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Abstract—Kernel regression is an effective tool for a variety of
image processing tasks such as denoising and interpolation [1].
In this paper, we extend the use of kernel regression for deblur-
ring applications. In some earlier examples in the literature, such
nonparametric deblurring was suboptimally performed in two se-
quential steps, namely denoising followed by deblurring. In con-
trast, our optimal solution jointly denoises and deblurs images.
The proposed algorithm takes advantage of an effective and novel
image prior that generalizes some of the most popular regulariza-
tion techniques in the literature. Experimental results demonstrate
the effectiveness of our method.

Index Terms—Deblurring, denoising, kernel regression, local
polynomial, nonlinear filter, nonparametric estimation, spatially
adaptive.

I. INTRODUCTION

T
HE framework of kernel regression [2] has been widely

used in different guises for solving a variety of pattern

detection and discrimination problems [3]. In [1], we described

kernel regression as an effective tool for image reconstruc-

tion, and established its relation with some popular existing

techniques such as normalized convolution [4], [5], bilateral

filter [6], [7], edge-directed interpolation [8], and moving

least-squares [9]. Moreover, we proposed a novel adaptive

generalization of kernel regression with excellent results in

both denoising and interpolating (for single and multiframe)

applications. The image degradation model for all the above

techniques mainly consisted of regularly or irregularly sampled

data, contaminated with independent and identically distributed

(i.i.d.) additive zero mean noise (with otherwise no particular

statistical distribution assumed).

In our earlier kernel regression-based image reconstruction

methods, an important image degradation source, namely the

(camera lens or atmospheric) blur [10], was ignored. In other

works, this problem was treated in a two-step process of de-

noising/deblurring [1], [11]. Such two-step solutions, in general,
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are suboptimal, and improvements upon them are the subject of

this paper.

In general, we have a model for the deblurring problem in

Fig. 1, where is the real scene which is the unknown function

of interest, is the point spread function (PSF) of the blur,

is an additive white noise, and is an observation that is the

distorted function of . Following this model, the pixel value

at is expressed as

(1)

where is the convolution operator, is the unknown

blurred pixel value at a sampling position , and is the total

number of sampling positions. In matrix notation, we write the

blur-free pixels of interest as . Next,

we rewrite the model (1) in matrix form as

(2)

where is an observed image, is the

unknown image of interest, and is a noise image.

The underline indicates that the matrices are lexicographically

ordered into a column-stacked vector, e.g., . Since

the deblurring problem is typically ill-posed, a popular way to

estimate the unknown image is to use the regularized least

square technique [12]

(3)

where is the regularization parameter, and is the reg-

ularization term. Some representative examples of are

given in Table I, in which is a high-pass filter (e.g., Laplacian

[13]), is a smoothing parameter, is the window size, and

is the shift operator that shifts an image pixels in the direc-

tion. In this paper, we replace the first term in (3) with one moti-

vated by kernel regression, which results in a spatially adaptive

weighted least square (or least absolute deviation) problem. Ad-

ditionally, we introduce novel regularization terms which pro-

vide spatially adaptive prior information, resulting in a powerful

overall setting for deconvolution.

Contributions of this paper are the following. 1) We describe

and propose kernel regression as an effective tool for deblur-

ring. 2) We propose a novel image prior which is effective in

suppressing both noise and ringing effects. These effects are

typical in deblurring applications. We further show that many

popular regularization techniques such as digital total-variation

(TV), bilateral TV, and Tikhonov regularization [10] in Table I

are special cases of this adaptive prior.

1057-7149/$25.00 © 2008 IEEE
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Fig. 1. Data model for the deblurring problem.

TABLE I
REGULARIZATION FUNCTIONS AND THEIR FIRST DERIVATIVES

This paper is organized as follows. In Section II, first ignoring

the blurring effect, we briefly review the kernel regression

framework as described in [1]. Then, we include the blurring

effect in the data degradation model (Fig. 1), and introduce a

regularized estimator based on the kernel regression framework

for the deblurring application. In Section III, we extend the

kernel-based deblurring to a data-adaptive method which is the

basis for the best results described in this paper. Experiments

are presented in Sections IV, and Section V concludes this

paper.

II. KERNEL-BASED DEBLURRING

In this section, we briefly review the classical kernel regres-

sion approach, and provide some intuition behind it. After that,

including the blurring effect, we derive a regularized kernel re-

gression method for the deblurring application.

A. Review

Defining the blurry function as , we rewrite

the data model (1)

(4)

where is a noise-laden sample at , is the (hitherto un-

specified) regression function to be estimated, is i.i.d. zero

mean noise, and is the total number of samples in a neigh-

borhood (window) of interest. As such, the kernel regression

framework provides a rich mechanism for computing point-wise

estimates of the regression function with minimal assumptions

about global signal or noise models.

While the particular form of may remain unspecified for

now, we can rely on a generic local expansion of the function

about a sampling point . Specifically, if is near the sample

at , we have the th order Taylor series1

(5)

(6)

where and are the gradient (2 1) and Hessian (2 2) op-

erators, respectively, and is the half-vectorization oper-

ator which lexicographically orders the lower triangular portion

of a symmetric matrix into a column-stacked vector, e.g.,

(7)

Furthermore, is , which is the pixel value of interest, and

the vectors and are

(8)

(9)

Since this approach is based on a local representation of say

order , a logical step to take is to estimate the parameters

from all the samples , while giving the nearby

1By using the Taylor series, we are implicitly assuming that the regression
function is a locally smooth function up to some order. Of course, other localized
representations are also possible and may be advantageous .
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Fig. 2. Equivalent kernel function for the uniformly sampled data case with (a) N = 0 and 1, and (b) N = 2. The cross sections for each are in (c). The kernel
K in (10) is modeled as a Gaussian with the smoothing matrixH = diag[4; 4]. (a) N = 0. (b) N = 2. (c) Cross sections.

samples higher weights than samples farther away. A formu-

lation of the fitting problem capturing this idea is to solve the

following optimization problem:

(10)

with

(11)

where is the regression order, is the error norm parameter

typically set to 2 (for more on the choice of , see [15]),

and is the kernel function (a radially symmetric function

such as a Gaussian), and is the smoothing (2 2) matrix

which dictates the “footprint” of the kernel function. The sim-

plest choice of the smoothing matrix is , where is

called the global smoothing parameter. The shape of the kernel

footprint is one of the most important factors that determines the

quality of the reconstructed image. For example, it is desirable

to use kernels with larger footprints in the smooth areas of the

image to reduce the noise effects, while relatively smaller foot-

prints are desirable in the edge and texture areas. More details

about the optimization problem above can be found in [1] and

[15], and we give details about the choice of the kernel functions

in Section III.

To sum up so far, the optimization problem (10), which we

term “classic” kernel regression, eventually provides a point-

wise estimator of the regression function (q.v. [1], [2], and [15]

for derivations). Regardless of the choice of the kernel function

and the regression order , the estimator always yields

a weighted linear combination of nearby samples, that is

(12)

where we call the equivalent kernel function for . For ex-

ample, when we choose , the estimator (12) becomes

(13)

which is known as the Nadaraya–Watson estimator (NWE) [16].

Of course, higher order regressions are also possible.

Fig. 2 shows the equivalent kernel function with ,

and 2 for a uniformly sampled data set.2 The significant differ-

ence between the zeroth and the second order weights is their

tails. For , the equivalent kernel is essentially a nor-

malized kernel function as seen in (13). On the other hand,

for , the shape of the equivalent kernel is transformed

and the weight values in the tail area are negative due to the

higher order polynomial in the Taylor series. In general, lower

order approximates, such as NWE, result in smoother images

(large bias and small variance) as there are fewer degrees of

freedom. On the other hand, over-fitting happens in regressions

using higher orders of approximation, resulting in small bias

and large estimation variance. We also note that smaller values

for (the global smoothing parameter) result in small bias and

consequently large variance in estimates. Optimal order and

smoothing parameter selection procedures are studied in [9].

In this section, we studied the “classic” kernel regression

method, its properties, and showed its usefulness for image

restoration purposes. However, as described above, the kernel

method ignores the blurring effect, and consequently if deblur-

ring is desired, this must be applied as a postprocessing step to

recover the sharpness of the original image. In the following,

considering the blurring effect, we derive a regularized deblur-

ring estimator based on the kernel regression framework. After

that, in Section III, we present data-adaptive kernel functions

which enhance the performance of the deblurring method, and

discuss how the deblurring method with the adaptive kernels

improves upon other existing methods in the literature. We also

show in detail how to implement our deblurring method.

2The equivalent kernel function depends on sampling positions. Since this
paper focuses on the single frame deblurring problem, we show only the uni-
formly sampled case whereN = 0 and 1 give the same weights. The irregularly
sampled case and more details can be found in [1].
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B. Kernel-Based Deblurring

Considering the blurring effect, instead of , the function is

the one we wish to estimate. Therefore, in place of representing

the blurred function by a local approximation (Taylor series),

we apply the kernel regression framework to . Following the

same procedure as above, the local signal representation of the

unknown function with a Taylor series is

(14)

Furthermore, in the presence of blur, the blurring effect asso-

ciates (couples) all the sampling positions with their

neighbors, and this linkage precludes one-by-one estimations of

deblurred pixels, such as (12), and necessitates a simultaneous

estimation of all the pixels of interest, e.g., (3). Hence, we tightly

constrain the reciprocal relationship between neighboring pixel

values by a local representation model, i.e., the Taylor series,

in order to derive a simultaneous pixel estimator based on the

kernel regression framework. Suppose we have a pixel value

and its neighbor which is located -pixels in the

-direction and -pixels in the -direction away from ,

i.e.,

(15)

where . The Taylor series indicates the following

relationship between and :

(16)

In order to estimate all the pixels simultaneously as an image,

we write the local representation (16) at every sampling point

together, and gather the result into lexicographically

stacked vector form as

...

...
...

...

...
...

... (17)

For convenience, we denote, for example, the first and second

right hand vectors in (17) as the lexicographically ordered de-

sired image and its first derivative along the direction

, respectively. Additionally, the left-hand vector in (17)

can be regarded as the shifted version of , and, thus, we sim-

plify the notation in (17) as

(18)

where and are the - or -pixel shift operators along

the or directions, respectively. Finally, considering an th

order approximation, we have

(19)

where, for example, when , we have

(20)

and . Naturally, with fewer higher-order

terms in this expansion, the smaller shift distances result in a

more faithful approximation in (19). This suggests a general

(smoothness) prior (regularization term) with weights given by

the shift (spatial) distance for images smooth to order as

(21)

which we call the adaptive kernel total variation (AKTV) when

, and where is the weight matrix for this term

defined as

(22)

Here again, is the kernel function and is the

smoothing matrix at computed based on the unknown

(estimated) function as described in detail in Section III.

The deblurring problem is often ill-posed, in particular, when

the width of the PSF is large. Therefore, the regularization term

(21) is useful to further restrict the solution space for the signal

of interest.

Having introduced the regularization term, we now turn our

attention to describing the kernel-based “deblurring” term.

Using the local representation (19), the blurred noisy image

is expressed as

(23)
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with

(24)

where is a matrix representing the blurring operation

given by . Similar to the regularization term (21), the local

representation for the blurred noisy image (23) suggests a data

fidelity or likelihood term

(25)

where is the error norm parameter for this term, and

is the weight matrix for this likelihood term computed based on

the estimated blurred signal as described in

Section III.

In summary, the overall cost function to be minimized is for-

mulated as

(26)

where is the regularization parameter. We can solve the op-

timization problem using the steepest descent method (see Ap-

pendix A for the gradient term)

(27)

where is the step size.

C. Related Regularization Terms

There are two points worth highlighting about the regulariza-

tion cost function in (21). First, the regularization term is general

enough to subsume several other popular regularization terms

existing in the literature, such as the ones in Table I. In partic-

ular, note that, if we choose the zeroth regression order ,

(21) becomes

(28)

Therefore, for , the regularization term (28) can be re-

garded as digital TV [17] with , , and

. Alternatively, again with , and with ,

where , the term represents the bilateral total varia-

tion (BTV) regularization criterion first introduced in [10]. That

is to say, the BTV kernel function is defined as

(29)

where in this case is the global smoothing parameter. Second,

with the choice of the zeroth order , we would be

assuming that the unknown image is piecewise constant. On

the other hand, the unknown image is assumed piecewise linear

and quadratic with 1 and 2, respectively. In addition, with

the locally data-adaptive weights (introduced in Section III), the

proposed framework can effectively remove noise and ringing

effects, and preserve local edges. Of course, other choices of

the kernel function are also possible. In the image restoration

literature, the use of data-adaptive kernel functions has recently

become very popular. As such, one may opt to use mean-shift

[18], [19], or nonlocal mean [20] weights as the kernel function

in (26). These methods have implicitly used zeroth-order local

representations , which can also be generalized [21].

III. LOCALLY ADAPTIVE, DATA-DEPENDANT WEIGHTS

One fundamental improvement on the above method can be

realized by noting that the kernel regression estimates using

(11), independent of the order , are always local linear com-

binations on the data, i.e., (12) with the weights shown in Fig. 2.

Hence, they suffer from an inherent limitation due to this local

linear action on the data. This is relevant to the kernel-based

deblurring estimator as well. In [1], we introduced data-adap-

tive kernel functions which rely on not only the spatial distances

, but also on the radiometric properties of these sam-

ples, i.e.,

(30)

Moreover, we established key relationships between data-adap-

tive kernel regression and some existing adaptive filters, such as

the bilateral filter, and showed its effectiveness for denoising.

In this section, we briefly describe two types of data-adaptive

kernel functions [1]: 1) bilateral kernel and 2) steering kernel.

By applying the data-adaptive kernels for the kernel-based de-

blurring estimator, we arrive at a deblurring method that can

effectively suppress both the noise and ringing effects, which

are fundamental issues in the deblurring problem. As we will

see later in the experimental section, the choice of steering ker-

nels is most effective. Furthermore, we will also explain how to

implement the data-adaptive kernel-based deblurring method,

in which we estimate the unknown image by iteratively up-

dating the image and the data-adaptive weight matrix.

A. Bilateral Kernel Function

An intuitive choice of is to use separate terms for pe-

nalizing the spatial distance between the pixel position of in-

terest and its neighbors’ positions , and the radiometric dis-

tance between the corresponding pixels and

(31)

with where and are the global spatial and ra-

diometric smoothing parameters, respectively. Data adaptivity

in the bilateral kernel is incorporated by explicitly taking the ra-

diometric distances into account. Fig. 3 illustrates the kernels of

the bilateral filter at different positions. (Note: We did not add
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Fig. 3. Bilateral kernels in different positions: (top) a flat part, (middle) an edge
part, and (bottom) Lena’s eye part in the high-SNR case. We did not add noise.

Fig. 4. Bilateral kernels in different positions: (top) a flat part, (middle)
an edge part, and (bottom) Lena’s eye part in the low-SNR case. We added
white Gaussian noise with standard deviation 25 (the corresponding SNR is
5.64 [dB]).

any noise here to the Lena image). For example, choosing the

bilateral kernel function and for (12), we have

(32)

which is nothing but the well-known bilateral filter [6], [7]. In

[21], we showed that the bilateral filter is a special case (ze-

roth order bilateral kernel regression) of the general kernel re-

gression denoising approach. Establishing such relation helped

us to design higher-order bilateral filters with superior perfor-

mance with respect to the classic definition of the bilateral filter

in [6]. Unfortunately, as explained in [1], for very noisy images,

the performance of the bilateral kernel techniques significantly

degrades due to the direct use of neighboring pixel differences

which make the radiometric weight values noisy (see Fig. 4).

Such weights become effectively useless for denoising. To over-

come this drawback, we proposed in [1] an alternate data-adap-

tive kernel function: the steering kernel function.

B. Steering Kernel Function

The filtering procedure we propose next takes the above ideas

one step further, based upon the earlier nonparametric frame-

work. In particular, we observe that the effect of computing

in (31) is to implicitly measure a function of the

local gradient estimated between neighboring values, and to use

this estimate to weight the respective measurements. As an ex-

ample, if a pixel is located near an edge, then pixels on the same

Fig. 5. Kernel spread in a uniformly sampled data set. (a) Kernels in the classic
method depend only on the sample density. (b) Data-adapted kernels elongate
with respect to the edge.

side of the edge will have much stronger influence in the fil-

tering. With this intuition in mind, we propose a two-step ap-

proach where first an initial estimate of the image gradients is

computed using some kind of gradient estimator [say the second

order classic kernel regression, e.g., (10) with the choice of as

Gaussian, and ]. Next, this estimate is used to mea-

sure the dominant orientation of the local gradients in the image

(e.g., [22]). In a second filtering stage, this orientation informa-

tion is then used to adaptively “steer” the local kernel, resulting

in elongated, elliptical contours spread along the directions of

the local edge structure. Fig. 5 illustrates a schematic represen-

tation of kernel footprints. With these locally adapted kernels,

the denoising is effected most strongly along the edges, rather

than across them, resulting in strong preservation of details in

the final output. To be more specific, the data-adapted steering

kernel takes the form

(33)

where are now data-adaptive full (2 2) matrices, called

steering matrices. We define them as

(34)

where ’s are (symmetric) inverse covariance matrices based

on differences in the local gray-values. A good choice for ’s

will effectively spread the kernel function along the local edges

as shown in Fig. 5(b).

The local edge structure is related to the gradient covari-

ance (or equivalently, the locally dominant orientation), where

a naive estimate of this covariance matrix may be obtained as

follows:

(35)

with

...
...

...
...

(36)

where and are the first derivatives along and

axes, respectively, and is a local analysis window around the

position of interest. The dominant local orientation of the gradi-

ents is then related to the eigenvectors of this estimated matrix.
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Fig. 6. Schematic representation illustrating the effects of the steering matrix and its component C = 
 R ��� R on the size and shape of the regression

kernel.

Fig. 7. Block diagram representation of the steering matrix estimation.

Since the gradients depend on the pixel values, and since the

choice of the localized kernels in turn depends on these gradi-

ents, it, therefore, follows that the “equivalent” kernels for the

proposed data-adapted methods form a locally nonlinear com-

bination of the data.

While this approach (which is essentially a local principal

components method to analyze image (orientation) structure

[22]–[24]) is simple and has nice tolerance to noise, the re-

sulting estimate of the covariance may in general be rank

deficient or unstable. Therefore, in this case, care must be taken

not to take the inverse of the estimate directly.

In order to have a stable estimation for the covariance matrix,

we parameterize and regularize it as follow. First, we decom-

pose it into three components (equivalent to eigenvalue decom-

position)

(37)

where is a rotation matrix and is the elongation matrix.

Now the covariance matrix is given by the three parameters ,

, and , which are the scaling, rotation, and elongation pa-

rameters, respectively. Fig. 6 schematically explains how these

parameters affect the spreading of kernels. We estimate these

parameters as described in [1], and create the steering matrices

as illustrated in Fig. 7.

Fig. 8 illustrates examples of the steering kernel function for

(a) high- and (b) low-SNR cases (no noise is added for the high

SNR case, and we added white Gaussian noise with standard

deviation 25, the corresponding SNR being 5.64 [dB]). Note that

the footprints are showing the contours of the steering kernels

for each center pixel of the window, i.e., illustrating the steering

kernels as a function of when and are fixed

at the center of each window. As explained above and shown in

Fig. 8(a), the steering kernel footprints capture the local image

“edge” structures (large in flat areas, stretched in edge areas, and

small in texture areas). Meanwhile, the steering kernel weights

( as a function of with held fixed) illustrate

the relative size of the actual weights applied to compute the

estimate as in (12). We note that even for the highly noisy case

[Fig. 8(b)], we can obtain stable estimates of local structure.

C. Implementation

Next, we explain how we implement the kernel-based deblur-

ring with the weight matrices and given by the

steering kernel function (33). Note that, using the steering kernel

(33), the performance strongly depends on the quality of the ori-

entation information. In [1], we proposed an algorithm to itera-

tively refine the orientation information, and then re-create the

steering matrices by the new orientation estimates. Simi-

larly, for deblurring, we propose an iterative method to refine

the weight matrix using the steepest descent method (27). To
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Fig. 8. Steering kernel function and its footprints for (a) high and (b) low SNR cases at flat, edge, and texture areas. We added white Gaussian noise with standard
deviation 25 (the corresponding SNR is 5.64 [dB]) for (b). (a) High SNR case. (b) Low SNR case.

Fig. 9. Block diagram of the kernel-based deblurring method with the steering weight matrix. (a) Initialization. (b) Iteration.

begin, we first initialize and the weight matrices

and .3 To initialize them, we deblur the given image

by Wiener filter to have a reasonable estimate of the unknown

image . Next, by applying the second order classic kernel

regression , we have , which contains and its

first and second derivatives, as defined in (20). Then, using the

3Although we can start with an image whose pixels are all zero, a good ini-
tialization greatly reduces the number of iterations.

first derivatives of , we estimate the rotation, elongation,

and scaling parameters, , , and , respectively, and create

the steering matrices for every pixel of . Finally, we create

the weight matrix in (22) for the regularization term

by plugging the steering kernel function (33) with ’s. As for

the likelihood term, we blur in order to have the estimated

blurred image and its first and second derivatives. Following the

same procedure, with the first derivatives, we create .
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Fig. 10. Single-frame deblurring experiment with the Cameraman image: (a) the original cameraman image, (b) degraded image by blurring with a 19� 19
uniform PSF and adding white Gaussian noise (BSNR = 40 [dB]), (c) restored image by Wiener filtering (smoothing parameter 0.0003) [13], (d) restored image
by a multistep filter (first denoised by iterative steering kernel regression [1], and deblurred by BTV [10]), (e) restored image by ForWaRD [25], (f) restored image
by LPA-ICI [11], and (g) restored image by AKTV ((26) with q = 2, q = 1, N = 1, and steering kernels (33)). The corresponding RMSE values for (b)–(g) are
29.67, 17.17, 17.39, 14.37, 13.36, and 14.03, respectively. A selected sections of (a) and (d)–(g) are zoomed in (h)–(l), respectively.

This is the initialization process and Fig. 9(a) illustrates a block

diagram of this process. After the initialization, the iteration

process begins with , , and . Using (39)

and (40) (see Appendix A), we compute the gradient term in

(27), and update and refine the weight matrices (

and ) alternately in each iteration.4 The block diagram

of the iteration process is illustrated in Fig. 9(b). As the iteration

process continues, the estimated image and its derivatives (and

therefore the orientation information) are gradually improved.

IV. EXPERIMENTS

In this section, we compare the performance of the proposed

deblurring algorithm5 to the state-of-the-art deblurring algo-

rithms in the literature, and demonstrate the competitiveness of

our proposed approach with the state of the art.

4Alternatively, one can consider updating the weight matrices every few iter-
ations.

5A MATLAB software package containing all the code used to derive the
results reported in this section is available at http://www.soe.ucsc.edu/~htakeda/
AKTV.

First, we replicated an experiment from the recent two-step

deblurring/denosing technique in [11]. In this experiment, we

restored an image which is degraded by application of a severe

blur (19 19 uniform PSF) and addition of white Gaussian

noise ( [dB]).6 Fig. 10(a)–(b) shows the original

and the degraded Cameraman images. Fig. 10(c)–(g) illustrate

the restored images by the Wiener filter [13], a multistep filter

(first denoised by iterative steering kernel regression

[1], and deblurred by BTV [10]), ForWaRD7 [25], LPA-ICI8

[11], and AKTV [(26) with , , , and steering

kernels (33)], respectively. The corresponding RMSE9 values

are (g) 29.67, (h) 17.17, (i) 17.39, (j) 14.37, (k) 13.36, and

(l) 14.03. Fig. 10(h)–(l) shows the zoomed images of Fig. 10(a)

and (d)–(g), respectively. The smoothing parameters for the

6Blurred signal-to-noise ratio = 10 log (blurred signal variance=noise
variance)[dB].

7The software is available at http://www.dsp.rice.edu/software/ward.shtml.

8The software is available at http://www.cs.tut.fi/~lasip/.

9Root mean square error = kTrue Image� estimated imagek = U�

U .
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Fig. 11. Single-frame deblurring experiment on the Cameraman image: (a) original cameraman image, (b) degraded image by blurring with a 19� 19 uniform
PSF and adding white Gaussian noise (BSNR = 25 [dB]), (c) restored image by Wiener filtering (the smoothing parameter 0.004 [13]), (d) restored image by a
multistep filter (first denoised by iterative steering kernel regression [1], and deblurred by BTV [10]) (e) restored image by ForWaRD [25], (f) restored image by
LPA-ICI [11], and (g) restored image by AKTV ((26) with q = 2, q = 1, N = 1, and steering kernels (33)). The corresponding RMSE values for (b)–(g) are
29.82, 21.62, 20.78, 19.44, 18.23, and 17.64, respectively. A selected sections of (a) and (d)–(g) are zoomed in (h)–(l), respectively.

Wiener filter, the multistep filter, LPA-ICI, and AKTV are

manually optimized to produce the best RMSE values for each

method. The default setup for choosing the parameters was

used for the ForWaRD method as suggested by the authors.

We see that, in this particular (almost noiseless) experiment,

the LPA-ICI algorithm results in an image with slightly better

RMSE value than AKTV.

Next, we modified the previous experiment by blurring

the Cameraman image by the same PSF (19 19 uniform)

and adding much more white Gaussian noise to the blurred

image resulting in a degraded image of [dB]. The

resulting image is shown in Fig. 11(b) with the RMSE value

of 29.82. Similar to the previous experiment, we restored the

Cameraman image by the Wiener filter, the multistep filter

[1], [10], ForWaRD [25], LPA-ICI [11], and AKTV [(26) with

, , , and steering kernels (33)]. The resulting

images are shown in Fig. 11(c)–(g), respectively, with the

RMSE values of (c) 21.62, (d) 20.78, (e) 19.44, (f) 18.23, and

(g) 17.64. Fig. 11(h)–(l) shows the zoomed images of Fig. 11(a)

and (d)–(g), respectively. Again, we manually tuned the param-

eters of each method independently to find the restored image

with the best RMSE value for each case. In this much noisier

example, AKTV resulted in an image with the best RMSE

value.

The third experiment is the case of moderate blur and high

noise level [5 5 Gaussian PSF with standard deviation (STD)

1.5 and additive white Gaussian noise ].

The original Lena image and its degraded version are illustrated

in Fig. 12(a)–(b), respectively. Similar to the previous experi-

ments, we have compared the reconstruction performance of the

Wiener filter, ForWaRD, LPA-ICI, and AKTV [(26) with ,

, and steering kernels (33)] in Fig. 12(b)–(e). The

corresponding RMSE values are (b) 10.78, (c) 11.18, (d) 7.55,

(e) 6.76, and (f) 6.12 Fig. 12(g)–(j) shows the zoomed images

of Fig. 12(a) and (d)–(f), respectively.

The last experiment addresses the case of a fair amount of

blur and noise level [11 11 Gaussian PSF with

and additive white Gaussian noise [dB])] and

a test image which contains fine details. The original Chem-

ical Plant image and its degraded version are illustrated in
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Fig. 12. Single-frame deblurring simulation of the Lena image: (a) original Lena image, (b) degraded image by blurring with a 5� 5 Gaussian PSF (STD = 1:5)
and adding white Gaussian noise (BSNR = 15 [dB]), (c) restored image by the Wiener filter method with smoothing parameter of 0.05 [13], (d) restored image
by ForWaRD [25], (e) restored image by LPA-ICI [11], and (f) restored image by AKTV ((26) with q = 2, q = 1, N = 1, and steering kernels (33)). The
corresponding RMSE values for (b)–(f) are 10.78, 11.18, 7.55, 6.76, and 6.12, respectively. A selected sections of (a) and (d)–(f) are zoomed in (g)–(j), respectively.

Fig. 13(a)–(b), respectively. Again, similar to the previous

experiments, the restored images by Wiener wilter, ForWaRD,

LPA-ICI, and AKTV [(26) with , , and

steering kernels (33)] are shown in Fig. 13(c)–(f). Fig. 13(g)–(j)

shows the zoomed sections of Fig. 13(a) and (d)–(f), respec-

tively. The corresponding RMSE values are (b) 15.09, (c) 9.29,

(d) 8.98, (e) 8.98, and (f) 8.57. In last two experiments, the

restored images by AKTV again show the best numerical and

visual performances.

V. CONCLUSION

In this paper, we extended the data-adaptive kernel regres-

sion framework of [1], which was earlier used for denoising

and interpolating, to include deblurring. Numerical and visual

comparison with the state-of-the-art image deblurring tech-

niques showed the superiority of the proposed technique in the

low-SNR cases (in which most deblurring algorithms show

serious artifacts), while in the high-SNR cases the performance

was comparable to the best technique in the literature.
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Fig. 13. Single-frame deblurring simulation of the Chemical Plant image: (a) original image, (b) degraded image by blurring with a 11� 11 Gaussian PSF
(STD = 1:75) and adding white Gaussian noise (BSNR = 30 [dB]), (c) restored image by the Wiener filter method with smoothing parameter of 0.01 [13], (d)
restored image by ForWaRD [25], (e) restored image by LPA-ICI [11], and (f) restored image by AKTV ((26) with q = 2, q = 1, N = 1, and steering kernels
(33)). The corresponding RMSE values for (b)–(f) are 15.09, 9.29, 8.98, 8.98, and 8.57, respectively. A selected sections of (a) and (d)–(f) are zoomed in (g)–(j),
respectively.

Furthermore, the proposed new image prior (21) in its gen-

eral form subsumes some of the most popular image priors in

the literature (Tikhonov, digital TV, BTV). Also, it is possible

to create other image priors based on it by choosing local repre-

sentations other than Taylor series.

Last, we have not provided an obvious advantage in terms of

computational complexity in this paper. This issue is one of our

important ongoing research problems.

APPENDIX

Steepest Descent: Differentiating the cost function (26),

we have

(38)

Using (21) and (25), the terms in right hand side are (39) and

(40) [see (39) and (40), shown at the top of the next page], where



562 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 17, NO. 4, APRIL 2008

(39)

(40)

is the element-by-element product operator for two vectors,

and is a block matrix with identity matrix for the first block

and zero matrices for the rest (i.e., and

).
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