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Abstract. Here, we present a three-dimensional fluid dy-

namic solver that simulates debris flows as a mixture of

two fluids (a Coulomb viscoplastic model of the gravel

mixed with a Herschel–Bulkley representation of the fine

material suspension) in combination with an additional un-

mixed phase representing the air and the free surface. We

link all rheological parameters to the material composition,

i.e., to water content, clay content, and mineral composi-

tion, content of sand and gravel, and the gravel’s friction

angle; the user must specify only two free model parame-

ters. The volume-of-fluid (VoF) approach is used to com-

bine the mixed phase and the air phase into a single cell-

averaged Navier–Stokes equation for incompressible flow,

based on code adapted from standard solvers of the open-

source CFD software OpenFOAM. This effectively single-

phase mixture VoF method saves computational costs com-

pared to the more sophisticated drag-force-based multiphase

models. Thus, complex three-dimensional flow structures

can be simulated while accounting for the pressure- and

shear-rate-dependent rheology.

1 Introduction

Debris flows typically occur in steep mountain channels.

They are characterized by unsteady flows of water together

with different contents of clay, silt, sand, gravel, and larger

particles, resulting in a dense and often rapidly moving mix-

ture mass. They are often triggered by heavy rainfall and

can cause massive damage (Petley et al., 2007; Hilker et al.,

2009). Their importance has increased due to extensive set-

tlement in mountainous regions and also due to their sensi-

tivity to climate change (Guthrie et al., 2010). Their damage

potential is not limited to direct impact; severe damage can

also be caused by debris flows blocking channels and thus in-

ducing overtopping of the banks by subsequent flows (Tang

et al., 2011).

Modeling debris flows is a central part of debris-flow re-

search, because measuring the detailed processes in debris-

flow experiments or in the field is challenging. It is still un-

certain how laboratory tests can be scaled to represent real

flow events, and the inhomogeneous mixture of gravel and

fine material brings about interactions of granular flow and

viscous forces such as drag and pore pressure that are dif-

ficult to track with the present measurement techniques at

reasonable cost. As a consequence, the rheological behavior

of debris-flow material remains incompletely understood.

Typically, current numerical modeling approaches cannot

predict run-out distances or impact pressures of debris flows

without parameter calibration that is based on simulations of

previous well-documented events that occurred at the same

site. This clearly represents a challenge in practical applica-

tions, because reliable calibration data are rarely available.

Due to the complex physics of debris flows, real flows can

only be accurately described by dynamical models that in-

clude strong phase interactions between granular and vis-

cous fluid phases with several physical parameters (Puda-

saini, 2012). From a practical application point of view and
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guided by considerations of computational efficiency, here

we neglect such phase interactions and restrict ourselves to

an effectively single-phase mixture flow simulation. All cur-

rently applied debris-flow models that use a two-phase de-

scription of the debris-flow material are depth averaged or 2-

D. Three-dimensional debris-flow models with momentum

exchange between phases have, up to now, been limited to

academic cases due to their high numerical costs. Depth-

averaged approximations are most applicable to flows over

smooth basal surfaces with gradual changes in slope. These

approximations are less valid when topography changes are

abrupt, such as close to flow obstacles. They are also less

applicable when the flow exhibits strong gradients in accel-

erations, such as during flow initiation and deposition, or in

strongly converging and diverging flows. For such cases, we

need a physically complete description of the flow dynamics

without depth averaging (Domnik and Pudasaini, 2012). The

essential physics of debris flows can be better retained by

developing a full-dimensional flow model and then directly

solving the model equations without reducing their dimen-

sion. The currently available models also contain many pa-

rameters that must be estimated based on measurements, or

fitted to site-specific field data, limiting their applicability to

real-world problems.

Here, we provide a greatly simplified but effective solu-

tion linking the rheological model of the debris-flow mate-

rial to field values such as grain size distribution and water

content. The approach aims to link the knowledge of field

experts for estimating the release volume and material com-

position with recent advances that account for complex flow

phenomena, by using three-dimensional computational fluid

dynamics with reasonable computational costs. The parame-

ters of the two resulting rheology models for the two mixing

fluids are linked to material properties such that the model

setup can be based on material samples collected from the

field, yielding a model that has two free parameters for cal-

ibration. One mixture component represents the suspension

of finer particles with water (also simply called slurry in this

paper) and a second component accounts for the pressure-

dependent flow behavior of gravel. The two components re-

sult in a debris bulk mixture with contributions of the two

different rheology models, weighted by the corresponding

component concentrations. A third gas component is kept un-

mixed to model the free surface. The focus is on the flow and

deposition process and the release body needs to be user de-

fined.

2 Modeling approach

The debris-flow material can be considered as a combina-

tion of a granular component and an interstitial fluid com-

posed of a fine material suspension. The interstitial fluid was

successfully modeled in the past as a shear-rate-dependent

Herschel–Bulkley fluid (Coussot et al., 1998). Because pres-

sure and shear drive the energy dissipation of particle-

to-particle contacts, the shear rate substantially influences

the energy dissipation within the granular phase. While

the two-phase models of Iverson and Denlinger (2001) and

Pitman and Le (2005) treated the granular phase as a shear-

rate-independent Mohr–Coulomb plastic material, dry gran-

ular material has been successfully modeled as a viscoplas-

tic fluid by Ancey (2007), Forterre and Pouliquen (2008),

Balmforth and Frigaard (2007), and Jop et al. (2006). We

follow the suggestions given by Pudasaini (2012) to account

for the non-Newtonian behavior of the fluid and the shear-

and pressure-dependent Coulomb viscoplastic behavior of

the granular phase, as proposed by Domnik et al. (2013). Sev-

eral modeling approaches to account for the two-phase nature

of debris flows used depth-averaged mass and momentum

balance equations for each phase coupled by drag models

(e.g., Bozhinskiy and Nazarov, 2000, Pitman and Le, 2005

and Bouchut et al., 2015). Pudasaini (2012) proposed a more

comprehensive two-phase mass-flow model that includes

general drag, buoyancy, virtual mass, and enhanced non-

Newtonian viscous stress in which the solid volume frac-

tion evolves dynamically. We apply a numerically more effi-

cient method and treat the debris-flow material as one mix-

ture (Iverson and Denlinger, 2001, Pudasaini et al., 2005a),

with phase-averaged properties described by a single set of

Navier–Stokes-type equations. The resulting reduction in nu-

merical costs allows us to model the three-dimensional mo-

mentum transfer in the fluid as well as the free-surface flow

over complex terrain and obstacles.

We assume that the velocity of the gravel is the same as

the velocity of the fluid. This assumption is motivated from

application and would not be valid for general debris flows

with interstitial fluid of low viscosity (i.e., a slurry with low

concentration of fine material and large water content). The

assumption of equal velocity of gravel and interstitial fluid

in one cell leads to a constant composition of the mixture by

means of phase concentrations over the entire flow process.

This basic model can be seen as a counterpart to the mix-

ture model of Iverson and Denlinger (2001), extended by re-

solving the three-dimensional flow structure in combination

with a pressure- and shear-rate-dependent rheology linked to

the material composition. The basic model presented here fo-

cuses on the role of pressure- and shear-rate-dependent flow

behavior of the gravel, in combination with the shear-rate-

dependent rheology of the slurry.

We base our model concept on the well-established fi-

nite volume solver interFoam, which is designed for incom-

pressible two-phase flow simulations of immiscible fluids

(Deshpande et al., 2012). A standard extension named inter-

MixingFoam introduces two mixing phases without momen-

tum exchange, coupled to a third unmixed phase by surface

tension. The present method limits the physics of flow in

terms of the interactions between phases such as drag, buoy-

ancy, virtual mass, non-Newtonian viscous stress, and evolv-

ing volume fraction of the solid phase (Pitman and Le, 2005;
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Table 1. Nomenclature.

α phase fraction

αm fraction of the debris mixture (slurry plus gravel)

ρ phase-averaged density, ρi(i = 1,2,3) density of phase i, ρexp is a bulk density in experiment

µ phase-averaged dynamic viscosity, µi(i = 1,2,3) viscosity of phase i

µ0 maximal dynamic viscosity

µmin minimal dynamic viscosity

µs Coulomb viscoplastic dynamic viscosity

σ free surface tension coefficient

κ free surface curvature

Ddiff diffusion constant

τy yield stress of slurry phase (τy−exp is a measured yield stress)

k Herschel–Bulkley consistency index

n Herschel–Bulkley exponent

t time

p, pd pressure, modified pressure

γ̇ shear rate

τ shear stress

τ00 free model parameter (in slurry phase rheology)

τ0 modified τ00 in case of high C

τ0s yield stress of granular phase modeled with Coulomb friction

C volumetric solid concentration

P0 volumetric clay concentration

P1 reduced P0 in case of high clay content

β slope angle

δ internal friction angle

my constant numerical parameter (in gravel phase rheology)

φ volumetric flux (φρ denotes mass flux, φr a surface-normal flux)

U velocity

Uc interfacial compression velocity

g gravitational acceleration

T, Ts deviatoric viscous stress tensor, Cauchy stress tensor (s for granular phase)

D strain rate tensor

I identity matrix

∇ gradient operator

Pudasaini, 2012). Numerical costs are kept reasonable due to

the volume-of-fluid (VoF) method (Hirt and Nichols, 1981),

which solves only one Navier–Stokes equation system for all

phases. The viscosity and density of each grid cell is calcu-

lated as a concentration-weighted average of the viscosities

and densities of the phases that are present in the cell. Be-

tween the two mixing phases of gravel and slurry, the inter-

action reduces to this averaging of density and viscosity. In

this way, the coupling between driving forces, topography

and three-dimensional flow-dependent internal friction can

be addressed for each phase separately, accounting for the

fundamental differences in flow mechanisms of granular and

viscoplastic fluid flow that arise from the presence or absence

of Coulomb friction (Fig. 1). We apply linear concentration-

weighted averaging of viscosities for estimating the bulk vis-

cosity of a mixture for simplicity. Nevertheless, interacting

forces such as drag between the grains and the fluid do not

appear in our model because we set solid velocity equal to

fluid velocity, and thus, from the physical point of view, this

is a debris bulk model.

2.1 Governing equations

Assuming isothermal incompressible phases without mass

transfer, we separate the modeled space into a gas region de-

noting the air and a region of two mixed liquid components.

The VoF method used here determines the volume fractions

of all components in an arbitrary control volume by using

an indicator function which yields a fraction field for each

component. The fraction field represents the probability that

a component is present at a certain point in space and time

(Hill, 1998). The air fraction may be defined in relation to

the fraction of the mixed fluid αm as

α1 = 1 −αm, (1)

www.geosci-model-dev.net/9/2909/2016/ Geosci. Model Dev., 9, 2909–2923, 2016
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Figure 1. Viscosity distribution (indicated by color scale) along a 28 cm long section through the modeled 0.01 m3 release block 0.2 s after

release, corresponding to the experimental setup of Hürlimann et al. (2015). The starting motion (black velocity arrows) with corresponding

viscosity distribution of the mixture (left) is a consequence of blending pure shear-rate-dependent slurry-phase rheology (center) with the

pressure- and shear-rate-dependent gravel phase rheology that accounts for Coulomb friction (right). Because the gravel concentration in this

example is low, its effect on the overall viscosity is small.

and the mixed fluid αm may be defined as the sum of the

constant fractions of the mixing phases α2 and α3:

αm = α2 +α3. (2)

The debris bulk motion is defined by the continuity equation

together with the transport and momentum equations:

∇ ·U = 0, (3)

∂αm

∂t
+ ∇ · (Uαm)= 0, (4)

and

∂(ρU)

∂t
+ ∇ · (ρU × U)= −∇p+ ∇ · T + ρf , (5)

where t denotes time and U represents the debris bulk veloc-

ity field, T is the deviatoric viscous stress tensor for the mix-

ture, ρ is the phase-averaged bulk density, p denotes pres-

sure, and f stands for body forces per unit mass. We assume

incompressible material and all fractions are convected with

the same bulk velocity. Therefore, differences in phase veloc-

ities, and thus the interaction forces, such as drag between the

grains and the fluid, are neglected. An efficient technique of

the VoF method convects the fraction field αm as an invari-

ant with the divergence-free flow field U that is known from

previous time steps:

∂αm

∂t
+ ∇ · (Uαm)+ ∇ · (α1U c)= 0, (6)

where U c is an artificial interfacial compression velocity act-

ing perpendicular to the interface between the gas region and

the mixed liquid phases. The method allows a reconstruction

of the free surface with high accuracy if the grid resolution is

sufficient (Berberović et al., 2009; Hoang et al., 2012; Desh-

pande et al., 2012; Hänsch et al., 2013). The details about the

interface compression technique, the related discretization,

and numerical schemes to solve Eq. (6) are given in Desh-

pande et al. (2012). However, to allow diffusion between the

mixing constituents of the slurry α2 and the gravel α3 in case

of initially unequally distributed concentrations, our modi-

fied version of the interMixingFoam solver applies Eq. (6)

separately to each mixing component including diffusion:

∂αi

∂t
+ ∇ · (Uαi)−Ddiff∇2αi + ∇ · (α1U c)= 0, (7)

where i = 2,3 denote the slurry and gravel constituents and

Ddiff is the diffusion constant that is set to a negligible small

value within the scope of this paper.

The discrete form of Eq. (7) is derived by integrating over

the volume V of a finite cell of a grid discretization of the

simulated space, which is done in the finite volume method

by applying the Gauss theorem over the cell faces. The ad-

vective phase fluxes φ1...3 are obtained by interpolating the

cell values of α1, α2, and α3 to the cell surfaces and by mul-

tiplying them with the flux φ through the surface, which is

known from the current velocity field. To keep the air phase

unmixed, it is necessary to determine the flux φr through

the interface between air and the debris flow mixture, and

to subtract it from the calculated phase fluxes φ1...3. Inher-

ited from the original interMixingFoam solver (OpenFOAM-

Foundation, 2016a), limiters are applied during this step to

bound the fluxes to keep phase concentrations between 0 and

1. With known fluxes φ1...3, the scalar transport equation for

each phase takes the form

∂

∂t
αi + ∇(φi)−Ddiff∇2αi = 0. (8)

Equation (8) is the implemented scalar transport equation

solved for each constituent using first-order Euler schemes

for the time derivative terms, as has been recommended for

liquid column breakout simulations (Hänsch et al., 2013).

After solving the scalar transport equations, the complete

mass flux φρ is constructed from the updated volumetric frac-

tion concentrations:

φρ = φ1ρ1 +φ2ρ2 +φ3ρ3, (9)
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Figure 2. Longitudinal section through a debris-flow front discretized with finite-volume cells, showing the constitutive equations for one

cell with density ρ and viscosity µ, given the densities ρ1...3, viscosities µ1...3, and proportions α1...3 of phases present. The numbers 1, 2,

and 3 denote the air (white colored cell content), mud, and gravel phases, respectively.

where ρ1...3 denote the constant densities of the correspond-

ing phases and φ1...3 are the corresponding fluxes. The com-

plete mass flux φρ is used in the implementation to describe

the second term of the momentum equation (Eq. 14) as de-

scribed in Appendix A. Figure 2 illustrates how the phase

volume distributions α1 (air), α2 (slurry), and α3 (gravel) are

used to derive cell-averaged properties of the continuum.

The conservation of mass and momentum is averaged with

respect to the phase fraction α of each phase. The density

field is defined as

ρ =
∑

i

ρiαi, (10)

where ρi denotes density of phase i and the phase density is

assumed to be constant.

The deviatoric viscous stress tensor T is defined based

on the mean strain rate tensor D that denotes the symmetric

part of the velocity gradient tensor derived from the phase-

averaged flow field:

D =
1

2
[∇U + (∇U)T ], (11)

and

T = 2µD. (12)

Equation (12) was derived accounting for Eq. (3) and µ is

the phase-averaged dynamic viscosity, which is simplified in

analogy to Eq. (10) as the concentration-weighted average of

the corresponding phase viscosities:

µ=
∑

i

µiαi . (13)

With the continuity Eq. (3), the term ∇·T in Eq. (5) is written

as ∇ · (µ∇U)+ (∇U) · ∇µ to ease discretization. The body

forces f in the momentum equation account for gravity and

for the effects of surface tension. The surface tension at the

interface between the debris-flow mixture and air is modeled

as a force per unit volume by applying a surface tension coef-

ficient σ . Although the surface tension can be considered to

have a minor influence on debris-flow behavior, it allows an

adequate reproduction of surface-flow patterns observed in

laboratory-scale experiments used for validation (von Boet-

ticher et al., 2015). The momentum conservation including

gravitational acceleration g and surface tension is defined in

our model as

∂(ρU)

∂t
+ ∇ · (ρU × U)= −∇pd + ∇ · (µ∇U)

+ (∇U) · ∇µ− g · x∇ρ+ σκ∇α1, (14)

where κ denotes the local interfacial curvature and x stands

for position. The modified pressure pd is employed in the

solver to overcome some difficulties with boundary condi-

tions in flow simulations with density gradients. In case the

free surface lies within an inclined wall forming a no-slip

boundary condition, the normal component of the pressure

gradient must be different for the gas phase and the mixture

due to the hydrostatic component ρg. It is common to intro-

duce a modified pressure pd related to the pressure p by

pd = p− ρg · x. (15)

The gradient of the modified pressure includes the static pres-

sure gradient and contributions that arise from the density

www.geosci-model-dev.net/9/2909/2016/ Geosci. Model Dev., 9, 2909–2923, 2016
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gradient as well as a body force due to gravity (Berberović

et al., 2009).

Together with the continuity Eq. (3), Eq. (14) allows us

to calculate the pressure- and gravity-driven velocities. The

corresponding discretization and solution procedure with

the PISO (pressure-implicit with splitting of operators; Issa,

1986) algorithm is provided in Appendix A. The set of equa-

tions governing the flow in our model are Eqs. (8)–(15) to-

gether with the continuity Eq. (3). In the following section,

we present the rheology models that define the viscosity

components for Eq. (13).

2.2 Rheology model for the fine sediment suspension

The viscosity of the gas phase, µ1 is chosen constant. The in-

troduction of two mixing phases is necessary to distinguish

between the pressure-dependent flow behavior of gravel and

the shear-thinning viscosity of the suspension of finer parti-

cles with water. The rheology of mixtures of water with clay

and sand can be described by the Herschel–Bulkley rheology

law (Coussot et al., 1998), which defines the shear stress in

the fluid as

τ = τy + kγ̇ n, (16)

where τy is a yield stress below which the fluid acts like

a solid, k is a consistency index for the viscosity of the

sheared material, γ̇ is the shear rate, and n defines the shear-

thinning (n < 1) or shear-thickening (n > 1) behavior. In

OpenFOAM, the shear rate is derived in 3-D from the strain

rate tensor D:

γ̇ =
√

2D : D. (17)

The shear rate is based on the strain rate tensor to exclude

the rotation velocity tensor that does not contribute to the

deformation of the fluid body. The model can be rewritten as

a generalized Newtonian fluid model to define the shear-rate-

dependent effective kinematic viscosity of the slurry phase as

µ2 = k|γ̇ |n−1 + τy |γ̇ |−1 (18)

if the viscosity is below an upper limit µ0 and

µ2 = µ0 (19)

if the viscosity is higher, to ensure numerical stability.

With n= 1, the model simplifies to the Bingham rheol-

ogy model that has been widely used to describe debris-flow

behavior in the past (Ancey, 2007). It may be reasonable to

imagine the rheology parameters to be dependent on the state

of the flow. However, even with the implicit assumption that

the coefficients are a property of the material and not of the

state of the flow, the Herschel–Bulkley rheology law has been

rarely applied in debris-flow modeling due to three rheology

parameters. We avoid this problem by assuming some rheol-

ogy parameters to be defined by measurable material proper-

ties as described below.

Determination of rheology model parameters based on

material properties

Results from recent publications allow the reduction of the

number of free Herschel–Bulkley parameters to two. If the

coarser grain fraction is assumed to be in the gravel phase,

the Herschel–Bulkley parameters for the finer material can

be linked to material properties that can be measured us-

ing simple standard geotechnical tests. According to Cous-

sot et al. (1998), the exponent n can be assumed constant at

1/3, and k can be roughly estimated as bτy , with the constant

b = 0.3 s−n for mixtures with maximum grainsizes< 0.4 mm

(Coussot et al., 1998). An approach for estimating the yield

stress τy based on water content, clay fraction and compo-

sition, and the solid concentration of the entire debris-flow

material was proposed by Yu et al. (2013) as

τy = τ0C
2e22(CP1), (20)

where C (a constant) is the volumetric solid concentration of

the mixture (the volume of all solid particles including fine

material relative to the volume of the debris-flow material

including water), P1 = 0.7P0 when P0 > 0.27, and P1 = P0

if P0 <= 0.27, and

P0 = Ckaolinite+chlorite + 1.3Cillite

+ 1.7Cmontmorillonite, (21)

where the subscript of C refers to the volumetric concentra-

tion (relative to the total volume of all solid particles and

water) of the corresponding mineral. The discontinuity of P1

at a modified clay concentration of P0 = 0.27 is a coarse ad-

justment to a more-or-less sudden change observed in the ex-

perimental behavior.

For C < 0.47, τ0 is equal to τ00 and otherwise τ0 can be

calculated by

τ0 = τ00e
5(C−0.47), (22)

where τ00 is the remaining free parameter which we use to

account for the grid-size dependency of the shear rate (Yu

et al., 2013). The change in the definition of τ0 at solid con-

centrations exceeding 0.47 accounts for a threshold between

weak coherent and medium coherent debris-flow material.

Yu et al. (2013) compared this method of estimating the

yield stress τy to experimental results they obtained from a

set of 514 flume experiments with mixtures of water and clay

with fine and coarse sand and less than 5 % gravel. They de-

termined the yield stress by releasing the material mixture

Geosci. Model Dev., 9, 2909–2923, 2016 www.geosci-model-dev.net/9/2909/2016/
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from a reservoir into an inclined channel of 0.2 m width and

by increasing the inclination slightly until remobilization oc-

curred after the material came to rest. The experimental yield

stress τy−exp was then simplified as

τy−exp = ρexpghsin(β), (23)

where ρexp is the density of the applied mixture, h is the max-

imum accumulation thickness of the deposit, and β is the

slope inclination. In addition, they compared the calculated

yield stress of Eq. (20) with experimental yield stresses re-

ported by a number of authors including Coussot et al. (1998)

and Ancey and Jorrot (2001). Ancey and Jorrot (2001) used

2 and 3 mm glass beads in a kaolinite dispersion as well

as fine sand–kaolinite–water mixtures. Up to yield stresses

of about 200 Pa the yield stresses estimated by Eq. (20) fit

the observed ones well. Thus, the yield stresses of sand–clay

mixtures with water can be estimated using Eq. (20) based on

the volumetric concentration of the debris in the water–solids

mixture and based on the percentages of different clays in the

fraction of fine material. Adjustments to the numbers for cal-

culating P0 may be necessary to account for the activity of

other clays.

The remaining uncertainties concern the assumptions

about the value of n, and that k can be defined in such sim-

ple dependency to τy in the presence of coarser sand. Experi-

ments seem to confirm that n increases in presence of coarser

material (Imran et al., 2001), but further research is needed

to quantify this effect. Remaitre et al. (2005) found n to vary

from 0.27 to 0.36. Schatzmann et al. (2003) used n= 0.33

to reproduce measured curves obtained with a mixture of

27.5 volumetric percent slurry with 30 % gravel where gravel

grain sizes ranged from 3 to 10 mm. He applied n= 0.5 to fit

the Herschel–Bulkley model to the experiment with 22.5 %

slurry and 30 % gravel. Based on the laboratory-scale exper-

iments that are presented in von Boetticher et al. (2015), we

have chosen n= 0.34 to obtain the best fit for the simula-

tion of large-scale debris-flow experiments. However, other

debris-flow mixtures may demand a recalibration of n be-

cause natural debris-flow mixtures cover a wide spectrum

from shear thinning to shear thickening behavior. Thus, we

consider n as the second model calibration parameter. The

model calibration is constricted to τ00, which accounts for

the grid resolution sensitivity of the shear rate and n, which

allows adjusting the model to shear thinning or shear thick-

ening mixtures.

2.3 Representation of gravel by a Coulomb viscoplastic

rheology

With a novel model, Domnik and Pudasaini (2012) showed

that introducing a Coulomb viscoplastic sliding law to

replace a simple no-slip boundary condition completely

changes the flow dynamics and the depth variations in veloc-

ity and dynamic pressure. They show that with a Coulomb

viscoplastic sliding law, the observable shearing mainly oc-

curs close to the sliding surface, in agreement with observa-

tions but in contrast to the no-slip boundary condition. In our

model, during acceleration and high-speed flow, the shear-

thinning behavior of both the fluid and the granular phase

dominate the viscosity. However, the representation of gravel

by a pressure and rate-dependent Coulomb viscoplastic rhe-

ology becomes important as soon as the material experiences

high pressures, accompanied by reduction in shear due to de-

celerations. This may be caused by channel slope reductions,

diverging or converging flows, and interactions with obsta-

cles (see, e.g., Pudasaini et al., 2005b; Domnik et al., 2013).

Flows of granular material could be modeled as viscoplastic

fluids (Ancey, 2007; Forterre and Pouliquen, 2008; Balm-

forth and Frigaard, 2007; Jop et al., 2006) as cited by Dom-

nik and Pudasaini (2012). Based on Ishii (1975), the granular

Cauchy stress tensor Ts can be written as

Ts = −pI + 2µsD, (24)

where pI is the pressure times the identity matrix and µs is

the corresponding dynamic viscosity, which was modeled by

Domnik and Pudasaini (2012) as

µs = µmin +
τ0s

||D||
[1 − e−my ||D||], (25)

where µmin is a minimal dynamic viscosity, τ0s is a yield

stress, and ||D|| is the norm of the strain-rate tensor defined

by the authors as

||D|| =
√

2tr(D2). (26)

In Eq. (25), my is a numerical parameter with units of sec-

onds which we will keep constant. Domnik et al. (2013) de-

rived the yield stress as a pressure-dependent Coulomb fric-

tion, p · sin(δ) where δ is the internal friction angle:

µ3 = µmin +
p · sin(δ)

||D||
[1 − e−my ||D||]. (27)

Here, this Coulomb viscoplastic rheology model is used to

describe the gravel phase. The pressure- and shear-dependent

viscosity is calculated in every cell with the corresponding

local pressure p and strain-rate tensor D derived from the

phase-averaged flow field.

Gravel phase properties

The Coulomb viscoplastic rheology law developed by Dom-

nik et al. (2013) includes two parameters: one material pa-

rameter that can be measured (the friction angle δ) and a nu-

merical parametermy introduced for numerical reasons to in-

fluence the smooth transition between yielded and unyielded
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Figure 3. Dependency of the kinematic gravel phase viscosity νs
(normalized by density) on the norm of the strain rate tensor ||D||
at different levels of pressure normalized by density for my = 1 s,

my = 0.2 s, and a friction angle δ = 36◦.

regions. For smaller values of my , the transition is smoother.

In the absence of shear, to achieve a viscosity representing

a Coulomb friction equal to p · sin(δ) where p is the local

pressure, my needs to be equal to 1 s. However, the develop-

ment of µs under large pressure or strong shear is the same

for both my = 1 s and my = 0.2 s. So, we choose my to be

constant and equal to 0.2 s for all simulations. However, we

mention that parts of the nearly immobile material that ex-

perience little pressure (in general, immobile material close

to the surface) show a significant reduction in viscosity when

my = 0.2 s (Fig. 3). As a consequence, my minimally affects

debris-flow release and flow at large scales, but slowly mov-

ing material with a shallow flow depth in a run-out plane may

develop front fingering (which is dependent on and sensitive

to the value of my) by allowing sudden local solidification.

For small friction angles, the modeled viscosity of the

gravel phase decreases rapidly with increasing shear. Larger

friction angles increase the viscosity and extend the pressure

dependency to larger shear rates (Fig. 4). We estimated the

friction angle δ based on the maximum angle of repose in

tilt-table tests of the gravel. In our laboratory experiments,

we determined the friction angle in a simple adaptation of

the method of Deganutti et al. (2011) by tilting a large box

with loose material until a second failure of the material body

occurred.

In analogy to the Herschel–Bulkley implementation, an

upper limit for the viscosity is implemented to maintain nu-

merical stability. Pressure-dependent viscosity in the incom-

pressible Navier–Stokes equations causes numerical instabil-

ity as soon as the eigenvalues of the symmetric part of the lo-

cal velocity gradient become larger than 1/(2(δµ/δp)). Fol-

lowing Renardy (1986), we locally limit the viscosity to keep

it below a corresponding local stability limit.

Figure 4. Dependency of the kinematic gravel phase viscosity (for

friction angle δ = 25◦ and 40◦) on the norm of the strain rate tensor

||D|| at different levels of pressure normalized by density, formy =
1 s.

3 Quality characteristics of the model

3.1 Modeled interaction between granular and fluid

constituents

As stated before, debris flows are multiphase flow processes

where solid particles and interstitial fluid and probably gas

phases interact. The model presented applies cell-averaged

values of the mixtures and does not allow for consideration of

interactions between a granular and a fluid phase. However,

a dynamic evolution of the gravel and slurry concentration is

the necessary next step. A two-way coupling to a Lagrangian

particle simulation could deliver an alternative solution.

3.2 Advantages of full-dimensional mass flow

Laboratory and field observations show that the rapid flow

regime is characterized by relatively uniform velocity pro-

files with depth, and dominant sliding at the base. By con-

trast, in the depositional regime and particularly during tran-
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sitions from rapid flow to the deposition regime, shock-

like structures form and a predominantly basal sliding flow

changes into a surface boundary layer flow, which, further

downstream, quickly slows and eventually settles. This tran-

sition has been observed in the laboratory with granular

PIV (particle image velocimetry) measurements for rapidly

moving granular material impinging on a rigid wall perpen-

dicular to the bed, leading to strong shearing through the

flow depth (Pudasaini et al., 2007). The scaling of impact

pressures on rigid obstacles with obstacle size is complex

(Bugnion et al., 2012); the spatial distribution depends on

the local flow structure (Scheidl et al., 2013) and the distri-

bution of forces over the flow depth is non-trivial and highly

dynamic (Berger et al., 2011). Thus, although the rapid

flow regime can be reasonably approximated by a depth-

integrated dynamical model, adequately simulating the de-

position regime and interactions with obstacles requires re-

solving the three-dimensional flow structure. Our attempts

to consider the three-dimensional flow structure of debris

flows were motivated by the need to predict the dynamic

loading of shallow landslide impacts to flexible protection

barriers (von Boetticher, 2013) and the corresponding re-

search in full-dimensional model development is a topic of

ongoing interest (Leonardi et al., 2016). In the model pre-

sented here, we aim to account for both the three-dimensional

flow structure and the corresponding influence of pressure.

Domnik et al. (2013) developed a two-dimensional Coulomb

viscoplastic model and applied it for inclined channel flows

of granular materials from initiation to deposition. They pro-

posed a pressure-dependent yield strength to account for the

frictional nature of granular materials. The interaction of the

flow with the solid boundary was modeled by a pressure- and

rate-dependent Coulomb viscoplastic sliding law. In regions

where depth-averaging becomes inaccurate, like in the initia-

tion and deposition regions, and particularly in interactions

with obstacles, three-dimensional models are essential be-

cause in these regions the momentum transfer must be con-

sidered in all directions. Thus, prediction of the velocity vari-

ations with depth, and the full dynamical and internal pres-

sure, can only be obtained through three-dimensional mod-

eling (Domnik et al., 2013). These dynamical quantities can

be adequately described by a Coulomb viscoplastic mate-

rial with a pressure-dependent yield stress expressed in terms

of the internal friction angle, the only material parameter in

their model. The pressure dependency introduces an addi-

tional need to account for the three-dimensional flow struc-

ture.

3.3 Effects of time step size on rheology

Brodani-Minussi and deFreitas Maciel (2012) simulated

dam-break experiments of a Herschel–Bulkley fluid using

the VoF approach, and compared the results with pub-

lished shallow-water-equation-based models. Especially for

the first instant after the material release, the application

of shallow-water equations seems to introduce errors that

are propagated throughout the process, leading to erroneous

run-out estimates. A similar problem arises when modeling

debris-flow impacts against obstacles. Simulating the impact

of material with velocity-dependent rheology that is kept

constant over the time step although it actually changes with

the changing flow leads to an accumulating over- or under-

estimation of energy dissipation. For example, if a shear-

thinning material undergoes acceleration, and thus an in-

crease in its shear rate, viscosity calculations based on its

shear rate at the beginning of each time step would overes-

timate the average viscosity (and underestimate the change

in shear rate) over the whole time step. As a consequence,

the resulting viscosity at the end of the time step would be

underestimated, which would amplify the overestimation of

viscosity in the next time step. Conversely, at an impact, the

sudden deceleration causes an underestimation of viscosity

over the time step length, leading to an overestimated veloc-

ity that again amplifies the underestimation of the viscosity

in the next time step. As a result, flow velocities change with

changing time step size. Avalanche codes such as RAMMS

(Christen et al., 2007) deal with this problem by calibrating

the model to data from previous events at the same location

and similar conditions. But changes in release volume or po-

sition can lead to different accelerations and corresponding

changes in the automatic time step control can alter the de-

velopment of rheology over time. As long as a flow stage is

reached where the flow stops accelerating, the influence on

the final front velocity should be negligible. However, debris-

flow models which do not iteratively adjust viscosity can-

not accurately simulate impacts. Here, our model constitutes

a significant improvement, since in the three-dimensional

solver we presented, the viscosity bias was reduced by im-

plementing a corrector step: taking the average between the

viscosity at the beginning of the time step and the viscosity

that corresponds to the velocity field at the end of the time

step, the time step is solved again, leading to a better calcu-

lation of the velocity. This step can be repeated, according to

user specifications, to correct the viscosity several times. Al-

though this procedure increases numerical calculation time,

it clearly reduces the time-step dependency of the simula-

tion. Some dependency on the time step is still present when

modeling the collapse of material columns, but the origin of

this problem is different because it occurs also for Newtonian

fluids.

3.4 Effect of grid resolution on rheology

Since the shear rate influences both viscosity models, vis-

cosity is sensitive to grid resolution because the shear rate is

averaged over the cell size. For flows over rough topography

this may be less critical, but for laboratory flume experiments

with thin shear bands the results may depend on grid resolu-

tion. When simulating laboratory flume experiments where

debris-flow material accelerated in a relatively narrow and
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Figure 5. Iso-view sketch of the hillslope debris-flow flume. Mate-

rial (b) is released from the reservoir at the top by the sudden verti-

cal removal of a gate (a) and flows down a steep slope (c) followed

by a gently inclined run-out plane (d).

short channel (Scheidl et al., 2013), a cell height of 1.5 mm,

which is of the order of the laboratory rheometer gap, was

still not fine enough to reach the limit of grid sensitivity. The

free model parameter τ00 influences the shear-rate-dependent

term of the viscoplastic rheology model and can be used to

adjust the simulation to the grid resolution. As long as the

gravel phase and grid resolution do not change, it should be

possible to model different water and clay contents based on

one calibration test. However, as the composition changes,

both τy and τ00 must change commensurately, since a change

in yield stress affects the shear rate. Our procedure for ad-

justing to different mixtures based on one calibrated test is to

perform one iteration step for the yield stress of the new mix-

ture. By calculating τy based on the original τ00 value from

the calibration test but with the new material composition, an

updated yield stress of the new mixture is determined. Rais-

ing or lowering τ00 by the same ratio as the change from the

original yield stress of the calibration test to the updated yield

stress generates the final τy as it is applied to the simulation

of the new mixture.

The viscosity of the granular phase is averaged over the

cell faces to avoid discontinuous viscosity jumps between

cells, which may cause instability due to the sensitivity of in-

compressible solvers to pressure-dependent viscosity. How-

ever, thin cells that allow a precise calculation of the shear

gradient lead to a preferred direction of the smoothing of the

granular phase’s viscosity which may introduce physically

unrealistic behavior. Cell length (in the flow direction), cell

width, and cell height should at least be of the same order.

Especially when front fingering is of interest, a grid resolu-

tion test should be carried out, ensuring that front instability

is not caused by a large aspect ratio of the cell dimensions.

Figure 6. Laser measurement and corresponding simulated values

of the flow head over time, 1 m downslope of the gate for hillslope

debris-flow flume experiments with water content of 28.5 %. The

laser data were box averaged over 10 ms.

4 Illustrative simulations

Because the purpose of this paper is to illustrate the solver

structure and model basis, we defer a detailed discussion of

model performance to our next paper, in which the model

is validated against laboratory tests, large-scale experiments,

and natural hillslope debris-flow events. Here, we discuss

only the efficiency of the solver itself, together with tests of

the model accuracy in a gravity-driven open channel flow.

4.1 Test case of a dam-break-released debris-flow

mixture stopping on an inclined plane

We chose an experiment from Hürlimann et al. (2015) as

an illustration of model performance in the case of a flow

stopping on an inclined plane without sidewall effects. The

debris-flow experiment was carried out by releasing 0.01 m3

of debris-flow material from a 0.4 m wide reservoir into a

4.4 m long and 2 m wide, 30◦ inclined plane followed by

a 2.5 m long, 2 m wide, and 10◦ inclined run-out section

(Fig. 5). The flume was covered by a rubber layer with

a burling consisting of flat circular discs of 4 mm diame-

ter and about 0.3 mm height every 5 mm to increase rough-

ness. The experimental sediment mixture used for model val-

idation had 28.5 % water content by weight and contained

about 1.6 % smectite, 8.8 % other clay minerals, 27.8 % silt,

47.8 % sand, and 14 % gravel. The corresponding bulk den-

sity was 1802 kgm−3. We determined the gravel friction an-

gle δ = 36◦ as the angle of repose of the gravel mixture.

To determine the angle of repose, we used a simple adap-

tation of the method of Deganutti et al. (2011), tilting a large

box with loose material until a second failure of the mate-

rial body occurred. The model parameter τ00 = 41.33 Pa was

calibrated to fit the observed run-out length. Laser-measured

flow depths were available in the center of the flume, one me-

ter downslope of the gate. Comparisons between measured
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Figure 7. Simulated deposit (view from top in a hillslope debris-

flow flume experiment) for a mixture with 28.5 % water content and

δ = 36◦. The thick solid lines indicate the experimental deposit and

vertical thin lines represent the 20 cm spacing marks in the experi-

mental slope.

and simulated flow depths at such small scales are only ap-

proximate due to the surface disturbance by coarser grains

that cause significant fluctuations in surface elevation. How-

ever, the arrival time, the maximal flow depth, and the decay

of surface elevation over time were considered to be suitable

for comparison to the model. The model performance was

evaluated by comparing the deposition patterns, travel times,

and time series of flow depths in the simulations and experi-

ments. The simulated flow depths reproduced the laser signal

with respect to both time and amplitude (Fig. 6) and the pre-

dicted run-out deposit was in almost perfect agreement with

the shape of the experimental deposit (Fig. 7). The simulation

setup of the test case is included in the Supplement.

4.2 Comparison to a drag-force-based Eulerian

multiphase model

In comparison to drag-force-based Eulerian multiphase mod-

els, the volume-of-fluid approach applied here significantly

reduces calculation time. For an estimate, we compared

our model with the OpenFOAM standard solver mul-

tiphaseEulerFoam. We selected the official tutorial case

damBreak4phaseFine but turned the water phase into mer-

cury to gain a three-phase test case, and applied the stan-

dard solver settings from the case to our model. On a Cen-

tOS 6.3 Linux machine with 31 GiB memory and 16 Intel

Xeon CPU E5-2665 @ 2.40 GHz processors, our model re-

sulted in a 5.5 times faster calculation with a comparable col-

lapse of material columns (Fig. 8). For the sake of complete-

ness, our calculation included one iterative viscosity correc-

tion step, thus the model efficiency can be estimated to be

about 10 times higher than a drag-force-based phase coupling

approach.

Figure 8. Phase positions in a dam break standard test-case simula-

tion using a drag-based three-phase multiphaseEulerFoam simula-

tion (air is transparent) as background shapes with the correspond-

ing phase positions of our model as wire frame in front (with white

mercury and black oil). The visualized time steps correspond to 0,

0.1, 0.2, 0.3, 0.4, and 0.5 s.

5 Conclusions

The new debris-flow solver has two main strengths. First, it

can model three-dimensional flows and their impact against

complexly shaped objects, representing the processes at a

high level of detail and reasonable computational costs. Sec-

ond, its design allows simulating different debris-flow mate-

rial compositions with a reduced calibration process as long

as the simulation grid does not change, because the calibra-

tion parameters τ00 and n are largely insensitive to changes in

water content, channel roughness, or release volume. Due to

the pressure- and shear-dependent rheology used here, realis-

tic deposit geometries and release dynamics can be achieved,

as presented and discussed on the basis of test cases in the

next paper. By systematically excluding unknown parameters

from the model architecture and by accounting for known

flow phenomena in a simplified way, we have developed a

debris-flow model whose parameters can be roughly esti-

mated from material composition, leaving only two calibra-

tion parameters. The concept is promising; however, impor-

tant parts of phase interactions are neglected in favor of lower

numerical costs.

6 Code availability

The source code can be downloaded from the supplemen-

tary application.zip. Please follow the instructions given in

the README.pdf file for installation.
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Appendix A

The following section describes the detailed implementation

of the PISO iteration procedure as described in Deshpande

et al. (2012). By applying the continuum surface force model

of Brackbill et al. (1992), the volume integral of Eq. (14) is

given as

∫

�i

∂ρU

∂t
dV +

∫

∂�i

(ρUU) · ndS

= −
∫

�i

∇pddV −
∫

�i

g · x∇ρdV +
∫

�i

σκ∇α1dV

+
∫

∂�i

(µ∇U) · ndS+
∫

�i

∇U · ∇µdV. (A1)

The computational domain is discretized into finite-

volume cells. Each cell is considered as the owner of exactly

one face that it shares with an adjacent neighbor cell, thus

each face has a defined owner cell. A surface normal vec-

tor Sf with magnitude equal to the surface area of the face

is defined on the face pointing outward from the owner cell

(Fig. A1). The value at face f of any variable χ calculated

in the cell centers as χP and χN (Fig. A1) can be derived by

interpolation using a mixture of central and upwind schemes:

χf = γ (χP −χN )+χN , (A2)

with a weighting factor γ that can account for the flow di-

rection based on the chosen interpolation scheme and flux

limiter. In case of a linear interpolation scheme and a flux

limiter ψ , γ can be defined as

γ = ψ
fN

d
+ (1 −ψ)

φf

|φf |
, (A3)

where d is the distance between the cell centers P and N

and fN is the distance from the face center to the cell center

N . The face flux denoted as φf serves as a switch to ac-

count for the flow direction since it turns negative when the

flow is from N to P (Berberović et al., 2009). Several lim-

iters are implemented (OpenFOAM-Foundation, 2016b); we

chose the van Leer scheme and assumed uniform grid spac-

ing to simplify the following explanations with fN/d = 0.5.

Variables that are evaluated at the cell faces are sub-

scripted by f . Due to stability problems that arise

from the pressure–velocity coupling in collocated meshes

(Ferziger and Peric, 2002), the pressure is solved for the cell

centers, whereas the velocity is interpolated to the cell faces

within the PISO loop.

With the switch function

ζ(φf )=
φf

|φf |
, (A4)

the velocity Uf at face f can be written based on Eqs. (A2)

and (A3) as

Uf =
UP

2
(1+ζ(φf )(1−ψ))+

UN

2
(1−ζ(φf )(1−ψ)), (A5)

and the corresponding face-perpendicular velocity gradient

is given by Deshpande et al. (2012) as

∇⊥
fU =

UN − UP

|d|
. (A6)

At the present time step tn, the phase-averaged density of

the next time step ρn+1 is known from solving the transport

equations. In a first approximation, the corresponding viscos-

ity field µn+1 can be derived accordingly. A simplified for-

mulation of the momentum Eq. (A1) without pressure, sur-

face tension, and gravity terms discretized for cell P could

then be formulated as

(ρn+1Ũ)− (ρnUn)

1t
|�P | +

∑

f∈∂�i
ρnf φ

n
f Ũf

=
∑

f∈∂�i
µn+1

f∇⊥
f Ũ |Sf | +∇Un · ∇µn+1|�P |. (A7)

The tilde stands for the velocity at cell P predicted in the

current iterative step, for which Eq. (A7) yields an explicit

expression. The sum over the face density fluxes on the left

hand side of Eq. (A7) are known from the mass flux φρ de-

rived from Eq. (9).

For that purpose, Eqs. (A5) and (A6) are inserted into

Eq. (A7) using the velocity of the prior iteration step, Um,

in all neighbor cells (Deshpande et al., 2012). The explicit

expression for the estimated velocity is

AP Ũ =H(Um), (A8)

and by including surface tension and gravity this leads to

Ũ =
H(Um)

AP
+
σκ∇αn+1

1

AP
−

g · x∇ρ
AP

. (A9)

The detailed composition of H(Um) and AP formulated

with respect to the splitting between neighbor and owner

cells can be found in Deshpande et al. (2012); here it is suf-

ficient to keep in mind that H(Um) contains all off-diagonal

contributions of the linear system.

The next step is to assemble the approximated face flux
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φ̃f =
(H(Um)

AP

)
f

· Sf +
( (σκ)n+1(∇⊥

f α1)
n+1

AP

)
f
|Sf |

−
( (g · x)n+1(∇⊥

f ρ)
n+1

AP

)
f
|Sf |, (A10)

where the subscript f indicates that the variable values at the

faces are used. The final flux is found by adding the pressure

contribution

φm+1
f = φ̃f −

(∇⊥
fp

m+1
d

AP

)
f
|Sf |. (A11)

The sum of the flux over the cell faces needs to be zero

due to mass conservation for the incompressible flow

∑

f∈∂�i
φm+1

f = 0. (A12)

Thus, the pressure is defined by the linear equation system

for the updated pressure pd
m+1

∑

f∈∂�i

(∇⊥
fp

m+1
d

AP

)
f
|Sf | =

∑

f∈∂�i
φ̃f , (A13)

and can be solved with the preconditioned conjugate gra-

dient (PCG) algorithm, to mention one of several options

implemented in OpenFOAM. With the updated pressure

pd
m+1, the face fluxes φm+1

f are derived from Eq. (A11)

and the updated velocity field Um+1 is obtained from the ex-

plicit velocity correction

Um+1 = Ũ +
( 1

AP

)( ∑

f∈∂�i

(Sf ⊗ Sf )

|Sf |

)−1

·
( ∑

f∈∂�i

(
φm+1

f − Ũf · Sf
( 1
AP
)f

)
Sf

|Sf |

)
(A14)

which is the end of the PISO loop. After updating the index

m to m+ 1, the iteration restarts by recalculating H with the

updated velocity from Eq. (A8), repeating the loop until a

divergence-free velocity field is found.

Figure A1. Sketch of two adjacent cells P and N and the shared

face f owned by cell P . Sf is the face surface normal vector while

d denotes the distance vector from cell center P to cell center N .
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The Supplement related to this article is available online

at doi:10.5194/gmd-9-2909-2016-supplement.
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