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A debris flow represents a mixture of sediment particles of various sizes and water flowing 

down a confined, channel-shaped region (e.g., gully, ravine or valley) down to its end, at which 

point it becomes unconfined and spreads out into a fan-shaped mass. This review begins with a 

survey of the literature on the physical-mathematical modeling of debris flows. Next, we discuss 

the basic aspects of their phenomenology, such as dilatancy, internal friction, fluidization, and 

particle segregation. The basic characterization of a debris flow as a mixture motivates the 

application of the continuum thermodynamical theory of mixtures to formulate a model for a 

debris flow as a viscous fluid-granular solid mixture. A major advantage of such a formulation, 

which goes beyond the most general models in the literature, e.g., Takahashi (1991), is that it 

can be used to expose and better understand the assumptions underlying existing models, as 

well as to derive new, more sophisticated models. Finally, we delve into the issue of how such 

models have been or can be implemented numerically, as well as general boundary conditions 

for debris flows. 

1 Introduction 

Broadly speaking, a debris flow represents the gravity-driven flow of a mixture of various sizes of sediment 

(from clay to boulders), water and air, down a steep slope, often initiated by heavy rainfall and/or landslides. 

The volume solids concentration in the front part of such a flow varies between about 30 and 65%, and 

generally decreases toward the rear. The flow depth is of the order of 1 to several meters, mean velocities 

may be as high as 15 m/s, and channel gradients vary from about 40 ° in the starting zones to about 3 ° in the 

deposition zone. 

In Switzerland, such flows cause considerable damage in mountain torrents during flood events. They 

seem to have increased in occurrence in the last few years, possibly by the retreat of the glaciers and the 

permafrost areas to higher elevations owing to the global climatic change. As a result, their scientific study 

seems to become more and more pressing in order to gain a better understanding of the physical mechanisms 

that govern their initiation at steep slopes, their motion along these, and their relatively abrupt settlement in 

the deposition areas. 

Logically, research on debris flows has been chiefly conducted in countries with areas that are prone 

to debris flows. The most comprehensive and detailed observations and mathematical-physical studies have 

been conducted in Japan and China; however, countries with some natural potential of rockfalls, landslides, 

sturzstroms and avalanches, such as the western US and Canada, as well as France and Switzerland, have 
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also been involved. In fact, the present day theoretical formulations of the dynamics of snow avalanches are 

quite similar to, though somewhat less complex than, the proposed models of debris flows. 

A perusal of the existing literature on debris flow models leaves the impression that very few of these are 

formulated on the basis of continuum mechanical principles. This fact often obscures the physical assumptions 

such models are based on, and makes the comparison of these with each another difficult. In particular, 

practically all models in the literature are based on a single-constituent material even though a debris flow is 

clearly a mixture, as discussed above. On this basis, the role played by the water in such flows, for example, 

can at best be incorporated parametrically, and certainly not dynamically. It is well-known, however, that 

water is the main contributor to debris flow initiation, and as such must be incorporated as a distinct constituent 

in any realistic mathematical model which aims at describing the initiation of such flows. 

Beyond this issue, debris flow models are generally of a global nature, i.e., the physical laws of balance 

of mass and momentum are stated in integrated form, either as hydraulic equations (of the Boussinsq type) 

or vertically integrated. This procedure hides primarily the configurational restrictions the equations are 

based upon. Without the necessary precautions, such formulations are generally only valid if the flow region 

conforms with the "thin layer" assumption, in which curvature effects of the basal topography and the free 

surface are insignificant. It is unlikely that this is the case when the debris material is flowing through gullies 

with relatively fast changes from steep to shallow topographies or with transition zones from channel to fan 

geometries. 

Global models generally arc fraught with the additional difficulty of finding constitutive relations for their 

closure variables in a particular local formulation. More specifically, in a hydraulic model, the basal shear 

traction must be formally, i.e., constitutively, related to the cross sectional area (or debris flow depth), the 

volume flux and the distribution of the mass (which is generally assumed to be uniform). Such functional 

relations ought to be derived from the local form of the constitutive relations plus velocity and particle 

concentration profiles, which are, however, not explicitly known in a global model. As a result, closure 

conditions in global models are often postulated without recourse to detailed knowledge of constitutive 

behaviour (by, say, extending Chezy-Manning-Stickler-type formulas). 

These examples may suffice to justify an in-depth analysis of the principles involved with the modeling 

of debris flows. This review will go beyond a mere discussion of existing models; indeed, new, more general 

models will also be derived on a sound continuum-mechanical basis, allowing us to delimit the range of 

applicability of the existing models. In doing so, a hierarchy of the proposed and existing models naturally 

emerges. As a by-product, in each of the presented class of models, the general form of the governing 

equations to be solved, as well as the relative importance of their terms, is obtained, the latter on the basis of 

dimensional analysis. This procedure involves a physical aspect through the postulates of material behaviour, 

as well as a geometric aspect in the form of the configurations that are analysed. It delimits automatically in 

the various cases the dominant(physical) processes to which the emerging field equations are applicable. 

1.1 Structure of this review 

This review begins with a survey of the existing literature and work on debris flows (Sect. 2). Next, we delve 

into the phenomenology of such flows (Sect. 3), something upon which constitutive models for the material 

behaviour of these are based. Typical features observed in debris flows that should be incorporated in general 

into any model for these include (1), dilatancy, (2), internal friction, (3), cohesion, (4) fluidization, and (5), 

particle segregation. 

Debris flows exhibit dilatancy because shearing in such flows at constant confining pressure leads to 

expansion of the interstitial (pore) space. On the other hand, shearing at constant volume induces normal 

stresses in such bodies, and so should result in normal stress effects. Beyond these, such bodies exhibit, 

under given circumstances, both solid- and fluid-like material behaviour. For example, quasi-statically, such 

flows can pile up, a process influenced by internal friction and cohesion, implying that they support quasi- 

static shear stresses - a solid-like behaviour. At large strain rates, however, debris flows behave more like 

non-linear, highly-viscous fluids. Stress constitutive relations for the debris flow must then account for these 

possibilities. There are a number of ways to go about formulating such relations, and we discuss one such 

approach in detail (Sect. 3). 
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Fluidization is the process by which internal friction and cohesion in the flow are reduced or eliminated 

via the fluctuation of the solid particles and motion of the interstitial fluid, leading to an increase in the 

interstitial or pore volume (fraction) and consequently a greater mobility of the bulk material. A proper 

theoretical treatment of this process should include a model for the solid particle fluctuations, something that 

has not yet been done. Instead, one simply assumes that the viscosities depend on solid volume fraction (see 

Sect. 4). 

Debris flows consist of grains which differ in size, shape, composition, and so on; particle segregation 

in a debris flow represents the process by which particles of different sizes are redistributed during motion. 

In particular, over longer timescales, larger particles are observed to move toward the top, and smaller ones 

correspondingly toward the bottom, of a debris flow. A realistic model of a debris flow should incorporate 

a description for such a spatio-temporal evolution of the particle size distribution, and in particular the 

phenomena of inverse grading; presently, however, no such model exists. 

Section 4 details a viscous fluid-granular solid mixture model for a debris flow as an application of a 

continuum thermodynamical theory for a mixture of granular materials. The viscous-fluid constituent accounts 

for the slurry (i.e., water and dissolved fine sediment) constituent, and the granular solid for the coarse 

sediment constituent, of a debris flow. In this approach, the two constituents are treated as interpenetrating 

material bodies interacting with each other mechanically at the same temperature. Consequently, each of 

these is described dynamically by distinct mass and momentum balance relations, and common energy and 

entropy balances (i.e., those of the mixture as a whole). The fluid and solid are assumed incompressible 

in the sense that their true mass densities (i.e., mass densities per unit constituent volume) are assumed 

constant; such an assumption, however, does not imply that the mass density of the mixture is constant, 

since the constituent volume fractions can still vary. We also distinguish between saturated and unsaturated 

mixtures, the former being the case in which the fluid constituent fills the interstitial space in the granular 

solid constituent completely, and the latter when it does not. Debris flow models are generally restricted to 

the saturated case. 

Mass and momentum balance relations for the granular solid and viscous fluid constituents embody the 

evolution equations of the model, in which the constituent partial Cauchy stress and mechanical interaction rate 

density represent constitutive quantities depending on the constituent volume fractions, their spatial gradients, 

the constituent spatial velocities, their spatial gradients, and the rate of change of the solid volume fraction. In 

particular, this latter dependence is a direct result of the assumed granular nature of the solid constituent. We 

apply the results of the full thermodynamic formulation (Svendsen & Hurter 1995), and give explicit relations 

for the static and dynamic parts of the granular solid and viscous fluid partial Cauchy stresses, as well as 

the solid-fluid mechanical interaction rate density. In particular, the granular solid static stress tensor can be 

incorporated into the Mohr-Coulomb criterion for yielding of the granular solid, something which relates the 

mixture specific inner free energy to the internal friction and cohesion properties of the granular solid. We 

stress that this formulation is more general and encompassing than any other model for debris flows of which 

we are aware. Such a formulation and model are in fact necessary as a basis for the rational and physically 

coherent derivation of simplified models which can be used to develope numerical simulations for such flows. 

One such simplified model for the channel-flow regime of a debris flow can be obtained with the help of the 

so-called thin-layer approximation. The resulting simplified model equations reduce, in the context of two 

further assumptions, to the model proposed by Takahashi (1991). This thin-layer approximation can easily 

be extended to deal with the fan-flow regime. In addition, it points out the direction research on the subject 

must take to obtain simplified models which can be numerically implemented. 

The issue of numerical implementation is considered in Sect. 5. In so doing, the viewpoint taken is 

somewhat more general than usual in the sense that the analytical reduction of a given model to a simpler 

form is also considered to be part of the numerical implementation. To begin, the existing or potential 

models are discussed in a hierarchical framework (see Table 5.1). Accordingly, the physical complexities 

range from two-constituent mixture and diffusive models to single-constituent models, and each of these 

classes can be subdivided into subclasses according to whether an equation for the fluctuation of the solid 

particles and/or turbulence in the fluid is taken into account. Each class is characterized as well by its own 

set of constitutive relations required to close the system of balance and/or evolution relations. For example, 

two-constituent mixture models require constitutive relations for the solid and fluid stresses, as well as 
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the solid-fluid interaction rate density, while two-constituent diffusive models and single-constituent models 

require but a single constitutive relation for the mixture stress. Further details particular to each of these 

model classes are summarized in Table 5.1. 

The above classification of debris flow models is based upon the relative physical sophistication of 

each model. Such models, however, can also be classified on the basis of the complexity inherent in their 

numerical implementation. In particular, we define hydraulic models as global descriptions of debris flows 

that are obtained from the established moving initial boundary value problem by averaging the full field 

equations over depth or cross-section (depending on whether or not the flow is confined cross-sectionally, 

as in the channel-flow regime, or free, as in the fan-flow regime). This averaging is achieved by integration 

of the full field relations in the directions approximately perpendicular to the main flow direction(s). In 

the existing literature, only Cartesian coordinates are used to do this; as shown by the work of Hutter and 

associates (see, e.g., Hutter 1996), however, curvilinear coordinates should be used, in which one of the 

coordinate surfaces follows more or less the topographic surface over which the debris flow moves. Besides 

this, hydraulic models involve simplifications which are connected with the averaging process and assumed 

profiles of the field variables. Such profiles should also be predicted by the averaged field relations. The 

thin-layer approximation offers the possibility to do this in a more systematic fashion than is done in the 

works to be found in the reference list: 

These disadvantages are circumvented to some degree by the higher-order hydraulic models which refine 

the averaging procedure via a spectral expansion of the fields in terms of functions from a complete function 

set such as Tshebyshev polynomials. The higher-order models can be developed by using the method of 

weighted residuals in conjunction with the above spectral expansion. The so-averaged equations can then be 

solved by the finite-difference or finite-elements methods. 

A general difficulty with the numerical implementation of debris flow models consists in the specification 

of initial and/or boundary conditions, in particular since debris flows possess free boundaries, such that 

the region occupied by the debris flow moves with time, and the boundary of the debris flow must be 

determined along with the independent fields. Use of the Eulerian description in numerical models of debris 

flow often prove to be numerically unstable, while the Lagrangian description, at least in the context of 

granular avalanches, appears to lead to more stable numerical schemes, implying that this latter description 

should be used in any finite-difference or finite-element implementation of the model. 

Finally, we come to the issue of boundary conditions in Sect. 6. The complexity of a particular debris flow 

model is also determined in part by the boundary conditions involved. In general, two bounding surfaces of a 

debris flow can be identified, i.e., the free surface, and base, of the flow, the latter of which is in contact with 

the surface over which the debris flow moves. The nature and complexity of the boundary conditions at each 

of these is dependent on the class of models (see Table 1) chosen to model the flow. There are, however, 

common aspects to all cases, i.e., the kinematic conditions allowing the incorporation of processes such as 

the erosion/deposition of sediment, and the drainage/supply of water, at the base. The remaining boundary 

conditions are dynamic in nature, and derived from the mass and momentum jump balance relations at each 

boundary. 

Tables 1 and 2 summarize the boundary conditions formulated at the free surface and base of the debris 

flow. It is in particular evident that deposition and erosion, as well as supply and drainage of water, at the 

base, can reasonably be described only by a full two-constituent mixture model. In addition, erosion should 

probably be modeled in conjunction with field relations for the solid particle fluctuations and fluid turbulence. 

The kinematic relation at the base accommodates in fact the incorporation of these processes. In a similar 

fashion, precipitation can be accounted for at the free surface. 

The dynamic conditions at the free surface imply that it is stress-free for all constituents, and so the 

mixture. At the base, however, no-slip conditions, or a viscous sliding relation, must be incorporated. These 

are also to be found in Tables 1 and 2. 

The boundary conditions discussed in Sect. 6 are of a classical nature, and unproblematic, only if the 

field relations and/or constitutive relations do not require that boundary conditions be specified for the con- 

stituent volume fraction gradients. For models in which this is not the case, i.e., that formulated in Sect. 4, 

such additional boundary conditions are then of course necessary. Unfortunately, these are quite difficult to 

formulate in a physically-meaningful fashion. In any case, such boundary conditions should be found prior 
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to the numerical implementation of any debris flow model in which they play a role. Similarly, if a balance 

relation for the fluctuation energy is included, boundary conditions for this energy at both the free surface 

and base must be found before any numerical implementation of the corresponding model is undertaken. 

2 Review of previous work 

We give here a brief review of the variety of the current work on the mechanics of granular materials, and in 

particular that on debris flows. Since dry granular flows, avalanches, and debris flows are in principle related 

phenomena, the following survey is not exclusively restricted to the debris flow literature. 

Perhaps the most up-to-date literature source available at the current time on the mechanics and modeling of 

debris flows is Takahashi's (1991) IAHR monograph 1, which gives a fairly critical account on the mechanisms 

of debris flows from their onset to deposition. It summarizes Takahashi's own extensive research work, and 

presents a detailed understanding of the mechanics of the flow of a layer of a particle-fluid mixture under 

simple gravity driven shear for Bagnold's (1954) grain inertia and macroviscous regimes. The model equations 

of the two-constituent model are eventually simplified to essentially a one-constituent model, and this view 

is maintained throughout. Time dependent processes, i.e., development of a debris flow hydrograph and its 

deformation as well as snout behaviour are also discussed as are inverse grading and the transportation of 

large boulders on the free surface of a debris flow and the processes of deposition of sediments in the run-out 

zone. Considerations are all based on two-dimensional plane flow. 

In a similar spirit is the work of Cheng-Lung Chen (1987). For simple plane shear flows under gravity (in 

which a shear stress and a normal stress are the only materially dependent stress variables that are introduced), 

Chen presents a detailled analysis of theological models and deduces with these velocity profiles for steady 

gravity driven flow of a strictly parallel sided slab. We shall discuss these equations later on (see Table 1). In 

the debris flow literature, there appears to be no other work 2 that goes beyond Takahashi (1991, and previous 

work referred to there) and Chen (1987), except perhaps the in-depth, though descriptive, account of Iverson 

& Denlinger (1987). These authors delineate the range of applicability of the formulations and, in particular, 

point out the severe limitation "that steady uniform flows can exist only when the debris travels down a slope 

with a specific inclination. Chen (1987) discusses this phenomenon in detail, but does not seem to be bothered 

by this. The reason stated by Iverson & Denlinger seems to be that the variation of the grain concentration 

across the debris flow depth is ignored. The problem is that four equations for three unknowns exist in this 

case; they mandate a consistency condition which seems to be the reason for the mentioned peculiarity. 

Somewhat hidden in existing formulations of the rheological behaviour of debris flows is the fact that 

these relations cannot uniquely be extended to a three-dimensional form of the constitutive relations. In other 

words, two sets of general constitutive relations can in plane simple shear be indistinguishable. When attempt- 

ing to describe a dispersion of a channelized debris flow into the fanned deposition area this might be of 

some importance. Furthermore, debris flow specialists also generally abstain from introducing a variable and 

associated field equation for the internal structure, say the fluctuations of the velocity and particle concentra- 

tion fields due to grain collisions and/or possible turbulence in the interstitial fluid flow. In the granular flow 

literature this field is generally of scalar nature: the collisionalfluctuation energy or so-called granular tem- 

perature. From this point of view, the granular literature should also be consulted, e.g., Scheiwiller & Hutter 

(1982), or Hutter & Rajagopal (1994). Both works address the formulation of the constitutive relations for 

granular materials under rapid shearing. Both contain extensive literature reviews on constitutive modelling, 

but they do not present formulations of flow models deduced from a set of constitutive relations. Hutter & 

Rajagopal (1994) also do not address the models suggested by molecular dynamics, in which a large number 

(several thousands) of rigid particles are followed in time under free motion and colliding with each other. 

Interaction rules for collisions are formulated, the equations of motion of all the particles integrated, and fol- 

lowed through time, taking into account the free flow and collisions. Campbell (1990) reviews these methods, 

I This book contains a large number of references to Takahashi's work and that of others, but it is probably fair to say that it gives 
a coherent account of the theoretical formulation of debris flow as Takahashi sees it. 

2 jan & Shen (1993), Hungr (1994), Coussot (1994), O'Brien et al. (1993), Laigle & Coussot (1993) and others show particular 
aspects of the rheological behaviour, which, however, all are more restrictive than Chen& Takahashi. 
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and Straub (1995) demonstrates in a voluminous dissertation its use in pyroclastic flows. Its application to 

fluid-grain-grain interaction has not been attempted so far. 

Consider next the problem of the derivation of evolution equations. In particular, hydraulic or Boussinesq- 

type theories have been obtained by, for instance, MacArthur & Schamber (1986), Coussot (1994), Laigh 

& Coussot (1993), O'Brien et al. (1993), and Montefusio (1994), and exclusively consist in establishing 

vertically, or cross sectionally, integrated, balance laws of mass and momentum in a Cartesian reference 

frame, in one occasion restricted to the kinematic wave approximation. In this approximation, one restricts 

considerations to a global mass balance relation for the mixture as a whole, 

h, t+Q,x = 0  , (2.1) 

in which h is flow depth, and Q the volume flux, h t = Oh/Ot, Q,x = OQ/Ox,  and writes a constitutive 

equation for Q, usually by considering steady state momentum balance to connect Q with basal and turbulent 

friction, etc., see, e.g., Hutter (1983). Only in a single case were these balance laws complemented by a 

balance of mass for the solids, thus allowing particle segregation mechanisms and deposition or erosion along 

the debris flow path to be accounted for (Takahashi et al. 1992). In a single paper by Jenkins & Askasi 

(1994), a hydraulic theory for a debris flow is presented in which the particle fluctuation energy affects the 

evolution of the flow. 

The drawbacks of these formulations have been pointed out before - use of a Cartesian formulation requires 

that the topography is flat, expressions for the basal drag cannot clearly be related to constitutive postulates, 

nonlinear advective terms in the momentum equation cannot be properly estimated. Very similar concepts, 

however, have been developed in the theory of snow and granular avalanches 3. A fairly up-to date summary 

on this subject is contained in Hutter (1996). Through comparison of theory and laboratory experiments it 

is shown that the curvature of the topography affects the solution non-negligibly and thus should not be 

ignored. Hutter's (1996) review also contains an extensive treatment of powder snow avalanches, which are 

two-phase mixtures with balance laws of mass and momentum for both constituents. The works 4 discussed 

there indicate, how (i) density variations and thus particle segregation including deposition and erosion can 

be dealt with, (ii) how microstructural effects could be incorporated (e.g., turbulence) and (iii) how hydraulic 

models can be constructed that amend the above mentioned drawbacks. 

From another viewpoint, the existing literature may be characterized according to whether a model for 

debris or granular flows is formulated, or applied in the context of a physically-relevant initial-boundary 

value problem. In the former category, one finds such works as Chen (1987), Takahashi (1991), Hutter & 

Rajagopal (1994), and Hutter (1995); in these, the constitutive behaviour of a granular material that may 

exhibit debris flow characteristics is discussed. Such constitutive models can be formulated on a sound 

continuum thermodynamical basis, as shown by, e.g., Goodman & Cowin (1972), Passman et al. (1984), or 

more recently in an extended context by Svendsen & Hutter (1995). In the latter category belongs the work 

of, e.g., O'Brien et al. (1993), who present a depth-averaged hydraulic model for the fan-flow regime of a 

debris flow. Focusing on the computer implementation of their debris flow model, they do not, unfortunately, 

invest time in discussing or appreciating its theoretical limitations. Such limitations are discussed, e.g., in the 

works of Hutter and his associates (see, e.g., Hutter (1996)), and are outlined in Sect. 5. 

Finally, it is also perhaps worth mentioning that no model appears sufficiently general to deal with 

processes such as erosion and/or deposition of sediment. Such processes are governed predominantly by 

turbulence in the fluid and agitation of the solid particles at the base of the flow. Consequently, these 

processes cannot be left out of any model hoping to address erosion/deposition. Ideas on how thes e processes 

can be modeled are to be found in the literature on turbidity currents and powder-snow avalanches, and are 

briefly reviewed in Hutter (1996). 

3 see, e.g., Hutter et al. (1988a,b), Hutter (1989), Savage & Hutter (1989, 1991), Hutter & Nohguchi (1990), Hutter (1991), Hutter & 

Koch (1991), Greve & Hurter (1993), Hutter & Greve (1993), Greve, Hutter & Koch (1994), Koch, Greve & Hutter (1994), Hutter et 

al. (1993a,b), Koch (1994), Wieland (1995). 

4 In particular, we draw attention to Parker (1982), Parker et al. (1986), Tesche (1986, 1987), Scheiwiller, Hutter & Hermann (1987). 

Of interest, but not mentioned, is Gauer (1994). 
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3 Aspects of the phenomenology of debris flows 

The subject of this review is the theory of continuous structured mixtures of solid grains of various sizes 

and an interstitial fluid which may itself be a slurry, i.e., a mixture of water with very small suspended 

particles. Granular materials are of this kind, and they exhibit certain features that are common with debris 

flows: dilatancy, internal friction, cohesion, fluidization and particle segregation, but only the first three are 

incorporated in the theoretical models that were so far proposed. In fact, none of the concepts presented in 

this review exhibits enough complexity to incorporate particle segregation. 

3.1 Dilatancy 

If an array of identical spherical particles at closest packing is subject to a load so as to cause a shear 

deformation, then from pure geometrical consideration that particles must ride over one another it follows 

that an increase in volume of the bulk material will occur. This property was termed dilatancy by Reynolds 

(1889). It also occurs in rapidly sheared granular systems but is there due to the particle collisions and the 

dispersive pressure that is generated by these particle encounters (Bagnold 1954, 1966). Accompanied with 

this dilatancy is the phenomenon of normal stress effects that granular materials encounter. 

Quite naturally, dispersive pressure can only develop when particles in a grain-fluid mixture flow feel their 

neighbours, i.e., if neighbouring particles do interact with each other. If they don't, or if they do only in a 

limited fashion, they modify the viscous properties of the interstitial fluid (Einstein 1906, 1911; Mooney 1951; 

Moni and Ototake 1956; Batchelor and Green 1972). This flow regime is called the macro-viscous regime and 

the constitutive response is essentially of Newtonian type. In the other extreme, only the particle collisions are 

significant and the role played by the interstitial fluid can be ignored. This regime was coined grain-inertia 

regime by Bagnold (1954). Rapid shearing is one mechanism that gives rise to dispersive pressure; this is the 

manifestation of dilatancy mentioned above. 

This description suggest that the two limiting cases are likely describable by a single-constituent continuum 

model, wereas such a simplification is less obviously suggested when both the grains and the interstitial fluid 

interact dynamically. 

3.2 Internal friction and cohesion 

Debris flows exhibit both solid and fluid behaviour. At rest they can be piled up in a heap and the free 

surface can be inclined at some maximum corresponding to the material's angle of repose. This behaviour is 

the result of friction and possibly cohesion between grains and is described generally by the Mohr-Coulomb 

yield criterion. It states that yielding will occur in the material on a surface if the resolved shear stress 7 on 

this surface reaches the critical value 

I'r[ = c + cr tan¢ (3.1) 

where o- is the resolved normal stress, ¢ the internal angle of friction, and c the cohesion (see Sect. 4). The 

quasi-static form of ¢ generally takes values between 20 ° and 45 °, while its dynamic counterpart is about 

3-4 ° smaller under rapid shear (but slow enough that rubbing-type friction between the particles occurs). The 

Mohr-Coloumb criteria (3.1) only describes the conditions for yield; a corresponding (non-associated) flow 

rule for the ongoing motion beyond plastic yield must, if needed, be separately formulated. Most descriptions 

restrict themselves to simple gravity driven shear, see, e.g., Kupper (1967); a full account is given by Ehlers 

(1993). 

This is perhaps the place where the flow behaviour beyond yield should be more closely addressed on this 

more general level. In general terms, the constitutive behaviour in this range of stress and strain rate exhibits 

plastic as well as viscous behaviour. Here the term "plastic" means that the stress is related to strain rate in 

a rate-independent fashion, while "viscous" means that this dependence is rate dependent. The notion of a 

yield surface need not necessarily be associated with this definition of plasticity. For instance, if D is strain 

rate and li D its second invariant (see (4.32)), then D / l / V / ~  is rate independent. A constitutive relation for 
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the Cauchy stress tensor T of the form T = q2(D/v/~-ID[ ) is then a plastic relation, T = I"(D) a viscous one, 

and T = I"(D, D/]X/-~- D I) viscoplastic. Other such constitutive relations can be formulated as well. 

Experience indicates that soil under quasistatic loads exhibits plastic behaviour, that rapid shearing of a 

debris flow is predominantly viscous. Evidently, if the flow of a debris current in the channelized downhill 

area as well as in the fan-shaped settlement zone are of interest, both viscous and plastic features must be 

incorporated in the constitutive model, and indeed they are. 

Examples of purely viscous behaviour are the Newtonian fluids, the Bagnold fluid and essentially all con- 

stitutive models derived from statistical mechanics (see Hutter and Rajagopal 1994). Purely plastic behaviour 

is exhibited by all Mohr-Coulomb models (see Ehlers 1993). Simple viscoplastic models are the Bingham 

and Herschel-Bulkley bodies (see Chen 1987; Coussot 1994). We shall not deal at all with these latter models 

here because they do not account properly for the static stresses in granular materials. 

3.3 Fluidization 

Large masses of rocks, soils and snow occasionally spread out into very thin layers, flow on surfaces that 

are much less inclined than the angle of repose of the material and travel distances that are correspondingly 

large. The reason is that during their motion, granular flows behave like non-Newtonian fluids, due mainly to 

the fact that the high shear deformation leads to high dispersive pressure and thus reduced effective viscosity. 

Of course, in water laden debris flow the dilation that is accompanied with the increased dispersive pressure, 

water is accumulated in these high mobility zones and may serve as an additional lubricant. In dry granular 

flow experience from laboratory experiments indicates that large shearing is restricted to a very thin zone in a 

basal near boundary layer. Thus the effect of fluidization can be absorbed in a basal boundary condition, e.g., 

by introducing a Coulomb-type basal friction law with reduced bed friction angle 5. In water saturated debris 

flows large shearing occurs throughout the flow depth (Takahashi 1991), i.e., the entire flow depth consists 

of the boundary layer. It follows that if global (hydraulic) models are used, where only the basal tractions 

enter the formulation, bulk and boundary effects cannot easily be separated. 

3.4 Particle segregation 

Debris flows consist of grains which differ in size, shape, etc. (but generally not density). When such a material 

is agitated or deformed in the presence of a gravitational field, segregation or grading of the particles can 

occur and particles having the same or similar properties tend to collect together. In a tear-drop like debris flow 

starting from a uniform distribution of particle size, shape etc. large particles tend with time to accumulate 

at the front and at the free surface. In the geological literature this phenomenon is called reverse grading 

or inverse grading (Middleton 1970; Middleton and Hampton 1976; Sallenger 1979; Naylor 1980). Early 

physical explanations on the basis of a granular fluid with indistinguishable grains (Bagnold 1954; Takahashi 

1981, 1983) was found unsuitable (Iverson and Denlinger 1987). Adequate explanations require a granular 

fluid model with grains of different sizes. 

The quantitative explanation by Savage and Lun (1988) is based on what they call the random fluctuating 

sieve mechanism and requires high particle concentration and slow shearing dry rubbing friction and diffusion 

due to particle collisions can be ignored. If we envisage a layer of particles parallel to its mean motion, then 

at any instant if the void space is large enough, then a particle from the layer above can fall into it as 

the adjacent layers move relative to one another. The probability of finding a hole that a small particle can 

fall into is larger than the probability of finding a hole that a large particle can fall into. This is the basic 

segregation mechanism that gives rise to the inverse grading. 

Iverson and Denlinger (1987) lists two other possible mechanisms by which inverse grading can be 

achieved. In the first the dispersive stress model due to particle collisions is used: assume that the mean 

velocity profile is convex upward and shear as well as dispersive pressure are proportional to the velocity 

gradient squared. Under such a situation lower layers are subject to larger shearing than higher layers of a 

gravity current; thus collisions are more intense at depth than above and particles of finite diameter are more 

often and more intensely hit from below than from above suggesting an upward drift that must be larger for 
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large than for smaP particles. I,,verson points out that "this logic to explain inverse grading is necessarily 

circular and therefore unsatisfactory: it relies on uniform-concentration and uniform-size assumptions to 

explain nonuniform-concentrations of nonuniformly sized grains." 

The other mechanism requires that the grain mixture is sheared, so rotations are imparted to particles 

during collision during frictional interactions. In a shear flow, large particles will tend to climb over small 

particles when they have prolonged contacts. This process eventually will lead to an increased concentration 

of large grains toward the flow surface. 

The above mechanisms that explain particle segregation make use of the presence of particles of different 

sizes and their acquaintance of angular momentum. It follows that theoretical concepts not incorporating any 

one of these cannot describe particle segregation. To date there is no theory that would be general enough 

to do so. Its least complex structure must be a classical mixture of water and grains that is complemented 

by an evolution equation for the paticle size distribution. This probably does not suffice; inclusion of rotation 

would require a polar theory that accounts explicitly for the nontrivial grain rotations. Such models have 

been proposed by Kanatani (1979a,b, 1980a,b), but have only seen a limited exploration. 

4 F lu id - so l id  m i x t u r e  m o d e l s  for debris  f lows 

4.1 Basic considerations and balance relations 

Consider a model of a debris flow as a mixture of (1), a slurry (made up of fine-grained sediment and water) 

modeled as a viscous fluid, and (2), a coarse-grained sediment consisting of solid sediment "particles" and 

interstitial space modeled as a granular solid. Let the underscript " f '  stand for the slurry (i.e., water and fine 

sediment), and "s" for the granular solid (i.e., coarse sediment and interstitial space), in what follows. The 

mass density ~9 of such a two-constituent mixture is given by 

= h + ~  , ( 4 . 1 )  

f s 

where ~ (a = s, f) represents the constituent partial mass density, i.e., its mass density per unit mixture (fluid 
a 

plus granular solid) volume. An alternative form of (4.1) is obtained by dividing both sides by ~, yielding 

with 

1 = ~ + ~  , (4.2) 
s f 

= a0/L) (4.3) 

the constituent mass fraction in the mixture. Now, since the mass of a granular solid is determined solely by 

that of its solid particles, i.e., the interstitial space is massless, ~ must depend in some fashion on the mass 
s 

density L) of the solid particles, i.e., the solid mass per unit volume of solid particles in the mixture. Indeed, 
s 

we have in general 

constituent mass unit constituent volume constituent mass 

unit mixture volume = unit mixture volume unit constituent volume ~ ~ = au ~ (4.4) 

for a = s, f, where u represents the constituent volume fraction (density), i.e., the unit constituent volume per 

unit mixture volume, taking values as such between 0 and 1. Analogous to ~ = u L), a superposed bar over 

any variable in what follows signifies that that variable is weighted with the ~orrgsl~onding volume fraction. 

Now, if the fluid happens to fill the entire interstitial space in the granular solid, the mixture is referred 

to as saturated, and the sum of the fluid and soIidparticle volumes equals that of the mixture, i.e., 

1 = u + r, (4.5) 
s f 

holds. On the other hand, when the fluid only partly fills this space, the mixture is said to be unsaturated; in 

this case, u and u vary independently. 
f s 
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In this work, we assume for simplicity that the fluid and solid constituents are incompressible in the sense 

that 

t) = const . ,  a = s, f ,  (4.6) 
ct 

holds, i.e., the constituent true mass densities are constant. In this case, it 's useful to write t) in the form 

{ 6 [r u +u] unsaturated 
s f 

t) = 0 [r + (1 - r)sU] saturated 
s 

(4.7) 

via (4.4), where 

r = Of / Q (4.8) 

represents the ratio of  the fluid to granular solid true mass density, and is constant. Under the assumption 

(4.6), then, t~, and so ( and ~ via (4.3), vary only with u and u in the unsaturated, and only with u in the 
f s f s s 

saturated, case. 

Although it is possible that, in the course of the flow, collisions of solid particles could lead to the creation 

of fine sediments which would increase the mass fraction of the viscous slurry, we assume for simplicity that 

this process is negligible. In this case, the fluid and solid constituents may be assumed not to exchange mass. 

Under this assumption, the constituent mass and momentum balance relations are given by 

a0 t + div(O v) = 0 , a = s, f ,  (4.9) 
0~ tl 

and 

~ * ¢ = d i v T  + ~ g + m ,  a = s , f ,  (4.10) 
0. I:1 12 (I 

respectively. In these relations, f , t  --- Of~Or and Vf represent the partial time derivative and gradient, re- 

spectively, of any time-dependent field f ,  v is the constituent spatial velocity, f = f , t  + (Vf) v the material 
a 

time derivative of  any time-dependent field f with respect to v, T the constituent partial stress tensor, g the 
a gi 

specific gravitational body force, and m the constituent momentum exchange rate density, which satisfies 
a 

f~ 11\ 

m = -m ~+,~ ~j 
f s 

by Newton 's  third law in the fluid-solid mixture under consideration here. Note that entrainment and other 

such processes are not taken into account in (4.9) and (4.10); indeed, we would have to add a mass supply 

rate density term to (4.9), and a momentum supply rate density term to (4.10), to account for such processes 

in the balance relations. 

Note that the constituent mass balance relations (4.9) represent in general evolution relations for the two 

independent variables ~ = [ ~ and ~ = u Of, respectively. On the basis of the constant true density assumption 
f f 

(4.6), however,  these reduce to such relations for the u and u, and further to two evolution relations for 
s f 

one unknown u in the context of the saturation constraint (4.5). Consequently, this latter constraint leads 
s 

to the loss of  an independent variable. As such, this latter constraint is formally analogous to the classical 

constant density ("incompressibility") constraint for a fluid, in which case the mass density is lost as such a 

variable, to be "replaced" by the pressure maintaining the constraint as a new unknown. By analogy, in the 

current mixture context, this new unknown pressure p replaces u lost via (4.5) as an unknown in the model, 
f 

and maintains (4.5). Hence, we refer to p as the saturation pressure. In this context, (4.9) and (4.10), which 

originally represented 8 scalar equations containing in general the 8 independent unknowns ~, ~, v and v, as 
s f s f 

well as the 15 constitutive unknowns s T , T and sm (with m = - m ) ,  become 8 equations in the 8 unknowns p, 
f f 

u, v and v in the saturated case, and those u, u, v and v in the unsaturated case. It remains then to determine 
s f f s s f 

the dependences of  T ,  T and m on the independent variables, our next task. 
s f 8 
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4.2 General constitutive model 

For a debris flow, we assume that the solid constituent, i.e., the coarse sediment and interstitial space, can 

together be modeled as a granular solid. Further, the fluid constituent, i.e., the water and fine sediment slurry 

occupying some and/or all of the interstitial space between the solid particles, behaves as a viscous fluid. For 

such a mixture, constitutive relations take the general form 5 

~,2 = ~ ( u ,  C, v, v, w, Vv,  Vv) (4.12) 
• S S 

by equipresence, with ~ = u in the unsaturated, and C = P in the saturated, case, as discussed in the last 
f 

section, for g~ c {T,  T, =m}, and 

w := Vu (4.13) 
8 S 

the solid constituent volume fraction gradient. Whereas V u does not appear as an independent variable 
f 

in (4.12) since we assume the fluid constituent behaves as a viscous fluid, the dependence of ~ on the 

solid volume fraction gradient Vu reflects the granular nature 6 of the solid constituent, and represents in 
8 

essence the effect of spatial inhomogeneity in the solid distribution on the material behaviour of the mixture, 

something that becomes especially important when the corresponding volume fraction becomes substantial. 

In the case of a debris flow, the solid volume fraction varies between 30 and 65% at the front of the flow, 

and decreases with distance away from the front. Consequently, longitudinal and cross-sectional solid volume 

fraction gradients in such flows are to be expected. Such inhomogeneity in the granular solid can lead to 

additional effects such as dilatant behaviour, i.e., the expansion of the interstitial volume during deformation 

of a tightly-packed granular material. 

Constitutive relations such as (4.12) are subject to general constitutive requirements such as observer 

independence, reducing it to the form 

with 

(4.14) 

where 

the difference or relative velocity, D the symmetric part of Vv, W its skew-symmetric part, and 
0. 0. 

W := W - W (4.16) 
sf s f 

the difference or relative spin. In addition, constitutive relations are required to be compatible with the second 

law of thermodynamics. Under the further assumption that the constituent material behaviour is isotropic 

(which holds in any case for the viscous fluid constituent), the corresponding restrictions on forms such as 

(4.14) have been obtained elsewhere (Svendsen and Hutter 1995), For example, on the basis of (4.14), T is 

reduced to the form 

T = S + Z  , (4.17) 

s = ~ (~,¢,O,w,O,O,O) (4.18) 

is the static or equilibrium contribution, and 

= ~ (u, ~, v, w, D , D, W) (4.19) 
sf s s f sf 

the dynamic contribution, to T ,  such that 
a 

5 Since we  assume the mixture  is isothermal  in this work,  the temperature is left out of  all consti tutive functions.  

6 In more  e labora te  s t ructured mixture a p p r o a c h e s ,  e.g.,  Passman et al. (1984), a dependence  on the material  t ime derivative o f  the 

solid vo lume fract ion is also considered for  a granular  material.  Since we have no sepearate balance relation for the "equi l ibrated inert ia"  

to consider  here, however ,  we leave this out. 

:= v - v  (4.15) V 
sf s f 
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More specifically, the form 

is obtained for S ,  where 
s 

is the solid static pressure, 

(v, G o, w,O, o, o) = o 

S = - # l + 2 c ~ M  
S S S 8 

/3 unsaturated 
s 

71"= 

s fl + p saturated 
s 

f l : = O ~  

the constituent configuration pressure (a = s, f), 

the mixture inner specific free energy, 

and 

(4.20) 

(4.21) 

(4.22) 

(4.23) 

/3 unsaturated 

7 = f (4.28) 
p saturated 

the corresponding static fluid pressure. The result (4.28) of the thermodynamic analysis lends credence to 

the standard interpretation of the saturation pressure p as the fluid static true pressure. Lastly, we obtain the 

form 
(1 - ~)flw - { f lw unsaturated, 

~ ( u ,  4, 0, w, 0, 0, 0) = f (4.29) 

[/9 + (1 - ~)fl]w saturated, 

for the equilibrium or static part of the solid-fluid momentum exchange rate density m. 
s 

The reduced forms (4.24)-(4.28) for the dependent constitutive quantities obtained via the second law are 

as yet too general to be of use in the formulation of initial-boundary value problems describing the debris 

flow. As such, we must introduce further assumptions into the formulation in order to obtain more specific 

forms for these constitutive quantities. A purely formal assumption in this direction, introduced mainly to 

simplify the formulation, is for example the "principle of phase separation" of Passman et al. (1984). In the 

current context, this represents the assumption that ~ depends only on quantities associated with the solid, 
s 

and ~ only on those associated with the fluid, i.e., 
f 

(v,w,D), 
8 S S S 

(4.30) 
.v = N(u ,u )  
f f f f 

with u = 1 - u  in the saturated case via (4.19). Note that ~ and ~ do not depend onp ,  v and W in this case 
f s s f s f  s f  

because these quantities are not associated with any one constituent. This notion of phase separation does not 

apply to mixture properties such as ~, or to constitutive quantities describing constituent interactions, e.g., 

m. The assumed isotropy of the fluid and solid reduces the forms (4.30) yet further to 
s 

with 

M := w ® w (4.26) 
8 8 S 

As pointed out by, e.g., Savage (1979), the form (4.21) for S predicts non-zero shear stresses in the granular 

solid in equilibrium only if u is inhomogeneous or non-uniform in at least two different directions. Turning 

next to the fluid static partial stress tensor S, we have 
f 

S = - fr I (4.27) 
f f 

= L) ~), w.~ (4.25) 

'~ = ~'(ff' (" 7 '  7 ) (4.24) 
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: ~l I + ~2D + ~3D e + ~4M + ~ s ( M , D )  + ~6 (M,D 2) 
N S S S 

27 = t~lI + ~2D + t~3 D2 
f f f f 

(4.31) 

where (A, B) = AB + BA for any tensors A and B. The coefficients ~1-6 are functions of s ~, I D , I I  D , HI  D , 

I M,  I M19, and IMD~, while t~l_ 3 depend on u, I D ,  l i  D and III  D , in general, where 
s s f f f s 

I C = tr(C),  

H C  = l 2 ( I~  - IC2) , (4.32) 

I I I c  = gl (I~3 _ 3 I c I c 2  + 2/C3)  , 

for any tensor C. Since the definition (4.26) of M implies M 2 = I M M  with I M~ = w . w ,  note that 

II  M = 0 = I I l  M .  
s s 

Besides (4.30), another very useful formal assumption is quasi-l inearity,  i.e., that vector- and tensor- 

valued constituent quantities are assumed to depend explicit ly and l inearly on vector-valued and tensor-valued 

independent variables, respectively, via scalar-valued coefficients which themselves depend on these and the 

scalar-valued independent variables. A special case of this is linearity, which arises when the scalar-valued 

coefficients in the quasi-linear form are assumed to depend at most on the scalar-valued independent variables. 

Such a form is indeed the simplest, and when there are no observations, experiments or other physical reasons 

to believe that the constitutive processes involved are more complicated, it seems sensible to work with this 

linear form. Having no such information to the contrary, and for simplicity, we assume in this work that 

the constituent mechanical interaction rate density m, as well as the fluid dynamic stress tensor I2, can be 
f 

adequately represented by their linear forms. For m, then, we have 

(1 - ~)s~w - s~ ~f w unsaturated 
m=mo + 

[p + (1 - ~)~]w saturated 
(4.33) 

in the context of (4.14) and (4.29), where 

m D = r~D(u, if) (4.34) 

is the drag coefficient between the solid and fluid. Recall that the result (4.33) for m also determines m via 
s f 

^ 

(4.11). As for ~f, its linear form is obtained from (4.31)2 by setting ~1 = ,k I n  with )~ = Af(~), a~2 = 2 # with 
I f ~ f f 

#f = ~(~), and ~3 equal to zero, yielding the simple Newtonian viscous fluid form 

27= & Ir~ I + 2  # D (4.35) 
f f ~ "  f f 

^ 

Here, kf = Af(~) and #f = ~(~) represent the volume and shear viscosities, respectively, of the fluid, such that 

Af +~ # is the bulk viscosity, usually negligible or assumed zero. Typical values for # can be found in, e.g., 
f f 

Mooney (1951), Moni and Ototake (1956), or Batchelor and Green (1972). Unlike in the case of 27, more 
f 

is known about the possible form that the granular solid dynamic stress tensor 27 should take; in particular, 
, S 

the assumption of linearity would be inappropriate in general for 27, as we discuss next. 
s 
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4.3 Granular solid stress tensor 

To specify the form of T further, the above formal assumptions such as (4.30) must be supplemented by 
S 

those of an empirical nature, as based on, e.g., laboratory observations and measurements. In particular, 

observations indicate (e.g., Savage 1979) that granular solids can sustain shear stress in equilibrium, and that 

the critical stresses at which shearing begins depend on normal stress. In particular, because of this latter 

fact, the onset of  flow in a solid granular material is generally modeled using the Mohr-Coulomb criterion for 

yielding or failure (e,g., Savage 1979). According to this criterion, flow will begin in the granular material 

on a surface with normal n when the magnitude 

of the resolved solid static shear stress 

on the surface reaches the critical value 

where 

It,,I = ~-ttl- stli (4.36) 

= Is - ( n . S  l )I ]n (4.37) 

tz  = (n .  S n)n (4.39) 

represents the resolved solid static normal stress on the surface, q~ the angle of internal friction, and c the 

cohesion of the material. Although in wide use, the generality of (4.38) is not clear, in particular with respect 

to the angle of internal friction ~b, which is usually assumed constant, but is known to depend on the state of 

deformation and u. 

From (4.21) and (4.26), we obtain the expressions 

= 2 7 ( n .   )2n, 

(4.40) 

t, = 2 ~ ( n . w ) [ w - - ( n - w ) n ]  , 

for the normal and tangential stress vectors in the saturated case. The squared magnitudes 

It± [2 = t L . t  z = 7T2 _ 4 c~ # (n .  w) 2 + 4 c~ 2 (n .  w) 4 (4.41) 
S S S S 

and 

Ist, I a = t u -tti = 4 s ~2 (n-  w)Z[(sw - w) -- (n .  sw) 21 (4.42) 

of these two vectors satisfy the algebraic relation 

([t~[ - t) 2 + It,[ 2 = s 2 , (4.43) 

representing a Mohr circle with radius 

s = ? (w .  w) (4.44) 

and center (t, 0) in the ( l t ,  l, Itik I)-P lane, where 

t = - #  - s (4.45) 
S 

The geometry of the Mohr circle and yield criterion imply the relations 

s = ltlll sec 0 (4.46) 

with see 4) = 1 / cos  4) and 

t = It11 + s sin q~ (4.47) 

for the radius and center of  the circle, respectively, as functions of the critical shear and normal stress 

magnitudes and 8- Substituting the Mohr-Coulomb criterion (4.38), as well as (4.46) and (4.47), into (4.45), 

we obtain the relation 

Ist, I = c + It± t tan ~ , (4.38) 
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s ~ = c cot q5 - (1 + csc qS)a ( w . w )  (4.48) 

between the cohesion c, the angle of internal friction 0, the mixture specific free energy ~b (see (4.23) and 

(4.25)), and, in the saturated case, the fluid static true pressure p (see (4.22)), with csc 0 = 1/sin qS. In essence, 

(4.48) represents a compatibility relation between (4.21) and the Mohr-Coulomb criterion (4.38). Note that 

(4.48) implies the alternative form 

S = [(1 + csc q~) a (w. w) - c cot q~] I - 2 ? (w ® w) (4.49) 

for S in terms of 0, c and ~b via (4.25). A similar expression was obtained by, e.g., Savage (1979). 

Two aspects of (4.21) and (4.49) should perhaps be mentioned at this point. The first concerns the 

dependence of S on the volume fraction gradients w, for which non-standard boundary conditions must be 
8 a 

found when formulating initial-boundary value problems based on the constituent balance relations. Such 

boundary conditions are not well-understood physically. Because of this, one might be tempted to neglect 

S altogether; this, however, leads to equations which, for certain simple flow fields, have no solution (e.g., 
S 

Scheiwiller and Hutter 1982). Instead, one could assume that ~b is independent of the w, which would alleviate 

the problem, at least as far as S is concerned. In this case, however, the Mohr-Coulomb criterion must be 
S 

formulated with a dependence on, e.g., D / ,  ~ / ~ D  ], which, unlike D, does not vanish in equilibrium. This 

has been done by, e.g., Goddard (1985), and Norem et al. (1987), and is summarized by Hutter and Rajagopal 

(1994). Such a possibility has yet to be implemented in a mixture context, representing work in progress, and 

consequently is not dealt with here. 

From the soil mechanics literature (e.g., Means and Parcher 1963), it is known that 0 decreases with the 

solid volume fraction u.s In addition, Bagnold (1954) showed that there exists a solid volume fraction u 0 at 

which the granular solid exhibits zero resistance to shear, i.e., "fluidization," for which 0 = 0, corresponding 

to values of ~ (see (4.53 below) of 12-14. On this basis, Savage (1979) assumed the simple linear relationship 

{ ~(~ - ~o) ~ -> ~o 
sin q5 = , (4.50) 

o ~<~0 

where k is a constant determined by the critical solid volume fraction, i.e., the solid volume fraction at which 

the volume of the granular solid does not change during shear. If the volume fraction is lower (higher) than 

the critical value, the volume decreases (increases) during shear. Indeed, k is chosen so that 05 takes on a 

known value at this critical solid volume fraction (termed the critical void ratio by Goodman and Cowin, 

1972). Note also that Savage (1979) assumed the simple form 

const, s u -> ~o 

~= o ~ < ~ 0  

(4.51) 

for c~, so that S vanishes in cohesionless granular solids for solid volume fractions less than that at which 
S S 

fluidization arises (see (4.49)). In view of (4.24) and (4.25), this assumption is consistent with ~ depending 

at most linearly on w • w in the unsaturated case. 
S S 

It remains to determine a form for the granular solid dynamic partial stress tensor ~7. Empirical consider- 
s 

ations show that, while the individual particles in a granular solid themselves behave more or less elastically 

(e.g., in collisions), the behaviour of a granular solid as a whole is very much like that of a non-Newtonian 

viscous fluid (e.g., Savage 1979). This idea is to be found in the work of Bagnold (1954), who conducted 

experiments on neutrally bouyant, spherical particles suspended in Newtonian fluids undergoing shear in a 

coaxial rotating cylinder. For such mixtures, Bagnold (1954) observed two distinct types of behaviour. In 

his So-called "macro-viscous" regime, corresponding to low shear rates, the shear and normal stresses are 

linear functions of the velocity gradient, i.e., Newtonian viscous-like, and the fluid viscosity dominates. On 

the other hand, in his so-called "grain-inertia" regime, the mixture flow is dominated by collisions between 

the solid particles, leading to a dependence of both the normal and shear stresses on the square of the velocity 

gradient. In this case, normal and shear stresses are proportional to each other, much like in the case of a 
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cohesionless Mohr-Coulomb material deforming quasi-statically. Bagnold (1954) characterized the mixture 

quasi-static shear flow field v l(x 2) in terms of a dimensionless number 

N :  v/~s ~s dZv~,2/ ~ , (4.52) 

i.e., the so-called Bagnold number, where # is the shear viscosity of the fluid, d the solid particle diameter, 
f 

vl, 2 the mixture velocity gradient, and A the linear particle concentration, defined by 

1 

A - (~oo@)1/3 _ 1 ' (4.53) 

with uo~ the maximum possible solid volume fraction (e.g., for spheres, uo~ ~ 0.74) in the unsaturated 

mixture context. Note that large ~ corresponds to the particles being close together. Furthermore, the larger 

A, the larger the stresses needed to shear the mixture at all. From his experiments, Bagnold (1954) established 

that the macro-viscous regime corresponds to N < 40, and the grain-inertia regime to N > 450, with the 

intermediate region being then in some sense a combination of these two end-regimes. 

Beyond these effects, granular materials are observed to exhibit higher-order normal stress effects (e.g., 

Rajagopal and Massoudi 1990; Hurter and Rajagopal 1994). All three of these types of behaviour are in 

principle included when we adopt the Reiner-Rivlin form 

27 = A I + 2 # D  + 4 r / D  2 (4.54) 
S S S S S 

for the granular solid dynamic partial stress tensor 27, where the viscosities A, # and rl are in general functions 
S S 

of u, and the invariants I D , II D , l l I  D of D (see (4.32)). The form (4.54) can be obtained from the general 
S s $ . S 

isotropic form (4.31) by setting ~a = A, ~2 = 2~, ~s = 47, ~4-6 equal to zero, and assuming ~1-3 are 

independent of (1), ~, and (2), M.s Possible physical justification for (2) are discussed by Savage (1979). In 

particular, assuming the granular solid moves isochorically, i.e., I D = div v = 0, in which case (4.9) for a = s 
s 

implies ~ = 0, Savage (1979) proposed a special case of (4.54) * given by 
s 

= 4 C 1 

/~ = 2 c 2 
8 

l i  D 
J f s 

u°° - ~ u° ] 8 I///~-~1, for suo < u < uoo , (4.55) 

foo - f  ) 

s~ = 0~ 

consistent with Bagnold's (1954) experimental results, where c I and c 2 are constants, and u 0 is the solid 

volume fraction at which fluidization arises. 

In viscometric flows, only certain parts of the Reiner-Rivlin relation (4.54) are actually non-zero. When 

trying to fit the viscosities A, ~ and ~ to experimental data, it turns out that there are many choices for these 

which yield the same material behaviour with respect to the non-zero components. As such, there exists no 

unique relationship for 27 as based on (4.54). Indeed, Jenkins and Cowin (1979) suggest a form of 27 which 
s s 

involves the second Rivlin-Eriksen tensor, yet can also be reduced in simple shear to exactly Savage's (I979) 

special case (4.55) of (4.54) as discussed above. This should be borne in mind, as different representations 

for the dynamic partial stress tensor will be observable in general flow situations. This point is dicussed in 

detail by Scheiwiller and Hutter (1982), as well as Hutter and Rajagopal (1994). 
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4.4 Two-dimensional thin-layer model for the channel-flow regime 

After the onset of  flow, debris masses are often constrained to move down gullies or narrow valleys in a 

channel-type flow whose thickness may be comparable to its width, and both are much smaller than its length. 

Upon reaching the mouth of the gully or valley, however, this constraint is removed, allowing the debris flow 

to spread out into a fan whose thickness is substantially smaller than its width or length. These geometric 

aspects of  the flow can be used in a two-dimensional setting to obtain simplified models for the debris flow 

in these two regimes. In this section, we focus on the channel-flow case alone, primarily in order to address 

the model of Takahashi (1991) in the next section. 

The channel-flow regime can be idealized by a two-dimensional mixture flowing downhill under the 

influence of gravity at an angle 3' to the horizontal, with the x-axis aligned parallel to the flow, and the z-axis 

perpendicular to it. For this geometry, the constituent mass and momentum balances (4.9) and (4.10) take the 

forms 

5 , + ( ~ ) , x + ( ~ y z ) , z  = 0,  

0 ~x = aT= x + aTxzz + a09 sin 3' + amx, (4.56) 

for (4.9) in two dimensions, with e x • g = g sin 3' and e z • g = - 9  cos 3'. In the case of a debris flow, the bed 

angle 3' varies from about 40 ° in the starting zones to about 3 ° in the runout zone. 

Let If] now stand for the characteristic value of some quantity f (e.g., x, y, t, %, etc.). In particular, let 

[z] represent the characteristic thickness, [x] the characteristic length, [%] the characteristic velocity parallel 

to the flow, and [%] that perpendicular to it, "vertically." Introducing then the characteristic time 

Ix] [z] 
I t ] -  [%] [Vz] , (4.57) 

characteristic stresses 

as well as the aspect ratio 

into (4.56), non-dimensionalization yields 

[T o ] = [ g ] g L z ]  , (4.58) 

[z] [v z] 
e -  [x] [Vx] ' (4.59) 

[ , ,+( fVx) ,x+(~v~) , z  = o ,  

[vJ g 1 
(4.60) 

Ivx] f 1 
g[t] [0] a a  z Lo] mz ' 

for the two-dimensional constituent mass and momentum balance relations, where 

mx = .J//~Dmo~z+ { • ( 1  - ~)s~ + p } e ~ , x ,  

m z = ,~¢~emD~ + { < ( 1  - ~)~ + p }  sU, Z ,  
(4.61) 

from (4.22) and (4.33) in the saturated case with [p] = [g]9[z], 

and 

(4.62) 
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d/~o- [m.l[vJ 
[0]9 ' (4.63) 

where m D = rhD(u) is now a non-dimensionalized function of u.~ Note that all fields appearing in (4.60) and 

(4.61) are now non-dimensional. 

Now, for debris flows, [vJ is on the order of 1 to 15 m/s (i.e., for the channel- and fan-flow regimes); 

consequently, with 9 = 10 m/s 2, the ratio [Vx]/9 is on the order of 1 second. So, for timescales [t] much 

greater than this, the acceleration terms appearing on the left hand side in (4.60)2,3 will be negligible. As the 

channel and runout phases of debris flows generally last more than 10 seconds 7, it is in fact reasonable to 

neglect these terms here, such that (4.60)2,3 reduce to 

1 
{Txx,x+{~;z(1-~s)fl+P}U'x}e+T~z'z+[~ ~s u s i n T + J g ~ m ° ~  x : 0 ,  

{Txz,x+d/~DmD~z}e+ Tzz,z--- 

for the solid constituent, and 

[01~ ~ c ° s ~ +  ( 1 - )  +p ~,z : 0 ,  

1 
{Txx,x + { ~  ( 1 -  {)sfl +p } sU, x} e+ Txz,z+ ~ ~f ~ sin"/+ ~</gD mD~ x 

(4.64) 

= 0 ,  

(4.65) 

, x - d / d ,  mD e+T~z,z [0] 0s us cos7 (1 ) +p u,z 0 ,  

for the fluid one, via (4.11) and (4.61). As discussed in the introduction, the length of a debris flow is generally 

much larger than its width and thickness. Consequently, one can work with the thin-layer (shallowness) 
approximation 

e << 1 (4.66) 

in the channel-flow regime. In the context of this approximation, one can formulate a hierarchy of constituent 

momentum balances (4.65) to various orders in e via the constitutive relations for T 0 and Tij. In this work, 

however, we restrict ourselves to the derivation of the O(1) forms for (4.65). To carry this out, we first need to 

determine the dependence of %b and T on e, and then retain only the O(1) parts, i.e., those parts independent 
t~ 

of e. 

To begin, consider the mixture specific inner free energy %b. From (4.24) for the saturated case, we see 

that 

~ ( u , w . w )  = ~ ( u , u ~ )  +O(e) , (4.67) 

so that to O(1), ~ is a function of u and su~, implying in turn via (4.23) and (4.25) that fl and s ~, respectively, 

can be replaced by corresponding functions (1 and ~1, respectively, to O(1), which are analogous to ~t. On 

this basis, we obtain the form 

Sxx = - - s U P - - ~ s ~ l + O @ 2 ) ,  

Sxz : O(e), (4.68) 

: - } + 

for the non-dimensionalized constituents of the solid static partial stress tensor S from (4.21) and (4.22), with 

1 

@ - [019[zl 3 [9 ] (4.69) 

Again, like in (4.64) and (4.65), all fields appearing in (4.68) are now non-dimensional. As for the components 

of the non-dimensionalized fluid static partial stress is given by 

7 In real situations, because of topographic variations, the acceleration terms may not in fact be negligible. They in fact will survive 

the non-dimensionalization when we assume, e.g., [v x] = 9[t] instead of (4.57) I. 
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Sxx = - z~p , 

Sxz = O, (4.70) 

f s  = 

via (4.27) and (4.28) in the saturated case. 

To determine the non-dimensionalized forms of the constituent dynamic stresses Y7 and their dependence 
I:l 

on e, we first need to obtain those for D, D 2 and D 3. From (4.57) and (4.59), we obtain 
Ct ~t 0. 

D~ = 0(~), 

Dxz = ½Vax,z + O ( e 2 )  , (4.71) 

Dzz = O(e), 

for the components of the non-dimensionalized constituent deformation rate tensor D, those 
¢l 

for the components of D 2, and those 
a 

( p 2 ) x  x _ 1 2 - ~ v + O(e 2) 
0. x ~ ~, 

( ? 2 ) x  z = O((7) , 

- -  ~ V + 0 @  2 )  
0X ~Z 

(p~)xx = o(~) ,  

(O3)zz = o(~), 

for the components of D 3. The results (4.71)-(4.73) determine in turn the non-dimensionalized forms 
Q 

I m = o ( e ) ,  
fl 

H D  _ i 2 - - ~  Vx,z + o ( ~  2) , 
ct 

I I I  D = O ( e ) ,  
rl 

for the invariants of D from (4.32) and (4.71). 
a 

On the basis of (4.71) and (4.74), (4.35) yields 

fSxx = O(e), 

~xz = ~ ~x,z + O e 2 )  , 
f 

O(e) , 

(4.72) 

(4.73) 

(4.74) 

(4.75) 

(4.76) 

~x  = ~+~>~,z+O(~),  

~z  = ~ , z + ° e ) ,  

= ~ +  
s z z  + , 

f•ZZ 
for the components of the non-dimensionalized fluid dynamic stress tensor with #f = @u) via (4.5). Similarly, 



2 0  K .  H u t t e r ,  B .  S v e n d s e n ,  D .  R i c k e n m a n n  

follows for the components of the non-dimensionalized granular solid dynamic stress tensor from (4.54), 

(4.71) and (4.74). To obtain (4.76), we assumed that ~, # and ~ are at least O(1). For example, in Savage's 

(1979) model, ~ and # are both O(1). Under this assul~ption,~then, the solid viscosities ~, ~ and ~ are, to 

O(1), functions of u ~nd II D alone via (4.74) 2. 
8 

The corresponding coml~onents of the static (4.70) and dynamic (4.76) parts of T can be combined to 
s 

obtain those 

-- - + + G + 

Txz = ~ Vsx,z +O(¢) ,  (4.77) 

S S S ~z S S ~ 

of T to lowest order in e. To O(I), (4.77) imply 
s 

Txx - Tzz = ~/da u,z u,z + O(e) (4.78) 

for the non-zero normal stress difference in the granular solid. Since this is a static term, there are, to lowest 

order, no normal dynamic stress effects influencing the development of the debris flow. Likewise, 

r= = -~p+o(~) ,  

= + 

f 

r~z - vpf +O(e)  , 

(4.79) 

is obtained from (4.70) and (4.75) for the components of T. Note that, of the two fluid viscosities, only the 
f 

fluid shear viscosity # is important to O(1). 
f 

Substituting (4.77) and (4.79) into (4.64) and (4.65), respectively, we obtain finally the forms 

1 

S~xz~ ,z - [Q] s~ su s in" / -Jg~m~+O(e)  
(4.80) 

1 

and 
1 

Zf xz'z : -[co-] ~ ~' sin~f+'~/~Dm~x + O ( e ) ,  

(4.81) 
l 

= F i  + o ( c ) ,  

of the solid and fluid momentum balance relations, respectively, to lowest order, i.e., to O(1), via (4.68) and 

(4.76), as well as (4.70) and (4.75), respectively. 

On the basis of the constitutive relations (4.5), (4.76)z,3 and (4.75) z, the O(1) solid (4.80) and fluid (4.81) 

momentum balances re resent 7 first-order differential equations in 7 unknowns v, p, v x, V x, G , ~ and 
P ^ - -  ^ s s f ¢ XZ  s XZ  

2. .  So, once the constitutive functions ~b = ~b (u, u 2 ), ,k = A ( u , I I n  ), # = f~(u, I I n  ), ~ = ~ ( u , I I n  ) and 
s '0~'' 1 s s , Z . .  s s s "if" s s s ~ s s s . J f f "  

# = /2(p), as well as the appropriate boundary commons at the base and free surface are specified (see 
f f s 

Sect. 6), solution of the above system is possible. Since, as indicated by the result (4.78), no dynamic normal 

stress effects influence the material behaviour of the granular solid, we could in fact neglect r /= r~(u, H n  ). 

The above thin-layer approximation has been carried out in the context of a planar flow g~eomeiry an~ is 

appropriate for channel-flow regime, or very wide, uni-directional flows. For the fan-flow regime, however, 

the debris flow spreads sideways (i.e., in the y-direction), at which point we can no longer treat the flow 

as two-dimensional. Analogous to the above formulation, however, we can, assuming the fan-flow is thin 

compared to its width and length, scale the components of the three dimensional constituent momentum 

balance using two aspect ratios [y]/[x] and [z]/[x], and proceed as above, which we do not do here. In the 

context of avalanches, this was done by Hutter et al. (1993). 
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4.5 Takahashi' s model 

A number of existing models for debris flows can be obtained as special cases of the above formulation. In 

particular, the heuristic two-dimensional saturated mixture model proposed by Takahashi (1991) for a debris 

flow can be obtained rigorously from the thin-layer model formulated in the previous section as a special 

case, as we show in this section. We emphasize that he did not (at least explicitly) utilize the thin-layer 

approximation in his model; his results, however, can be derived rigorously only in this context when we 

introduce the additional assumptions he made beyond those in the last section. 

To obtain Takahashi's (1991) first model momentum relation (2.1.5), we add (4.80)1 and (4.81)1 together, 

which yields 
1 

(Ssx z + Sf~z),z + - ~  ~ sin"/= O(c) (4.82) 

To obtain his remaining model relations, we must assume 

and ,~4 are O(e) , (4.83) 
s s 

such that the corresponding terms in (4.80)2 and (4.81)2 drop out. Indeed, in this case, the sum of (4.80)2 

and (4.81)2 yields 

1 
-P,z  + ~zz,z - [0--] ~ cos7 = O(e) , (4.84) 

representing (2.1.6) in Takahashi (1991), while (4.81)2 reduces to 

1 
-P ,z  - - ~  ~f c°s7  = O(e) , (4.85) 

i.e., (2.1.7) in Takahashi (1991), which can be combined with (4.84) to obtain the field relation 

1 
~Szz z L)u cos'y = O(e) (4.86) 

for ~zz with ~ = 6-L) ,  corresponding to (2.1.8) in Takahashi (1991). Beyond these simplifications, the 
sf f s 

coefficient of w in (4.61) reduces to its classical form p,  while Sxx and Szz in (4.68) reduce to - up ,  again 
s s 

to O(1). In essence, then, Takahashi (1991) tacitly neglects the effects of sharp spatial variations in the solid 

distribution in his model, something that may play a role for example in phenomena such as inverse grading, 

as well as the initiation of debris flows, the subject of future work. 

5 On numerical implementation 

In this section we discuss how a debris flow model, once this model has been chosen, can be put into practice, 

i.e., numerically integrated. We emphasize that the final model will consist of the discretized equations that 

are numerically solved, and that judgement of the suitability will involve both physical and computational 

aspects. A numerical code should clearly make visible, first, on which physical model it is based upon, second, 

what analytical transformations or simplifications are made to make it amenable to computational handling 

and what discretization techniques are used to generate the numerical code. Often, the last two steps are 

interwoven. 

We shall give examples for all these. 

5. I Hierarchy of models 

Debris flow models can vary in their complexity because of the different physical processes that are incorpo- 

rated. None of the models listed below is general enough to be able to describe inverse grading or the riding 

of large boulders on the free surface. The following models have been proposed and are at our disposal: 
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Two phase flow model 

A detailed study of this model is given in Sect. 4 and based on Svendsen and Hutter (1995). In a somewhat 

reduced form it has been used by Takahashi (1991), but because of the peculiarities mentioned before it is 

probably advantageous not to use Takahashi's reduction and to start from the Svendsen and Hutter (1995) 

equations. These equations - as opposed to the two phase models proposed earlier - are based on sound 

thermodynamic principles. In two phase models, one uses balance laws of mass and momentum for both 

components. Because constitutive relations for the solid and the fluid phase are needed, these models have 

the potential to incorporate the grain-inertia regime (via a nonlinear viscous relationship for the solid stresses) 

as well as the macro-viscous regime via a Newtonian type stress relation for the fluid (with the viscosity 

accordingly adjusted if the fluid is a slurry). The dispersive pressure can equally be incorporated. If it is 

expressed in terms of the solids concentration, a further equation for the fluctuation energy may not need 

to be incorporated, if it is expressed in terms of such a fluctuation energy, an equation for its evolution is 

needed. This energy equation then quantifies the degree of intensity of turbulence or particle collision. 

The two phase model also needs a constitutive equation for the interaction force between the solid particles 

and the fluid. It has the structure 

sill ---- C 1 Vq-CzW (5.1) 
sf s 

(compare with (4.33)), where the coefficients cl, 2 are not necessarily constant. Classically, c I is the Darcy 

permeability and c 2 the fluid pressure p, but it was shown by J6hnk et al. (1993) and Hutter et al. (1994) that 

this led to singular behaviour in two phase gravity flow and needed amendment, see Svendsen et al. (1995), 

Svendsen and Hutter (1995). 

If  a two phase model is used, only this corrected model should be used; it is physically sound and allows 

deposition and erosion processes to be incorporated at the bed. 

Two-component diffusive mixture model 

These models are characterized by employing two balance laws for the mass of the sediment and water 8, but 

only one balance law of momentum for the mixture as a whole, the material points of which move with the 

barycentric velocity. Thus, it is supposed that the grains and the interstitial fluid have approximately the same 

velocities. The difference between these can be accounted for in the mass balance of the grains by postulating 

a diffusive sediment mass flux leading to a sediment mass balance of the form 

, ( 5 . 2 )  

where D is a diffusivity, but proposed equations ignore this Fickian diffusion (Takahashi et al. 1992). This 

changes equation (5.2) from parabolic to hyperbolic. Numerically this is more problematic because diffusion 

generally stabilizes the equations. 

Without the balance law of the solid's mass the model equations (of mass and momentum and constitutive 

relations of stress) would not contain a dynamic equation through which the grain concentration distribution 

could function as a prognostic variable; it would at most play a diagnostic role; this is the major reason for 

incorporating the solid's mass balance. However with diffusion, (5.2) permits only dilution of the sediments 

(this follows from the second law, D > 0). This is why physically one wishes D = 0, so that concentration 

is frozen 9 to the body points. Addition or subtraction of mass can still be incorporated through the erosion 

and deposition processes at the debris flow bed. This is most easily seen if the balance laws of mass of the 

mixture as a whole and that of the grains, i.e., (5.2), with D = 0, is depth-integrated t° 

h,t + Q,x = c s , c,r + (cQ),x = ~ ,  (5.3) 

8 In practice the balance laws of mass for the mixture as a whole and for the grains is formulated, but this equivalent. 

9 If the mass balance would be formulated for the water and Fickian diffusion used for its flux, then thermodynamics would require 

dilution of the water in obvious contradiction with the above. Thus, diffusion models are only meaningful for tracer diffusion of very 

low concentration. This makes neglection of the diffusive mass tlux compelled in these models when concentrations are not very small. 

m These equations are strictly only correct, when the mixture is volume preserving and the concentration does not vary with depth, 

two conditions, which generally cannot simultaneously be satisfied. 
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in w h i c h  h ,  Q ,  c ,  c a n d  c a re  t h e  d e b r i s  f l o w  d e p t h ,  t he  v o l u m e  f lux ( d i s c h a r g e ) ,  t he  d e p t h - i n t e g r a t e d  f o r m  o f  

t he  s e d i m e n t  m a s s  conce~ntrat ion or  f r a c t i on  ~, t he  e r o s i o n  ra te  o f  s e d i m e n t s  p lus  wa te r ,  and  the  e r o s i o n  ra te  
S 

o f  t he  s e d i m e n t s  at  t he  b e d ,  r e s p e c t i v e l y ,  and  m u s t  b e  c o n s t i t u t i v e l y  p r e s c r i b e d .  

C o m p u t a t i o n a l l y ,  (5 .3)  is less  c r i t i ca l  t h a n  the  loca l  va r i an t  (5.2).  M o r e o v e r ,  b e c a u s e  f ie ld  v a r i a b l e s  l ike  c 

and  Q a re  i n t e g r a t e d  q u a n t i t i e s  o v e r  deb r i s  f l o w  dep t h ,  t h e s e  e q u a t i o n s  are  a l so  less  c r i t i ca l  f r o m  a p h y s i c a l  

p o i n t  o f  v i e w  t h a n  the i r  l oca l  c o u n t e r p a r t s  (5.2).  A s  such ,  two-component diffusive mixture models are most 

likely to be physically appropriate only when being used in a hydraulic type formulation. W h e n  loca l  f e a t u r e s  

o f  pa r t i c l e  c o n c e n t r a t i o n s  a re  o f  in te res t ,  the  t w o  p h a s e  m o d e l s  m a y  a l so  be  r e l evan t .  

Table 1. Hierarchy of debris flow models 

Two-component model Diffusive model Single-component model 

Balance • solid mass • solid mass • mixture mass 

relations fluid mass mixture mass 

• solid momentum 

fluid momentum 

• mixture momentum 

• mixture momentum 

[. mixture fluctuation 

energy] 

Constitutive • solid stress • diffusive mass flux • mixture stress 

relations (nonlinear viscous) (Fickian diffusion) (nonlinear viscous 

or plastic) for grains, but ignored or plastic) 

fluid stress 

(Newtonian) • mixture stress [• Fluctuation energy flux 

(nonlinear viscous (Fourier-type relation) 

or plastic) • interaction force 

(Darcy relation) • Fluctuation energy 

annihilation rate] 

• Permits utmost • Thermodynamics implies • Mixture means here 

flexibility. Erosion model is appropriate solid + fluid 

and deposition only in a hydraulic-type or solid + air, 

can be incorporated, formulation, where air is treated 

as massless. 

• Includes constitutive 

relation for the 

fluid-solid interaction 

rate density, 

see Svendsen & Hutter 

(1995). 

• Model appropriate 

when density variations 

over depth are 

significant. 

Remarks 

• In full 3-D formulation, 

particle concentration 

not realistically modeled. 

• Erosion and 

deposition can 

be incorporated. 

• Incorporation of 

fluctuation energy 

balance relation 

for mixture. 

• Incorporation of 

particle size 
distribution .['unction 
evolution relation. 

Possible 

extensions 

• Incorporation of 

fluctuation energy 

balance relations 

for fluid and solid. 

• Incorporation of 

particle size 
distribution .Junction 
evolution relation 
to model inverse grading. 

• Full 3-D formulation 

allows determination 

of velocity and particle 

concentration fields. 

• Deposition and erosion 

processes allow no 

separate treatment 

of water and sediments, 

and should then be 

excluded from model. 

e Incorporation of 

fluctuation energy 

balance relation 

for mixture. 

• Incorporation of 

particle size 
distribution .junction 
evolution relation. 
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Single component model 

This is by far the most popular description; it consists of the balance laws of  mass and momentum of the 

mixture, i.e., grains plus water, and constitutive relations for the mixture stress tensor. Due to the saturation 

condition (the water fills all pores), and incompressibility assumption for both components, the mixture mass 

balance reduces to the evolution relation 

(~)- ~)[v t + w - v ]  + ~) (div v) = 0 (5.4) 
S f S~ 

for the sediment volume fraction u. Deposition and erosion processes at the bed are not accounted for in 
8 

this case, however, and the exchange of water and sediment with the bed takes place at the value of  the 

solids fraction that the model produces at the base. It follows that such a model is not likely to model particle 

segregation in a physically correct fashion. 

With these limitations, model equations are capable of  predicting debris flow processes and two types 

of  models are thinkable, i.e., (i), ones without an evolution equation for the fluctuations (see Chen (1987), 

Takahashi (1971), and others), and (ii), those including evolution equation(s) for the fluctuation energy due to 

particle collisions and turbulence of  the interstitial fluid (Jenkins and Askari 1994). Inclusion of  the fluctuation 

energy allows the processes of  erosion H and deposition to be more realistically modeled. Table 1 provides a 

summary. 

5.2 Differentiation of models according to the complexity in computational performance 

Once a mathematical model that describes debris flow with a certain complexity has been selected, there is 

the need to find solutions to these equations for certain physically relevant well posed initial boundary value 

problems. We briefly discuss here three, i.e., (1), simple hydraulic models, (2), higher-order hydraulic models, 

and (3), full scale three-dimensional models. Actually, among non-specialists and engineers, hydraulic models 

would not be considered as a form of computational preparation of  a mathematical-physical formulation. We 

wish to do so for reasons that will become apparent as we proceed. 

Simple hydraulic models 

Consider any formulation of a debris flow with its field equations and boundary and initial conditions and 

assume that they form a well posed mathematical initial value problem. A hydraulic model reduces the 

spatial dimension of this problem from 3 to 2 or 1 and replaces some of the field variables by others that 

can be viewed as depth or cross sectional averages of  the former. The thesis is that the true variation of the 

field variables over depth or cross section is not important, or that by replacing these by the corresponding 

averaged quantities, the essential physics is preserved, so that it suffices to describe the flow as a whole. 

This yields channel hydraulic models if integrations are over cross sections (reduction to one dimension), or 

depth-integrated hydraulic models (reduction to two dimensions). 

It is important that the governing equations are referred to the appropriate coordinates prior to the depth 

or cross sectional integration, for otherwise curvature effects of the topography may not properly be taken 

into account. 

Depth-averaged models 

If one uses Cartesian coordinates with the x-axis pointing in the direction of steepest descent then this is 

tantamount to allow only small deviations of the base over which the debris mass flows from a flat bed. In 

n Especially the erosion from the sediment bed is largely governed by the amount of turbulence or kinetic fluctuation energy that is 
present close to the bed. Deposition, on the other hand, is mainly governed by (negative) buoyancy and thus requires careful modelling 
of the variation of the solid's fraction. A review of this is given in Hutter (1995) and is a major topic in dust and powder flow. 
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the only presently existing hydraulic model (O'Brien et al. 1993) this is assumed despite the fact that abupt 

deviations from a flat bed occurred in the model 12 used by them. 

The next step is to introduce a curvature dependence of the bed in the direction of steepest descent (this 

curve may be assumed to have vanishing torsion) while the direction perpendicular remains flat. If the basal 

topography deviates only slightly from this cylindrical surface, then its level lines only deviate slightly from 

straight lines. Such a model is appropriate when curvature effects in the downhill direction are appreciable. 

Deviations of  the basal topography from the cylindrical surface must in general be small (Wieland 1995). 

A further generalization, e.g., introduction of sidewise curvature effects, or a curve for the direction of 

steepest descent with non-vanishing torsion stretches the applicability of  depth averaged hydraulic models 

beyond their applicability. All this follows from detailed models of granular flows performed by Hutter and 

associates (Greve et al. 1994; Koch et al. 1994; Koch 1994; Hutter 1995; Wieland 1995). 

Channel models 

Such models are appropriate for flows through corries or in case of straight plane deformation and should 

be used only if the information needed must not be very detailed, and errors can be large. The height and a 

mean velocity are the main variables; this means the free surface is represented as a horizontal straight line 

across the channel width. Its transverse deformation or inclination cannot be determined. 

All formulations we have seen use Cartesian metric and simply integrate equations in the two transverse 

directions (y, z-coordinates). What emerges are Boussinesq-type equations that are valid when the path along 

which the debris flow proceeds is straight. If  it is curved in a vertical plane, then the chute flow can be treated 

along a flow route that is substantially curved in the downhill direction. Such a formulation may provide the 

possibility that a single debris mass separates into two or more smaller masses as it moves downhill. For 

analyses of granular flows and comparison with experiments, see Hutter and Koch (1991), Greve (1991), 

Greve and Hutter (1993), Savage and Hutter (199l), Hutter et al. (1993a). 

Channel models, in which the channel axis is spatially curved (non-vanishing torsion) have so far not 

been proposed. Such a formulation, however, is physically probably inappropriate because sidewise centripetal 

forces generate in curved corries transverse inclination of  the free surface. Higher order channel models are 

needed to this end. 

In the process of  deduction of the hydraulic equations, mathematical simplifications are introduced which 

are somewhat hidden and often forgotten. These are: 

1. Averaging and multiplication are assumed to commute.  This means that if (f) denotes the average of  

some quantity f ,  then ~fg) = ~ ) ( g )  is assumed. This is actually correct only i f f  and 9 are uniformly 

distributed over the depth (or cross section). This problem arises for instance in tile evaluation of the 

convective acceleration terms: 

. 

(5.5) 

where A(ij) are the so-called Boussinesq coefficients, for which values must be prescribed 13. To set 

A(ij) = 1 amounts to ignoring bulk variations of  v. 

The basal shear stress and pressure must via the constitutive relations and assumed depth (or 

cross sectional) distributions of the field variables be related to the average variables. This requires 

ad hoc guesses for these distributions which are in general not consistent with the model. Furthermore, 

these are distributions often independently introduced from the Boussinesq coefficients, but, of course, 

both are interdependent. 

12 Assuming that equations have the form based on a Cartesian metric even though the coordinate system may be orthogonal but 
curved requires small mean and GauNan curvature of the basal topography, small relative to a characteristic length of the debris flow 
parallel to the base, see Hutter (1995), Greve, Koch and Hutter (1994). 

13 Classically, in fact, one introduces only one Boussinesq coefficient and writes (vivi) = A(vi) (vj). If in a depth-integrated model v 
is assumed to be parabolic, then A ~ 1.2, There are also terms others than the convective acceleration terms where such approximations 
must be made. 
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Higher-order hydraulic models 

Such models are better suited to fanned, shallow debris flows than channelized situations; so we restrict 

considerations to the former. In numerical analysis, these models are better known as semi-spectral models; 

the method itself is sometimes called the Kantorovich technique, and consists of a function expansion in the 

depth direction. What  emerges is a set of evolution equations of which the spatial independent variables are 

those perpendicular to the depth. 

Let x, y, z be a set of  orthogonal curvilinear coordinates, the surface z = 0 being close to the basal 

topography over which the debris material is flowing. Let, moreover, z = hf(x, y, t) and z = hb(X, y) denote 

the free surface and the basal surface, respectively. Then, 

Z - -  h b 

~r - ~r C [0, 1] (5.6) 
hf - h b ' 

maps the domain z E [hb~h f] onto the unit closed interval [0, 1]. Let u(x ,y , z , t )  be any one of the field 

variables, {qSs(cr) ] a = 1 , 2 , 3 , . . . }  a known infinite complete function set on [0, 1], and { u N x , y , t )  I ~ = 

1, 2, 3 , . . . }  an analogous set of  unknown functions. Then u(x, y, z, t) can be represented in the form 

N 

u(x, y, z, t) = Z ~s(~r) uS(x' y' t) , (5.7) 

s = l  

where the qSa-functions describe the depth variation of u, and the unknown u s depend on the remaining 

variables. The representation (5.7) amounts to a separation of u into a known set {q5 s I c~ = 1,2, 3 , . . . }  and 

an unknown set {u s t c~ = 1,2, 3 , . . . } .  The summation in (5.7) should be performed over an infinite number 

of  shape functions, i.e., for N = o~; in practice, however, N is finite, and N = 1 corresponds to the simple 

hydraulic models. 

A higher order hydraulic model corresponds to a set of  field equations for the set u = {u ~ I a = 1,2, 3 , . . . }  

of all unknown field variables, and the N describes the order of approximation. The corresponding equation 

set is derived by the method of weighted residuals. The idea behind this method is the following: let f be a 

set of  M equations describing a system in a domain 32 with an unknown solution fi and a known forcing 

term b, such that 

f ( ~ )  - b = o ( 5 . 8 )  

holds. Now, in general, an arbitrary field u a does not satisfy (5.8), but rather produces an error 

r(Ua) : f(u.) - b 4 0 ,  (5.9) 

called the residue. The method of weighted residuals forces the average of the residuals to be zero by setting 

as many weighted integrals of  the residuals equal to zero over 32 as is necessary to determine the approximate 

solution 

f r ( U a ) d 3 2  = 0 ,  fl = 1 , . . .  ,M (5.10) w ~ 

where {vp [ /3 = 1 , . . . , M }  is a set of linearly independent weighting functions, and M is the number 

of weighted integrals of  the residuals necessary to determine the approximate solution u a. Generally, u a is 

postulated as a product of two truncated sets in the form 

N 

u a =  ~ q S s u  ~ , (5.11) 

c~=l 

where the {qS~ I a = 1 , . . . , N }  generate a set of linearly independent known functions, called shape, basis 

or trial functions, and the {u s I c~ = 1 , . . . ,  N } constitute a set of unknown functions. 

For the limit as N tends to infinity, the q5 s should form a complete set of functions to ensure that every 

possible admissible function may be represented. This set may be constructed from a set of  polynomials 

such as Legendre or Tshebyshev polynomials (which are complete in [0, 1] and derivable from an eigenvalue 

problem, such that the spectral method is appropriate). The representation (5.10) allows interpretation of the 
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method of weighted residuals as a procedure for ensuring that the error caused by the linear independent set 

of shape functions in the operator describing the problem is minimized by making it orthogonal to another (or 

the same) set of linearly independent weighting functions. This shows that the method of weighted residuals 

is a projection method. 

The method has been extensively used by Hutter and his associates. Raggio (1980) and Raggio and Hutter 

(1982a,b,c) used it to derive extended, higher order Chrystal models for surface seiches in lakes. Particularly 

successful was the method in the development of analytical-numerical solutions to the topographic wave 

operator, see Stocker (1987), Stocker and Hutter (1986, 1987b,c,d, 1988) and Stocker (1988). For debris flows, 

no higher order hydraulic models have been derived so far. The operator f(u) is given by the chosen model 

equations as surmised in Table 1 and u are the field variables arising in these. Whether these equations are 

referred to Cartesian or curvilinear coordinates must be decided in advance. The number of shape functions 

that are needed, i.e., the order of the hydraulic model, is expected to be small except perhaps where the 

curvature of the basal topography changes relatively abruptly and also close to the snout. The final model 

equations are still continuous operator equations and are solved either by FD or FE discretization methods. 

Full scale three dimensional models 

The hydraulic models discussed above are, from a computational point of view nothing else than a first step 

in a discretization technique to solve the proposed three dimensional model equations. Their semi-spectral 

form is particularly suited for debris flows, since the dominant flow direction is essentially orthogonal to the 

direction of spectral expansion. 

One can, of course, dispense with this approach and directly pass to a 3D, FD- or FE-implementation, 

again using the principle of weighted residuals to deduce the finite element matrix equation 

f i = A u + b  , (5.12) 

and proceeding in the temporal integration with the method of line or any other method. Because of the 

parabolicity the governing equations will likely exhibit conditional stability; implicit temporal integration is 

likely necessary to avoid numerical instabilities from being developed. 

5.3 Remarks on integration procedures 

Debris flows belong mathematically to the free boundary value problems in which the domain geometry must 

be determined along with the field quantities that are defined by the equations governing their evolution in 

these domains. Numerically, this fact introduces additional complexities and also makes integration routines, 

if they are not properly formulated, prone to numerical instabilities. 

Experience shows that free boundary value problems are computationally more easily handled and dis- 

cretized integration routines are more stable if prior to this numerical implementation a fixed-domain mapping 

is introduced, that reduces all equations to the same fixed domain for all time (or for a certain time interval). 

In continuum mechanics, the fi'ee boundary value problem arises when equations are referred to the present 

configuration, and hence equations are written in the Eulerian formulation. The fixed domain mapping is 

effected by the "pull-back" operation of these equations to the reference configuration, i.e., the transformation 

to the Lagrangian formulation. 

Ideally, one would refer all equations of a debris flow problem to the initial configuration, which is fixed 

and then solve these pulled-back equations. This has been done in the debris flow context only by Hungr 

(1994) in a limited application and by referring to experiences gained in avalanche flows by Savage and 

Hutter (1989). Indeed, in the granular avalanche work of Hutter and associates 14, the Lagrangian numerical 

integration procedure is systematically used. All Eulerian integration schemes that were tried, failed to be 

numerically stable. 

~4 Hutter and Savage (1991), Hutter and Koch (1991), Greve and Hutter (1993), Greve et al. (1994), Koch et al. (1994), Koch (1994), 
Wieland (1995). 
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Because of the large distances travelled by the material particles in a debris flow, deformations are gener- 

ally also large and, consequently, deformations of a FD- or FE-net are substantial. Koch (1994) found that his 

FD-code became increasingly unstable especially when originally approximately equilateral triangular grids 

were severely stretched. Such situations are likely to always occur in realistic debris flow situations. It may 

therefore be advantageous to introduce intermediate configurations and use a so-called adapted or advected 

FD- or FE-formulation, in which the equations are not pulled-back to the initial configuration but succes- 

sively to the intermediate configurations. At each intermediate configuration a new grid is generated. Such 

intermediate configurations need probably not be introduced at each time step, but only when deformations 

become large. 

It is recommended that computational schemes are designed with careful considerations of these facts. 

6 B o u n d a r y  c o n d i t i o n s  

Debris flows possess two distinct surfaces that bound the domain of the moving material, i.e., (i), the free 

surface, and (ii), the bed. Boundary conditions that must be formulated at these surfaces are of kinematic and 

dynamic nature, and their complexity depends on the complexity of the theory that is employed as well as on 

the physical processes one intends to include at these boundaries. We ignore situations in which the material 

may become unsaturated in subregions, and thus assume that the phreatic surface is coincident with the free 

surface. Generally, when erosion of material from or deposition to the bed is considered the basal surface is 

changing with time, and this change ought to be determined along with that of the free surface. 

6.1 Kinematic and dynamic boundary conditions 

Kinematic conditions 

Let F(x(t)) = 0 be the equation describing either the free or basal surface. Then, since F = 0 for all time, the 

time rate of change of F following the surface must vanish, i.e., 

P = F,t + (~F) -  w = 0 , ( 6 . 1 )  

where w denotes the velocity with which the surface moves. Note that this velocity need not coincide with 

the grain or fluid velocity of the particles instantaneously sitting upon the surface, i.e., v ! for ct = s or ct = f, 
ct 

where f ±  denotes the limit of some field f as we approach the surface from the ~ side, where the + side 

corresponds to the outside part of the boundary with respect to the debris flow, and - to the debris flow side. 

In terms of this v 4-, (6.1) can be written as 
¢1 

F t + (VF) .  v :k = - I V F I  a ± (6.2) 

with 

a + = (w - v+) • n (6.3) 

the component volume flux relative to the surface into the debris flow, and 

VF 
n = (6 .4 )  

IVFI 

the outward unit normal vector pointing into the + region into which the surface propagates (with F = 0 

accordingly defined), which corresponds by convention to the atmosphere at the free surface, and to the 

ground at the base. The kinematic relation (6.2) yields the result 

I1- v -nil = --I[a]l , (6.5) 
¢t ct 
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where I[f] = f +  - f -  represents the jump o f f  across the surface F = 0. The result (6.5) provides a useful 

interpretation of the kinematic surface condition; if [[ a ~ = 0, the difference of the velocities on the two sides 

is tangential to the surface, i.e., [[ v .nil = 0. Then, with 

F f ( x , y , z , t )  = - z f ( x , y , t ) + Z  = 0 free surface , 

Fb(X,y , z , t  ) = Zb(X,y, t)--  Z = 0 base ,  

(6.6) 

(6.2) takes the forms 

Zf, t + Zf,x Vax :t: + Zf,y Vay:t: -- az v± = Nf a ±af 

Zb,t + Zb,x Vax ± + Zb,y Vay± -- Vaz ~ = - -Nb  ab ~ 

at z = z f ( x , y ,  t )  , 

at z = z b(x, y, t) , 
(6.7) 

with Nf = V/1 + (Zf,x)2 + (Zf,y) 2, and the same for N b. These are the kinematic boundary conditions when a 

Cartesian coordinate system is used. 

Often the kinematic relations (6.5) and (6•7) are combined through a depth integration of the mass balance 

to form a global mass balance statement, however, all these forms are only justifiable when the velocity field 

v is solenoidal, 

div v = 0 , 
a 

(6.8) 
~x,x +Vay,y +Vaz,z = O .  

Integrating this equation from z = Zb to Z = Zf, and using (6.5) and (6.7) yields 

with 

(Zf -- Zb),t + Qx,x + Qy,y = Nfaf  ± - Nb ab i , (6.9) 

fZb =f 
Qi = Vai(" , Z) dz (6.10) 

Only models with constant density (constant solids fraction) have solenoidal velocity fields. Thus, (6.9) is 

not applicable 15 without separate justification. 

Dynamic conditions 

The dynamic conditions emerge from the balance laws when these are formulated for an infinitely thin "pill- 

box" surrounding the singular boundary surface• Assuming no mass or momentum exchange takes place 

between the components on the surface, these are given by 

= 0 ,  

aO±a4-~vll+[t~a = 0 
(6.11) 

on F = 0 for mass and momentum with t = T n. If  balance laws of the fluctuation energy for the fluid and/or 
• t2 a • . 

the grains are also introduced, then jump condmons for these would also have to be formulated. Note that, if 

w = v, the surface is material with respect to the corresponding component, and a = 0. In that case, (6.11) 1 
a a 

is trivial, and (6.11) 2 reduces to the traction continuity relation lIT ~n = 0. 
a 

15 Takahashi (1991), e.g., uses (6.9). The equation is not applicable when, e.g., density variations across the debris flow depth are 

ignored but variations in the direction parallel to the bed are permitted. 
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6.2 Boundary conditions at the free surface 

T w o - c o m p o n e n t  model. Define the free surface to be material with respect to the solid particles; thus a = 0, 
s 

and (6.7)j yields 

• = 0 ] 

Zf't + Zf'x~X-+- q- Zf'yVwf-tr --v~'~ -~ Nfawf~ I a t z  : zf(x,y,t) (6.12) 

The first of these serves as the evolution equation for z = zf, and the second as an equation for the determination 

of  (v + - v±)  - n, i.e., 
w s 

(v ± - v±) - n = - a f  (6.13) 

The two-phase model is only meaningful when a~  < 0, in which case there is water flow on the surface of 

the debris flow, and a + wf can be identified with the precipitation intensity. 

The dynamic boundary conditions on the free surface can be deduced from (6.11) and the assumption 

w = v. If  one further assumes that I6 ~ v ] = 0, and that the traction from the atmospheric side vanishes, then 
cl w 

t -  = 0 ,  t -  = 0 (6.14) 
s w 

follows from (6.11) 2 . 

T w o - c o m p o n e n t  diffusive mixture  model. Here, only the barycentric velocity is defined, and thus there is 

only a single kinematic equation. Therefore the free surface must be defined to be material with respect to 

the barycentric velocity, implying 

Zf,t -t- Zf,xlJx ~ + Zf, yVy ± -- "Uz ~, -~ 0 I at z = zf(x, y, t) (6.15) 

T - n  = 0 J 

as the kinematic equation and the boundary condition of stress. Here again the traction from the atmospheric 

side is assumed to vanish. 

Single-component  model. Here, the boundary conditions are the same as (6.15), if the free surface is assumed 

to be material and the traction from the atmospheric side vanishes. 

Remark: When density gradients (or gradients of the solids fraction) enter the stresses as an independent 

variable, and/or balance laws of fluctuation energy are added to the model then further boundary conditions 

need to be added involving these variables. For granular media Hutter and Rajagopal (1994) provide a 

discussion on the peculiarities that may be accompanied with these. 

6.3 Boundary conditions at the base 

Structurally, these are the same as on the free surface, however, dependent on which model is used sedimen- 

tation or erosion of  particles as well as drainage of water can be incorporated. 

T w o - c o m p o n e n t  model.  I f  sedimentation/erosion as well as water drainage processes are incorporated, then 

the basal surface is non-material relative to both phases, and (6.7) 2 take the forms 

zb,t+Zb,xVsx~+Zh'V'~'--vs ~ ~ , J  sJ = --Uba+s b 

Zb"+Zb'x~+ + Zb'yVwf --~z+ = --Nba~ I at z = zb(x,y,t) , (6.16) 

in which a ± represents the sediment erosion (deposition) rate when greater than or equal to (less than or 
sb  

equal to) zero, and a ± the water drainage velocity when greater than or equal to zero, representing a water 
w b 

16 This means that the water  layer that might  exist  on the free surface moves with the same speed as the water just  inside. 



Debris flow modeling 

Table 2. Boundary conditions at the free surface 

31 

Two-component model Diffusive model Single-component model 

Boundary 

conditions 

• free surface is material 

for solid particles: 

, 73± Zf~t + Z f x  S x 

+ . . . .  0, 

(~± -- vs±). n - _ a  ± 
- -  w f  ' 

• free surface is stress-free: 

w ,± =o,~± =o. 

• free surface is material 

for mixture: 

• free surface is material 

for mixture: 

zf,t + Zr,x v f  zf, ,  + zr, x v ~  

+ . . . .  O. + . . . .  O. 

• free surface is stress-free: 

t±=O. 

• free surface is stress-free: 

t ± =0 .  

Prescribed 

quantities 

a ± Precipitation • Precipitation could be • Precipitation could be 
w f 

intensity, incorporated, but model incorporated, but model 

is then likely to be is then likely to be 

inaccurate, inaccurate. 

Remarks • If density gradients are • If  density gradients are • If density gradients are 

incorportated, additional incorportated, additional incorportated, additional 

boundary conditions boundary conditions boundary conditions 

are required, are required, are required. 

• I f  fluctuation energy • If fluctuation energy • If fluctuation energy 

is incorportated, is incorportated, is incorportated, 

a corresponding a corresponding a corresponding 

flux relation flux relation flux relation 

is required, is required, is required. 

source for the debris flow from the ground water. While the drainage velocity function ab i is mainly governed 

by ground hydrology, the erosion/deposition velocity a& of the sediment depends on both the compaction, 

cohesion, and so on, of  the bed as well as the turbulence intensity and density structure of the flow. Both 

functions must be constitutively prescribed. Takahashi et al. (1992) give propositions for these; see also Hutter 

(1995) and Gauer (1995). 

The dynamic boundary conditions (6.11) are not needed because they would only give information on the 

tractions immediately below the basal surface. Instead a sliding law relating the tangential component of  the 

velocities v + and the shear tractions must be prescribed. One could propose the no-slip condition for both 
¢1 

phases, but that is only appropriate when a& = 0 = a +, in which case one has 
w b 

v ± = 0 = v + (6.17) 
s w 

If  the sediment is neither depositing nor eroding, then z = Zb is material for the grains and a no-slip condition 

v ± = 0 probably makes sense for these, but the water would then need a sliding law 
s 

wt~ =w t -  - (n .wt-)n = C v -  (6.18) 
w wil 

where C is a sliding coefficient that could depend on local water pressure, shear traction, and so on, where 
w 

C = 0 corresponds to perfect sliding, and C = ec to no-slip. 
w w 

In the general case when the erosion/deposition and drainage processes operate both equations (6.16) 

apply and sliding laws require that 

t,7 = C vii- (6.19) 
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for a = s, f, where Cs and Cw must be prescribed. Instead of doing this, one may alternatively prescribe C and 

the difference in tangential velocity 

{ (v -  - v - )  - [ ( v -  - v - ) -  n ] n }  = d , ( 6 . 2 0 )  
S W S W 

which is more like a Darcy-type relation. A first guess would certainly be d = 0. 

Table 3. Boundary conditions at the base 

Two-component model Diffusive model Single-component model 

Boundary 

conditions 

1) v ± = 0, 
s 

V :i: = O, 

~Vno-slip), 

with no deposition or 

erosion of sediments, 

nor drainage of  water. 

o r  

2) v ± = 0 (no slip), 

Zb, t + Zb~ x x ~  

+ . . . . .  Nhaw?, 

with no deposition or 

erosion of sediments, 

nor drainage of  water, 

t :E V ± 
w l l  = C w l l  " 

o r  

Zb,t + zb,~ v~ 3) 

+ . . . . .  X b a b ,  

Zb, t + Zh, x ~x :t- 
d ~  

+ . . . . .  N b aw~-, 

t ± = C v ± 
s MI' 

t ± w,, = c 

1) v ~ = 0 (no slip), 1) v ± = 0 (no slip), 

provided there is provided there is 

neither deposition or neither deposition or 

erosion of sediments erosion of sediments 

nor drainage of  water, nor drainage of water. 

o r  o r  

2) v ± = 0 (no slip), 2) v ± = 0 (no slip), 

zh,t + zb,x Vx ~ z w + zh,x v ~  

+ . . . . .  N b a ~ ,  + . . . . .  N b a ~ ,  

with no deposition or with no deposition or 

erosion of sediments, erosion of sediments, 

nor drainage of water, nor drainage of water, 

' , t  = c , f  : c 

Prescribed 

quantities 

a ± depositional/ a ~  depositional/ a f  deposifionalJ 
s b 

erosional velocity, erosional, drainage erosional, drainage 

velocity, velocity. 

a ± drainage/ 
w b 

water velocity. 

Remarks • If density gradients are incorporated, 

additional boundary conditions are needed. 

• If fluctuation energy and turbulence are included, 

boundary conditions are needed for these. 

• Deposition and erosion processes should not be modeled 

without evolution relation for fluctuations. 
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Diffusion model. Since only the barycentric velocity is defined in these models, the kinematic condition (6.7) 

takes the form 

4- __ ~Uz:E = _ _ N  b ab ~ (6.21) Zb, t + Zb,x Ux ~- q.- Zb,yTJy 

where a ~  is the combined erosion deposition-drainage velocity. Water and gravel are not separable here, as 

a constitutive relation for both together must be postulated. 

The other condition is a sliding law, now expressed for the mixture stress, i.e., 

t~ = C vl7 (6.22) 

The no-slip condition is again only meaningful when ab ~ = 0, in which case (6.21) and (6.22) reduce to 

v 4- = 0 at z = Zb (6.23) 

The boundary conditions for the single-component model are conceptually no different than those of the 

two-component model, so (6.21)-(6.23) apply. 

Tables 1 and 2 summarize the boundary conditions formulated at the free surface and base of the debris 

flow. 

When density gradients or concentration gradients are independent variables arising in the constitutive 

relations and/or balance laws for the fluctuation energy are part of the theory, then additional boundary 

conditions might enter the formulation. The form of these depends upon how the additional variables are 

introduced in the theory, see Hutter (1995). 

References 

1. Bagnold RA (1954) Experiments on a gravity free dispersion of large solid spheres in a Newtonian fluid under shear. Proc. R. Soc. 

London, A 225:49-63 

2. Bagnold RA (1962) Auto-suspension of transported sediment: turbidity currents. Proc. R. Soc. London, A 265:315-319 

3. Bagnold RA (1966) The shearing and dilatation of dry sand and the singing mechanism, Proc. R. Soc. London, A 295:219-232 

4. Batchelor GK, Green JT (1972) The hydrodynamic interaction of two small freely moving spheres in a linear flow field. J. Fluid 

Mech. 56:375 

5. Campbell CS (1990) Rapid granular fows. Ann. Rev. Fluid Mech. 22:57-92 

6. Chen CL (1987) Comprehensive review of debris flow modeling concepts in Japan, Geol. Soc. Am. Rev. Eng Geol. Vol. VII, 

pp. 13-29 

7. Coussot P (1994) Steady, laminar, flow of concentrated mud suspensions in open channel. J. Hydr. Res. 32, vol. 4:535-559 

8. Einstein A (1906) Eine neue Bestimmung der Molekiildimensionen. Annalen der Physik 29:289 

9. Einstein A (1911) Berichtigung zu 'Eine neue Bestimmung der MolekiJldimensionen'. Annalen der Physik 34:591 

10. Ehlers W (1993) Constitutive equations for granular materials in geomechanical context. In: Continuum Mechanics in Environmental 

Sciences and Geophysics (K. Hutter, Ed.), CISM-Lecture Notes 337, Springer-Verlag Wien-New York, pp. 313-402 

11. Gauer P (1994) Bewegung einer Staublawine l~gs  eines Berghanges. Diplomarbeit, Fachbereich Mechanik, TH Darmstadt 

12. Goddard JD (1986) Dissipative materials as constitutive models for granular media. Acta Mechanica 63:3-13 

13. Goodman MA, Cowin SC (1972) A continuum theory for granular materials. Arch. Rat. Mech. Anal. 44:249-266 

14. Greve R (1991) Zur Ausbreitung einer Granulatlawine entlang gekrtimmter Fltichen - Laborexperimente und Modetlrechnungen. 

Diplomarbeit, Fachbereich Physik, Technische Hochschule Darmstadt, Deutschland 

15. Greve R, Hurter K (1993) The motion of a granular avalanche in a convex and concave curved chute: Experimenrts and theoretical 

predictions. Phil. Trans. R. Soc. London, A 342:573-604 

16. Greve R, Koch T, Hutter K (1994) Unconfined flow of granular avalanches along a partly curved surface. Part I: Theory. Proc. R. 

Soc. London A 445:399413 

17. Haeberli W, Rickenmann D, Zimmermann M (1991) Murg~inge, Ursachenanalyse der Hochwasser 1987. Mitteilung des Bundesamtes 

ffir Wasserwirtschaft Nr. 4 und Mitteilung der Landeshydrologie and -geologie Nr. 14, EDMZ, pp. 77-88 

18. Hungr O (1994) A model for the runout analysis of rapid flow slides. Manuscript for submission to the Canadian Geotechnical 

Journal, June, 1994 

19. Hutter K (1983) Theoretical Glaciology. Reidel, Dordrecht 

20. Hurter K (1989) A continuum model for finite mass avalanches having shear-flow and plug-flow regime. Internal Report, Federal 

Institute of Snow and Avalanche Research, Weissfluhjoch, Davos 

21. Hutter K (1991) Two- and three-dimensional evolution of granular avalanche flow - theory and experiments revisited. Acta Mechanica 

(Supplement), 1:167-181 

22. Hutter K, Rajagopal KR (1994) On flows of granular materials. Cont. Mech. Thermodyn. 6:81-139 

23. Hutter K (1996) Avalanche dynamics, a review. In: Hydrology of Disasters (VP Singh, ed.) Kluwer Academic Publishers, Amsterdam. 

(in press) 



34 K. Hutter, B. Svendsen, D. Rickenmann 

24. Hutter K, Raggio G (1982) A Chrystal model describing gravitational barotropic motion in elongated lakes. Arch. Geophys. Biokl. 

Set. A 31:361-378 

25. Hutter K, Szidarovskiy F, Yakowitz S (1986a) Plane steady shear flow of a cohesionless granular material down an inclined plane: 

A model for flow avalanches, Part I: Theory. Acta Mechanica 63:87-112 

26. Hutter K, Szidarovskiy F, Yakowitz S (1986b) Plane steady shear flow of a cohesionless granular material down an inclined plane: 

A model for flow avalanches, Part II: Numerical results. Acta Mechanica 65:239-261 

27. Hutter K, Nohguchi Y (1990) Similarity solutions for a Voellmy model of snow avalanches with finite mass. Acta Mechanica 82: 

99-127 

28. Hutter K, Koch T (1991) Motion of a granular avalanche in an exponentially curved chute: experiments and theoretical predictions. 

Phil. Trans. R. Soc. London, A 334:93-138 

29. Hutter K, Greve R (1993) Two-dimensional similarity solutions for finite mass granular avalanches with Coulomb and viscous-type 

frictional resistance. J. Glaciology 39(132): 357-372 

30. Hutter K, Koch T, Pliiss C, Savage SB (1995) Dynamics of avalanches of granular materials from initiation to runout. Part II. 

Laboratory experiments. Acta Mechanica 109:127-165 

31. Hutter K, Siegel M, Savage SB, Nohguchi Y (1993) Two dimensional spreading of a granular avalanche down an inclined plane. 

Part I, Theory. Acta Mechanica 100:37-68 

32. Hutter K, J6hnk K, Svendsen B (1994) On interfacial transition conditions in two phase gravity flow. ZAMP 45:746-762 

33. Iverson RM, Denlinger RP (1987) The physics of debris flows - A conceptual assessment. In: Erosion and Sedimentation in the 

Pacific Rim (Proceedings of the Corvallis Symposium), IAHS Publ. No. 165:155-165 

34. J6hnk K, Hutter K, Svendsen B (1993) Steady-state gravity flow of a binary mixture down an inclined plane. Recent Advances in 

the Mechanics of Structured Continua. AMD Vol. 160/MD-Vol. 41: 55-63, ASME 

35. Kanatani KI (1979) A micropolar continuum theory for the flow of granular materials. Int. J. Engng. Sci. 17:419-432 

36. Kantani KI (1980a) A continuum theory for the flow of granular materials. Part I, Theor. Appl. Mech. Vol. 27: 571-578; Part II, 

Theor. Appl. Mech. Vol. 28: 485-492, Univ. of Tokyo Press 

37. Kantani KI (1980b) A theory for the plastic flow of granular materials. Research Rep., CS-80-4, Dept. Comput. Sei., Gunma Univ., 

Gunma, Japan 

38. Kantani KI (1980c) An entropy model for shear deformation of granular materials. Lett. Appl. Engng. Sci. Vol. 18:989 

39. Kantorovich LW, Krylov WI (1958) Approximate methods of higher analysis. Interscience Publishers. 

40. Koch T (1989) Bewegung einer Granulatlawine entlang einer gekrtimmten Bahn. Diplomarbeit, Technische Hochschule Darmstadt, 

172pp 
41. Koch T (1994) Bewegung einer granularen Lawine auf einer geneigten und gekrtimmten Fl~iche. Entwicklung und Anwendung 

eines theoretisch numerischen Verfahrens und dessert Elberprfifung dutch Laborexperimente. Dissertation, Technische Hochschule 

Darmstadt, 225 pp 

42. Koch T, Greve R, Hutter K (1994) Unconfined flow of granular avalanches along a partly curved surface. Part II: Experiments and 

numerical computations. Proc. R. Soc. London, A 445:415435 

43. Kupper W (1967) Der plastische Grenzzustand in der schiefen Eis- oder Schneeschicht. ZAMP 18:705-736 

44. Jan CD, Shen HW (1993) A review of debris flow analysis. Proc. XXV IAHR Congress, Technical Session B, Vol. III pp. 25-32 

45. Jenkins JT (1994) Hydraulic theory for a debris flow supported on a collisional shear layer. Proc. Int. Workshop on 'Floods and 

Innnndations Related to Large Earth Movements, Trento, Italy, IAHR, A6.1-A.610 

46. Jenkins JT, Cowin SC (1979) Theories for flowing granular materials. The Joint ASME-CSME Appl. Mech. Fluid Engng. and 

Bioengng. Conf., AMD V. 31:79-89 

47. Laigle D, Coussot P (1993) Numerical Modeling of debris flow dynamics. Proc. Int. Workshop on 'Floods and Innundations Related 

to Large Earth Movements', Trento, Italy, IAHR, A11.1-A.11.11 

48. MacArthur RC, Schamber DR (1986) Numerical methods for simulating mudflows. Proc. Third Int. Symp. on River Sedimentation, 

Mississippi, USA, pp. 1615-1623 

49. Middleton GV (1970) Experimental studies related to problem of flysch sedimentation. In: Flysch Sedimentology in North America 

(Lajoie, J., ed.) Business and Economics Science Ltd., Toronto, 253-272 

50. Middleton GV, Hampton MA (1976) Subaqueous sediment transport and deposition by sediment gravity flows. In: Stanley D J, Swift 

DJP (eds.) Marine sediment transport and environmental management (Wiley, New York), 197-218 

51. Monney M (1951) The viscosity of a concentrated suspension of spherical particles. Phil. Mag. xy, 162-170 

52. Montefusco L (1994) A possible 2-D vertical model for debris flow. Proc. Int. Workshop on 'Floods and lnnundations Related to 

Large Earth Movements'. Trento, Italy, IAHR, A9.1-A.9.9 

53. Mori Y, Ototake N (1956) On viscosity of suspension. J. Chem. Eng. 20:9 

54. Naylor MA (1980) The origin of inverse grading in muddy debris flow deposits - A review. J. Sedimentary Petrology 50:1111-1116 

55. Norem H, Irgens F, Schieldrop B (1987) A continuum model for calculating snow avalanches. In: Salm, B. and Gubler, H., (eds.) 

Avalanche Formation, Movement and Effects (IAHS Publ. No. 126), 363-379 

56. O'Brien JS, Julien PY, Fullerton WT (1993) Two-dimensional water flood and mudflows simulation. J. Hydr. Eng., ASCE, Vol. 

119, No. 2:244-261 
57. Parker G (1982) Conditions for the ignition of catastrophically erosive turbidity currents. Mar. Geol. 46:307-327 

58. Parker G, Fukushima Y, Pantin HM (1986) Self-accelerating turbidity currents. J. Fluid Mech. 171:145-181 

59. Passman SL, Nunziato JW, Walsh EK (1984) A theory of multiphase mixtures. In: Rational Thermodynamics, C. Truesdell (ed.) 

Springer-Verlag 1984 
60. Raggio GM (1980) A channel model for a curved elongated homogeneous lake. Mitt. No. 49 der Versuchsanstalt fiir Wasserbau, 

Hydrologie und Glaziologie, ETH Ztirich 
61. Raggio G, Hutter K (1982) An extended channel model for the prediction of motion in elongated homogeneous lakes. Part I: 

Theortical introduction. J. Fluid Mech. 121:231-255 



Debris flow modeling 35 

62. Raggio G, Hutter K (1982) An extended channel model for the prediction of motion in elongated homogeneous lakes. Part II: First 

order model applied to ideal geometry. Rectangular basins with flat bottom. J, Fluid Mech. 121:231-255 

63. Raggio G, Hutter K (1982) An extended channel model for the prediction of motion in elongated homogeneous lakes. Part 11I: Free 

oscillations in natural basins. J. Fluid Mech. 121:283-299 

64. Rajagopal KR, Massoudi M (1990) A method for measuring material moduli of granular materials: flow in an orthogonal rheometer. 

Topical Report U, Department of Energy. DOE/PETC/TR-90/3 

65. Reynolds O (1885) On the dilatancy of media composed of rigid particles in contact. Phil. Mag. Set. 5, 20:469481 

66. Sallenger AH (1979) Inverse grading and hydraulic equivalence in grain-flow deposits. J. Sedimentary Petrology 49:553-562 

67. Savage SB (1979) Gravity flow of cohesionless granular materials in chutes and channels. J. Fluid Mech. 92:53-96 

68. Savage SB, Lun CKK (1988) Particle size segregation in inclined chute flow of dry cohesionless granular solids. J. Fluid Mech. 

189:311-335 

69. Savage SB, Hurter K (1989) The motion of a finite mass of granular material down a rough incline. J. Fluid Mech. 199:177-215 

70. Savage SB, Hutter K (1991) The dynamics of avalanches of granular materials from initiation to runout. Part I. Analysis. Acta 

Mech. 86:201-223 

71. Scheiwiller T, Hutter K (1982) Lawinendynamik: 0bersicht tiber Experimente und theoretische Modelle yon FlieS- und Staublawinen. 

Laboratory of Hydraulics, Hydrology and Glaciology, Report No. 58, ETH Ztirich, Switzerland 

72. Scheiwiller T, Hutter K, Hermann F (1987) Dynamics of powder snow avalanches. Annales Geophysicae 5B(6): 569-588 

73. Stocker T (1982) Topographic waves. Eigenmodes and reflection in lakes and semi-infinite channels. Mitt. No. 93, Versuchsanstalt 

ftir Wasserbau, Hydrologie und Glaziologie, ETH Ztirich 

74. Stocker T, Hutter K (1986) One-dimensional models for topographic Rossby waves in elongated basins on the f-plane. J. Fluid 

Mech. 170:435459 

75. Stocker T, Hutter K (1987a) Topographic waves in rectangular basins. J. Fluid Mech. 185:107-120 

76. Stocker T, Hutter K (1987b) Topographic waves in channels and lakes on the f-plane. Lecture Notes on Coastel and Estuarine 

Studies, Springer-Verlag, Berlin etc. (available from America Geophysical Union) 

77. Stocker T (1988) A numerical study of topogrpahic wave reflection in semi-infinite channels. J. Phys. Oceanogr. 18, 4:609-618 

78. Stranb S (1995) Schneltes granulares Fliegen in subaerischen pyroklastischen Str6men. Dissertation an der Bayerischen Julius- 

Maximilians-Universit~it Wiirzburg 

79. Svendsen B, Hurter K (1995) On the thermodynamics of a mixture of isotropic granular materials. Cont. Mech. Thermodyn. (in 

press) 

80. Svendsen B, Wu T, JiShnk K, Hutter K (1995) On the steady-state gravity flow of a two-component mixture down an incline plane. 

Proc. Roy. Soc. Lond. (in press) 

81. Takahashi T (1981) Debris flow. Ann. Rev. Fluid Mech. 13:57-77 

82. Takahashi T (1983) Debris flow and debris flow deposition. In: Advances in the Mechanics and Flow of Granular Materials, Vol. 

II. Shahinpoor M. (ed.) Trans. Tech. Publ. pp. 57-77 

83. Takahashi T (1991) Debris flow. 1AHR-AIRH Monograph series. A. A. Balkema 

84. Takahashi T, Nakagawa H, Harada T, Yamashiki Y (1992) Routing debris flows with particle segregation. J. Hydr. Eng., ASCE, 

Vol. 118, No. 11:1490-1507 

85. Tesche TW (1986) Sensitivity analysis of the Avalanche simulation model. Alpine Geophysics, Inc., Report No. AGI-86/010, 

Placeville, California 

86. Tesche TW (1987) A three-dimensional dynamic model of turbulent avalanche flow. Paper presented at the International Snow 

Sciences Workshop, Lake Tahoe, California, October 22-25, 1986, pp. i 11-137 

87. Wieland M (1995) Experimentelle und theoretische Studie einer sich in eine Ebene ausbreitenden Runsenlawine oder eines 

Bergsturzes. Diplomarbeit Fachbereich Physik, TH Darmstadt 

88. Zwinger T (1995) Dynamisches Verhalten einer FtiefSlawine an beliebig geformten Berghfingen. Diplomarbeit, Fakultfit fiir Physik, 
TU-Wien 


