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[ I.

i 1NTRUDUCTION

The impact toughne:;s of a fibre reinforced polymer composite is

higher than that of either its constituent phases. A number of reasons

have been propose~d [i1 3] based on the processes of fibre pull-out and

debonding which absorb energy in the composite.

This paper analyses the fracture of a composite, enabling the pull-

out ard dcbonding lengths to be calculated. These processes can operate

not only on single fibres, but also "bundles" of fibres.

2 DESCRIPTION OF THE FAILURE PROCESSES

Consider a composite of continuous fibres aligned parallel to an

applied load (Fig. 1). Perpendicular to the fibre direction is a notch.

Under monotonic loading the material at the notch-tip fractures and a

small crack in the matrix forms. Load, once tarried by the matrix, is

transferred by shear to the fibres which are still intact. These shear

forces eventually become so large that the bond between fibre and matrix

fails. A cylindrical crack at the interface propagates from the matrix

crack surface along the fibre as the applied load increases. This process

is called de'oneino.

/

Some load transfer between fibre and matrix is still possible by
/

interfacial forces due to matrix shrinkage onto the fibre during manufac-

ture. This friction produces a non-uniform stress along the debonded

fibre. Because of the variable strength of the fibre along its length

the fibre is able to break some distance from the matrix crack-plane where

the stress is highest. After fracture, the composite typically shjw:-

ea matrix crack-pian with fibres orotruding from it This process is

called ?u~ -Out.
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3 THE PROCESS OF DEBONDING

The process cf debonding is controlled by two parameters7 the fibre

debond stress and the rate of increase of stress along the length of

debonded fibre due to friction.

After the matrix cracks, the fibre stress at the intirfacial (debond)

crack front is the debond stress, cd and the applied fiLre stress when

*. a length x has debonded is:

o(x) = + f(x) (1)

* where f(x) is the stzess -in the fibre caused by friction on its surface.

When o(x) reaches the ultimate st,.ength of the fibre, oaf failure occurs

and the debond length may be determined provided a d and f(x) are known.
/8

3.1 Calculation of the Debond Stress

The debond stress can be predicted using a shear-lag analysis [4 6].

"Thc shear stress at the interface can be calculated as a fu.iction of applied

load, assuming debonding occurs when the shear strength of the interface

T , is exceeded. In references 4 - 6 similar results are obtained, for
o

example, Takaku and Arridge [6] predict:

Ef r

d 2O (2 -- (Zn) (2)

U' f

where E is the Young's modulus of the fibre and G the matrix shear
f in

modulus. Other derivations also agree on the dependence of debond stress

on T , E and G . The function involving fibre radius, r, and the effec-0 O o f fn

tive radius of its surrounding matrix cylinder, r , denends on the rzc~ise

fibre goem.etry considered.

Such stress-based analyses nave the disadvantage of taking no account

of any stress concentration at t, crack front .nl may.. therefore, over-



estimate the debond stress.

An alternative approach based on the energetics of failure, is

described by Outwater and Murphy [7] where:

4EfG
f 2c~ad =(13f

G 2c is the mode 2 critical strain energy release rate for interfacial

cracking. Outwater anU Murphy's derivation of this equation is confusing

since they do not state whether the model is in the fixed grips or fixed

load condition. Wells [8] rederived their model to clarify this point.

Clearly, only if there is both sufficient stress to nucleate an interfacial

•° crack and a favourable energy balance can the crack prbpagate.

The most convenient way of distinguishing between equations (2)

and (3) is to experimentally investigate the dependence of debond stress

on fibre radius. Wells [8] therefore measured the debond stress of steel

wires of varying diameter embedded in epoxy resin, and the results are

shown in Fig. 2. We see that the debond stress is more accurately predicted

by the energy condition.

- 3.2 Interfacial Frictional Str,'ss Transfer

The frictional stress transfer between fibre and matrix is due

to compressive radial stres:.-,- produced both by the shrinkage of the resin

during cure and thermal --match effects during cooling. The radial

stresses can be estimated by a simple analysis developed by Harris [9]

although the model does not take into account the constraining effects

of-surrounding fibres.

3.2.1 Si!.ile Linear MAodel

If a fi,,re is assumed infi:i -Jy stiff, there is no Poisson contrac-

4
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tion transverse to the direction of applied load, and the frictional inter-

facial str;s is uniform. The stress in a fibre embedded to a distance

x is therefore:

ff f
[ a(x) = r =

f fA2

where Tf = uP and 4 is the coefficient of friction between fibre and matrix

i [and P is the average radial compressive stress around the fibre. This

approximation has been used extensively in the literature.

3.2.2 Non-linear Model

Although fibres are generally stiff, the simple linear model over-

estimates the frictional stress transfer because Poisson contraction cannot

be ignored. Full allowance for this effect is made in the derivaticn

of Wells [8] which shows that:

a(x)=a (a - a (4)

p

o f 2 fEm
where a - B = fm

p Vf Er(l+v
f ff i

where v and E are the Poisson's ratio and Young's modulus of fibre and

matrix (subscripts f and m respectively), p the coefficient of friction

between fibre and matrix, rf the fibre radius and c the 'misfit strain'
0

between fibre and matrix. Equation (4) predicts that the rate of stress

"" build-up will fall as the axial fibre load increases. The maximum shear

stress that can be produced by frictional loading is o , when the Poisson

contraction of the fibre is equal to the residual strain of the matrix.

If the oricin of the co-ordinates is taken as the debond crack

front at ..hicl the fibre stress i Jd then ecuction (4) becomes:

ld

c,(x) = - (op d)-

/



3.3 Calculation of the Debond Length

Failure of a fibre of uniform strength occurs when the stress in

that portion of fibre, between the matrix crac,. surfaces, reaches the

strength of the fibre, cr. The debond crack ceases to propagate and the
wC

debonded length, £dZ is therefore given by the condition:

dFz

2
f= 0 - (a -) 2
f"p p d

"-n•n hence

2 (-0
d = an Cp

p f

w¢here Z is the final debonded length on both sides of the matrix crack

(Fig. 3). If a > 7- no debonding occurs: if a > a and (f > CT debondingd" E p f"

extends along the entire length of fibze.

3.4 Effect of Reinforcement on the Nature of Debon~ing

Equation 03) predicts that low stiffness or large radius fibres

will have a low debond stress. Consequently, a phenomenon which may be

called 'bundle debonding' can occur. This process may operate even though
/

9the fibre debond stress exceeds the fibre strength and no individual fibre

debonding would be predicted. Bundles consist of a group of fibres bonded

by resin. They behave as large single fibres. Such a bundle has a lower

stiffness and strength than a single fibre, but with a larger radius.

"" The interfacial parameter G2c, will also be a combination of the pure

matrix and interface properties.

.6
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After debonding, a bundle will have a corrugated surface, and there-

fore any small movement of the bundlc with respect to its 'socket' will

cause interlocking of these corruýgations. This will produce an effective

residual compressive strain on the bundle of fibres, similar to that of

the single fibre case. The stress distribution and debond stress of a

bund'ie may be approximated by equations (3) and (5) after substitution

of the relevant mater`al properties. These corrugations may also provile

an air-gap which accounts for the whitening observed in debonded glass

fibre composites. A debonded single fibre would not produce a sufficiently

large airgap to create such whitening effects.

3.4.1 Calculation of Burdle Prroerties for Calculation of Bundle

Debond Lenath

The bundle stiff.ness and strength mav be calculated using the rule-

of-mixturcs where the fracture of weak fibres reduces the strength of

the bundle to 80% of the ideal rule-of-mixtures prediction (10]. Poisson's

ratio of a bundle is that of a typical composite of appropriate fibre

volume fraction (v = 0.32).

The interface parameter, G2c' is assumed to be a linear furction

of the two constituent material properties:

f2cG ,a -
2 rf) G21 (7)

where G and G are the critical energy release rates for" fracture of
l 2

interface and pure resin respectivel-i. The spacing between fibres centres

around the edge of the bundle, a, is given by the square packing approxima-

tion:

If

w h ore V,, i ,olumf-: frac-ion c~ [Irs in the bndle

7-



Wells (8] measured G 500 Jm-' for an epoxy rcsin matrix and

G approximately 50, 2 and 60 Jm-' for E-glass, Kevlar and high strength

carbon fibres in epoxy respectively. The misfit strain between bundle

and matrix was found to be about 5%, and the radius of a bundle, rb, Was

typically 500 wm.

3.5 Comnarison of Observed an". Predicted Debond Le: qths in Mcdel Co)moosites

Experimentz have been carried out on model composite specimens

where debond lengtLs may be accurately measured and compared to theoretical

predictions. The specimens have been described previously [31 . Brieflv,

a specimen consistcd of a single layer of lass inforcing to..s cl o Z

to the tensile side of a small epoxy beam loaded in three point bending.

TABLE 1: Variazion in Debond Lengths with Specimen Type

~PE DE5OND LENGTH (ram)

SPECIMEN No. OF NOTE

"OBSERVFD PREDICTED

30 2.7 ± 0.2 3.9 Vf = 23%

rb = 0.5 m

B 90 5.8 + 0.6 7.9 Vf = 40%

r = 0.45 mn

C 10 7.1 ± 1.0 8.7 As 1 with

G1=

The observed lenoths of bundle dobonding are shown in Table 1 each

resu't eing the a,, !rage of a: le..st 100 measurements (10 measurome'*'•s

rer s~ecJ;•en,. R';ut. for sooomens of three types are orasc;ted:

(i) Type A had no weft fibrts holding th.e main) to"w. in n .1.



bundle spreading to occur during manufacture.

¶ (ii) Type B had a small number of light weft fibres present, holding

the bundle together and reducing the inter-fibre spacing. This

corresponds to a composite with a locally higher volume fraction.

(iii) Type C were specimens prepared as type B, but the fibres were sprayed

with mould relcase fluid, producing d weak fibre/matrix bond.

Table 1 also shows the predicted debond lengths using equations

(3), (6), (7) and (8), with substitution of material properties listed

in Table 2.

TABLE 2: Properties of Fibres and Epoxy Resin

FIBRE
RESIN

GLASS CARBON

Strength (MPa) 1650 2480 80

Young's Modulus (GPa) 70 230 3

Radius (11m) 7 4

Poisson's Ratio 0.2 0.2 0.35

Values of G1, G and misfit strain, co' are those reported in the
2o

previous section, except in the case of type C specimens where it is assumed

that no fibre-matrix bonding occurred and consequently G = 0 in this

case. Agreement between observed and predicted values is generally good

although the predictions are typically 30% higher than the observed value.

4 Tl PROCESS OF PULL-OUT

The fundamcntal origin of pull-cut is the variable strenoth of

the reinforciicT fibre. In the 11.sence of flaws a fibre
• Icc,-euln lw ir



would break in the region of mnximum stress (i.e. between the faces of

a matrix crack), and no pull-out would result. However, when a brittle

fibre carries a non-uniform load along its length the fibre may either

fracture at a large flaw in a region of low stress or at a minor flaw

at a point of higher stress. This is shown schematically in Fig. 4. In

this case fibre fracture will occur at point 'A' away from the region

of maximum stress and produce pull-out during crark propagation.

4.1 A Statistical Model for Pull-Out

After the matrix c'racks, the load on a fibre close to the crack

tip increases causing debonding. Friction between fibre and matrix gives

rise to a non-uniform stress distribution along the fibre length.

The variable strength of a brittle fibre is controlled by the distri-

bution of flaws along its length. Experiments show that the strength

of such material is well described by a Weibull distribution. On loading

the material up to a stress d, a fra-tion of the fibrres P(a) will "ail;

in its simplest form:

P(a) = 1 - W )

where a is a characteristic strength and m the Weibull modulus.
o

Consider a debonded fibre with a series of sections of length 6x

th
to be non-uniformly loaded, Fig. 5. The stress in the i section increases

from zero to a. as the debond crack propagates along the fibre. The n th

secti6n is at. the point of maximum fibre stress, i.e. in the plane of

the matrix crack. The probability of failure in loading section i from

zero load tc a. is given by the cumulative probability of failure P(. ).
1 i.

th
Howe'er, the probability of faElre occurring in the i segment

is not simply P(o. ). It alsQ depe- . upon the probability that A more

th
highly stressed section has not brc.. before the flaw in the i section

-1.0 -



causes failure of the fibre. This is given by the sum of 1 - P(cr.) for all

j > i, i.e. all sections more hiohly loaded than section i*.

The relative probability of fracture occurring in section i is

therefore given by:

n

f, P(a,) j (I- P(o.)) 6x (10)1 1 j=i+Il

Equation (10) may be re-expressed to present an integral form of the cumula-

tive probability function:

x if kx { d /2 -
0P(a(xlf d1 P(o(x")) dxx dx

F(x) = (11)

£d/2 d/2

f P(U(.X-)){r 1 (C(x')) dx"} dx'

0 xt

The pull-out length is given by:

£d

p 2

and F(x') is the cumulative probability of x being less than x'. Conse-

quently the cumulative probability distribution of the pull-out length

being less than or equal to Z is:
P

2 p

The model assumes that the entire flaw spectrum is repeated in

a length of fibre which is small by comparison with the pull-out length.

This is juqtlfied since the average strength of the fibres changes only

slowly with increasing gauge length. It implies that the full range of

S. flaws must be present in short lengths of fibre.

*An allowance for the probability of a severe flaw causing fracture in a

"section under lower stress, before fibre failure, occurs in section i, is

made by the use of the cumnnlntive Weibull distribution, P(o).

10-
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4.2 The Effect of the Reinforcement on the Nature of Pull-Out

For certain composites the debonding of single fibres does not

occur because the debond stress is greater than the fibre strernth. This

behaviour is anticipated in materials with a strong fibre/matrix bond

or high fibre stiffness, as found in carbon fibre reinforced systems. In

such cases the pull-out of individual fibres is not possible, but instead

--7 a bundle of fibres (which debonds more easily than the individual fibres)

behaves as a large fibre. Although a composite, the bundle still has

,/ a variable strength which can be described by a Weibull distribution with

a Weibull modulus about 3.5 times larger than the single fibre z•nd a

strength of about 80% of the rule-cf-mixute prediction [Harlow and Pheonix,

10]. The stress distribution in the bundle is similar to that in the

single fibre (Section 3).

The nature of the dull-out process is therefore controlled by the

debonding process. If fibres can debond, they will pull-out individually.

Glass and Kevlar* should normally do this. However, if only the bundle

debonds then the bundle will fracture away from the matrix crack plane

and pull-out as a small piece of intact composite; this is what CFRP is

predicted to do. The process may be analysed using equation (11) when

the appropriate substitutions are made. In general, a composite may show

a comLination of the two types of pullout.

4.2.1 Fractographic observations of Pull-Out

Fractured samples of epoxy containing E-glass, Kevlar 49 and carbon

*Although Kevlar is a polymeric fibre, it appears to behave as a brittle

material. In the absence of any detailed information, the teibull distri-

bution (with a Weibull modulus equal to that of glass and carbon) is

used to characterise the fibre stLength.

* - l1 -

/
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(Grafil EX-AS) have been examined in a scanning electron microscope (SE!4)

in order to verify the above predictions. Figure 6 shows the fracture

surface of a unidirectional or (0/90] laminate. Glass and Zcvlar show
s

individual fibre pull-out with little or no matrix between the fibres.

By contrast; the carbon fibre reinforced epoxy shows a solid bundle which

has fractured and pulled-out with intact ratrix binding the fibres. These

observations are in agreement with the debonding behaviour predicted in

Section 4.2, although variations in the properties of the fibre/matrix bond

'I/ could allow the other mode of pull-out to occur.

4.3 Comparison of Predicted and Observed Distributions in Comoosites

For a typical composite with brittle fibre reinforcement the function

P(a) is of the Weibull form (eqn. 9) and for a debonded fibre the stress

distribution is:

OWx) = a (a - ad) eP P

The integral (equation 11) has been evaluated numerically for various

materials and the predictions compared with experiment.

4.3.1 Results for GFRP

Beaumont and Anstice [111 measured a large number of pull-out lengths

%n GFRP in an effort to ascertain their distribution. The pull-out lengths

were well described by a Weibull distribution but of a much lower modulus

than for the fibre strength distribution. The average of the Weibull

/ % parameters from over 2000 measurements of Dull-out lengths are:

9 = 0.24 • 0.08 mm
0

m 2.2 ± 0.42

This distribution is shown in Fig. 7 and is comparcd with the prediction

I'27? t -12 -



SIof eqn. (11), using typical E-glass/epoxy properties listed in Table 2.

Good agreement is found between the predicted and experimental distributions

Sexcept at small pull-out lengths. The model predicts that the most probable

pull-out length (the point at which the slope is maximised) is at Z = 0,

p

which is intuitively correct since the stress is maximised at that point.

By comparison, the Weibull distribution predicts zero probability of zero

length pull-outs.

4.3.2 Results for CFRP

The procedure described in Section 4.3.1 has been applied to bundle

pull-out of high strength carbon fibres using data from WelJs [8]. Charac-

teristic Weibull parameters for 500 measurements were:

t= 0.47 0.03 m0

M 1.9 o.i

This distribution is shown in Fig. 8, and may be compared with the result

/ from eqn. (11) using typical values for carbon fibre in epoxy (see Table 2)

and a bundle misfit strain of 3%. The main differences in shape of the

di.stributions, noted in Section 4.3.1, are evident although agreement

between average values is good.

4.4 A Method for the Rapid Calculation of Pull-Out Lengths

So far the theory has successfully predicted the shape and position

of the cumulative probability distributions for both individual fibre

and bundle pull-out cases. However, calculations of the complete proba-

* bility distribution is time-consuming and often an average value of the

pull-out length iz all that is required. Consequently the effect of chang-

ing composite properties on the shape and position of the distribution

has beeor investigated and correlations between pull-out and debond lengths

-13-L .
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have been sought as a means of convenient prediction.

1.
4.4.1 Effect of Varying 14aterial Properties on Pull-Out Distributions

From eqn. (11), the pull-out length distribution is affected by

any parameters which-reflect changes in the flaw or stress distributions

in the fibre. Changes in most of these parameters will also affect the

debond length. Figure 9 shows the effect of varying fibre misfit strain,

i Weibull modulus, fibre strength and radius on the probability distribution,

using values which are otherwise typical of an E-glass/epoxy composite.

In particular, it should be noted that the distribution is relatively

insensitive to the Weibull modulus.

S4.4.2 Correlation between Fibre Pull-out and Fibre De& ond Length

Figure 10 shows the relationship between the average pull-out length,.

z and the fibre debonn length, kd (as calculated using eqn. 6) when

*1 several parameters vary. The average pull-out length for both glass and/ i
S/ •Kevlar reinforced material may be estimated by:

- d

p 6.8

This approximation is accurate to within ± 10% for < < 0.3 mm (or

k • < 2.1 mm). The behaviour due to changring Gl, and therefore the debo~id

stress, is least well predicted.

4.4.3 Correlation between Bundle Pull-Out and Bundle Debond Length

Figure 11 shows a similar variation between pull-out and debond

lengths for typical high strength carbon fibre ccr%,posite. There is a

correlation between 2. and for changes of fibre strength, radius and

fibre misfit strain. However, as noted in the previous section, changes

- 14 -

Li



due to variation:s in dehonc. stress do not follow the same trend. Neverthe-

less, an approximate relationship may be found in the region 0.22 mm <

2p < 0.32 mm (7.5 mn < Id < 12 mn) to an accuracy of ± 20%, namely:

pd

p 35

/

5 SSU.MMARY

The energy absorption in composites is dependent on the length

of debonding and pull-out. These processes have been studied to enable

the lengths to be calculated from fibre, resin and interface properties.

The study shows that two types of deboriding are possible, namely

single fibre and bundle debonding. Debond lengths have been measured

and found to be in agreement with the predictions of the theory.

A model has been proposed for the fracture of brittle fibres under

non-uniform otress, predicting the probability of fracture sites. As

a result of the two types of debonding (single fibre and bundle), two

corresponding modes of pull-out have been proposed and observed in practice.
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Figure Captions

1 Schematic of composite fracture ahead of a notch.

2 Variation of debond stress with wire radius.

Solid line; debond
stress calculated from equation 3 with Ef = 210 GPa, and G2. = 200 Jm-2

Dashed line; debond stress from equation 2 with Gm = 1.1 GPa,

To = 20 MPa, rm = 10 mm.

3 Calculation of the debond length

4 Schematic showing origin of pull-out

5 Schematic of debonded fibre

6 Pull-out in (a) glass, (b) Kevlar and (c) carbon fibre reinforced

plastic

7 Predicted and best-fit Weibull distributions for fibre pull-out

lengths in GFRP. c = 0.75%.o

8 Predicted and best-fit Weibull distributions for bundle pull-out

lengths in CFRP. b = 3%.

9 Effect of changing material parameters on fibre pull-out distribution

in GFRP. Parameter varying: (a) misfit strain, (b) Weibull mcdulus,

(c) fibre strength, and (d) fibre radius.

10 Correlations between fibre pull-out ane debond lengths Fo:r (a) glass,
and 'b) Kevlar reinforced material.

(Parameter varied o, of; +, co; x, rf; and A, G])

11 Predicted correlation between bundle pull-out and debond lengths

for high strength 7arbon fibre composite (see figure 10 for key)
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