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Abstract

This paper shows (i) how entry and exit of �rms in a competitive industry

a�ect the valuation of securities and optimal capital structure, and (ii) how,

given a trade-o� between the tax advantages and agency costs, a �rm will op-

timally adjust its leverage level after it is set up. We derive simple pricing

expressions for corporate debt in which the price elasticity of demand for in-

dustry output plays a crucial role. When a �rm optimally adjusts its leverage

over time, we show that total �rm value comprises the value of discounted cash-

ows assuming �xed capital structure plus a continuum of options for marginal

increases in debt.
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Valuation theory in �nancial economics is generally concerned with obtaining re-

strictions on the joint distribution of asset returns from assumptions on payo�s or

preferences. Few attempts have been made to link the pricing of securities to char-

acteristics of the factor and product markets in which �rms operate. Making such a

link is di�cult because it requires explicit modelling of a full industry equilibrium.

The impact of debt in industry equilibrium with imperfectly competitive �rms

has been investigated in a series of papers by Brander and Lewis (1986,1988) and

Maksimovic (1988,1990). These papers focus primarily on the way in which debt

�nancing may enable �rms to commit to particular ex post behavior in imperfectly

competitive markets. Maksimovic and Zechner (1991) also study debt and industry

equilibrium but are mainly concerned with agency costs. With the exception of

Maksimovic (1988), all these models are static and it is not obvious how they could

be employed for pricing.

In this paper, we study the interaction between bond pricing, industry equilibrium

and optimal capital structure. In particular, we derive explicit solutions for the value

of corporate bonds that depend in a simple, transparent manner on the elasticity

of demand for total industry output. We also show how �rms will optimally adjust

their leverage levels, both when they are set up and subsequently. In the process, we

obtain a dynamic theory of optimal leverage.

Valuing debt without allowing for dynamic adjustments in leverage appears quite

restrictive. In the absence of leverage adjustment costs and restrictive covenants

on existing debt, �rms may wish to adjust their debt levels on a continuous basis.

Brennan and Schwartz (1984) model such behavior. Fischer, Heinkel and Zechner

(1989a,1989b) analyze optimal periodic adjustments of leverage when recapitalization

costs are proportional to bonds issued. As the work of Kane, Marcus and MacDonald

(1984,1985) shows, the residual value of the �rm in the event of bankruptcy or when

debt falls due depends on the ability of the �rm's owners to adjust the level of leverage

at that point.

Our treatment of releverage behavior resembles that of Fischer, Heinkel and Zech-
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ner in that we examine optimal changes in leverage in the presence of adjustment

costs. However, the cost stucture we assume is quite di�erent from theirs since we

suppose that hold-out problems or possibly legal restrictions make it prohibitively

expensive to reduce leverage, but that increases in debt are costless. Roe (1987)

documents how hard it is to renegotiate public bond issues in the US outside formal

bankruptcy proceedings.1

The approach we take in this paper builds on recent work by Leahy (1993). Leahy

shows how Dixit's (1989) continuous time real investment model may be extended to

study a competitive industry equilibrium with entry and exit by �rms triggered by

output price movements. Leahy's model, like that of Dixit, assumes pure equity �-

nancing of the �rm. For industries in which expenditure on �xed capital is important,

this assumption seems unattractive. Di�erences between corporate and personal tax

rates together with bankruptcy costs will in principle make �nancial structure matter

for �rm valuation.

Section 1 of the paper sets out a simple model of a single �rm which �nances an

irreversible investment with a mixture of debt and equity. We demonstrate in this

context the solution methods that will be employed throughout the paper and derive

some preliminary results on optimal capital structure, agency costs and incentives to

adjust leverage levels.2

Section 2 of the paper incorporates our model of a single �rm in an industry

equilibrium. We show that free entry and exit impose reecting barriers on the price

of the industry's output, a�ecting the valuation of corporate debt and equity and the

optimal capital structure decision.

Our pricing expressions for corporate debt have the interesting feature that, when

equity-holders are cash-constrained, the bonds become riskless as the elasticity of

output demand approaches zero. The reason is that, for low price elasticities, very

few �rms have to leave the industry in order to prevent the output price dropping

below the exit trigger level, pb. Hence, for a given �rm, bankruptcy is a low probability

event and the bonds resemble the safe asset.
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When equity-holders are not cash-constrained and debt is risky, individual �rms

entering the industry have an incentive to `under-cut' other �rms by adopting marginally

lower leverage. In equilibrium, this incentive forces down the level of borrowing until

all debt is fully collateralized, i.e., at closure equal in value to the residual value of

�rms' assets.

Section 3 relaxes the assumption that the leverage level is �xed after the �rm is

set up. We characterize a �rm's optimal dynamic releverage policy, assuming that

increasing leverage is costless but that unlevering can only be accomplished through

liquidation. We justify the latter assumption by supposing that free-rider behavior

by individual bond-holders prevents any capital restructuring agreement that involves

reductions in leverage.

We show that the value of the �rm, in these circumstances, equals that of its

discounted cash ows assuming a �xed capital structure plus the value of a continuum

of options to increase leverage. These options are exercised successively as the output

price hits new peaks.

1 A SIMPLE BENCHMARK MODEL

1.1 Basic Assumptions

We begin by describing a simple model that demonstrates our solution techniques

and establishes a benchmark. This model will abstract from industry equilibrium

e�ects in that �rm bankruptcies will not a�ect the basic state variable, the price of

the �rm's output.

Suppose that a �rm may issue debt or equity to �nance the purchase of capital

costing K. We shall initially assume that no adjustment in the level of leverage is

possible after the �rm is set up. At the end of this section, and then at more length

in later sections we shall return to this point.
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The �rm's technology is such that output is unity per period of time and it faces

a ow of costs, w, (assumed to be constant through time) as long as production

continues. If pt is the price of the �rm's output, net earnings equal:

(1� �)(pt � w) ; (1)

where � is the corporate income tax rate. Implicitly, we assume here that the �rm's

dividend policy is �xed. One should regard our analysis below of optimal investment

and bankruptcy decisions as conditional on this. Also, suppose that pt is a geometric

Brownian motion:

dpt = pt�dt + pt�dBt ; (2)

for constants � and � and a standard Brownian motion Bt.

If the output price falls far enough, earnings will eventually turn negative, obliging

equity-holders to cover operating losses through capital injections.3Bankruptcy will

be triggered by the equity-holders' decision to cease injecting funds.4

A crucial question for valuing debt is then: what is the residual value of the �rm

after bankruptcy? To emphasize the wide applicability of our results, we develop our

models with a general residual value function, X(p). The only restriction we place

on the function X(p) is that it be non-decreasing in its argument.

Assumption 1 The residual value of the �rm after bankruptcy is a function X(pt)

of the output price where X 0(p) � 0 for all p � 0.

Our approach is su�ciently general to encompass various assumptions made in

past studies. For example, classic studies of debt valuation such as Merton (1974) and

Black and Cox (1976) have supposed that after bankruptcy, bond-holders receive the

value of the �rm's assets which are assumed to follow a simple geometric Brownian

motion. On the other hand, Mello and Parsons (1992) assume that when bankruptcy

occurs, bond-holders receive the pure equity value of the �rm, i.e. a basic asset value

following a geometric Brownian motion as in Merton (1974) plus the option value

associated with liquidation possibilities.5
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In fact, neither the Merton-Black-Cox nor the Mello-Parsons approach is ideal.

Bond-holders taking control after bankruptcy may relever a �rm in a variety of ways.

The options associated with releverage possibilities are likely to form an important

part of the �rm's value and hence a�ect the premia on corporate debt well before

bankruptcy occurs. Our approach is su�ciently general to allow for such options.

As well as specifying the residual value function, X(pt), to price debt in indus-

try equilibrium, one needs to make assumptions about what bankruptcy implies for

the output level of the �rm. Speci�cally, if a �rm ceases to produce when it goes

bankrupt, this may a�ect industry output and feed back into the pro�tability of

other corporations.

The models we develop below will vary according to whether industry output falls

when �rms go bankrupt. In the benchmark model of this section, industry output is

assumed not to fall and hence the price process, pt, can be treated as fully exogenous.

Finally, note that we do not allow the equity-holders in our model to suspend

production temporarily. Such `moth-balling' of productive activities and the real

option values that it can induce have been studied by Brennan and Schwartz (1984)

and Mello and Parsons (1992).

1.2 Debt and Equity Valuation

Let us suppose that the �rm is �nanced with equity and in�nite maturity debt, paying

a �xed coupon, b. If agents are risk neutral,6and r is the constant risk-free interest

rate,7the �rm's total equity and debt values, Vt and Lt must satisfy:

rVt = (1� �)(pt � w � b) +
d

d�
EtVt+�

�����
�=0

; (3)

rLt = b +
d

d�
EtLt+�

�����
�=0

; (4)

where b is the ow of coupon payments on the �rm's debt. In words, the expected

return from investing amounts Vt or Lt in the safe asset must equal the expected
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return from investing in the �rm's equity or debt. For simplicity, we assume that, at

a personal level, all income is taxed at the same rate and, hence, personal tax rates

drop out of the above equilibrium conditions. Note that we also assume in the above

equations that interest payments are tax deductible. This assumption introduces a

tax advantage to leverage.

If Vt and Lt are twice-continuously di�erentiable functions of the state variable,

pt, we may apply Ito's lemma to obtain:

rV (pt) = (1� �)(pt � w � b) + V 0(pt)pt� + V 00(pt)p
2
t

�2

2
; (5)

rL(pt) = b + L0(pt)pt� + L00(pt)p
2
t

�2

2
: (6)

The appropriate boundary conditions are as follows. If the �rm is closed at some

price pb, then, in the absence of arbitrage, V (pb) = 0 and L(pb) = X(pb). As pt !1,

the possibility of closure plays a smaller and smaller role in valuation, so V and L

must approach the unlimited liability values of the income streams, i.e.,

lim
p!1

V (p) = Et

�Z 1

t
exp[�r(s� t)](1� �)(ps � w � b)ds

�
; (7)

lim
p!1

L(p) = Et

�Z 1

t
exp[�r(s� t)]b ds

�
: (8)

The right hand side terms may readily be calculated as: limp!1 V (p) = (1��)(pt=(r�

�)� (w + b)=r) and limp!1 L(p) = b=r.

Finally, since equity-holders may always cover operating losses by injecting capi-

tal,8the closure price, pb, is e�ectively their choice. Hence, pb will be determined so

as to maximize the value of equity-holders' claims, V (pt). As Dixit (1992a) and Du-

mas (1992) show, the relevant condition determining pb is a smooth-pasting equation

for total equity at the trigger price, i.e., V 0(pb) = 0.9Applying the above boundary

conditions and supposing that V (pt) and L(pt) satisfy equations (5) and (6), one may

obtain explicit solutions for equity and bond values.

Proposition 1 Let the �rm's output price be exogenously given and equal to the

process given in equation (2). If the ow of coupon payments is �xed at b and debt is
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risky in that the residual �rm value at closure is less than the face value of the debt,

the value of the �rm's equity and bonds, Lt and Vt satisfy:

V (pt) = (1� �)

"
pt

r � �
�

w + b

r

#
� (1� �)

"
pb

r � �
�

w + b

r

#  
pt
pb

!�1

; (9)

L(pt) =
b

r
+

 
X(pb) �

b

r

!  
pt
pb

!�1

; (10)

where �1 is the negative root of the quadratic equation: �(�� 1)�2=2 + �� = r, and

where the close-down price, pb, equals

pb = �
�1

1� �1

r � �

r
(w + b) : (11)

The proofs of this and subsequent propositions are sketched in the Appendix.10

Figure 1 depicts the solution given in Proposition 1 for the simple case in which

X(p) = 0 for all p. Note that the equity and bond values approach the unlimited

liability values as p!1, that V (p) smooth-pastes at pb and that L(p) hits X(p) (in

this case the horizontal axis) obliquely.

1.3 Optimal Leverage

How then is the level of leverage determined? First, suppose that equity-holders have

access to unlimited external resources, for example because outside equity is available

in any quantity. In this case, leverage will be set to maximise the unconstrained ex

ante value of the �rm. LetW (pt; b) denote the total value of the �rm for some leverage

level, b. Then:

W (pt; b) =

(
(1� �)

"
pt

r � �
�

w

r

#
+
b�

r

)
+

"
X(pb)�

(
(1� �)

"
pb

r � �
�

w

r

#
+
b�

r

)# 
pt
pb

!�1

:

(12)

Suppose that the �rm is set up when the output price is at some initial level, pi. The

capital structure will then be chosen so as to maximize W (pi; b). In particular, the

optimal b will be the root of the �rst order condition @W (pi; b
�)=@b = 0.
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Proposition 2 Suppose that equity-holders have access to unlimited external resources.

Let the �rm's output price be exogenously given and equal to the process given in equa-

tion (2). If the ow of coupon payments is �xed at b and debt is risky in that the

face value of debt exceeds the residual assets available at closure, the optimal capital

structure conditional on some initial price, pi, is the root of the equation:

�

r

0
@1�

 
pi
pb

!�1
1
A = �

�1
w + b

b

r

 
pi
pb

!�1

+
1

w + b
[X 0(pb)pb � �1X(pb)] ; (13)

where pb is de�ned as in Proposition 1. When X(p) = 0 for all p, one may show that

(13) has a unique solution and that this is an optimum.

The optimal degree of leverage indicated by equation (13) sets the probability-weighted

marginal tax bene�t, (1�(pt=pb)
�1)�=r, equal to the net discounted marginal bankruptcy

cost stemming from an ine�cient choice of closure point by equity-holders who select

pb to maximize V (pt) rather than W (pt). Of the two terms on the right hand side

of equation (13), the �rst measures the e�ect of additional leverage in accelerating

bankruptcy and hence the loss of the tax shield. The second reects the fact that as

debt increases, equity-holders may precipitate bankruptcy and hence switch to the

residual value function, X(pt), at an ine�cient time.

Figure 2 illustrates the optimal capital structure decision. In the top panel, Wb �

@W (pi; b)=@b is drawn as an increasing function of pi for two di�erent coupon ows,

bL and bH . The points at which the schedules cross the horizontal give the the

prices, pLi and pHi , for which such leverage would be optimal, while their intersections

with the BB schedule indicate the prices at which these levels of debt would trigger

bankruptcy.11The lower panel of Figure 2 shows how optimal leverage increases with

the entry price. Later in the paper where we allow for increases in leverage, we �nd

that the option of waiting shifts the LL schedule to the right.

How is the leverage decision a�ected if the total amount of equity capital is con-

strained? Several recent papers have studied capital structure under this assumption

(see, for example, Aghion and Bolton (1992), Hart and Moore (1994) and Anderson

and Sundaresan (1996)). Such situations can arise if �rm pro�ts are unveri�able by
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holders of external equity. Equity claims then can only be held by �rm insiders who

combine ownership with control of the �rm's operations. Within our framework, one

may suppose that equity-holders have a maximum sum J to invest in the �rm and

that L(pi; b
�)+ J < K where K is the initial capital cost of establishing the �rm and

b� is the level of leverage that maximises ex ante �rm value. If there exists a ~b such

that L(pi;~b) + J � K, then the �rm will be set up but with a sub-optimally high

level of debt. In particular, b will be the root of L(pi;~b) + J = K.

1.4 Agency Costs

Note that the closure price which maximizes the ex ante value of the �rm, call it pb

is not equal to the liquidation price chosen by equity-holders, pb. This leads to an

agency cost. If equity-holders could commit before the �rm is set up to close the �rm

at pb, the ex ante value of the �rm would be higher. The debt remains fairly priced

since bond-holders correctly anticipate that equity-holders will close the �rm at pb,

but this outcome is still ine�cient. The agency cost, which resembles the agency

costs investigated by, for example, Myers (1977), may be calculated as follows.

Proposition 3 Let the �rm's output price be exogenously given and equal to the

process given in equation (2). If the ow of coupon payments is �xed at b and debt is

risky in that the face value exceeds the residual assets available at closure, the agency

cost equals:

W (pi; b) � W (pi; b) ; (14)

where W is the same as in equation (12) except that pb is replaced by pb where:

pb =
��1
1� �1

r � �

r

(
w �

�b

1� �
�

r

1� �

1

�1
(�1X(pb)� pbX

0(pb))

)
: (15)

Since X 0(p) is non-negative, by assumption, for all p > 0, it follows that pb � pb.

The last sentence of the Proposition highlights the fact that the closure price that

maximizes �rm value, pb, is lower than that which would be chosen by equity-holders
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maximizing their own equity value, pb. The reasons are equity-holders ignore (i)

the tax shield that may be lost when the �rm closes, and (ii) do not internalize the

residual value of the �rm in their choice of closure time.

1.5 Incentives to Adjust Leverage

The last point we wish to make in this preliminary section relates to incentives for

adjustments in capital structure after the �rm is set up. Below we shall develop a

dynamic theory of capital structure but, for the moment, we assume that the leverage

level is �xed by the initial agreement between equity-holders and bond-holders. The

following proposition shows the degree to which this assumption is restrictive.

Proposition 4 In the model of this section, excluding side payments, equity-holders

will never wish to buy back marginal amounts of the �rm's debt. Equally, in the

absence of side payments, if X(pb) and X 0(pb) are small, bond-holders will never

prefer that the �rm issue more debt of the same seniority.12

Equity-holders' reluctance to unlever at the margin reects the fact that reducing

leverage cuts the option value associated with limited liability implicit in the value

of equity. If equity-holders could agree on side-payments from the bond-holders who

remain after the debt buy-back (the latter bene�t because the �rm moves further from

the liquidation point and so might be willing to pay), they might wish to purchase

marginal amounts of debt. Otherwise, only discrete reductions in leverage could be

in the interests of equity-holders.

However, if some debt-holders try to free ride, demanding special treatment in the

buy-back, the e�ect may be to make even discrete reductions in leverage too expensive

as far as equity-holders are concerned. The standard solution to this problem is a

take-it-or-leave-it o�er conditional on everyone accepting. Such a strategy is not

really implementable in practice since debt is often dispersed among many creditors

and take-it-or-leave-it o�ers are not credible. This provides a justi�cation for the
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assumption made here that �rms cannot unlever.

The second part of Proposition 4 states that, so long as the residual post-bankruptcy

value of the �rm is small and insensitive to the output price, pt, bond-holders will

tend to resist increases in leverage. Although bond covenants do commonly limit

�rms' ability to increase borrowing, we regard the assumption made in this section

and the next that �rms cannot raise their leverage as simply a benchmark case. The

assumption is open to criticism as precluding leverage adjustments may seriously im-

pair the ex ante value of the �rm by impeding optimal exploitation of tax advantages

after the �rm is set up. In Section 3, we show how this assumption may be relaxed

by developing a theory of optimal dynamic releverage.

The above model has provided a benchmark case. We now wish to show how one

can (i) endogenize the output price by embedding the above model in an industry

equilibrium, and (ii) incorporate optimal dynamic adjustments in leverage.

2 INDUSTRY EQUILIBRIUM

2.1 The Output Price in Industry Equilibrium

Consider an industry with a large number of identical �rms all possessing the technol-

ogy and cost structure described in the last section. Again, we limit attention to the

case in which, once the �rm is set up, changes in the level of leverage are impossible.

First, let us examine the equilibrium that arises if equity-holders are cash-constrained

as described in 1.3. In Section 2.4 below, we discuss how the industry equilibrium

changes when this assumption is altered to permit equity-holders an unconstrained

choice of capital structure.

Assume that the inverse demand function for industry output is:

pt = xt D(qt) ; (16)
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where qt is the number of �rms active at time t, which will turn out to be endogenous

variable in this model. (For simplicity, we take qt to be a stochastic process with

continous rather than integer support.) Since each �rm produces a unit of output, qt

is also the total output of the industry. Assume for simplicity that the good is not

storable so that industry output equals supply. Suppose that D(:) is a continuously

di�erentiable, monotonically declining function and xt is an exogenous stochastic

process reecting taste shocks. Speci�cally, we assume that xt is a geometric Brownian

motion with constant parameters, � and �. Application of Ito's lemma and the

assumption (to be justi�ed below) that qt is a �nite variation process yields:

dpt = ptD
0(qt)=D(qt)dqt + �ptdt+ �ptdBt ; (17)

where Bt is a standard Brownian motion. We suppose that there is an in�nite pool

of potential �rms and that, apart from a lump sum cost of entry, they may enter

the industry costlessly. Output increases if prices rise to such a point that it is

pro�table for some of these �rms to enter. Since all �rms are identical and entry is

free apart from �xed capital costs, the price process can never pass the level at which

entry is pro�table for an individual �rm. Hence, the term, ptD
0(qt)=D(qt) acts like

a \stochastic regulator", keeping pt below the entry price, pe. A similar argument

applies for the price pb at which �rms wish to leave the industry. Thus, the price

process may be thought of as a doubly reected geometric Brownian motion with

barriers, pb and pe, i.e.,

dpt = �ptdt+ �ptdBt + dM b
t + dM e

t ; (18)

where M b
t and M e

t are monotonically increasing and decreasing stochastic regulator

processes. Formally, M b
t and M e

t may be written as:

M e
t = sup

0���t

[minfpe � (p� � pb)�M b
t ; 0g] ; (19)

M b
t = sup

0���t

[minfp� � pb �M e
t ; 0g] : (20)

(See Harrison (1985), page 22.) Vt and Lt continue to satisfy the di�erential equations

(5) and (6) but the relevant boundary conditions are now somewhat di�erent.
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2.2 Industry Equilibrium Boundary Conditions

First, consider the value of equity. To rule out arbitrage, it must be the case, as before,

that V (pb) = 0. Instead of the asymptotic condition on V for high prices, however,

the second boundary condition for V is now V 0(pe) = 0. To understand this condition,

note that as pt hits pe, the behavior of the process changes, with upward movements

in the in�nite variation term, pt�dBt being cancelled by o�setting movements in the

stochastic regulator. The solution can satisfy the equilibrium condition (3) both at

pe and at points close to pe only if the in�nite variation part of the equity value,

V 0(pt)�ptdBt vanishes, i.e., if V
0(pe) = 0.

Turning now to the bond value, Lt, at pe we again have a reecting barrier con-

dition, in this case L0(pe) = 0. At the lower price barrier, pb, however, the condition

is much less standard. We shall suppose that when pt hits pb, each �rm has an equal

chance of leaving the industry. (Other assumptions are possible and we comment fur-

ther below.) Now, for each �rm, when pt hits pb, the probability of liquidation equals

the proportion of �rms that exit, dqt=qt. The expected capital loss to bond-holders

due to liquidation is, therefore, L(pb)dqt=qt. Balancing this must be some probability

of capital gains in bond values in the event that the output price rises.

To express this balancing of expected gains and losses more formally, recall that

pt = xtD(qt) and that when regulation occurs, pt is �xed. Hence, we can write output

quantity changes in the neighborhood of pb in terms of changes in the pb stochastic

regulator as follows:

dM b
t =

ptD
0(qt)

D(qt)
dqt : (21)

The marginal cost of applying the pb stochastic regulator (because of expected capital

losses) may, therefore, be written as:

�
dqt
qt

(Lt �Xt) = �
D(qt)

D0(qt)qt

(Lt �Xt)

pt
dM b

t : (22)

But, Harrison (1985) shows (see his Corollary 4, page 83) that the appropriate bound-

ary condition in such models sets the costs of regulation equal to the �rst derivative
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of the relevant discounted integral (in our case, Lt), i.e.,

L0(pb) = �
D(qt)

D0(qt)qt

(L(pb)�X(pb))

pb
: (23)

This condition is in itself quite interesting. D(qt)=jD
0(qt)qtj is the price elasticity of

demand for the industry's output. If we take D(qt) to be isoelastic, then we have,

L0(pb)pb
L(pb)�X(pb)

=

�����@q(pb)@p

pb
qt

����� = � ; (24)

for some constant, �. In the remainder of the paper, we shall suppose that D(q) is

isoelastic.

Figure 3, which is drawn for the special case in which X(p) = 0 for all p, illustrates

what is going on. By appropriate choice of units, bond value, L, and aggregate

demand, q, are shown as (locally-linearized) functions of price intersecting at C where

prices equal pb. For a given �rm, the expected capital loss due to liquidation if the

forcing process, xt, falls by �x equals �2 � L(pb)CD=CE. On the other hand, if xt

rises by �x, bond-holders gain �1. Our elasticity condition is equivalent to �1 = �2,

ensuring that the expected capital gains and losses cancel.

Finally, we require two conditions to determine the trigger prices, pb and pe.

pb is chosen by equity-holders who, at that price, are indi�erent between leaving

the industry or staying in production. The relevant condition is then V 0(pb) = 0.

The upper trigger price is given by our assumption of free entry and consists of

V (pe) + L(pe) = K, where K is the cost of setting up the �rm.

2.3 Valuing Debt and Equity

The following values of debt and equity may then be obtained:

Proposition 5 In industry equilibrium when the ow of coupon payments is �xed at

b, the values of bonds and equity are given by:

V (pt) = (1� �)

�
pt

r � �
�

w + b

r

�
� (1� �)

�
pb

r � �
�

w + b

r

�
1

"
�2

�
pt

pb

��1

� �1

�
pe

pb

��1
�
pt

pe

��2
#

;
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�(1� �)
pe

r � �
1

"�
pt

pe

��2

�

�
pb

pe

��2
�
pt

pb

��1
#

; (25)

L(pt) =
b

r
+

�
X(pb)�

b

r

�
� 2

"
�2

�
pt

pb

��1

� �1

�
pe

pb

��1
�
pt

pe

��2
#

; (26)

where 1 and 2 equal:

1 = (�2 � �1(pe=pb)
�1��2)�1 ; (27)

2 = (�2(� � �1)� �1(� � �2)(pe=pb)
�1��2)�1 : (28)

pe and pb are the roots to the free entry condition, V (pe)+L(pe) = K, and the equity-

holders' optimality condition for the timing of bankruptcy, V 0(pb) = 0. �1 and �2 are

the negative and positive roots respectively of the quadratic equation: �(�� 1)�2=2 +

�� = r. � is the constant price elasticity of demand for industry output.

Proposition 5 derives equity and debt values for a given coupon ow b. If equity-

holders are cash-constrained, having a maximum of J available to invest, then b will

be determined by the equation L(pe; b) = K � J .

We portray the equilibrium industry dynamics in Figure 4. At the entry price,

pe, the combined value of bonds and equity, W (pe), equals the capital cost, K. At

the lower trigger point pb, equity value is zero and optimality requires that V 0(pb) =

0. Again, we assume for simplicity that X(p) = 0 for all p, so that the boundary

condition for bonds is L0(pb)pb=L(pb) = �. This is equivalent to the tangency shown

between the W function and the ray starting at pb � �=pb, since at the bankruptcy

price, pb, V = V 0 = 0,

L0(pb)pb
L(pb)

=
W 0(pb)pb
W (pb)

=
W (pb)

a

pb
W (pb)

= � : (29)

In the lower panel of Figure 4, we illustrate the equilibrium that prevails when the

elasticity of demand is low, speci�cally when � � 1. Ceteris paribus, a low elasticity

means that only a few �rms need to close to regulate the output price at pb, i.e.,

individual �rms face a small chance of bankruptcy. For this reason, bond values,

represented by the distance W � V in the �gure, do not decrease greatly even when

prices approach the bankruptcy trigger.
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How do the trigger prices compare with those of an unlevered �rm? The latter are

shown as the prices at points C and E in the lower panel where the schedule U gives

the value of a pure equity �rm. Evidently, leverage has narrowed the distance between

the trigger points. The tax deductibility of interest payments encourages entry at a

lower price, while the impact of coupon payments on equity-holders' income ow

induces a higher price trigger for exit.

Above, we supposed that, when pt hits pb, each �rm has an equal chance of being

liquidated. Other approaches to \ordering" liquidation across �rms are possible, e.g.

some deterministic ordering of �rms based on di�erences in their wage costs. This

would a�ect both bond and equity claims which would both become functions of the

number of �rms left in the industry, qt, as well as of the output price, pt.

It should be stressed that our assumption of an isoelastic industry demand func-

tion is crucial in allowing us to obtain simple closed form results. Any other speci-

�cation would mean that the boundary condition to the bond prices would depend

on qt. The solutions would then be functions of two state variables (pt and qt) rather

than one (pt). Of course, numerical solutions would still be available in the two state

variable case.

Finally, note that M b
t and M e

t , as monotonically increasing and decreasing pro-

cesses respectively, must be of �nite variation. Equation (21) and a similar equation

linking output quantity changes and M e
t at the upper barrier, pe, imply that qt must

also be of �nite variation, as claimed prior to equation (17).

2.4 Equilibrium Without Cash Constraints

How is equilibrium a�ected if equity-holders are not cash-constrained and hence can

freely choose the capital structure at entry? The crucial point to note is that in the

equilibrium described in Proposition 5, when pt hits the closure trigger, pb, debt value

(and hence total �rm value) of any �rm that closes experiences a negative jump.
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Suppose that all �rms adopt a particular coupon ow, b. A �rm which at entry

adopts a marginally lower level of coupon payments enjoys the same tax advantages

of leverage but avoids future negative jumps. The reason is that exit by other �rms

ensures that the output price never falls to a level at which the equity-holders of the

low-leverage �rm are unwilling to cover operating losses.

Thus, so long as bond values jump at closure, a marginal reduction in leverage

(below the level adopted by other �rms) discretely increases �rm value at entry by

eliminating the possibility of bankruptcy. Firms will therefore `under-cut' each other

at entry, adopting lower and lower levels of leverage. The incentive to undercut

disappears only when bond values are continuous at closure. In this case, the �rms

are in a Nash equilibrium, choosing their level of leverage at entry in a way that is

optimal given the behaviour of other �rms.

Continuity of bond values at pb implies the condition : L(pb) = X(pb). Since

most �rms do not close at pb, in the absence of arbitrage possibilities, it must also be

true that L0(pb) = 0. Together with the entry condition, L0(pe) = 0, these equations

uniquely determine the debt value and the parameter b. The equity value and the

entry and closure prices are determined by the conditions: V 0(pe) = V (pb) = V 0(pb) =

0 and V (pe) + L(pe) = K.

Solving for debt and equity values subject to these boundary conditions, we obtain

the following proposition.

Proposition 6 When equity-holders are not cash constrained and can therefore select

b freely at entry, the value of debt is b=r while total equity value equals that given in

Proposition 5. The closure price pb satis�es the equation X(pb) = b=r.

This is a strong result. Competitive pressure induces equity-holders entering the

industry to reduce leverage until the point at which the face value of the debt, b=r,

equals the residual value of the �rm's assets available to bond-holders at closure,

X(pb). In the special case illustrated in Figure 4 in which the residual value, X(p),

is zero for all p > 0, in the Nash equilibrium, leverage is zero.
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3 OPTIMAL DYNAMIC RELEVERAGE

3.1 Basic Assumptions

In this section, we reimpose the assumption made in Sections 1 and 2 that the output

price is exogenous and behaves as in equation (2). On the other hand, we relax the

assumption made up to this point, that the �rm's leverage level is �xed up until

the moment of bankruptcy. In so doing, we shall derive a dynamic theory of capital

structure. As mentioned in the Introduction, our approach to releverage resembles

that of Fischer, Heinkel and Zechner (1989a,1989b) in that we will derive optimal

leverage adjustment policies subject to ajustment costs. Our results di�er from theirs

because the form of the costs we assume is di�erent.

Consider again the single �rm model of Section 1. The following assumptions will

combine to yield reasonably tractable pricing expressions.

Assumption 2 Feasible changes in leverage occur so as to maximize the total value

of the �rm's securities, W (p) � V (p) + L(p).

Assumption 2 states that any leverage changes that are possible (and some may

be ruled out by stake-holders' ex post conicts of interest and restrictions on side-

payments) should be carried out so as to maximize the total value of the �rm. This

is a natural assumption to make since the policy of maximizing W is obviously ex

ante e�cient and will be followed if it can be enforced ex post.

Assumption 3 Firms can increase but not reduce their level of leverage.

Recall that in Proposition 4 we showed that, in the absense of side-payments,

marginal decreases in debt will be opposed by equity-holders while debt-holders will

resist increases in debt of similar maturity if X(pb) and X
0(pb) are su�ciently small.

One may think of Assumption 3 as partially relaxing the hypothesis of Proposition 4
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by allowing side-payments from equity- to debt-holders but not in the other direction.

In these circumstances, if both groups can veto changes in the �rm's capital structure,

the �rm will be able to raise but not lower its leverage level.

If debt-holders are assumed to be relatively small and widely-dispersed, whereas

equity-holders are represented in negotiations by a single, uni�ed management, then

it is quite plausible that side-payments from equity- to debt-holders are possible but

not vice versa. In e�ect, hold-out problems by small debt-holders preclude equity-

holders being compensated for changes in capital structure that would maximize �rm

value.

The last assumption we require concerns the allocation of the bene�ts of releverage

between the two di�erent investor groups. A priori reasoning provides little guidance

here and we shall simply adopt the reasonable assumption that:

Assumption 4 Equity-holders receive a fraction, �, of the bene�ts of leverage changes,

where � 2 [0; 1]

Finally, note that there is no contradiction between our assumption that feasible

changes are carried out so as to maximize �rm value whereas liquidation decisions are

made in an ine�cient way by equity-holders maximizing the ex post value of their

claims. Liquidation involves equity-holders invoking limited liability and washing

their hands of the �rm at a higher trigger level than that which maximizes total

�rm value. As with leverage reductions, the problem could be mitigated if debt-

holders might be persuaded to make ex post concessions such as side-payments to

equity-holders. Supposing that hold-out problems by debt-holders preclude this is

consistent with our assumptions above.

3.2 Pricing The Firm with Leverage Adjustments

Let us see how the above assumptions combine to yield pricing expressions. For

some coupon ow level, b, one may think of the total value of the �rm as comprising
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the discounted cash-ow with the current level of leverage (i.e., W (pt; b) as de�ned

in equations (11) and (12)) plus a continuum of options to raise the leverage level

by incremental amounts as prices increase. The reason these options will only be

exercised gradually as the output price rises is that if the price subsequently falls, the

higher the leverage, the greater the agency costs due to an inappropriately chosen

close-down price, pb.

Let ~W (pt; b) be the total value of the �rm including the option value associated

with releverage possibilities, and let H(pt; b) � ~W (pt; b) �W (pt; b). If H(pt; b) is a

su�ciently smooth function of b, one will always be able to write it as an integral:

H(pt; b) =
R1
b G(pt; �)d� for some function G(:; :). This is a useful trick as one

may then interpret G(pt; b) as the value, at pt, of an option to increase the leverage

parameter, b, incrementally, i.e., from b to b + db.

Assumption 4 implies that the �rm is closed down when prices fall to pb = pb(b)

where V 0(pb) + �@H(pb; b)=@p = 0. Raising b allows the �rm to reap greater tax

savings but at the cost of a less e�cient closure decision in the event that prices

decline. Since, by assumption, b cannot decline, it will only change when pt exceeds

its past peak, i.e. when

pt = p̂t � sup
0���t

fp�g : (30)

The main result of this section may be stated as:

Proposition 7 Under Assumptions 1 to 4, the total value of the �rm, ~W (pt; b(p̂t)),

is:

~W (pt; ; b(p̂t)) = W (pt; b(p̂)) +
Z 1

b(p̂t)
G(pt; �)d� ; (31)

where p̂t � sup0���tfp�g. Here, G(pt; b) represents the value of an option to increase

leverage incrementally, when the current level of coupon payments is b. G(pt; b) is

given by:

G(pt; b) = 3

2
4 pt

px(b)

!�2

�

 
pb(b)

px(b)

!�2
 

pt
pb(b)

!�1
3
5� (32)
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2
4�
r

2
41�

 
px(b)

pb(b)

!�1
3
5+ �1

w + b

b

r

 
px(b)

pb(b)

!�1

+
1

w + b
[X 0(pb)pb � �1X(pb)]

 
px(b)

pb(b)

!�1
3
5 ;

(33)

where 3 � (1�(px(b)=pb(b))
�1��2)�1, and px(b), and pb(b) may be found by solving for

the root respectively of: @G(px; b)=@p =@2W (px; b)=@p@b and V
0(pb)+�@H(pb; b)=@p =

0 for di�erent values of b, where H(pt; b) =
R1
b G(pt; �)d�.

Thus, the value of the �rm, ~W (p; ; b(p̂)), equals, at any given moment, the value of

the �rm's cash ows assuming b = b(p̂) where p̂ is the highest price reached up to the

present, plus the value of a continuum of options to increase leverage incrementally

from b = b(p̂) to 1.

Obtaining solutions for G(pt; b) is relatively straightforward. For a grid of b values,

one may solve the boundary conditions to obtain px = px(b) and pb = pb(b). Equation

(32) then yields G(pt; b) for di�erent b.

Figure 5 shows Wb � @W=@b and ~Wb � @ ~W=@b as functions of p. Incremental

leverage occurs when ~Wb smooth pastes to the horizontal axis as at px in the �gure.

The shaded vertical distance between Wb and ~Wb is the value of the option exercised

at px.

Comparing Figure 5 with Figure 2, one may see how the option to increase leverage

in the future shifts the optimal leverage schedule to the right as claimed in Section 1.

Leverage level bx is now only chosen when the price goes to px, and not at the lower

price pi which applies when there is no option to wait. For any initial price, say pi,

the schedule ~L~L gives the amount of leverage chosen when the �rm is set up, bi, and

shows how bonds will be increased incrementally as and when p exceeds pi.

Note that the assumption made in this section that the output price process is

exogenously given (i.e., that there is no reecting barrier on prices due to free entry

by competitor �rms) is not innocuous in this context. A reecting barrier would

reduce the option values associated with leverage increments that would have been

implemented at prices above the barrier if the latter were absent.
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The model of this section is closely linked to the analysis of irreversible investment

by Pindyck (1988). In Pindyck's case, incremental amounts of real capital are installed

by the �rm as the output price rises but irreversibility means that, if prices fall,

the capital stock does not change. At any given moment, the current capital stock

depends upon the maximum output price so far attained.

In our model, as in Pindyck's, the total value of the �rm equals the value of the

future cash ows assuming no change in the control variable (capital stock or coupon

ow, b, respectively) plus a continuum of option values associated with marginal

changes in the control.

4 CONCLUSION

This paper has priced corporate debt in an industry equilibrium with entry and exit

of �rms. For general assumptions about the residual, post-bankruptcy value of the

�rm, we derive the values of debt and equity. We show how, when equity-holders are

cash-constrained at entry, the demand elasticity for industry output crucially a�ects

the default premium on the bonds. If equity-holders are not constrained and can

freely choose the initial level of leverage, competitive pressure leads �rms to reduce

leverage until the face value equals the residual value of the �rm's assets at closure,

i.e., the bonds are riskless.

Much of our analysis is conducted under the assumption that the �rm's leverage

level is �xed once and for all when the �rm is initially set up. Adopting this as-

sumption, we obtain simple, intuitive expressions for the value of debt that depend

explicitly on the price elasticity of demand for total industry output.

However, we think it is important to explore the implications of relaxing the

`�xed leverage' assumption by allowing �rms to increase their borrowing as their

pro�tability improves. The degree to which a �rm takes on debt when it is initially

set up may depend signi�cantly on the option it has to issue more bonds in future.
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The observation that �rms appear relatively under-levered given apparent bankruptcy

costs could reect the fact that the option to increase debt levels induces them to

take on relatively little debt to start with.

The last section, therefore, develops a dynamic theory of optimal leverage. As

we show, the value of the �rm may be written as the value of its cash ow assuming

a �xed level of leverage plus that of a continuum of options to increase borrowing.

These options are exercised progressively each time the price of the �rm's output

exceeds its previous peak.

As a �nal point, we have supposed throughout our analysis that the �rm's debt

is of in�nite maturity. Various assumptions would allow one to price �nite maturity

bonds within our framework. For example, one may suppose that the �rm is funded

overwhelmingly with perpetuals and equity but that it issues a small amount of �nite

maturity debt. In this case, the trigger levels for entry, exit etc., would be stationary

and the short debt may easily be priced using Fourier or other methods. Leland and

Toft (1996) has considered other assumptions that yield stationary over-all capital

structure and trigger prices and hance facilitate pricing of �nite maturity bonds in

models similar to ours.
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Appendix

Proof of Proposition 1: First, consider the equity value. The general solution to

equations (5) and (6) are:

V (p) = A0 + A1p + A2p
�1 + A3p

�2 ; (34)

L(p) = C0 + C1p + C2p
�1 + C3p

�2 : (35)

Take derivatives and substitute in (5) and (6). Equating coe�cients on like terms

yields: A0 = �(1� �)(w+ b)=r, A1 = (1� �)=(r��), C0 = b=r, and C1 = 0, while �1

and �2 are the negative and positive roots to �(��1)�2=2+�� = r. Since �2 > 0, A3

and C3 must be zero if V (p) and L(p) are to approach the unlimited liabiity values

as p !1. A2 and C2 are then easily obtained using V (pb) = 0 and L(pb) = X(pb).

2

Proof of Proposition 2: Set @W (pe; b)=@b = 0 and then substitute for pb using

the expression in equation (11) and rearrange. 2

Proof of Proposition 3: We obtain p̂�b by solving @W �(p̂�b)=@p = 0. Taking

derivatives and rearranging yields the desired expression. 2

Proof of Proposition 4: Buying back one dollar of debt reduces the coupon ow,

b, by:
b

L(pt)
=

b�
b
r
[1� (pt=pb)�1 ] + (pt=pb)�1X(pb)

� : (36)

Now since:

@V (pt)

@b
=

(1� �)

r

 
1�

�
pt

pb

��1
!
�

�
(1� �)pb

(r � �)(w + b)
�

(1� �)�1
w + b

�
pb

r � �
�

w + b

r

���
pt

pb

��1

;(37)

=
(1� �)

r

 
1�

�
pt

pb

��1
!

: (38)

One may easily show that change in equity value @V (pt)=@bb=L(pt) < (1� �). Since

this is less than one dollar, equity-holders will never wish to carry out such a trans-

action.
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The impact on the value of existing bonds if the �rm issues more debt is:

b

r

@

@b

0
@1�

 
pt
pb

!�1
1
A =

�1
w + b

 
pt
pb

!�1
(
b

r
+

1

�1
[X 0(pb)pb � �1X(pb)]

)
: (39)

The right hand side is negative if X(pb) and X 0(pb) are small, and, in this case,

bond-holders will never favour increases in leverage.

Proof of Proposition 5: The proof is very similar to that of Proposition 1. Take

derivatives of the general solutions given in (34) and (35), substitute in (5) and (6)

and equate coe�cients on like terms. The boundary conditions for the equity value

form two linear systems in the coe�cients, A2 and A3, and C2 and C3, respectively.

Solving these two systems by inverting a pair of simple, two-by-two matrices yields

the required results. 2

Proof of Proposition 6: Solving for debt and equity values in an industry equi-

librium for a given b=r when b is large enough to imply that debt is risky debt, one

obtains the expressions in Proposition 5. If debt is risky, debt values drop discretely

if the �rm in question goes bankrupt. If all �rms adopt a particular leverage, b, for

an individual �rm total �rm value at entry is increased if it adopts a leverage level

slightly below b as in this case it will never experience bankruptcy. Firms will there-

fore have an incentive to undercut each other's leverage level until there is no jump

in bond values at bankruptcy. This occurs when b=r = X(pb), i.e., the debt principal

equals the residual value at closure. Since, in industry equilibrium, only a fraction

of �rms actually close at pb, (and bond-holders of �rms that do close are indi�erent

between closure and continuation) the latter price acts as a reecting barrier. Hence,

the boundary condition L0(pb) = 0 must hold. Solving for the debt and equity values

with the other boundary conditions, V (pe) + b=r = K, L(pb) = b=r, V 0(pe) = 0,

V 0(pb) = 0, yields the results in the proposition. 2

Proof of Proposition 7: As the di�erence between two asset prices, H may be

thought of as the value of a security. Since holders of this security only receive

capital gains income, H must satisfy the equation:

r H(pt; b) = �pt
@H(pt; b)

@p
+

�2

2
p2t
@2H(pt; b)

@p2
: (40)
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Taking derivatives with respect to b, we obtain:

r G(pt; b) = �pt
@G(pt; b)

@p
+

�2

2
p2t

@2G(pt; b)

@p2
: (41)

The general solution to this equation is:

G(p; b) = C1(b)

 
p

pb

!�1

+ C2(b)

 
p

px

!�2

: (42)

px is the price at which it is optimal for the �rm to increase its leverage incrementally

and is a function of the current leverage level, b. At px, it must be the case that

@ ~W (px(b); b)=@b = 0. But, as one may easily show, this implies that:

G(px(b); b) =
@W (px(b); b)

@b
: (43)

Also, when pt = pb(b) and the current level of leverage is b, the �rm will be liquidated,

so options to relever must cease to have value. Therefore:

H(pb(b); b) = 0 8 b : (44)

If we apply the boundary condition:

G(pb(b); b) = 0 8 b ; (45)

and let G(p; b) = 0 for all pairs (p; b) where p < pb(b), thenZ 1
b

G(pb; �)d� = H(pb(b); b) = 0 8 b ; (46)

as required. Lastly, the optimal exercise price, px(b), may be obtained from a smooth-

pasting condition:
@G(px; b)

@p
=

@

@p

"
@W (p; b)

@b

#�����
p=px

: (47)

Solving this yields px as a function of b.

To complete the derivation of G, take derivatives of the general solution of the

di�erential equation, substitute in the boundary conditions and determine the free

parameters in the usual way. 2
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Footnotes

1. Also see Gertner and Scharfstein (1991) for an extremely interesting analysis of

exit consent renegotiations of public bond issues.

2. The framework of Section 1 resembles models employed in a number of recent

papers on corporate bond pricing, namely Anderson and Sundaresan (1996),

Leland (1994a) and Mella-Barral and Perraudin (1993). An important feature

of these models is that, unlike earlier work by, for example, Merton (1974) and

Black and Cox (1976), they suppose that bankruptcy is triggered by cash ow

rather than net worth considerations. Leland (1994a) argues persuasively that

bond covenants concerning net worth are hard to enforce and that it is more

reasonable to think of equity-holders as e�ectively choosing the bankruptcy

point through their decision of when to cease meeting coupon payments.

3. We abstract here from the fact that the marginal tax rate for negative earnings

may be zero. In practice there are many ways in which companies can use

tax losses to o�set other income including the sale of subsidiaries embodying

tax losses and leasing transactions. It is, therefore, probably more realistic to

assume that � remains unchanged when earnings turn negative than to assume

that it drops to zero.

4. Black and Cox (1976) and Leland (1994a) model bankruptcy in a similar way.

5. To anticipate our results somewhat, note that in our framework Merton's ap-

proach would correspond to assuming that, upon bankruptcy, bond-holders re-

ceive the unlimited liability value of the �rm's income stream, i.e., X(pt) =

(1 � �)[pt=(r � �) � (w=r)]. On the other hand, the equivalent of Mello and

Parsons in our framework would be X(pt) = (1� �)[pt=(r� �)� (w=r)]� (1�

�)[pl=(r � �)� (w=r)](pt=pl)
�1 where pl = ��1=(1� �1)w(r � �)=r and � is as

de�ned in Proposition 1.

6. This does not represent much of a loss of generality since, an economy with risk

averse agents may be transformed into one with risk neutrality by the change
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of measure arguments suggested by Harrison and Kreps (1979). The signi�cant

restriction one has to make is to suppose that the �nancial structure of the �rm

does not a�ect the Radon Nikodym derivative for this change of measure, i.e.,

the state prices are invariant to the �rm's �nancing decisions. Adopting this

assumption, one should interpret the term �kt in (2) as the risk-adjusted drift

and not the actual instantaneous mean of the process.

7. We assume that r > �. One may show that otherwise, claims to the �rm's

earning stream would be of in�nite value which is obviously inconsistent with

equilibrium.

8. Share o�erings are equivalent, in this context, to capital injections since existing

equity-holders could always buy the new issue.

9. In optimal stopping problems of this sort, a necessary condition for optimality is

that the derivatives with respect to the state variable of the optimizing agent's

value function and of the payo� received after stopping are equal at the trigger

level.

10. If the assumption that X(p) � 0 for all p � 0 is relaxed, then debt and equity

values equal the solutions in Proposition 1 except that the closure price is the

maximum of pb (as de�ned in the proposition) and of supfp : X(p) < 0g.

Subsequent propositions may be similarly generalized.

11. BB itself crosses the horizontal axis at ��1=(1 � �1)(r � �)=rw which is the

closure price for the pure equity �rm when X(p) = 0 for all p.

12. Leland (1994a) found a similar result in a related model.
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LEGENDS FOR FIGURES

Figure 1

Debt and equity values (L(p) and V (p)) appear as functions of the �rm's output

price. The post-bankruptcy, residual value, X(p) is assumed to be zero so V and L

equal zero at the bankruptcy trigger price, pb. Optimal choice of pb by equity-holders

implies that V 0(pb) = 0.

Figure 2

The optimal coupon, b�, is shown for di�erent entry prices, pe, as the zeros of the

derivative of total �rm value with respect to the coupon,Wb. Entry prices and optimal

coupon levels are positively correlated.

Figure 3

Appropriate choice of units allow one to show the bond value, L(p), and industry

demand, q(p) intersecting at the bankruptcy trigger price, pb. The boundary condition

for the bonds at pb balances capital gains and expected losses and corresponds to the

equality, �1 = �2.

Figure 4

In the industry equilibrium, both the total �rm value, W , and the equity value, V ,

smooth-paste at pe as entry by new �rms prevents pt from rising any further. At

pb the slope of W is such that the capital gain from an output price rise equals the

expected capital loss from a price fall. If the price elasticity, �, is low, few �rms must

exit to keep pt above pb.

Figure 5
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Optimal marginal increases in the coupon ow occur when the change in �rm value,

~Wb, equals zero. At this point, the value of the exercised leverage option, G, exactly

o�sets the increase in the `constant-coupon �rm value', Wb. For a given entry price,

optimal leverage is lower when there are options to increase the coupon in future.
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