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Debris disc stirring by secular perturbations from giant planets
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ABSTRACT
Detectable debris discs are thought to require dynamical excitation (‘stirring’), so that plan-
etesimal collisions release large quantities of dust. We investigate the effects of the secular
perturbations of a planet, which may lie at a significant distance from the planetesimal disc, to
see if these perturbations can stir the disc, and if so over what time-scale. The secular perturba-
tions cause orbits at different semimajor axes to precess at different rates, and after some time
tcross initially non-intersecting orbits begin to cross. We show that tcross ∝ a

9/2
disc/(mplepla

3
pl),

where mpl, epl and apl are the mass, eccentricity and semimajor axis of the planet, and adisc

is the semimajor axis of the disc. This time-scale can be faster than that for the growth of
planetesimals to Pluto’s size within the outer disc. We also calculate the magnitude of the
relative velocities induced among planetesimals and infer that a planet’s perturbations can
typically cause destructive collisions out to 100 s of au. Recently formed planets can thus
have a significant impact on planet formation in the outer disc which may be curtailed by the
formation of giant planets much closer to the star. The presence of an observed debris disc
does not require the presence of Pluto-sized objects within it, since it can also have been stirred
by a planet not in the disc. For the star ε Eridani, we find that the known radial velocity planet
can excite the planetesimal belt at 60 au sufficiently to cause destructive collisions of bodies
up to 100 km in size, on a time-scale of 40 Myr.

Key words: circumstellar matter – planetary systems: formation – stars: individual: ε Eridani –
stars: individual: Fomalhaut – planetary systems: protoplanetary discs.

1 INTRODUCTION

Since the first detections in thermal infrared (Aumann et al. 1984)
and scattered light (Smith & Terrile 1984), it has become clear that
many main-sequence stars are surrounded by discs of dust grains.
The dust grains have only a short lifetime compared to the age of
the star, being ground down in collisional processes until they are
small enough to be ejected from the system by radiation pressure
(Dominik & Decin 2003; Wyatt 2005). The existence of a dusty
debris disc therefore implies a large reservoir of planetesimals, par-
ent bodies with longer collisional lifetimes whose collisions are
producing the observed dust. Such planetesimals must be collid-
ing with sufficient relative velocity to produce enough dust to be
observable, and so the disc must have some degree of dynami-
cal excitation, with non-zero eccentricities and inclinations causing
high relative velocities. Although the formation of planetesimals is
still not understood, it is usually assumed that they form on copla-
nar, near-circular orbits in the protoplanetary disc (e.g. Kenyon &
Bromley 2008). Therefore, there must be some means of exciting
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the planetesimals’ eccentricities for the disc to become visible. This
is referred to as stirring.

The origin of debris disc stirring is not yet known and is yet to
be thoroughly investigated. The most comprehensive model of this
is self-stirring (Kenyon & Bromley 2008 and references therein)
where a planetesimal disc evolves due to mutual low-velocity colli-
sions resulting in the growth of the planetesimals. In this model, the
disc is stirred, and collisions become destructive, when the largest
planetesimals reach Pluto’s size, and their gravitational perturba-
tions excite the remaining smaller bodies.

Such planet formation models, however, ignore the effect of the
formation of massive planets on the evolution of material. Yet we
know that large numbers of massive planets exist, including within
debris disc systems (e.g. Benedict et al. 2006; Kalas et al. 2008).
The existence of a massive planet in a disc system can have several
consequences, including migration of the planet (Fernandez & Ip
1984) and scattering of embryos from the inner disc near the planet
to the outer disc (Goldreich, Lithwick & Sari 2004a). The formation
of a planet may also be able to speed planet formation exterior to
the planet when the gas disc is still present (Thommes 2005). In
this paper, we consider the effects of a planet’s gravitational secular
perturbations on the disc, showing that they can stir the disc on
time-scales of typically several 10 s of Myr.
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This paper is organized as follows. In Section 2, we review the
secular theory we are using to model the effect of the planet on
the disc. In Section 3, we derive an analytical estimate for the time
the planet takes to stir the disc. In Section 4, we investigate the
relative velocity distribution imposed by the planet. In Section 5,
we discuss the model we use to ascertain the outcomes of collisions.
In Section 6, we discuss the implications of planet stirring for debris
disc evolution. Finally in Section 7, we summarize the paper.

2 DYNAMICS

We consider the orbital evolution of planetesimals, treated as mass-
less test particles, under the perturbing influence of N massive plan-
ets. We shall consider only secular perturbations. In the following,
unsubscripted orbital elements refer to test particles and subscripted
to the planet(s).

We use the classical Laplace–Lagrange secular theory to model
the long-term orbital evolution. This is valid if planetesimals are not
near mean motion resonance and eccentricities are low. The plan-
etesimal’s complex eccentricity z = e exp (i# ) can be decomposed
into a forced component zf and a proper component zp:

z(t) = zf (t) + zp(t)

= −
N∑

i,j=1

Ajeji

A − gi

exp [i (git + βi)] + ep exp [i (At + β)] (1)

(Wyatt et al. 1999). Here, gi and eji are the eigenvalues and eigen-
vector components of the solution for the planets, independent of
the planetesimal’s location, and β i, β and ep are constants of in-
tegration; ep is the proper eccentricity. The constants Aj are given
by

Aj = −
√

Gm!/a3
mj

m!

αj ᾱj b
(2)
3/2(αj )/4, (2)

with mj the mass of the jth planet, and A is given by A =
∑N

j=1 Bj ,
with

Bj = +
√

Gm!/a3
mj

m!

αj ᾱj b
(1)
3/2(αj )/4, (3)

αj = aj/a for an interior planet and αj = a/aj for an exterior planet,
b

(s)
j (α) are the Laplace coefficients (see Murray & Dermott 1999),

and ᾱj = 1 for an interior planet and ᾱj = αj for an exterior planet.
The behaviour of the complex eccentricity is to precess at a rate

A on a circle of radius ep about the forced complex eccentricity zf .
For more than one planet, zf is itself evolving in time. If there is
only one planet, its orbit is fixed, and so is zf .

Henceforth, we shall concentrate on the case of a single planet.
We shall return briefly to the multi-planet case in Section 6.4.3.
Denoting the planet’s elements now by subscript ‘pl’, we have

z(t) =
b

(2)
3/2

b
(1)
3/2

epl exp
(
i#pl

)
+ ep exp [i (At + β)] . (4)

We shall later concentrate on the case where the planetesimals’
orbits are initially circular. In this case, ep = ef and β = −# pl.

Using the leading-order approximations to the Laplace coeffi-
cients (Murray & Dermott 1999):

b
(1)
3/2 ∼ 3α, b

(2)
3/2 ∼ 15

4
α2, as α → 0, (5)

we have

ef ∼ 5
4
αepl (6)

Figure 1. Secular precession time-scale t sec = 2π/A (top) and forced ec-
centricity ef (bottom) for a planetesimal on an initially circular orbit at a =
15 au, with apl = 5 au, m! = 1 M& and µ = mpl/m! and epl varying as
shown. Symbols: N-body simulations using RADAU (Everhart 1985). Solid
line: analytical prediction from the Laplace–Lagrange theory. Dotted line:
analytical prediction from the Laplace–Lagrange theory with the Laplace
coefficients approximated to leading order in α (equations 5). Dashed line:
analytical prediction from the Heppenheimer–Kaula theory.

and

A ∼
√

Gm!/a3
3
4
µα2ᾱ, (7)

in the limit of small α.
In Fig. 1, we compare t sec as predicted by the Laplace–Lagrange

theory to that obtained by numerical integration (using RADAU;
Everhart 1985). Precession time-scale t sec was calculated by fitting
a sinusoid to the eccentricity output from the integration.1 While
the Laplace–Lagrange theory is very accurate at small planetary
eccentricities, it overestimates the precession time-scale and forced
eccentricity at high epl. For high-eccentricity planets, we therefore

1 Orbital elements from the simulations are derived from canonical Jacobi
coordinates (motion of planet referred to the star, motion of test particle
referred to the star–planet barycentre). This eliminates variations in eccen-
tricity (of the order of 4µ/

√
α) on the Keplerian time-scale (Lee & Peale

2003), which exceed the forced secular eccentricity at large distances from
the star. Use of Jacobi coordinates also ensures no dependence of secular
behaviour on initial mean longitude at the same semimajor axis, which is
not the case for heliocentric coordinates.
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adopt the theory of Heppenheimer (1978) based on the disturbing
function expansion of Kaula (1962). This is an expansion in α with
no restriction on epl, in contrast to the Laplace–Lagrange expansion
which is for small epl without restriction on α (provided there is
no mean motion resonance). This predicts qualitatively the same
behaviour, with the forced eccentricity

ef = 5αepl

4
(
1 − e2

pl

) , (8)

and the precession rate

A =
√

Gm!/a3
3µα2ᾱ

4
(
1 − e2

pl

)3/2 . (9)

From Fig. 1, we see that, while the Heppenheimer–Kaula theory
provides a better description of secular behaviour of t sec than the
Laplace–Lagrange theory for high epl, it actually gives a worse
fit for ef . We therefore omit the factor

(
1 − e2

pl

)−1
from ef from

now on, as an empirical correction. We also see in Fig. 1 that the
Heppenheimer–Kaula solution is overestimating t sec for low epl.
This is due to higher order terms in α which the Heppenheimer–
Kaula solution does not take into account. For comparison, the
Laplace–Lagrange solution is also plotted to leading order inα. Asα
becomes small, the Heppenheimer–Kaula solution performs better
at small epl. Note that at high epl there is also a dependence of t sec

and ef on µ beyond that predicted by either theory; this is probably
due to both theories being based on treating the perturbations only
to leading order in µ.

Fig. 2 shows the dependence of t sec on a for three different planet
masses. The Laplace–Lagrange theory describes well the behaviour
of test particles, except for those near mean motion resonance with
the planet. The effect of resonances covers a larger range of semi-
major axes as planetary mass is increased. The analysis we present
below is based on a purely secular theory and so does not apply for
planetesimals near resonance. For µ = 10−3 and apl = 5 au, this
excludes planetesimals within 8.5 au and those at 10–11 au.

Figure 2. Secular precession time-scale t sec as a function of planetesimal’s
semimajor axis, with apl = 5 au, m! = 1M&, µ = 0.001 and epl = 0.1.
Solid line: L–L prediction. Crosses: simulation results. Note the presence
of strong mean motion resonances at the indicated locations. Planetesimals
which were ejected within the integration time (105, 106 and 107 yr for
µ = 10−2, µ = 10−3 and µ = 10−4, respectively), mostly close to the 2:1
resonance with µ = 10−2, are not shown. The analysis in this paper is not
valid for planetesimals in resonance.

In subsequent sections, we shall derive expressions for the relative
velocities in the disc and the time-scale for disc stirring correct to
first order in α. Henceforth we use equation (9) for the precession
rate, and equation (6) for the forced eccentricity.

The secular precession rate A is a strong function of a (equation 9,
Fig. 2). Furthermore, the forced eccentricity ef also depends on a
(equation 6). The eccentricity evolution and apsidal precession of
planetesimals at different semimajor axes are different, and this
differential precession raises the possibility that the initially non-
intersecting orbits may cross after a certain time t cross. We investigate
this possibility in the next section.

3 TIME-SCALE FOR ORBIT CROSSING

We are interested in whether a planet’s secular perturbations can
cause neighbouring planetesimals to collide. Consider two planetes-
imals at semimajor axes a1 and a2, with a1 < a2. The orbits are inter-
secting at a time t if r1 (a1, e1(t),#1(t), θ ) ≥ r2 (a2, e2(t),#2(t), θ )
for some true longitude θ . Writing the equation of an ellipse to the
first order in eccentricity, this condition becomes

a1 [1 − e1 cos(#1 − θ )] ≥ a2 [1 − e2 cos(#2 − θ )] . (10)

Now, we consider closely separated orbits, so that a2 = a1 + da.
We then require

0 ≤ 1 + e1 cos (#1 − θ ) + a1 cos
(
#pl − θ

) (
∂ef

∂a

)

t

+ a1 cos (#1 − θ )
dep

da
− a1ep,1t sin (#1 − θ )

dA

da

− a1ep,1 sin (#1 − θ ) dβ
da

+ O
(
e2

1

)
. (11)

All the terms are O(e) except for the first term and the term
−a1ep,1t sin (#1 − θ ) dA

da
which becomes order unity for sufficiently

large time t, provided that dA
da

*= 0 (this condition is satisfied for
single-planet systems, but multi-planet systems can have dA

da
= 0;

see Section 6.4.3). If dA
da

= 0 then second-order terms in the
Taylor series must be considered; the term of order unity will be
∝ ep,1da t2 d2A

da2 .
We now use the leading-order expansions for the Laplace

coefficients (equation 5), so with small eccentricity e and
planet/planetesimal semimajor axis ratio α we have

0 ≥ 1 + bAtep sin (At + β − θ ) + O (e) (12)

for orbit intersection, where b = 7/2 for an internal perturber and
b = −3/2 for an external perturber. The second term is of the order
of unity when t is of the order of e−1

p .
At the crossing time t = t cross,

1 + bAtcrossep sin (Atcross + β − θ ) + O
(
e2

p

)
= 0. (13)

Now, | sin (At cross + β − θ )| ≤ 1, and it will attain its maximum
for some θ , so

tcross ∼ 1
|b|Aep

. (14)

Note that this has no explicit dependence on ef , but can have a
dependence on ef if ep depends on ef . In the remainder of this
paper, unless otherwise stated, we assume the orbits are initially
circular; this means that ef = ep. Then, for an internal perturber, we
have

tcross ∼ 1.53 × 103

(
1 − e2

pl

)3/2

epl

( a

10 au

)9/2

×
(

m!

M&

)1/2 (
mpl

M&

)−1 ( apl

1 au

)−3
yr, (15)
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while for an external perturber, we have

tcross ∼ 1.11 × 103

(
1 − e2

pl

)3/2

epl

( apl

10 au

)4

×
(

m!

M&

)1/2 (
mpl

M&

)−1 ( a

1 au

)−5/2
yr. (16)

Orbit crossing begins more quickly if the perturbing planet is
more massive or eccentric, and the time-scale is a strong function
of planetesimal semimajor axis.

Equation (16) is in good agreement with equation (14) of
Thébault, Marzari & Scholl (2006), which was derived as an em-
pirical law based on a slightly modified secular theory and N-body
simulations, for test particles on circumprimary orbits in a binary
system (i.e. external very massive perturber). The chief difference
between their result and ours is for high eccentricity.

4 RELATIVE VELOCITIES

Now that we have established the time-scale on which orbits cross,
we proceed to examine the relative velocities of planetesimals un-
dergoing collisions. We shall examine how the distribution of rela-
tive velocities evolves with time.

For planetesimals with randomized, uniformly distributed ap-
sides, we might expect the mean relative velocity in a collision to
be given by

〈vrel〉 = c〈e〉vkep, (17)

where c is a constant of order unity.2 The value of c depends on
the specific definition of relative velocity being used, and the un-
derlying eccentricity distribution (see Lissauer & Stewart 1993);
in our case, we wish to know the mean velocity of a planetesimal
relative to others in the swarm, for which c =

√
5/4 when the

planetesimals’ eccentricity follows a Rayleigh distribution, which
arises from the mutual gravitational scattering of planetesimals
(e.g. Ida & Makino 1992). However, the eccentricity distribution
arising from a planet’s secular perturbations cannot be assumed
to be Rayleigh, because the physical process exciting the eccen-
tricities is very different (long-range secular perturbations versus
mutual gravitational scattering). Furthermore, the apsides are con-
strained by # ∈ (#pl − 1

2 π,#pl + 1
2 π). This is because, with the

orbits initially circular, the complex eccentricity starts at the origin
of the complex plane and precesses in a circle around zf . Thus, it
is restricted to the half-plane containing zf . Finally, equation (17)
only applies locally, whereas in reality a planetesimal on an eccen-
tric orbit can collide with others over a range of semimajor axes
(see Thébault & Doressoundiram 2003, for a discussion). In this
section, we therefore examine the velocity distribution imposed by
planetary secular perturbations, beginning with an estimate for the
range of semimajor axes over which collisions can occur.

First, we estimate the maximum radial excursions of planetesi-
mals evolving under secular perturbations. Consider planetesimal
1 located at semimajor axis a1, with eccentricity e1 = 5

2 a1epl/apl,
the maximum attainable under the planet’s secular perturbations
starting from an initially circular orbit. We wish to find the greatest
semimajor axis of an exterior planetesimal, planetesimal 2, such
that planetesimal 2’s orbit can intersect that of planetesimal 1. If
longitudes of periapse could take any angle, this would occur when
planetesimal 1 was at apapse and planetesimal 2 at periapse, with

2 For inclined orbits the inclination also plays a role.

the orbits tangent, and the apsides antialigned. However, the secular
solution also imposes a restriction on the longitude of periapse # ,
restricting it to the range # ∈ (# pl − π/2, # pl + π/2). Because
of this, the maximum semimajor axis for planetesimal 2 must come
when planetesimal 2’s orbit is at its lowest eccentricity, i.e. e2 = 0.
Denoting the difference between the semimajor axes of the orbits
by 'a, we find, to lowest order in epl and α, that the maximum
separation of intersecting orbits is

('a)max = 5
2
a1αepl, (18)

which is simply the maximum radial excursion of planetesimal 1.
We now numerically calculate the distribution of relative veloc-

ities which a planetesimal at a1 experiences, as a function of time,
assuming that all the planetesimals evolve deterministically under
the Laplace–Lagrange secular solution described in Section 2, start-
ing on initially circular orbits. For interactions with planetesimals
at different semimajor axes, the relative velocity is calculated using
the formulae given in Whitmire et al. (1998). Note that two confocal
ellipses can have two intersection points; we calculate the relative
velocity at each point and use both in the analysis below.

Fig. 3 shows the relative velocities encountered for a fiducial case
of apl = 5 au, a1 = 15 au, epl = 0.1, m! = 1 M& and mpl = 10−3M&,
for t = 0 to t = 10t cross. The surface density of planetesimals is
assumed to be constant. We also calculated the averages with a
( ∝ a−3/2 profile with negligible difference in the derived relative
velocities. We see that planetesimals begin on non-intersecting or-
bits, and evolve for t ≈ t cross before orbits begin intersecting. For
these parameters, orbit crossing begins slightly sooner than t = t cross

because t cross was derived in the limit α 0 1, and here we have α =
1/3. We also see that the maximum relative velocity experienced
by a planetesimal rises to ≈2efvkep. This is the relative velocity
of a planetesimal with eccentricity 2ef relative to a circular orbit
(Lissauer & Stewart 1993), but can be achieved for other config-
urations too. The average relative velocity – mean or median – is
≈1.4efvkep. Therefore, we can in fact use equation (17), with c =
2 if we wish to use the maximum relative velocity, and c = 1.4 if
we wish to use the average. We also note that, while the analytical
orbit-crossing criterion only guarantees intersection of infinitesi-
mally separated orbits, we found that soon after orbit crossing be-
gan, the planetesimal’s orbit intersected the orbits of planetesimals
over the whole range permitted by equation (18).

Figure 3. Maximum (solid line), mean (dotted) and median (dashed) rel-
ative velocity experienced by a planetesimal, as a function of time. The
planetesimal is at 15 au, and the planet at 5 au with eccentricity epl = 0.1
and mass mpl = 10−3 M&, orbiting a solar mass star.
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Figure 4. Black: cumulative frequency distribution for relative velocities in
a planet-stirred population at t = 1tcross (solid line), t = 2tcross (dotted) and
t = 10tcross (dashed). Grey: cumulative frequency distribution for relative
velocities in a population with a Rayleigh distribution of eccentricities. The
mean eccentricity for the Rayleigh distribution is the same as that for the
planet-stirred case at t = 10tcross.

We can now derive expressions for the maximum relative velocity
imposed on a disc by a planet. Combining equations (6) and (17)
with the expression for the Keplerian velocity vkep =

√
Gm!/a, we

get the following expressions for the maximum relative velocities:

max vrel ≈ 0.24
( epl

0.1

) (
m!

M&

)1/2 ( a

10 au

)−3/2 ( apl

1 au

)
km s−1

(19)

for an internal perturber, and

max vrel ≈ 0.74
( epl

0.1

) (
m!

M&

)1/2 ( a

1 au

)1/2 ( apl

10 au

)−1
km s−1

(20)

for an external perturber. If it is desired to work with the mean
or median relative velocity, these numbers should be reduced by a
factor of ≈0.7.

In Fig. 4, we compare the relative velocity distribution imposed
by a planet’s secular perturbations with that arising from a Rayleigh
distribution of eccentricities. We see a clear difference in that the
Rayleigh distribution gives a tail of high-velocity collisions, in con-
trast to the planet-stirred distribution’s well-defined maximum. In
the remainder of this paper, we shall use the maximum relative
velocity.

5 COLLISION OUTCOMES

We now need to relate the relative velocities in the disc to the out-
comes of collisions between planetesimals. When relative velocities
are low, collisions between planetesimals result in net growth of the
larger body. When relative velocities are high, collisions result in
the bodies fragmenting. In the former regime, smaller bodies build
up to eventually produce planetary embryos. In the latter regime,
planetesimals are ground down in a collisional cascade with the pro-
duction of large quantities of dust which can be observed as a debris
disc. We now proceed to quantify the minimum velocities needed
for these erosive collisions to occur, and to find which combinations
of planetary parameters can lead to such velocities.

Consider two bodies colliding. The outcome of the collision de-
pends on a large number of factors including the bodies’ composi-
tion, shape, etc. (see e.g. Housen & Holsapple 1990), but for our
purposes the most important considerations are the relative velocity
and the kinetic energy of the impact.

We are interested in the transition from net accretion to net ero-
sion, and so use the condition QR > Q∗

RD, where

Q∗
RD = 0.095 J kg−1

(
RC1

100 m

)−0.33 ( vrel

1 m s−1

)0.8

+ 0.025 J kg−1

(
RC1

100 m

)1.2 ( vrel

1 m s−1

)0.8

(21)

for weak aggregates (Stewart & Leinhardt 2009). Here, RC1 is
the radius of a sphere with mass equal to the total of the two
bodies’ masses m1 + m2, and a density of 1 g cm−3, and QR =
0.5v2

relm1m2/(m1 + m2)2 is the reduced mass specific kinetic en-
ergy. We use the results for weak aggregates rather than strong rock
because first we are primarily interested in outer discs which have
a high proportion of ices, and secondly we are considering bodies
formed by sequential accretion of smaller ones, which results in
porous aggregates rather than monoliths (Weidenschilling 1997).

Here we define the catastrophic disruption threshold velocity
v∗

rel to be the velocity above which collisions between equal-sized
bodies no longer result in one of these bodies gaining mass. It is
given by

v∗
rel(R) =

[
0.8

(
R

80 m

)−0.33

+ 0.2
(

R

80 m

)1.2
]0.83

m s−1, (22)

where we have converted RC1 into a physical radius R for equal-
sized bodies at a density of 1 g cm−3. This function has a minimum
of ≈1 m s−1 at R ≈ 80 m.

Equation (22) gives a lower limit to the relative velocity needed
to destroy a body of radius R. Because the velocity distribution
excited by a planet’s secular perturbations has a definite maximum,
which decreases with an outer planetesimal belt’s semimajor axis,
we see that a planet’s secular perturbations will be unable to cause
catastrophic collisions in a disc beyond some critical semimajor
axis

a∗(R) = 3.8 au
( epl

0.1

)2/3
(

m!

1M&

)1/3 ( apl

1 au

)2/3
(

v∗
rel(R)

1 km s−1

)−2/3

(23)

for an internal perturber, and within a critical semimajor axis

a∗(R) = 1.8 au
( epl

0.1

)−2
(

m!

1M&

)−1 ( apl

10 au

)2
(

v∗
rel(R)

1 km s−1

)2

(24)

for an external perturber.
We can also estimate the size of the largest body which a given

planet can destroy at a given disc radius a. For R 2 80 m, we ap-
proximate equation (22) by v∗

rel ≈ 0.26 (R/80 m) m s −1; combining
this with equation (19) for the maximum relative velocity gives

Rmax ≈ 74 km
( epl

0.1

) (
m!

M&

)1/2 ( a

10 au

)−3/2 ( apl

1 au

)
(25)

for an internal perturber.

C© 2009 The Authors. Journal compilation C© 2009 RAS, MNRAS 399, 1403–1414



1408 A. J. Mustill and M. C. Wyatt

6 DISCUSSION

6.1 Ability of a planet to stir a disc

We can now discuss the effects of planetary secular perturbations
on an initially dynamically cold planetesimal disc. We have seen
how the perturbations induce orbit crossing (Section 3) and excite
relative velocities between planetesimals (Section 4). Whether this
is sufficient to stir a disc depends on the typical size of bodies in the
disc (see equations 23 and 24). If the planetesimals in the disc have
grown to ∼80 m in size, then a planetary perturber can stir the disc
at radii

a ! a∗ = 1800 au e
2/3
pl

(
m!

M&

)1/3 ( apl

1 au

)2/3
. (26)

Because the 80 m bodies are the weakest, equation (26) determines
the greatest range of a planet’s secular perturbations for disc stirring.
If R 2 80 m, we can write

a∗ = 170 au e
2/3
pl

(
R

10 km

)−2/3 (
m!

M&

)1/3 ( apl

1 au

)2/3
. (27)

We illustrate equation (26) in Fig. 5. This figure shows the maxi-
mum semimajor axis a∗ at which 80 m bodies can be destroyed as a
function of a planet’s position in the a–e space. We see that all but
very low eccentricity planets close to their star have the potential to
stir discs out to at least 30 au. Hot Jupiters are therefore ruled out
as potential disc stirrers.

We note that this constraint is independent of the planet mass. The
planet mass affects the time for perturbations to act, but not their
eventual effects, assuming that the planet’s secular perturbations
are the only source of dynamical evolution. For low-mass planets,
the secular time-scale may be comparable to the time-scale for
collisional damping of eccentricity (Goldreich, Lithwick & Sari
2004b).

6.2 Comparison to self-stirring models

In the self-stirred model (see Section 1), the disc begins in an unex-
cited (e ∼ 10−4) state, composed of sub-km planetesimals. These
grow through collisions until they reach sizes similar to Pluto’s, at
which point their gravitational perturbations stir the disc, causing

Figure 5. Maximum semimajor axis a∗ at which 80 m bodies can be de-
stroyed, as a function of planetary semimajor axis and eccentricity (equa-
tion 26). This is independent of planet mass. Stellar mass m! = 2 M&.

the disc to brighten. On the assumption that both the self-stirring
and planet-stirring models are accurately describing the behaviour
of the disc, a key question for disc evolution is which occurs sooner.
In this section, we compare the time-scales for the two processes to
occur.

The time taken to form Pluto-sized bodies at a given radius
through core accretion tPl is proportional to the orbital time-scale
divided by the disc surface density at that radius. Based on extensive
numerical simulations, Kenyon & Bromley (2008) find

tPl = 145x−1.15
m

( a

80 au

)3
(

2 M&
m!

)3/2

Myr. (28)

Here, xm parametrizes the disc surface density in such a way as
to account for the propensity of more massive stars to have more
massive discs: the surface density of disc solids is given by

( = (0xm(m!/M&)(a/a0)−3/2, (29)

where(0 = 0.18 g cm −2 corresponds roughly to the minimum mass
solar nebula density at a0 = 30 au. We assume that if giant planets are
present then the planetesimal surface density is not depleted below
the primordial value by processes such as planet–planet scattering
or planetesimal-driven migration. While depletion would lead to
longer self-stirring time-scales, such processes may also excite the
eccentricities of remaining planetesimals, efficiently stirring the disc
at earlier times. Here, we concentrate exclusively on the planet’s
secular perturbations. Fig. 6 compares the self-stirring time-scale
tPl given by equation (28) with the time-scale for planet stirring t cross

given by equation (15). At a given planetesimal belt semimajor axis,
tPl depends only on the disc surface density, while t cross depends on
planet mass, semimajor axis and eccentricity. Furthermore, both
time-scales have a different dependence on stellar mass. As t cross

has a stronger dependence on a, for any given planet parameters and
disc mass, there exists a radius beyond which the disc will stir itself
before the planet can stir it. For example, for a Jupiter-like planet
and a disc with xm = 1, t cross < tPl out to about 13 au, whereas for
a heavier 10 Jupiter mass planet t cross < tPl out to around 60 au.

With this in mind, we define a new parameter ) which describes
the boundary between planet-stirred and self-stirred regions of the

Figure 6. Comparison of the time-scales for stirring in a system with a
planet at 5 au with eccentricity 0.1, a 2 solar mass star and an extended
planetesimal disc beyond 10 au. Solid lines show planet-stirring time-scales
for mpl = 10−4, 10−3, 10−2 M&. Dotted lines show self-stirring time-scales
tPl for disc masses given by xm = 0.1, 1, 10. More massive planets stir the
disc more quickly; more massive discs stir themselves more quickly.
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Figure 7. Illustration of constraint (30) that if planet stirring is competing
with self-stirring then the disc is planet-stirred precisely when the time-scale
for planet stirring is shorter than that for self-stirring. Lines are plotted at
fixed apl = 5 au, epl = 0.1, m! = 2 M& and mpl as shown. At a given disc
radius, the planet can stir the disc for disc surface densities on the lower
(shaded) side of the line.

disc, assuming that planet stirring and self-stirring are the only two
mechanisms operating. The disc is planet stirred if

a ! ) = 630 au
(
1 − e2

pl

)−1
e

2/3
pl

(
mpl

M&

)2/3

×
( apl

1 au

)2
(

m!

M&

)−4/3

x−0.77
m , (30)

and self-stirred otherwise.
This is illustrated in Fig. 7, showing the disc surface density

below which a planet at 5 au, with epl = 0.1, can stir faster than the
disc can form Plutos. If the planet is of Jupiter mass, it can stir discs
with xm < 1 at 20 au.

If the disc is planet stirred before it self-stirs, then there will
be implications for planet formation. If the largest bodies that the
planet can destroy (equation 25) are larger than the largest bodies
in the disc, then further growth of planetesimals will be difficult
if not impossible. Even if the largest planetesimals are unable to
be destroyed, their growth rates will be reduced as the increased
velocity dispersion among the planetesimals reduces gravitational
focusing factors, leading to longer collision time-scales.

6.2.1 Observables of stirring models

If the disc has an inner hole then we might expect a low level of dust
production, hence IR luminosity, until the planet’s secular perturba-
tions cause orbits to cross at the inner disc edge. The disc would then
brighten (at a given wavelength), before getting dimmer again at that
wavelength as the region of peak dust production moves outwards.
This could explain the observed incidence of excess IR emission
and the fractional luminosity for young A-type stars, which both
apparently increase with age, peaking at 10–20 Myr before declin-
ing (Currie, Plavchan & Kenyon 2008). This behaviour is qualita-
tively similar to that predicted by self-stirring, where the region of
peak dust production moves outwards as Pluto-sized bodies form
at progressively larger radii. The peak at 20 Myr cannot therefore
be taken as evidence for one particular type of delayed stirring over
another.

If most planetesimal discs are extended rather than being narrow
rings, we would expect to see an increase in observed disc radius
if this is tracing where the disc has recently been stirred. While in
principle this would provide a way to discriminate between differ-
ent stirring mechanisms (for self-stirring r ∝ t1/3 while for planet
stirring r ∝ t2/9), the difference is so small that it would be very
difficult to distinguish in practice. In any event, there is currently
no evidence for any dependence of disc radius on time (Najita &
Williams 2005).

6.2.2 Discs unlikely to be self-stirred

Some stars are young (∼10 Myr), yet already have bright debris
discs of large radii (∼100 au). Such discs cannot be self-stirred un-
less the disc is sufficiently dense, and in such systems planet stirring
may be a viable alternative. To quantify this, we calculated the min-
imum xm required for a disc to self-stir in less than the system age,
for discs around 23 FGK stars and 35 A stars with published 24/25
and 70/60 µm excesses (Moór et al. 2006; Beichman et al. 2006;
Su et al. 2006; Trilling et al. 2007; Hillenbrand et al. 2008). Disc
radii were estimated by fitting blackbody curves to the IR excess.
For FGK stars we increased these radii by a factor of 3 because a
comparison with the radii known directly from those discs which
have been imaged showed that the blackbody fits systematically
underestimate the radii by roughly this amount; this is likely due to
the small blow-out size for dust in these discs. If radii were avail-
able from imaging, we used these in preference to the blackbody
fits. We identified that a disc would have trouble self-stirring if
xm,min ≥ 10.

Very massive discs would also have been gravitationally unstable
when gas was still present. We can calculate the minimum density
for gravitational instability using the Toomre criterion Q = csn

πG(g
!

1 for instability, where n is the mean motion of the disc, cs is the
sound speed in the disc gas and (g is the surface density of gas.
The sound speed cs ≈ (h/a)vkep (Pringle 1981), where h is the disc
scaleheight. Assuming h/a = 0.1 and a dust–gas ratio of 1:100, so
that (g = 100( with ( given by equation (29), this gives

Q ! 102
( a

1 au

)−1/2
x−1

m (31)

for instability. For a disc at 100 au, this corresponds to a maximum
xm of ∼10. Higher xm would still be possible through metallicity
enhancement without affecting the gas mass and therefore gravita-
tional stability.

We identify two discs with a minimum surface density for self-
stirring xm,min ≥ 10: HD 181327 (xm,min = 17) and HD 202917
(xm,min = 10). Both these discs have been imaged, with radii a =
86 au (Schneider et al. 2006) and a ≈ 80 au (Krist 2007), respec-
tively. It may be that such discs do indeed have xm,min ≥ 10; i.e. they
may be at the top end of the disc mass distribution, in which case
they may be self-stirred, assuming that they have managed to avoid
the gravitational instability mentioned in the previous paragraph.
In the case of HD 181327, however, there is independent evidence
in support of planet stirring: the disc has an azimuthal asymmetry
(Chen, Fitzgerald & Smith 2008) which could be due to planetary
secular perturbations (Wyatt et al. 1999), so this system in partic-
ular warrants further investigation. In such a disc, we can place
constraints on the parameters of the planet responsible for stirring
by requiring t cross < t age. Fig. 8 shows that such planets are likely to
be far from the star. This, together with the host stars’ youth, makes
them good targets for direct imaging.
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Figure 8. The shaded region shows the region of apl − mpl parameter space
a perturbing planet must occupy to stir the disc in the HD 181327 system
in less than the system age of ∼12 Myr, assuming a planetary eccentricity
of 0.1 or 0.5. Planets with higher eccentricity can stir the disc if they have
lower mass or semimajor axis than ones with lower eccentricity. The disc is
indicated with the thick vertical line.

6.3 Exoplanet population

We now attempt to ascertain whether there is any observational
evidence for planet stirring. We begin by looking at a statistical
sample of exoplanets. If planets are a common cause of disc stirring
then we might expect there to be a correlation between the planetary
parameters ) and a∗ and the presence of infrared excess, higher
values of these parameters correlating with IR excess. Of the two,
a∗ is the more fundamental because it describes the planet’s absolute
ability to stir a disc within the context of the planet-stirring model,
independently of any other sources of stirring. A star hosting a
planet may also host a planetesimal disc. If it does, and if planet
stirring were the sole stirring mechanism, then we would expect
only those planets with high enough a∗ to exhibit IR excess. The
parameter ) quantifies the relative importance of the planet- and
self-stirring models, so the interpretation of any correlation between
high ) and a disc, should one exist, is not so clear.

We take 57 planet-hosting stars with published Spitzer/MIPS pho-
tometry (Beichman et al. 2006; Moro-Martı́n et al. 2007a; Trilling
et al. 2008; Backman et al. 2009). Our sample is identical to that of
Bryden et al. (in preparation), but with the two M dwarfs GJ 436
and GJ 876, and the G dwarf HD 33636 whose companion has been
determined to be of stellar mass (Bean et al. 2007), removed. Of
these 57 stars, 10 show significant excess emission at 24 µm and/or
70 µm, and are classed as disc hosts. Exoplanet data are from Butler
et al. (2006) for most planets, except for ε Eridani (Benedict et al.
2006) and HD 69830 (Lovis et al. 2006).

In Fig. 9 we plot parameters ) and a∗ for the 57 systems. For
multi-planet systems, we plot ) and a∗ for the planet which stirs
the disc quickest, treating the system as if the planets’ perturbations
acted independently (see Section 6.4.3 for a more detailed discus-
sion). We also plot the line for constant epl = 0.1, mpl = 10−3 M&
(a ‘typical planet’) and varying apl, which fits the points rather well,
showing that most of the range of ) and a∗ can be accounted for
by spread in apl. The planet’s semimajor axis is the most impor-
tant parameter in determining whether a disc can be self- or planet

Figure 9. Plot of a∗ against) for systems in the sample of Bryden et al. (in
preparation). We plot only the planet which stirs the disc quickest for multi-
planet systems. Black crosses show planets orbiting stars without discs. Blue
stars show planets orbiting stars with discs. Dotted line marks 10 au. Dashed
line marks a∗ against ) for planets with epl = 0.1, mpl = 10−3 M& and
varying apl. We set xm = 1.

stirred. The region on the right shows the region of parameter space
in which a planet can stir an a = 10 au, xm = 1 disc, according to
equations (30) and (26).

Fig. 9 does not suggest a difference in the distributions of )
and a∗ between planets orbiting disc hosting and non-disc hosting
stars. This is confirmed by Kolmogorov–Smirnov (KS) tests. The
p-values3 from one-dimensional KS tests comparing the disc host-
ing and non-disc hosting samples are 0.986 when comparing the
distributions of ) and 0.917 when comparing the distributions of
a∗. Thus, the distributions of planetary parameters are statistically
indistinguishable between disc hosts and non-disc hosts.

The implications of this for the relative importance of self- and
planet stirring are, however, unclear. Due to the many processes
doubtless taking place, it is likely that should any correlation be
present it has been diluted. Larger samples, at a range of ages
(all but two of the stars in this sample are over 1 Gyr old), may
be necessary to properly determine the evolutionary processes at
work.

6.4 Case studies

We now proceed to examine some individual systems, categoriz-
ing them somewhat arbitrarily by the planet’s semimajor axis. We
conclude this subsection by briefly looking at multi-planet systems.

6.4.1 Jupiter analogues

ε Eridani hosts a highly eccentric (epl = 0.7) Jupiter-mass (mpl =
1.5 × 10−3 M&) planet at 3.4 au (Benedict et al. 2006). This
planet can stir any disc of 80 m planetesimals out to a∗ = 3000 au.
ε Eridani also hosts a cold debris disc extending from 35 to 110 au,
with surface brightness peaking at 60 au, as well as at least one

3 The p-value gives the probability of observing a more extreme test statistic
under the assumption of the null hypothesis: that the distribution of the
parameter is the same for both samples. Small p-values suggest that the
populations have different distributions.
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Figure 10. Planet parameters needed to stir ε Eridani’s disc at 60 au, within
the age of the system. The diagonal lines show the minimum planet mass at
each semimajor axis required to stir the disc for epl = 0.1 and epl = 0.7. We
also show detection limits for RV (dotted line) and direct imaging (dashed
line). The real location of ε Eridani b is marked with a cross.

unresolved warm inner belt (Greaves et al. 2005; Backman et al.
2009). Clearly, all the dust is well within the maximum radius for
planet stirring by the a∗ criterion. We can also compare t cross to the
star’s age, estimated at ∼850 Myr (Di Folco et al. 2004). Because
t cross ≈ 40 Myr at 60 au, we see that planet stirring by planet b is
inevitable within the system age. Fig. 10 shows the region of pa-
rameter space within which a planet must lie if it is to have stirred
the disc within 850 Myr, for both a fiducial planetary eccentricity
epl = 0.1 and the real planetary eccentricity epl = 0.7. The figure
also shows the parameter space accessible to 20 years’ radial ve-
locity observations at 15 m s−1 precision, and the rough sensitivity
limits from the direct imaging searches of Marengo et al. (2006)
and Janson et al. (2008).

We can also calculate the maximum size of bodies that can be
destroyed by planet stirring by ε Eridani b. At 60 au, equation (25)
gives Rmax ≈ 110 km. The planetary perturbations therefore have an
impact over a wide range of the size distribution of planetesimals.

It is intriguing that the planet ε Eridani b is only just able to stir
the disc at 110 au, within 850 Myr. This may be a coincidence, but
may hint that there is an as yet unstirred disc region beyond 110 au,
which the planet’s perturbations have not yet reached. It is, however,
worth noting that the disc could also be stirred by any other planet
in the system, such as that postulated to explain the disc’s clumpy
structure (Greaves et al. 2005), although here the interactions would
not be purely secular.

6.4.2 Neptune analogues

Fomalhaut’s long-suspected planet was recently imaged by Kalas
et al. (2008). Its orbital elements are estimated at epl = 0.11, and
apl = 115 au, with an upper limit of 3 M J for the mass (Chiang
et al. 2009). The disc lies at a radius of ∼140 au (Kalas, Graham
& Clampin 2005). At this radius, the time-scale for planet stir-
ring is only 0.65 Myr, orders of magnitude less than the star’s age
(∼200 Myr; Barrado y Navascues et al. 1997). We also find a∗ =
1.2 × 104 au, so the disc is well within the radial limits for planet
stirring.

Figure 11. Planet parameters needed to stir the disc of Fomalhaut. The
shaded region marks the planet parameters where disc stirring can occur
within the system age. The dashed line marks the planet parameters which
can stir the disc as quickly as Fom b (0.65 Myr). The planet’s semimajor
axis and maximum mass are marked with an arrow.

Fig. 11 shows the planet masses and semimajor axes required to
stir the Fomalhaut disc within the system’s age, assuming a plan-
etary eccentricity of 0.1. We can see that even if the planet’s mass
is significantly less than the maximum of ∼3 M J, planet stirring
would occur within the age of the system.

However, Fomalhaut presents two complications. First, there are
difficulties with in situ formation of the planet Fom b because the
time-scales for core accretion are so long: recall that the self-stirring
time-scale gives the time required to form Pluto-sized objects in
situ, while the mass of Fom b may be as high as that of Jupiter. The
time to form a Pluto-sized body at Fomalhaut b’s orbit is around
150 Myr for xm = 1. The planet most likely formed closer to the star
and later moved to its current location, for example, by outwards
migration (e.g. Martin et al. 2007) or being scattered by another
planet (e.g. Veras, Crepp & Ford 2009). Both of these processes
would, however, likely disturb the disc as well.

Secondly, we note that, although ef ≈ 0.1, the material in the
Fomalhaut disc appears to have very low proper eccentricities
(Quillen 2006; Chiang et al. 2009), as evidenced by the sharp inner
edge to the disc. If the proper eccentricity of Fomalhaut’s disc is only
10 per cent of the forced eccentricity, then this increases the time-
scale for orbit crossing to 6.5 Myr (see equation 14), still much less
than the system’s age. Reducing proper eccentricities also reduces
the relative velocities amongst planetesimals in direct proportion,
although given the large value of a∗ this will not prevent Fom b
from causing erosive collisions.

For the Solar system’s Neptune we find a∗ = 730 au, making
the Kuiper Belt able to be stirred by Neptune. However, when we
compare with self-stirring we find that planet stirring acts more
quickly only out to ) = 33 au, so Neptune’s secular perturbations
would not have stirred the belt before Pluto formed, assuming that
the planets formed at their current semimajor axes.4 So this sim-
ple model is consistent with the outer Solar system, although we
note that the dynamical evolution of the early Kuiper Belt and outer

4 We find similar values for other giant planets, e.g. for Jupiter, a
∗ = 720 au

and ) = 22 au.
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planets may have been more complicated than in situ formation
of Neptune followed by growth of Kuiper Belt objects (KBOs)
(Tsiganis et al. 2005). We also note that highly excited eccen-
tricities and inclinations of KBOs may have been required to ex-
plain the details of the capture of Neptune’s Trojans (Nesvorný &
Vokrouhlický 2009), and capture of KBOs into high order mean
motion resonances (e.g. Chiang et al. 2003). Such high inclinations
might be achievable through self-stirring but not planet stirring.

6.4.3 Multi-planet systems

When dealing with multiple planets previously we treated the disc
as being stirred by the planet with the lowest t cross, assuming that
the other planets had no effect on the disc. Such an approach is
unrealistic because it neglects not only the effects of other planets
on the disc, but also the mutual interactions of the planets amongst
themselves.

We plot the precession rate A for planetesimals orbiting in the
Sun–Jupiter–Saturn system in Fig. 12. This also shows the loca-
tion of secular resonances, where the planetesimal’s precession rate
equals one of the system’s eigenfrequencies and the forced eccen-
tricity is formally infinite.

Fig. 12 also shows the effect of reducing Saturn’s mass to that of
Earth: the precession rate approaches that in the single-planet case
of Jupiter alone, and the width of the region strongly affected by the
outer planet’s perturbations decreases. So as far as the precession
rate is concerned, the behaviour is similar to the single-planet case.

Performing a similar analysis to that in Section 3, we find that,
for planetesimals on initially circular orbits, the time-scale for orbit
crossing in the multi-planet case is given by

tcross "
(∣∣∣∣∣

N∑

j=1

bjBj

∣∣∣∣∣ ×
N∑

i,j=1

∣∣∣∣
Ajeji

A − gi

∣∣∣∣

)−1

, (32)

where bj = 7/2 or -3/2 when planet j is an internal or external
perturber, respectively.

Figure 12. Solid lines: precession rate A for planetesimals in the Sun–
Jupiter–Saturn system. The horizontal lines mark the eigenfrequencies. Dot-
ted lines: precession rate and eigenfrequencies for the same system but with
Saturn’s mass reduced to that of Earth. Dashed line: precession rate for
planetesimals perturbed by Jupiter alone. Secular resonances occur when
the precession rate equals one of the system’s eigenfrequencies; there are
no secular resonances in the case of a single perturber.

Figure 13. Solid line: orbit-crossing time-scale tcross for planetesimals in
the Sun–Jupiter–Saturn system. Dotted line: same, with Saturn’s mass re-
duced to that of the Earth. Dashed lines: tcross assuming a one-planet system
with Jupiter stirring the disc. Dot–dash line: the asymptotic approximation
to the solid for small α. As well as being short near the planets (marked with
their initials), tcross is also small near the four secular resonances (marked
with vertical lines for the Sun–Jupiter–Saturn system).

The stirring time t cross for the Sun–Jupiter–Saturn system is plot-
ted in Fig. 13. We also show t cross with Saturn’s mass reduced to that
of Earth, and for the single-planet case with Jupiter alone perturbing
the disc. With Saturn at its true mass, we see that the crossing time-
scale is greatly reduced close to the planets. However, beyond the
outermost secular resonance, the dependence of t cross on a steepens.
Specifically, for large a, t cross ∝ a8 rather than a4.5. This is because
we now have |A| < |gi| in the forced eccentricity term in equa-
tion (32), and so the a dependence of A and Bj no longer cancels.
For planetesimals beyond 20 au, introducing another perturber has
increased the time-scale for orbit crossing. When Saturn’s mass
is reduced to that of Earth, we see a large region between Saturn
and the outer secular resonance where the time-scale is the same as
for the case with Jupiter alone: because of the large disparity in
masses, the perturbations are dominated by Jupiter.

As an example of a multi-planet system with a debris disc, con-
sider HD 38529. This star hosts a 0.8 Jupiter mass planet on a
0.13 au orbit and a 12.2 Jupiter mass planet on a 3.74 au orbit. The
secular dynamics of the system, including both planets and mass-
less planetesimals, were modelled by Moro-Martı́n et al. (2007b),
who concluded from the dynamical analysis and SED fitting that
the planetesimals reside in a dynamically stable region at 20–50 au
between secular resonances. Fig. 14 shows the crossing time-scale
for HD 38529. Within the region 20–50 au, the crossing time-scale
is close to that achieved by planet c alone, due to its higher mass
and larger semimajor axis. Within this region of the disc, the plan-
ets’ secular perturbations induce crossing of neighbouring initially
circular orbits on time-scales of ! 1 Myr. It may well be the case
then that there are no bodies larger than several kilometres in radius
in the disc (but see Section 6.5.2).

Note that t cross is formally infinite when dA/da = 0. This would
appear to mean that there is a particular semimajor axis between
the planets where the perturbations can never induce orbit crossing.
However, this singularity is merely a mathematical artefact (see
Section 3): in reality, this region can still be stirred by secular
perturbations, given sufficient time.
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Figure 14. Solid line: orbit-crossing time-scale tcross for the HD 38529
system. Planets are shown with their letters, and the secular resonances are
marked with vertical lines. The dashed line shows the crossing time if only
planet c is stirring the disc. The sharp peak at ≈0.7 au occurs where dA/da =
0 (see text).

6.5 Limitations of model

We have presented a simple picture of the effect of secular pertur-
bations on a planetesimal disc. Here we clarify the assumptions and
limitations attached to our model.

6.5.1 Collision model

To determine the outcome of collisions, we have chosen one partic-
ular scaling law for threshold collision energy. Other scaling laws
differ in the planetesimal radius at which the minimum of Q∗

D is
attained, and the value of the minimum itself. Given the very large
values of a∗ for 100 m bodies, this is unlikely to be important for
this size of planetesimal, but may be important if the planetesimals
are larger.

We have assumed that collisions occur as soon as the orbits begin
to cross, and accounting for collision rates will slightly increase the
stirring time.

6.5.2 Initial conditions

In common with other studies (e.g. Thébault et al. 2006; Kenyon
& Bromley 2008), we have taken the initial planetesimal orbits to
be circular. Despite promising recent progress (e.g. Johansen et al.
2007; Cuzzi, Hogan & Shariff 2008), the formation of planetesimals
is still not fully understood, and so these initial conditions, although
reasonable, are not rigorously justified. In particular, we note that
planetesimals can acquire moderate (∼0.05) eccentricities if they
orbit within a protoplanetary disc that has density fluctuations in-
duced by its self-gravity (Britsch, Clarke & Lodato 2008) or by the
MRI (Nelson 2005). Starting at different eccentricities can be dealt
with by changing the proper eccentricity ep in equation (14), so long
as ep is a single-valued function of semimajor axis.

We have also introduced the planet instantaneously, assuming
that it forms at time t = 0. Statements about the stirring time-scale
should therefore be qualified by including the time taken for the
planet to form, during which time the planetesimals will themselves
be growing. This will affect the maximum radius of bodies which
exist in the disc when the orbits begin to cross.

6.5.3 Unmodelled processes

Dynamically, we have neglected any non-secular dynamical effects
of the planet on the disc. While this is valid for the planetesimals
far from the planet, when they are close they begin to experience
resonant interactions as well as secular (see Fig. 2). Furthermore,
the asymptotic expression for crossing time-scale (equation 15) is
no longer valid. In fact, this approximation overestimates the time-
scale because, as a → apl, we find A → ∞ while ef → epl (Murray
& Dermott 1999), and so t cross → 0, whereas extrapolation of the
asymptotic expression predicts a finite value. So both simplifying
the secular interactions and neglecting non-secular interactions will
tend to overestimate the crossing time-scale. Thus the simplified
dynamics underestimate the ability of planets to stir discs located
close to them. This may be particularly relevant for such systems as
Fomalhaut, where several strong resonances lie in the disc (Chiang
et al. 2009).

We have neglected any damping in the disc. Collisional damping
has been invoked to explain the low proper eccentricities in Foma-
lhaut’s disc (Quillen & Faber 2006; Chiang et al. 2009). Reducing
proper eccentricity increases both the time-scale for orbit crossing
and the relative velocities, as we have already described.

Finally, while we have focused on planetary secular perturba-
tions as a disc stirring mechanism, and compared them to in situ
planet formation, it is important to realize that there may be other
causes of dynamical excitation. Kenyon & Bromley (2002) investi-
gated the effects of a stellar flyby, but found that the perturbations
were rapidly damped by collisions. Other mechanisms which have
not been so thoroughly investigated in the context of debris disc
evolution include planet formation proceeding more rapidly when a
gap-opening giant planet has formed (Bryden et al. 2000; Thommes
2005), or an outer disc being stirred by planetesimals that have been
scattered out from the inner system (Goldreich et al. 2004a).

7 SUMMARY AND CONCLUSIONS

Our main conclusion is that a planetesimal belt at several tens of au
can be stirred by an eccentric giant planet at only a few au. Debris
discs do not require any bodies larger than a few km in size beyond
a few au from the star to explain the observed dust production.

To reach this conclusion, we investigated the effects of secu-
lar perturbations from an eccentric planet on a dynamically cold
disc, to assess whether this might be the origin of debris disc stir-
ring. Over time, neighbouring orbits acquire sufficiently different
eccentricities and longitudes of periapse that they begin to cross.
We derived an analytical expression for the time t cross for this to
occur (equation 16), which agrees well with previously published
N-body simulations. After this time, the planet’s secular perturba-
tions quickly impose a mean relative velocity 〈vrel〉 ≈ 1.4efvkep.
This is similar to that for a planetesimal swarm without external
perturbers, despite the high degree of apsidal alignment forced on
the orbits by secular perturbations.

When the relative velocities increase, the disc may brighten as
a result of increased dust production, and further growth of plan-
etesimals may be inhibited or halted. We derived an expression for
a∗, the maximum range of semimajor axes over which a planet’s
perturbations can destroy planetesimals (equation 26). The range
a∗ increases with planetary eccentricity and strongly increases with
planetary semimajor axis. It is also a function of planetesimal size.
For the weakest planetesimals (∼100 m in radius), we found typical
values of a∗ of several hundred au.
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We then compared the time-scales for planet stirring with the
time-scales for self-stirring from the models of Kenyon & Bromley
(2008). Because t cross has a stronger dependence on a than does
tPl, assuming that only these two processes are operating, we found
that typically the disc closer to the planet will be planet stirred, and
the disc further away will be self-stirred, and we identified another
parameter ) which demarcates the outer reach of the planet’s per-
turbations, beyond which the self-stirring time-scale is shorter. This
parameter ) is typically much smaller than a∗, and whether a disc
can be planet stirred before it is self-stirred depends on the disc
density as well as planet parameters.

For a sample of RV planet hosts observed by Spitzer, we find no
correlation between the magnitude of ) or a∗ and the presence of a
disc. While this may suggest that planet stirring is not ubiquitous,
the degree of correlation we would expect is not clear.

However, for some individual systems it appears that a known
planet will have stirred the disc on a time-scale shorter than the sys-
tem age and/or before it is likely to self-stir. In particular, we identify
ε Eridani, Fomalhaut and HD 38529 as being in this category. Fu-
ture studies of such discs should take into account the effects of
planetary perturbations on the disc’s evolution, collisional as well
as dynamical. We also speculate that the discs of HD 181327 and
HD 202917 may have been stirred by as yet undiscovered planets,
since the only other stirring mechanism proposed would only work
for discs with high surface densities (≥ 10 MMSN).

Future work in this area should further investigate the effects of
planetary perturbations on the collisional evolution of a disc, with
a view to (a) clarifying the extent to which the perturbations can
inhibit the further growth of planetesimals and (b) determining the
evolution of dust production and hence IR luminosity. The latter in
particular will enable valuable observational tests of planet stirring
and its role vis-a-vis other stirring mechanisms. We also note that,
while we have focused on internal perturbers in our discussion, our
formulae for external perturbers will be relevant for investigations
into the effects of binary companions on discs.
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