of the
lowest testing RMSE and decreases popularity bias compared to
Conventional MF.

5 CONCLUSIONS
Recommender systems introduce bias during the interactive feed-
back loop with users over time. In this paper, we introduce an
interactive framework to simulate the feedback loop that is created
by the chain of events generated when a recommender system in-
teracts with users over time. Based on this framework, we proposed
several debiasing algorithms based on existing and new techniques
to use during this chain of events. We also proposed a blind spot
aware matrix factorization algorithm which takes into account the
blind spot score when trying to learn the recommendation model.

Note that in this paper, we do not focus on improving collabora-
tive filtering algorithms (Matrix Factorization) for recommender
systems by studying user feedback. Instead, our goal is to simulate
the interaction between users and the recommender system and to
debias the recommender system during the interaction. Our results
showed that propensity based MF achieved a certain level of debi-
asing of the RS while active learning combined with the propensity
MF achieved a higher debiasing effect on recommendations. Our
proposed blind spot aware matrix factorization also achieved a cer-
tain level of debiasing of the RS. One limitation of this study is that
we assume that users totally agree with the recommendations in
each iteration, and provide feedback. In real-life, users might not
agree with recommendations. Thus future study could use a more
realistic user reaction model.
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