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Abstract. In this paper we study the diagnosis and repair of incoherent termi-
nologies. We define a number of new non-standard reasoning services to explain
incoherence through pinpointing, and we present algorithms for all of these services.
For one of the core tasks of debugging, the calculation of minimal unsatisfiability
preserving sub-terminologies, we developed two different algorithms, one implement-
ing a bottom-up approach using support of an external DL reasoner, the other
implementing a specialized tableau-based calculus. Both algorithms have been pro-
totypically implemented. We study the effectiveness of our algorithms in two ways:
we present a realistic case-study where we diagnose a terminology used in a practi-
cal application, and we perform controlled benchmark experiments to get a better
understanding of the computational properties of our algorithms in particular, and
the debugging problem in general.
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1. Introduction

Ontologies play a crucial role in the Semantic Web (SW), as they
allow the sharing of information in a semantically unambiguous way,
and to reuse domain knowledge (possibly created by external sources).
However, this makes SW technology highly dependent on the quality
and correctness of these ontologies. Two general strategies for quality
assurance are predominant, one based on developing more and more
sophisticated ontology modelling tools, the second one based on logical
reasoning. In this paper we will focus on the latter. With the advent
of expressive ontology languages such as OWL and its close relation
to Description Logics (DL), state-of-the-art DL reasoner can efficiently
detect inconsistencies even in very large ontologies. The practical prob-
lem remains what to do in case an ontology has been detected to be
locally incorrect.

There are two main ways to deal with inconsistent ontologies. One
is to simply “live with” the inconsistency and to apply a non-standard
reasoning method to obtain meaningful answers in the presence of in-
consistencies. Such an approach is taken in (Huang et al., 2005). An
alternative approach is to resolve (or: “debug”) the error whenever an
inconsistency is encountered. In this paper we focus on this debugging
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process, and we will focus on the terminological part of ontologies
(and talk about debugging of terminologies). We will introduce the
formal foundations for debugging and diagnosis of logically incorrect
terminologies, more precisely the notions of minimal unsatisfiability-
preserving sub-TBoxes (abbreviated MUPS) and minimal incoherence-
preserving sub-TBoxes (MIPS) as the smallest subsets of axioms of
an incoherent terminology preserving unsatisfiability of a particular,
respectively of at least one unsatisfiable concept.

Our approach to diagnosing incoherent terminologies is based on
traditional model-based diagnosis which has been studied over many
years in the AI community (Reiter, 1987). Here the aim is to find min-
imal fixes, i.e. in our case minimal subsets of an terminology that need
to be repaired or removed to render a terminology logically correct, and
therefore usable again. We will see that in Reiter’s terminology, MIPS
and MUPS correspond to minimal conflict sets.

We will describe two algorithms for debugging, a bottom-up method
using the support of an external reasoner, and an implementation of a
specialized top-down algorithm. The former is based on the systematic
enumerations of terminologies of increasing size based on selection func-
tions on axioms, the latter is based on Boolean minimization of labels
in a labelled tableau calculus. Both methods have been implemented
as prototypes. The prototype for the informed bottom-up approach is
called DION (Debugger of Inconsistent ONtologies)1, the prototype of
the specialized top-down method is called MUPSter.

We provide a detailed evaluation of our methods. This is done in
two ways: first, we present a case study where we apply our algorithms
to two medical terminologies that are used in a real application in the
Academic Medical Center Amsterdam for the admission of patients to
Intensive Care units. Secondly, we perform a set of controlled bench-
mark experiments to get a better understanding of the computational
properties of the debugging problem and our algorithms for solving it.

The combined results of the case-study and the controlled experi-
ments show that on the one hand, debugging is useful in practice, but
that on the other hand we cannot guarantee that our tools will always
find explanations in a reasonable time. The most important criteria
will turn out to be the size and complexity of the definitions and the
number of modelling errors.

1.1. Related Work

Before presenting our own work, we briefly discuss the most important
related work in the literature. In our earlier conference publications

1 http://wasp.cs.vu.nl/sekt/dion
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(Schlobach and Cornet, 2003) we were the first to propose the frame-
work for debugging and diagnosing of terminologies that is defined in
section 2. There we also coined the term pinpointing as a means of
reducing a logically incorrect terminology to a smaller one, from which
a modeling error could be more easily detected by a human expert. In
(Schlobach, 2005b) we grounded notions of MIPS and MUPS in the
well-established theory of model-based diagnosis (Reiter, 1987).

The area of debugging inconsistent ontologies has received much
attention since the publication of (Schlobach and Cornet, 2003). In this
section we do not aim to give a general literature survey, but discuss
some of the most influential pieces of work, in particular the work by
the MINDSWAP group, and the work based on belief revision.

Debugging in the DL community The MINDSWAP group at the Uni-
versity of Maryland has done significant work in this area, culminating
in the recent thesis of Kalyanpur (Kalyanpur, 2006). The work inves-
tigates two different approaches, one based on modifying the internals
of a DL reasoner (the so-called “glass box” approach), and one based
on using an unmodified external reasoner (the “black box” approach).

The glass box approach is closely related to our work in section
3.1, and (just as our work) is based on the techniques in (Baader
and Hollunder, 1995). The work deals with OWL-Lite, except for max
cardinality roles, and is efficient since it avoids having to do full tableau
saturation (details are in (Kalyanpur et al., 2005)). The work in (Baader
and Hollunder, 1995) is particularly noteworthy: Although that paper
is about a different topic (computing extensions for a certain class of
default Description Logics), it turns out that one of the algorithms is
very similar to the one described in section 3.1. The main difference to
Baader et. al’s work is that they consider ABoxes instead of TBoxes,
and the purpose of the algorithm (computing default extensions vs.
computing diagnoses).

The black box approach (i.e.. detecting inconsistencies by calling
an unmodified external DL reasoner) is based on Reiter’s Hitting Set
algorithm (similar to our work in (Schlobach, 2005b)), and also closely
related to a proposal of Friedrich et al. (Friedrich and Shchekotykhin,
2005) who (as we do in section 2.2.1) bring the general diagnostic theo-
ries from (Reiter, 1987) to bear for diagnosing ontologies. An interesting
difference with our work is that Friedrich et. al use generic diagnoses
software. As we do in our bottom-up method, they use a DL reasoner
as oracle.
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Kalyanpur also proposes a method for “axiom pinpointing”2, which
rewrites axioms into smaller ones, and then debugs the resulting on-
tology after rewriting, with the effect that a more precise diagnosis is
obtained. Early results have been reported in (Kalyanpur et al., 2006)

A second pinpointing technique called “error pinpointing” by Kalyan-
pur is similar to what we call pinpointing here. Interestingly, Kalyanpur
has performed user studies which reveal that a combination of axiom
pinpointing (i.e.. breaking large axioms up into smaller ones) and error
pinpointing (ie. finding the errors which lie at the root of a cascading
chain of errors) together seems to be the cognitively most efficient
support for users.

Finally, a significant extension to our work in (Schlobach and Cornet,
2003) was published in (Meyer et al., 2006), where the authors extend
our saturation based tableau calculus with blocking conditions, so that
general TBoxes can be handled.

Belief revision Much of the work in the belief revision community over
the past twenty years has focused on dealing with inconsistency, and
significant advances have been made (Hansson, 1999). Nevertheless,
there are significant differences which cause this work to be not directly
applicable to ontology revision. First of all, most of the work on belief
revision is phrased in terms of a so called “belief set”, a deductively
closed set of formulae. Much of the interest in dealing with inconsis-
tent ontologies is to deal with sets of axioms that are not deductively
closed, and on which deduction has to be performed in order to find
out inconsistencies and their causes (e.g. our section 3.1). Furthermore,
theories of belief revision typically assume a preference ordering among
all models of a belief set, representing an order of implausibility among
all situations. Such an approach is also taken in (Meyer et al., 2005)
which imposes a stratification on the knowledge base, and employing
this stratification to select a suitable repair.

There has been work on belief revision that does not rely on de-
ductively closed belief sets, and hence is more relevant to our work.
One such example is (Hansson and Wassermann, 2002), from whom
we have taken the notion of a syntactic relevance function. (Such a
syntactic relevance function only makes sense when abandoning the
notion of deductively-closed belief sets, since an immediate consequence
of working with deductively closed belief sets is that equivalent formulae
should be treated equally, a.k.a. the principle of irrelevance of syntax).
Our work in section 3.2 can be seen as a specialization to ontologies of
the general framework presented in (Hansson and Wassermann, 2002).

2 A different use of the word pinpointing from our use in section 2.2.3, and even
from the identical term ”axiom pinpointing” in (Schlobach and Cornet, 2003).
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Contributions of this paper Summarizing the above, the contributions
of this paper are as follows: We present a formal characterization for
debugging and diagnosis (briefly repeated from earlier publications); we
define algorithms for all tasks described in our debugging framework;
we study the effectiveness of our proposal in a realistic setting on two
life-size terminologies; finally we perform a set of controlled experiments
to analyst the computational properties of the debugging problem and
our different algorithms for solving it.

Structure of this paper This paper is organized as follows. In Section 2
we define the formal notions that underly our approach to debugging
and diagnosis. In Section 3 we present the required algorithms. Section
4 briefly presents a realistic case-study where we deployed these algo-
rithms. Sections 5 and 6 are devoted to a set of controlled benchmark
experiments: section 5 describes the experimental setup, and section 6
presents the results of our experiments. We end this paper with some
concluding remarks.

2. Formal definitions

Description Logics are a family of well-studied set-description languages
which have been in use for over two decades to formalize knowledge.
They have a well-defined model theoretic semantics, which allows for
the automation of a number of reasoning services.

2.1. Logical errors in Description Logic terminologies

For a detailed introduction to Description Logics we point to the sec-
ond chapter of the DL handbook (Baader et al., 2003). Briefly, in
DL concepts will be interpreted as subsets of a domain, and roles as
binary relations. Let, throughout the paper, T = {ax1, . . . , axn} be a
set of (terminological) axioms, where axi is of the form Ci v Di for
each 1 ≤ i ≤ n and arbitrary concepts Ci and Di. We will also use
terminological axioms of the form C = D and disjointness statements
disjoint(C,D) between two concepts C and D, which are simple ab-
breviations of C v D&D v C, and C v ¬D respectively. Most DL
systems also allow for assertional axioms in a so-called ABox. In this
paper, ABoxes will not be considered. Throughout the paper the term
ontologies will refer to general knowledge bases which possibly include
both terminological and assertional knowledge. The term terminology
is solely used in the technical sense of a DL TBox.
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Table I. A small (incoherent) TBox T 1

ax1:A1v¬A uA2 uA3 ax2:A2vA uA4

ax3:A3vA4 uA5 ax4:A4v∀s.B u C
ax5:A5v∃s.¬B ax6:A6vA1 t ∃r.(A3 u ¬C uA4)
ax7:A7vA4 u ∃s.¬B

2.1.1. Unsatisfiability and Incoherence
Let U be a set of objects, called the universe, and (·)I a mapping, which
interprets DL concepts as subsets of U . An interpretation I = (U, (·)I)
is then called a model of a terminological axiom C v D, if, and only if,
CI ⊆ DI . A model for a TBox T is an interpretation which is a model
for all axioms in T . Based on these semantics a TBox can be checked
for incoherence, i.e., whether there are unsatisfiable concepts: concepts
which are necessarily interpreted as the empty set in all models of the
TBox. More formally

1. A concept C is unsatisfiable w.r.t. a terminology T if, and only if,
CI = ∅ for all models I of T .

2. A TBox T is incoherent if, and only if, there is a concept-name in
T which is unsatisfiable.

Conceptually, these cases often point to modelling errors because we
assume that a knowledge modeler would not specify something like an
impossible concept in a complex way.

Table I demonstrates this principle. Consider the (incoherent) TBox
T 1, where A,B and C, as well as A1, . . . , A7 are concept names, and
r and s roles. Satisfiability testing returns a set of unsatisfiable con-
cept names {A1, A3, A6, A7}. Although this is still of manageable size,
it hides crucial information, e.g., that unsatisfiability of A1 depends,
among others, on unsatisfiability of A3, which is in turn unsatisfiable
because of the contradictions between A4 and A5. We will use this
example later in this paper to explain our debugging methods.

2.1.2. Unfoldable ALC TBoxes
In this paper we study ways of debugging and diagnosing of incoherence
and unsatisfiability in DL terminologies. The general ideas can easily
be extended to inconsistency of ontologies with assertions as suggested
in (Schlobach et al., 2006). As the evaluation in this paper will be about
terminological debugging only, we will restrict the technical definitions
to the necessary notions.
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Whereas the definitions of debugging were independent of the choice
of a particular Description Logic, we will later present algorithms for
the Description Logic ALC, and unfoldable TBoxes, in particular.
ALC is a simple yet relatively expressive DL with conjunction (C u

D), disjunction (C t D), negation (¬C) and universal (∀r.C) and
existential quantification (∃r.C), where the interpretation function is
extended to the different language constructs as follows:

(C uD)I = CI ∩DI

(C tD)I = CI ∪DI

(¬C)I = U \ CI

(∃R.C)I = {d ∈ U | ∃e ∈ U : (d, e) ∈ RI and e ∈ CI}
(∀R.C)I = {d ∈ U | ∀e ∈ U : (d, e) ∈ RI implies e ∈ CI}

A TBox is called unfoldable if the left-hand sides of the axioms (the
defined concepts) are atomic and unique, and if the right-hand sides
(the definitions) contain no direct or indirect reference to the defined
concept (Nebel, 1990). In T1, our example TBox, A1, . . . , A7 are defined
concepts.

2.2. Framework for debugging and diagnosis

We now introduce a theory of debugging and diagnosis and link it to
description logic-based systems. In this case a diagnosis is a smallest
set of axioms that needs to be removed or corrected to render a specific
concept or all concepts satisfiable.

In some situations, terminologies can contain a large number of un-
satisfiable concepts. This can occur for example when terminologies are
the result of a merging process of separately developed terminologies,
or when closure axioms (i.e. disjointness statements and universal re-
strictions) are added to terminologies. Unsatisfiability propagates, i.e.
one unsatisfiable concept may cause many other concepts to become
unsatisfiable as well. As it is often not clear to a modeler what concepts
are the root cause of unsatisfiability, we also describe a number of
heuristics that help to indicate reasonable starting points for debugging
an terminology.

2.2.1. Model-based Diagnosis
The literature on model-based diagnosis is manifold, but we focus on
the seminal work of Reiter (Reiter, 1987), and (Greiner et al., 1989),
which corrects a small bug in Reiter’s original algorithm. We refer the
interested reader to a good overview in (Console and Dressler, 1999).

Reiter introduces a diagnosis of a system as the smallest set of com-
ponents from that system with the following property: the assumption
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that each of these components is faulty (together with the assumption
that all other components are behaving correctly) is consistent with
the system description and the observed behavior. In other words:
assuming correctness of any one of the components in a diagnosis would
cause inconsistency between the system description and the observed
behavior.

To apply this definition to a description logic terminology, we regard
the terminology as the system to be diagnosed, and the axioms as the
components of this system. If we look at the example terminology from
Table I, the system description states that it is coherent (i.e. all con-
cepts are satisfiable), but the observation is that A1, A3, A6, and A7 are
unsatisfiable. In Reiter’s terminology, a minimal set of axioms that need
to be removed (or better fixed) is called a diagnosis. This adaptation
of Reiter’s method leads to the following definition of diagnosis.

DEFINITION 1. Let T be an incoherent terminology. A diagnosis for
the incoherence problem of T is a minimal set of axioms T ′ ⊆ T such
that T \ T ′ is coherent. Similarly, a diagnosis for unsatisfiability of a
single concept A in T is a minimal subset T ′ ⊆ T , such that A is
satisfiable w.r.t. T \ T ′.

Reiter provides a generic method to calculate diagnoses on the basis
of conflict sets and their minimal hitting sets. A conflict set is a set of
components that, when assumed to be fault free, lead to an inconsis-
tency between the system description and observations. A conflict set
is minimal if and only if no proper subset of it is a conflict set. The
minimal conflict sets (w.r.t. coherence) for the system in Table I are
{ax1, ax2}, {ax3, ax4, ax5}, and {ax4, ax7}.

A hitting set H for a collection of sets C is a set that contains at
least one element of each of the sets in C. Formally: H ⊆

⋃
S∈C S such

that H ∩ S 6= ∅ for each S ∈ C. A hitting set is minimal if and only if
no proper subset of it is a hitting set. Given the conflict sets above, the
minimal hitting sets are: {ax1, ax3, ax7}, {ax1, ax4}, {ax1, ax5, ax7},
{ax2, ax3, ax7}, {ax2, ax4}, and {ax2, ax5, ax7}.

Reiter shows that the set of diagnoses actually corresponds to the
collection of minimal hitting sets for the minimal conflict sets. Hence,
the minimal hitting sets given above determine the diagnoses for the
system w.r.t. coherence.

2.2.2. Debugging
As previously mentioned, the theory of diagnosis is built on minimal
conflict sets. But in the application of diagnosis of erroneous termi-
nologies, these minimal conflict sets play a role of their own, as they
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are the prime tools for debugging, i.e. for the identification of potential
errors. For different kind of logical contradictions we introduce several
different notions based on conflict sets, the MUPS for unsatisfiability
of a concept, the MIPS for incoherence of a terminology.

2.2.2.1. Minimal unsatisfiability-preserving sub-TBoxes (MUPS)
In (Schlobach and Cornet, 2003) we introduced the notion of Minimal
Unsatisfiability Preserving Sub-TBoxes (MUPS) to denote minimal
conflict sets. Unsatisfiability-preserving sub-TBoxes of a TBox T and
an unsatisfiable concept A are subsets of T in which A is unsatisfiable.
In general there are several of these sub-TBoxes and we select the
minimal ones, i.e., those containing only axioms that are necessary to
preserve unsatisfiability.

DEFINITION 2. A TBox T ′ ⊆ T is a minimal unsatisfiability pre-
serving sub-TBox (MUPS) for A in T if A is unsatisfiable in T ′, and
A is satisfiable in every sub-TBox T ′′ ⊂ T ′.

We will abbreviate the set of MUPS of T and A by mups(T , A). MUPS
for our example TBox T 1 and its unsatisfiable concepts are:
mups(T 1, A1): {{ax1, ax2}, {ax1, ax3, ax4, ax5}}
mups(T 1, A3): {{ax3, ax4, ax5}}
mups(T 1, A6): {{ax1, ax2, ax4, ax6}, {ax1, ax3, ax4, ax5, ax6}}
mups(T 1, A7): {{ax4, ax7}}
In the terminology of Reiter’s diagnosis each mups(T , A) is a collec-

tion of minimal conflict sets w.r.t. satisfiability of concept A in TBox
T .

Remember that a diagnosis is a minimal hitting set for a collection of
conflict sets. Hence, from the MUPS, we can also calculate the diagnoses
for unsatisfiability of concept A in TBox T , which we will denote ∆T ,A.

∆T1,A1 : {{ax1}, {ax2, ax3}, {ax2, ax4}, {ax2, ax5} }
∆T1,A3 : {{ax3}, {ax4}, {ax5}}
∆T1,A6 : {{ax1}, {ax4}, {ax6}, {ax2, ax3}, {ax2, ax5} }
∆T1,A7 : {{ax4}, {ax7}}

2.2.2.2. Minimal incoherence-preserving sub-TBoxes (MIPS)
MUPS are useful for relating sets of axioms to the unsatisfiability of
specific concepts, but they can also be used to calculate MIPS, which
relate sets of axioms to the incoherence of a TBox in general (i.e.
unsatisfiability of at least one concept in a TBox).

DEFINITION 3. A TBox T ′ ⊆ T is a minimal incoherence preserving
sub-TBox (MIPS) of T if, and only if, T ′ is incoherent, and every
sub-TBox T ′′ ⊂ T ′ is coherent.
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This means that MIPS are minimal subsets of an incoherent TBox
preserving unsatisfiability of at least one atomic concept. The set of
MIPS for a TBox T is abbreviated with mips(T ). For T1 we get 3
MIPS: mips(T 1) = {{ax1, ax2}, {ax3, ax4, ax5}, {ax4, ax7}}

Analogous to MUPS, each element of mips(T ) is a minimal conflict
set w.r.t. incoherence of TBox T . Hence, from mips(T ), a diagnosis for
coherence of T can be calculated, which we denote as ∆T . From these
definitions, we can determine the diagnosis for coherence of T 1:

∆T 1 = {{ax1, ax4}, {ax2, ax4}, {ax1, ax3, ax7}, {ax2, ax3, ax7},
{ax1, ax5, ax7}, {ax2, ax5, ax7}}

The number of MUPS a MIPS is a subset of determines the number
of unsatisfiable concepts of which it might be the cause. We will call
this number the MIPS-weight.

In the example terminology T 1 we found six MUPS and three MIPS.
The MIPS {ax1, ax2} is equivalent to one of the MUPS for A1, {ax1,
ax2}, and a proper subset of a MUPS for A6, {ax1, ax2, ax4, ax6}.
Hence, the weight of MIPS {ax1, ax2} is two. In the same way we can
calculate the weights for the other MIPS: the weight of {ax3, ax4, ax5}
is three, the weight of {ax4, ax7} is one. Intuitively, this suggests that
the combination of the axioms {ax3, ax4, ax5} is more relevant than
{ax4, ax7}.

Weights are easily calculated, and play an important role in prac-
tice to determine relative importance within the set of MIPS, as we
experienced in our case-studies which are described in Section 4.

2.2.3. Pinpoints
Experiments described in (Schlobach, 2005b) indicated that calculat-
ing diagnoses from MIPS and MUPS is simple, but computationally
expensive, and often impractical for real-world terminologies. For this
purpose, we introduced in (Schlobach, 2005a) the notion of a pinpoint
of an incoherent terminology T , in order to approximate the set of
diagnoses. The definition of the set of pinpoints is a procedural one,
following a heuristic to ensure that most pinpoints will indeed be diag-
noses. However, there is no guarantee of minimality, so that not every
pinpoint is necessarily a diagnosis.

To define pinpoints we need the notion of a core: MIPS-weights
provide an intuition of which combinations of axioms lead to unsatisfi-
ability. Alternatively, one can focus on the occurrence of the individual
axioms in MIPS, in order to predict the likelihood that an individual
axiom is erroneous. We define cores as sets of axioms occurring in
several MIPS. The more MIPS such a core belongs to, the more likely
its axioms will be the cause of contradictions.
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DEFINITION 4. A non-empty subset of the intersection of n different
MIPS in mips(T ) (with n ≥ 1) is called a MIPS-core of arity n (or
simply n-ary core) for T .

For our example TBox T 1 we find one 2-ary core, {ax4} of size 1. The
other axioms in the MIPS are 1-ary cores. Pinpoints are defined in a
structural way.

DEFINITION 5. Let mips(T ) be the set of MIPS of T , i.e. a collection
of sets of axioms. The set of possible outputs of the following procedure
will be called the set of pinpoints.
Let M := mips(T ) be the collection of MIPS for T , P = ∅:
(1) Choose in M an arbitrary core {ax} of size 1 with maximal arity.
(2) Then, remove from M any MIPS containing {ax}
(3) P := P ∪ {ax}

Repeat steps (1) to (3) until M = ∅. The set P is then called a pinpoint
of the terminology.

As step (1) contains a non-deterministic choice there is no unique
pinpoint but a set possible of possible outputs of the algorithm: the
set of pinpoints.

For our example TBox T 1 with mips(T 1) = {{ax1, ax2}, {ax3,
ax4, ax5}, {ax4, ax7}} we first take the 2-ary core, {ax4}. Removing
the MIPS containing ax4 leaves {ax1, ax2}. Hence, there is a non-
deterministic choice: if we choose ax1 to continue {ax4, ax1} is the
calculated pinpoint, otherwise {ax4, ax2}. Both are diagnoses of T1.

3. Algorithms

In this section we present algorithms for all major reasoning tasks
introduced in the previous Section 2.

Technically, calculating MUPS is the biggest challenge, and we present
two different algorithms: a top-down method, which reduces the rea-
soning into smaller parts in order to explain a subproblem with reduced
complexity, and an informed bottom-up approach, which enumerates
possible solutions in a clever way. The first is a so-called glass-box, the
second a black-box method.

In order to calculate MIPS we first calculate MUPS for each un-
satisfiable concept. From the MIPS diagnoses can be calculated using
Reiter’s original hitting-set tree method.

The algorithms for debugging were implemented in prototypical
systems: the top-down algorithms in a system called MUPSter, the
bottom-up algorithms in a system called DION.
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(u): if (a : C1 u C2)l ∈ B, but not {(a : C1)l, (a : C2)l} ⊆ B

then B′ := B ∪ {(a : C1)l, (a : C2)l}.
(t): if (a : C1 t C2)l ∈ B, but neither (a : C1)l ∈ B nor (a : C2)l ∈ B

then B′ := B ∪ {(a : C1)l} and B′′ := B ∪ {(a : C2)l}.
(Ax) if (a : A)l ∈ B and (A v C) ∈ T

then B′ := B ∪ {(a : C)l∪{AvC}}.
(∃): if (a : ∃Ri.C)l ∈ B, and all other rules have been applied on all

formulas over a, and if {(a : ∀Ri.C1)l1 , . . . , (a : ∀Ri.Cn)ln} ⊆ B

is the set of universal formulas for a w.r.t. Ri in B,
then B′ := {(b : C)l, (b : C1)l1∪l, . . . , (b : Cn)ln∪l}

where b is a new individual name not occurring in B.

Figure 1. Tableau Rules for ALC-Satisfiability w.r.t. a TBox T (with Labels)

3.1. A Top-down Algorithm for Calculating MUPS

In the glass-box top-down approach we calculate the axioms that are
required to maintain a logical contradiction by expanding a logical
tableau with labels. This method requires a single tableau proof per
unsatisfiable concept. On the other hand, it is based on a variation of
a specialized logical algorithm, and only works for Description Logics
for which such a specialized algorithm exists and is implemented.

The algorithm described in this section has recently been extended
to general terminologies in (Meyer et al., 2006). The prototypical im-
plementation in the MUPSter system, which we applied in two prac-
tical use-cases, is restricted to definitorical TBoxes. Our experience
has shown that applying our methods to simple terminologies already
yields valuable debugging information, and that it is worth discussing
this approach in more detail.3 The algorithm we will describe calculates
MUPS for the DL ALC and unfoldable TBoxes. It calculates MUPS
based on Boolean minimization of terminological axioms needed to
close a standard tableau ((Baader et al., 2003) Chapter 2).

Usually, unsatisfiability of a concept is detected with a fully satu-
rated tableau (expanded with rules similar to those in Figure 1) where
all branches contain a contradiction (or “ are closed”, as we say). The
information which axioms are relevant for the closure is contained in
a simple label which is added to each formula in a branch. A labelled
formula has the form (a : C)x where a is an individual name, C a

3 Extending the actual implementation of MUPSter to more expressive lan-
guages is not straightforward, but planned for future work.
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Debugging Incoherent Terminologies 13

if rule = (u) has been applied to (a : C1 u C2)label and B′ is the new branch
return min function(a,B′, T );

if rule = (t) has been applied to (a : C1 t C2)label and B′ and B′′ are new
return min function(a,B′, T ) ∧ min function(a,B′′, T );

if rule = (∃) has been applied to (a : ∃R.C)label, B′ and b are new
return min function(a,B′, T ) ∨ min function(b, B′, T );

if rule = (Ax) has been applied and B′ is new
return min function(a,B′, T );

if no further rule can be applied
return:

∨
(a : A)x ∈ B, (a : ¬A)y ∈ B (

∧
ax∈x ax ∧

∧
ax∈y ax);

Figure 2. min function(a, B, T ): Minimization-function for the MUPS-problem

concept and x a set of axioms, which we will refer to as label. A labelled
branch is a set of labelled formulas and a tableau is a set of labelled
branches. A formula can occur with different labels on the same branch.
A branch is closed if it contains a clash, i.e. if there is at least one pair
of formulas with the same negated and non-negated atom on the same
individual. The notions of open branch and closed and open tableau
are defined as usual and do not depend on the labels. We will always
assume that formulas are in negation normal form (nnf) and newly
created formulas are immediately transformed. We usually omit the
prefix “labelled”.

To calculate a minimal unsatisfiability-preserving TBox for a con-
cept name A w.r.t. an unfoldable TBox T we construct a tableau from
a branch B initially containing only (a : A)∅ (for a new individual
name a) by applying the rules in Figure 1 as long as possible. The rules
are standard ALC-tableau rules with lazy unfolding, and have to be
read as follows: assume that there is a tableau T = {B,B1, . . . , Bn}
with n + 1 branches. Application of one of the rules on B yields the
tableau T ′ := {B′, B1, . . . , Bn} for the (u), (∃) and (Ax)-rule, T ′′ :=
{B′, B′′, B1, . . . , Bn} in case of the (t)-rule.

Once no more rules can be applied, we know which concept names
are needed to close a saturated branch and can construct a mini-
mization function for A and T according to the rules in Figure 2. A
propositional formula φ is called a minimization function for A and T
if A is unsatisfiable in every subset of T containing the axioms which
are true in an assignment making φ true. In our case axioms are used
as propositional variables in φ. As we can identify unsatisfiability of A
w.r.t. a set S of axioms with a closed tableau using only the axioms in
S for unfolding, branching on a disjunctive rule implies that we need to
join the functions of the appropriate sub-branches conjunctively. If an
existential rule has been applied, the new branch B′ might not necessar-
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14 Schlobach, Huang, Cornet, van Harmelen

ily be closed on formulas for both individuals. Assume that B′ closes on
the individual a but not on b. In this case min function(a,B, T ) = ⊥,
which means that the related disjunct does not influence the calculation
of the minimal incoherent TBox.

Based on the minimization function min function(a, {(a : A)∅}, T )
(let us call it φ) which we calculated using the rules in Figure 2 we can
now calculate the MUPS for A w.r.t. T . The idea is to use prime impli-
cants of φ. A prime implicant ax1∧ . . .∧axn is the smallest conjunction
of literals4 implying φ (Quine, 1952). As φ is a minimization function
every implicant of φ must be a minimization function as well and there-
fore also the prime implicant. But this implies that the concept A must
be unsatisfiable w.r.t. the set of axioms {ax1, . . . , axn}. As ax1∧. . .∧axn

is the smallest implicant we also know that {ax1, . . . , axn} must be
minimal, i.e. a MUPS. Theorem 3.1 captures this result formally.

THEOREM 3.1. Let A be a concept name, which is unsatisfiable w.r.t.
an unfoldable ALC-TBox T . The set of prime implicants of the mini-
mization function min function(a, {(a : A)∅}, T ) is the set mups(T , A)
of minimal unsatisfiability-preserving sub-TBoxes of A and T .

PROOF. We first prove the claim that the propositional formula
φ := min function(a, {(a : A)∅}, T ) is indeed a minimization function
for the MUPS problem w.r.t. an unsatisfiable concept A and a TBox
T . We show that a tableau starting on a single branch B := {(a : A)∅}
closes on all branches by unfolding axioms only, that are evaluated as
true in an assignment making φ true. This saturated tableau Tab∗ is
a particular sub-tableau of the original saturated tableau Tab which
we used to calculate min function(a, {(a : A)∅}, T ), and it is this
connection that we make use of to prove our first claim. Every branch
in the new tableau is a subset of a branch occurring in the original
one and we define visible formulas as those labelled formulas occurring
in both tableaux. By induction over the rules applied to saturate Tab
we can then show that each branch in the original tableau closes on
at least one pair of visible formulas. If A is unsatisfiable w.r.t. T , the
tableau starting with the branch {(a : A)∅} closes w.r.t. T . As we have
shown that this tableau closes w.r.t. T on visible formulas, it follows
that Tab∗ is closed on all branches, which proves the first claim. By
another induction over the application of the rules in Figure 2 we can
prove that φ is a maximal minimization function, which means that
ψ → φ for every minimization function ψ. This proves the first part of
the proof; the first claim (and the argument from above) implies that

4 Note that in our case all literals are positive axioms.

journalAR_DLissue.tex; 30/03/2007; 15:42; p.14



Debugging Incoherent Terminologies 15

every implicant of a minimization function identifies an unsatisfiability-
preserving TBox, and maximality implies that prime implicants identify
the minimal ones.

To show that the conjunction of every MUPS {ax1, . . . , axn} is a
prime implicant of min function(a, {(a : A)∅}, T ) is trivial as ax1 ∧
. . .∧axn is a minimization function by definition. But as we know that
min function(a, {(a : A)∅}, T ) is maximal we know that ax1 ∧ . . . ∧
axn→min function(a, {(a : A)∅}, T ) which implies that ax1 ∧ . . .∧axn

must be prime as otherwise {ax1, . . . , axn} would not be minimal. 2

The proof of Theorem 3.1 is almost identical to the proof of Propo-
sition 6.3 and the subsequent lemmas of (Baader and Hollunder, 1995),
in which the authors show correctness of their algorithm to calculate
minimal inconsistent ABoxes in order to calculate minimal models for
Description Logics with defaults.

Satisfiability in ALC is pspace-complete, and calculating MUPS
does not increase the complexity as we can construct the minimization
function in a depth-first way, allowing us to keep only one single branch
in memory at a time. However, we calculate prime implicants of a min-
imization function the size of which can be exponential in the number
of axioms in the TBox.

3.2. An Informed Bottom-up Algorithm for MUPS

In this section we describe an informed bottom-up algorithm to cal-
culate MUPS with the support of an external DL reasoner. The main
advantage of this approach is that it can deal with any DL-based on-
tology supported by an external reasoner. Currently there exist several
well-known DL reasoners, like RACER5, FaCT++6, and Pellet7, each
of which has proved to be reliable and stable. They support various
DL-based ontology languages, including OWL-DL.

Given an unsatisfiable concept A and a terminology T MUPS can
be systematically calculated by checking whether A is unsatisfiable in
subsets T ′ of T of increasing size. Such a procedure is complete and
easy to implement, but infeasible in practice. Even the most simple
real-world terminology in our tests in Section 6.1 has an average size
of 5 axioms per MUPS and 417 axioms, which requires over 1011 calls
to the external reasoner.

5 http://www.sts.tu-harburg.de/∼r.f.moeller/racer/
6 http://owl.man.ac.uk/factplusplus/
7 http://www.mindswap.org/2003/pellet/
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16 Schlobach, Huang, Cornet, van Harmelen

This observation implies that one has to control the subsets of T
that are checked for satisfiability of A by means of a selection func-
tion. Such a selection function selects increasingly large subsets which
are heuristically chosen to be relevant additions to the currently se-
lected subset. Although this approach is not guaranteed to give us the
complete solution set of MUPS it provides an efficient approach for
debugging inconsistent terminologies. We will now formally introduce
the core notions of selection functions and relevance.

Given a terminology T and an axiom ax, a selection function s is
a function which returns a linearly ordered collection of subsets of T .
More formally, for an ontology language L, a selection function s is a
mapping s : P(L)× L× N → P(L) such that s(T , φ, k) ⊆ T .

In (Huang and van Harmelen, 2006) we defined two different selec-
tion functions, the most simple one based on co-occurrence of concept
names in axioms. As in this paper we focus on unfoldable TBoxes,8 we
use a slightly more complex selection function here. The basic idea is
that an axiom ax is relevant to a concept name A if, and only if, A
occurs on the left-hand side of ax. In a way this variant of the bottom-
up approach mimics the unfolding procedure in order to restrict the
number of tests needed. This is also the one implemented in the DION
system.

We use Vc(ax) (Vc(C)) to denote the set of concept names that
appear in an axiom ax (in a concept C, respectively). Concept-relevance
is defined as follows:

DEFINITION 6. An axiom ax is concept-relevant to a concept or an
axiom φ iff
(i) Vc(C1) ∩ Vc(φ) 6= ∅ if the axiom ax has the form C1 v C2,
(ii) Vc(C1)∩Vc(φ) 6= ∅ or Vc(C2)∩Vc(φ) 6= ∅ if the axiom ax has the
form C1 = C2 or disjoint(C1, C2).

Note that this approach is a syntactic one because, for example, the
axiom ¬D v ¬C is treated differently from the axiom C v D.

Based on this particular relevance function we can now, for a termi-
nology T and a concept A, define a selection function s as follows:

DEFINITION 7. The concept-relevance based selection function for a
TBox T and a concept A is defined as

(i) s(T , A, 0) = ∅;
(ii) s(T , A, 1) = {ax | ax ∈ T and ax is concept-relevant to A};
(iii) s(T , A, k) = {ax | ax ∈ T and ax is concept-relevant to an

element in s(T , A, k − 1)} for k > 1.

8 Remember that the top-down is defined for unfoldable TBoxes only.

journalAR_DLissue.tex; 30/03/2007; 15:42; p.16



Debugging Incoherent Terminologies 17

k := 0
M(T , A) := ∅
repeat
k := k + 1

until A unsatisfiable in s(T , A, k) (*)
Σ := s(T , A, k)− s(T , A, k − 1)
S := s(T , A, k − 1)
W := {S}
for all ax ∈ Σ do

for all S′ ∈W do
if A satisfiable in S′ ∪ {ax} and S′ ∪ {ax} 6∈W then
W := W ∪ {S′ ∪ {ax}}

end if
if A unsatisfiable in S′ ∪ {ax} and S′ ∪ {ax} 6∈M(T , A) then
M(T , A) := M(T , A) ∪ {S′ ∪ {ax}}

end if
end for

end for
M(T , A) := MinimalityChecking(M(T , A))
return M(T , A)

Figure 3. MUPS bottomup(T , A)

We use an informed bottom-up approach to obtain MUPS. In logics
and computer science, an increment-reduction strategy is often used to
find minimal inconsistent sets (de la Banda et al., 2003). Under this
approach, the algorithm first finds a collection of inconsistent subsets
of an inconsistent set, before it removes redundant axioms from these
subsets. Similarly, a heuristic procedure for finding MUPS of a TBox
T and an unsatisfiable concept-name A consists of the following three
stages:

− Expansion : Use a relevance-based selection function to find two
subsets Σ and S of T such that a concept A is satisfiable in S and
unsatisfiable in S ∪ Σ.

− Increment: Enumerate subsets of Σ to obtain the sets S” such
that the concept A is unsatisfiable in S” ∪ S . We call those sets
A-unsatisfiable sets.

− Reduction: Remove redundant axioms from those A-unsatisfiable
sets to get MUPS.

Figure 3 describes an algorithm MUPS bottomup(T , A) based on
this strategy to calculate MUPS. The algorithm first finds two subsets Σ
and S of T by increasing the relevance degree k on the selection function

journalAR_DLissue.tex; 30/03/2007; 15:42; p.17



18 Schlobach, Huang, Cornet, van Harmelen

until A is unsatisfiable in S ∪ Σ but satisfiable in Σ. Compared with
T , the set Σ can be expected to be relatively small. The algorithm
then builds the power-set of Σ to get A-unsatisfiable sets by adding
an axiom ax ∈ Σ in each iteration of the loop to the sets S′ in the
working set W . If A is satisfiable in S′ ∪ {ax}, then the set S′ ∪ {ax}
is added to the working set to build up the union of each elements of
the power-set of Σ with the set S.9 If A is unsatisfiable in S′ ∪ {ax},
then add the set S′∪{ax} into the resulting set M(T , A) instead of the
working set W . This avoids the calculation of the full power-set of Σ
because any superset of S′∪{ax} in which A is unsatisfiable is pruned.
Finally, by checking minimality we obtains MUPS. The procedure to
check minimality of the calculated subsets of T is described in Figure
4.

PROPOSITION 3.1. The algorithm MUPS bottomup(T , A) of fig-
ure 3 is sound. This means that it always returns MUPS, i.e. that
M(T , A) ⊆ mups(T , A), for any output M(T , A).

PROOF. It follows from the construction of the sets in the col-
lection M(T , A) in MUPS bottomup(T , A) that the concept A is
always unsatisfiable for any element S in M(T , A). Otherwise it would
have never been added in the first place. Minimality is enforced by the
procedure MinimalityChecking(M(T , A)). 2

Take our running example. To calculate M(T1, A1), the algorithm
first gets the set Σ = {ax2, ax3} = {ax1, ax2, ax3} − {ax1}. Thus,
M(T1, A1) = {{ax1, ax2}}. What has to be noted is that the algo-
rithm cannot find that S1 = {ax1, ax3, ax4, ax5} is a MUPS for T1

and A1. This points to the incompleteness of our algorithm. The prob-
lem is the stopping condition of the expansion phase (denoted by (∗)
in the algorithm). This condition means that only the MUPS with
axioms with maximal relevance with regard to the unsatisfiable con-
cept will be found. In principle, the rigid stopping condition (∗) in
MUPS bottomup(T , A) could easily be replaced by a full expansion,
i.e. by a condition which requires saturation of the expansion phase.
However, as the primary goal of our implementation was practical ap-
plicability, the MUPS bottomup(T , A) algorithm is implemented in
DION as described above.

9 Namely {S′/S|S′ ∈ W} ⊆ P(Σ)
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for all M ∈M(T , A) do
M ′ := M
for all ax ∈M ′ do

if A unsatisfiable in M ′ − {ax} then
M ′ := M ′ − {ax}

end if
end for
M(T , A) := M(T , A)− {M} ∪ {M ′}

end for
return M(T , A)

Figure 4. MinimalityChecking(M(T , A))

3.3. Calculating MIPS

Given all MUPS we can easily calculate the MIPS, but we need an
additional operation on sets of TBoxes, called subset-reduction. Let
M = {T1, . . . , Tm} be a set of TBoxes. The subset-reduction of M is
the smallest subset sr(M) ⊆M such that for all T ∈M there is a set
T ′ ∈ sr(M) such that T ′ ⊆ T . A simple algorithm for the calculation
of MIPS for T now simply follows from Theorem 3.2, which is a direct
consequence of the definitions of MIPS and MUPS.

THEOREM 3.2. Let T be an incoherent TBox with unsatisfiable con-
cepts unsat(T ). Then, mips(T ) = sr(

⋃
A∈unsat(T )mups(T , A)).

We should remark that this algorithm might produce non-minimal
incoherence preserving subterminologies when not all MUPS are avail-
able; as can, e.g., happen in the incomplete version of our bottom-up
algorithm.

3.4. Calculating diagnoses and pinpoints

It was mentioned in Section 2 that MIPS (MUPS) correspond to mini-
mal conflict sets for the diagnosis problem of incoherent terminologies
(an unsatisfiable concepts). From Reiter’s seminal paper (Reiter, 1987)
a relatively straightforward algorithm for calculating (both types of)
diagnoses using Hitting Sets (HS) follows immediately. The general idea
is that diagnoses are paths in minimal trees, where each of the nodes
is labeled with a set of contradicting axioms (the conflict sets), and
where each edge on the path ”hits” precisely one node label on its way
to the leaves. More formally, for a collection C of sets, a HS-tree T is
the smallest edge-labeled and node-labeled tree, such that the root is
labeled by X if C is empty. Otherwise it is labeled with any set in C.
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Figure 3.4: HS-Tree with minimal conflict sets
Figure 5. HS-Tree with MIPS

For each node n in T , let H(n) be the set of edge labels on the path
in T from the root to n. The label for n is any set S ∈ C such that
S ∩H(n) = ∅, if such a set exists. If n is labeled by a set S, then for
each σ ∈ S, n has a successor, nσ joined to n by an edge labeled by σ.
For any node labeled by X, H(n), i.e. the labels of its path from the
root, is a hitting set for C.

Figure 5 shows a HS-tree T for the MIPS of our example TBox T1

of Section 2, where an axiom axi is represented by the number i. Each
path in the tree to a leaf marked by X is a diagnosis.

Unfortunately, the problem of finding minimal Hitting Sets is known
to be NP-complete. In (Schlobach, 2005b) we showed that a non-
optimised implementation of this algorithm often comes to a satisfac-
tory solution, but also failed to calculate diagnoses even for relatively
small terminologies.

Based on these findings we proposed in (Schlobach, 2005a) to calcu-
late pinpoints as approximations for diagnoses. A detailed description
of pinpoints can be found in Section 2.2.3.

4. Two case studies

Before providing an evaluation of computational behaviour of our al-
gorithms, we briefly want to discuss two case studies from the medical
domain. A more detailed description of the debugging of the DICE and
FMA (Foundational Model of Anatomy) terminologies can be found in
(Cornet et al., 2006).

4.1. DICE

The DICE knowledge base10, which is under development at the Aca-
demic Medical Center in Amsterdam, contains about 2500 concepts.
Each concept is described in both Dutch and English by one preferred

10 Development of DICE is supported by the National Intensive Care Evaluation
(NICE) foundation.
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term, and any number of synonym(s) for each language. In addition to
about 1500 reasons for admission, DICE contains concepts regarding
anatomy, etiology and morphology.

DICE originally had a frame-based representation, and is migrated
to DL in order to be able to perform auditing w.r.t. incorrect definitions
and missed classification. The migration process results in a TBox using
the language ALCQ. As qualified number restrictions that are used in
DICE are not yet supported by the algorithms, they were replaced by
existential restrictions, resulting in a TBox using ALC. In the DL-based
representation many closure axioms are used in order to be able to
find incorrect definitions. These closure axioms include disjointness of
sibling concepts, and universal restrictions. As a result of the migration
various concepts become unsatisfiable.

A recent version of DICE was classified, resulting in 65 unsatisfi-
able concepts. Using the bottom-up method described earlier (and the
MUPSter11 system) we calculated 175 MUPS. Applying the algo-
rithm described in the previous section, 142 MIPS are found, with 121
MIPS of weight 1, 10 MIPS of weight 2 and 11 MIPS of weight 4. This
distribution indicates that a relative small number of conflicts are a
cause of more than one unsatisfiable concept, whereas the majority of
conflicts result in only one unsatisfiable concept.

One of the pinpoints of this terminology consists of the following
five axioms, which form the largest cores, according to the procedure
defined in Section 2.2.3.

Disjointness of children of “Act” with arity 60
Disjointness of children of “Dysfunction/Abnormality” with arity 56
Disjointness of children of “System” with arity 15
Axiom for “Heart valve operations” with arity 7
Disjointness of children of “Toxical substance” with arity 4

Based on these results one can determine where to start the de-
bugging process. Either the disjointness statements mentioned can be
verified, or one can further analyse the definition of, and references
to, the concept “Heart valve operations”. Given this method we fully
debugged DICE, which is now being applied to register patients in the
Intensive Care unit of the AMC.

11 For the use-case a variant of MUPSter was used with limited support for
non-unfoldable TBoxes. This was necessary because of the disjointness axioms in
DICE. In fact, we adapted the unfolding rule of calculus in Figure 1 on page 12 so
that a formula (a : ¬A1)

l∪{disjoint(A1,A2)} is added for every disjointness statement
disjoint(A1, A2) whenever (a : A1)

l is in a branch. This can potentially lead to
non-termination, which needs to be treated carefully. A consequence of this is that
the procedure is not guaranteed to calculate all MUPS. Nevertheless, we will use
the terms MUPS and MIPS throughout this session to simplify the presentation.
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4.2. FMA

To test how our approach can be applied to other terminologies, we have
used the Foundational Model of Anatomy (FMA)12. FMA, developed
by the University of Washington, provides about 69000 concept defini-
tions, describing anatomical structures, shapes, and other entities, such
as coordinates (left, right, etc.). The FMA Knowledge Base, which is
implemented as a frame-based model in Protégé13, has been migrated to
DL, using the language ALC. In order to restrict the language to ALC,
inverse relations, specified in the frame-based representation, were ig-
nored in the migration process. Due to its large size we were not able to
classify the full FMA terminology with RACER. We hence limited the
case study to “Organs”, which comprises a convenient subset that is
representative for the FMA. Of the 3826 concept definitions, 181 were
found to be unsatisfiable. Interestingly, this resulted in a pinpoint with
a single definition, namely that of “Organ”. This could be explained
by the definition of Organ:

Organ v AnatomicalStructure u∃ RegionalPartOf.OrganSystem u
∀ RegionalPartOf.OrganSystem u∃ PartOf.OrganSystem u
∀ PartOf.OrganSystem

In FMA, the unsatisfiable concepts were defined as part of some
organ, for example

Periodontium v SkeletalLigament u∃ PartOf.Tooth u ∀ PartOf.Tooth
u ∃ RegionalPartOf.Tooth u ∀ RegionalPartOf.Tooth
u ∃ SystemicPartOf.Tooth u ∀ SystemicPartOf.Tooth

Periodontium and Tooth are subsumed by Organ, and according to
the definition of Organ, Tooth should be an OrganSystem. Hence, it
would be more correct to specify that an Organ is also an allowed role
value for the (Regional)PartOf role, i.e. defining Organ as follows:

Organ v AnatomicalStructure u
∃ RegionalPartOf.(Organ t OrganSystem) u
∀ RegionalPartOf.(Organ t OrganSystem) u
∃ PartOf.(Organ t OrganSystem) u
∀ PartOf.(Organ t OrganSystem)

Changing the definition in this way results in a coherent TBox, which
shows how one axiom can lead to unsatisfiability of a large number of
concepts. Pinpointing properly detects this single axiom, which was
indeed incorrectly specified from a medical perspective.

12 http://sig.biostr.washington.edu/projects/fm/
13 http://protege.stanford.edu/

journalAR_DLissue.tex; 30/03/2007; 15:42; p.22



Debugging Incoherent Terminologies 23

5. Experimental Setup

The results from the previous section are encouraging: for the practical
cases they were developed for, the MUPS, MIPS, diagnoses and the
like, indeed helped in some cases. What remains to be investigated
is whether we have effective algorithms to calculate those debugging
notions in general, whether a particular method will be more appro-
priate than another, and how well our methods will scale. In the next
section we will answer these questions by performing some controlled
experiments, in which we will run our tools MUPSter and DION
against a number of benchmarks.

5.1. Questions to be investigated

In some more detail, the questions we want to study are as follows:

− Can debugging be performed efficiently? More concretely, given
an incoherent terminology, can our tools support a practitioner
effectively? We will see that the answer to this question is not nec-
essarily positive. Even worse, we know that for most Description
Logics our problem is exponentially hard14, which means that we
will never be able to guarantee termination in realistic time for
arbitrary input. So, the following question will be very important
to answer:

− What makes an incoherent terminology difficult to debug? Are
there particular classes of terminologies that are more difficult to
debug than others? If we can identify such classes, there is a logical
follow-up question:

− Which are the most appropriate methods for debugging incoherent
terminologies? Not only will there be classes that are more difficult
than others, there might also be classes of TBoxes for which one
method is more appropriate than the other. To answer this ques-
tion could allow the user to choose the appropriate implementation
according to his/her needs.

5.2. The benchmarks

There are some criteria for a good test-set. Most importantly, a test-set
should be prototypical, so that it represents a larger class or realistic
problems. Also, it has to be systematic, so that influence of particular

14 Debugging is at least as hard as checking satisfiability, which is itself pspace
or even harder for most DLs (see. e.g., Chapter 3 of (Baader et al., 2003)).
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Table II. Real-world terminologies

length

#ax #unsat #mips |mips| of mD

DICE-A 534 76 16 3 3

DICE 4995 27 55 4 -

MGED 406 72 38 4 3

Geo 417 11 22 2.6 8

S&C 6382 923 - - -

MadC 69 1 - - 1

properties of classes of TBoxes can be evaluated. Finally, a test-set
should be statistically viable, i.e the results of an experiment for a
particular class of TBoxes should indeed have some significance w.r.t.
the properties it is meant to evaluate.

In order to address the above mentioned research questions under
these criteria, we conducted three different types of benchmark experi-
ments: first, an evaluation of the methods with real-world terminologies,
secondly, an evaluation using an adapted benchmark set from the DL
literature, and finally, some experiments with our own purpose-built
data-set.

5.2.1. Evaluation with real-world terminologies
The first approach to evaluation of debugging methods is to consider
a number of publicly available Description Logic terminologies. These
are summarized in table II.

We split our test terminologies in three groups, according to the
way they were built. As examples for terminologies created through
migration we consider an older version of the anatomy fragment of
DICE (we abbreviate DICE-A), and a previous full version of full DICE
(abbreviated DICE). The incoherence of DICE-A has two distinct causes:
first, this is a snap-shot from the terminology in its creation process,
i.e. it contains real modelling errors. Moreover, the high number of
contradictions is specific for migration as a result of stringent semantic
assumptions, which were made in order to uncover as many migration
errors as possible.

In the second category, MGED and Geo are variants of terminolo-
gies which are incoherent because they have disjointness statements
artificially added for semantic enrichment (as suggested in (Schlobach,
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2005a)). MGED15 provides standard terms for the annotation of micro-
array experiments to enable structured queries on those experiments.
Geo16 is a terminology of geography made available by the Teknowledge
Corporation.

The third category contains the merged terminologies of SUMO17

and CYC18, two well-known upper ontologies. As they both cover similar
topics there is a high number of unsatisfiable concepts.

We constructed ALC versions for all five terminologies. Without loss
of unsatisfiability19, we removed, for example, numerical constraints,
role hierarchies and instance information. All terminologies, however,
were non-cyclic and could be transformed to an unfoldable format
with the exception of the disjointness statements that were treated
as described in footnote 11 on page 21.

For the last example, the MadC20 ontology, this is not the case. This
ontology was constructed to illustrate language features of Description
Logics, and we use it to illustrate that DION’s generic method works
for expressive formalisms, where language specific methods fail. MadC

is incoherent with an unsatisfiable concept MadCow.
Benchmarking with real-life terminologies is a most natural way of

evaluating the quality of debugging algorithms. On the other hand,
there is only a limited number of realistic terminologies available that
are incoherent. This has several reasons, first, published terminologies
usually have undergone a careful modelling process, and it should be
expected that logical modelling errors have already been eliminated.
Secondly, current terminologies often still use quite inexpressive lan-
guages and avoid incoherence by not stating disjointness of classes.
The consequence is that the set of testing examples is limited, and it
becomes difficult to make a systematic evaluation of our algorithms as
the bias of the data is simply too dominant.

Alternatively it is common to use systematically created test-sets
for benchmarking, and such sets also exists to evaluate DL reasoning.

5.2.2. Benchmarking with (adapted) existing test-sets
The issue of benchmarking Description Logic systems has been ad-
dressed several times in the literature over the last 10 years, mostly
using adaptations of modal logic test-sets, (Massacci and Donini, 2000).

15 http://www.mged.org/
16 http://ontology.teknowledge.com/
17 http://www.ontologyportal.org/
18 http://www.opencyc.org/
19 This means that all unsatisfiable concepts were still unsatisfiable after our

transformations.
20 http://www.cs.man.ac.uk/~horrocks/OWL/Ontologies/mad\_cows.owl
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In most of these studies the purpose was to evaluate the runtime of
DL reasoners with respect to the complexity of the used language
(mostly the modal depths). Nevertheless, systematic benchmarking still
remains an open problem. Unfortunately, our tools restrict the experi-
ments to test-sets with unfoldable ALC terminologies. Finding a good
benchmark for unfoldable terminologies is difficult, though, as existing
extensions to terminologies usually go beyond these requirements.

For this reason, we adapted an existing test-set for ALC concept
satisfiability, by translating each unsatisfiable concept into an incoher-
ent terminology. We used the satisfiability tests from the well-known
DL benchmark from the 1998 system comparison (Horrocks and Patel-
Schneider, 1998). We took 9 sets of unsatisfiable concepts usually de-
noted by: DL98={k branch p, k d4 p, k dum p, k grz p, k lin p, k path p,
k ph p, k poly p, k t4p p}. The test procedure works as follows: each
set contains 21 concepts with exponentially increasing computational
difficulty. The measure for the speed of the DL system is the highest
concept in the list that could still be solved in 100 seconds. These test-
sets were built in the early days of the latest generation of Description
Logic tools, which did not have as many optimizations then as they
have now. Nowadays, these test-sets are outdated, as they are too easily
solved by all existing DL systems. For our purpose, however, they are
still relevant, as our implementation of the top-down algorithms works
(in the current version) without optimizations.21

We translated each of the unsatisfiable concepts in the test-sets into
one unfoldable incoherent ALC terminology in the following way: let
C be an unsatisfiable concept, we built an initial terminology AC v C.
Then each sub-concept S of C that is in the scope of an odd number
of negations is (recursively) replaced by an atom AS , and an axiom
AS v S is added to the terminology, where AS and AC are new names
not occurring in the concept. Then the resulting TBox is incoherent.
Let us illustrate the method with an example, rather than give a formal
definition. Suppose we have an unsatisfiable concept C = ∃r.(AtB)u
∀r.(¬Au¬B). We first built a terminology T = {AC v C}, and replace
the outermost sub-formulas of C by atoms A1 and A2. T is now {AC v
A1 uA2, A1 v ∃r.(AtB), A2 v ∀r.(¬Au¬B)}. Next we transform the
definitions of A1 and A2, which leads to the following TBox {AC v
A1 u A2, A1 v ∃r.A3, A2 v ∀r.A4, A3 v A t B,A4 v ¬A u ¬B}, and
so on. The resulting terminology for C = ∃r.(AtB)u∀r.(¬Au¬B) is
then:

21 There is an experimental implementation which trades completeness of the
method with a number of optimizations. In this paper we restrict our attention
to the more robust standard implementation of MUPSter, which is complete for
unfoldable TBoxes.

journalAR_DLissue.tex; 30/03/2007; 15:42; p.26



Debugging Incoherent Terminologies 27

{AC v A1uA2, A1 v ∃r.A3, A2 v ∀r.A4, A3 v A5tA6, A4 v A7uA8,
A5 v A,A6 v B,A7 v ¬A,A8 v ¬B}
For each set of unsatisfiable concepts in DL98 we created an incoher-

ent terminology given the above mentioned method for the first three
concepts. The results are called: k branch p tbox1, k branch p tbox2,
k branch p tbox3 and similarly for all other sets in DL98.

An interesting phenomenon given this new test-set is that the data-
sets are heavily engineered to make reasoning hard, and to punish non-
optimized reasoning. We will see that this has drastic effects on the
run-times of the different algorithms. On the other hand, this reasoning-
centered view does not really coincide with the average structure of the
realistic terminologies. Mostly these terminologies are relatively flat in
structure, but large; and often the definitions strongly dependent on
other definitions. To account for this, we decided to build our own
benchmark for evaluating algorithms for debugging.

5.2.3. Benchmarking with purpose-built test-sets
In order to build a test-set for benchmarking our algorithms for debug-
ging several basic requirements have to be fulfilled: first, the resulting
TBoxes have to be unfoldable and in ALC, and they have to be inco-
herent. Also, the benchmark should be systematically constructed, so
that classes of problems can be studied and general statements over
properties of TBoxes can be made.

These basic requirements leave a number of choices to create such
a test-set: e.g. creating an incoherent terminology could be achieved
through systematic construction of logical contradictions, or through
random choice of operators and names. The first choice has been made
in the previously mentioned DL98 benchmark set, whereas in our test-
set we opted for the second option. This way we hope to get a stronger
similarity with realistic terminologies, while still retaining some control
over parts of the structure of the TBoxes.

Building such a test-set for debugging and diagnosis of incoherent
terminologies is difficult, because there is a plethora of parameters
that could influence the complexity of reasoning, and the difficulty for
debugging. In our case we decided to fix a number of parameters, and
vary others. See (Schlobach et al., 2006) for the details.

In particular, we decided to vary the size of the TBox (#t), the
concept size (#s), the ration of disjunction versus conjunction, and the
ratio of negated versus non-negated atoms.

To create the i-th axiom (i.e. to defined the i-th concept-name) we
create a concept of size #s drawn from all the concept-names combined
with the remaining concept-names that were not defined in the first i−1
axioms. The construction of the concept is then simply a construction
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based on random choice with the given probability distributions for
disjunction/conjunction and negated/non-negated atoms.

Given this method, we constructed 1611 unsatisfiable terminolo-
gies. Note that this method does not automatically deliver incoherent
TBoxes. On the contrary, the overall rate of incoherence given this
method is less than 30%. To consider only incoherent TBoxes we there-
fore simply run an optimized DL reasoner to delete all coherent TBoxes
from the test set.

It should be noticed, the choice of parameters greatly influences the
ratio of satisfiable versus unsatisfiable terminologies, particularly the
disjunction/conjunction ratio: with disjunction-likelihood of 50%, only
5% of the resulting TBoxes were incoherent, as opposed to almost 50%
of the TBoxes when the likelihood was just 10%. The consequence of
this is easy to see: assume that we decide to create a fixed number
of TBoxes for testing per parameter value, we will have only 10% of
incoherent TBoxes in our test-set with a high disjunction ratio. The
most simple solution to this problem was to account for the satisfiabil-
ity/unsatisfiability ratio, and to create an accordingly larger number of
TBoxes in the first place. In this way we believe to have created a test-
set of TBoxes, where all TBoxes corresponding to particular parameter
choices are equally likely to occur. Both the test-set and the generator
will be made available on our website22.

6. Experimental results

In the previous section, we described three different test-sets we use
for evaluating the run-times: first, a set of 6 real-life terminologies
we collected from the Internet, and our own use-cases, secondly, an
extension of an existing benchmark for evaluation of Description Logic
systems, and finally, a purpose built benchmark consisting of 1611
systematically constructed incoherent terminologies. Interestingly, the
results vary a lot, and it is worth looking into some details to get a
better understanding of the pros and cons of each of the algorithms.

For the evaluation we have to keep two aspects in mind: the dif-
ference in expressiveness of the two tools, and the fact that one is
complete, and the other is not. Remember that, because DION uses an
external DL systems for the reasoning part via a DIG interface, DION’s
expressiveness only depends on the external system being used. This
means that DION can debug arbitrary ontologies in very expressive
Description Logics, such as SHIQ and the like. MUPSter, on the

22 http://www.few.vu.nl/~schlobac
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Table III. Comparing top-down and bottom-up methods

Top-Down: MUPSter Bottom-up: DION RacerPro

time for all MIPS time for all MIPS time for coherence

DICE-A 12 sec timed out 4.3 sec

DICE 54 sec 32 sec 16.62sec

MGED 5 sec timed out 3.38 sec

Geo 20 sec 11 sec 1.82 sec

Sumo&Cyc timed out timed out 4.7 sec

MadCow not applicable 0.66 sec 0.22 sec

other hand, is restricted to unfoldable ALC TBoxes, and therefore less
expressive than DION. On the other hand, it implements a method
to guarantee that it calculates all MIPS for unfoldable TBoxes. How-
ever, our experience and experiments show that DION and MUPSter
produce the same results for all the terminologies we considered in our
experiments. Although we cannot ensure that there are no pathological
examples where DION fails to find a particular MIPS, there was no
such example in our experiments, neither in the real-world examples we
studied in Section 6.1, nor in the constructed terminologies of Section
6.2 or 6.3.

6.1. Experiments with existing terminologies

All experiments were performed on a dual AMD Athlon MP 2800+
with 2 Gb memory. Both MUPSter and DION were given the six
terminologies described in Section 5.2.1. Both were timed-out if the
programs had not calculated the set of MIPS within one hour.

Results Table III summarizes the run-times of the two systems on the
6 terminologies. As a reference we also give the runtime RacerPro 1.8.1
needs to find the unsatisfiable concepts. For the MadCow terminology,
MUPSter could not be applied as this terminology contains GCIs.

While MUPSter manages to calculate the MIPS within the time-
limit for all but the Sumo&Cyc terminology, DION fails in two more
cases, the anatomy part of DICE, and the MGED TBox. The results
of the experiments show a scalability problem for both algorithms with
really big terminologies, as both methods failed to calculate MIPS in
the case of Sumo&Cyc, and DION also needs at least more than one
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hour for two more terminologies. On the other hand, the run-times of
DION are faster for the two examples where it finds a solution

Finally, it has to be noted, as a proof of concept more than anything
else, that DION is indeed capable of calculating MIPS for the highly
expressive, but admittedly small, MadCow terminology.

Analysis Debugging is computationally difficult, and it cannot be
avoided that calculating MUPS and MIPS will in some cases fail, no
matter what algorithms is used. On a more optimistic note however,
solutions can be found in fairly complex terminologies, such as DICE
or MGED.

This remark is in line with reasoning in Description Logics in general,
where the worse case complexity tells us that reasoning is in principle
intractable. But despite this very high theoretical complexity, there
are very promising results in practical complexity (both for classical
reasoning and for debugging). Out of the four cases where our tools find
solutions, two interesting pieces of information stick out: the shorter
runtime of DION as compared to MUPSter in the two cases where
DION finds a solution, and the independence of the run-times of DION
and RacerPro. As DION uses RacerPro as underlying reasoning engine,
a correlation could have been expected. However, even though there is
almost no difference in the time to check satisfiability for DICE and
DICE-A, DION fails to find MIPS for the latter. Similarly, the relatively
small run-time of RacerPro on Sumo&Cyc would suggest that DION
should be able to find MIPS, which it does not. This clearly shows that
it is not the complexity of the reasoning, but the number of reasoning
tasks that makes bottom-up debugging difficult.

One explanation of this behavior could be in the number of unsatis-
fiable concepts in the 6 terminologies. Interestingly, the terminologies
with the highest number of unsatisfiable concepts are the most difficult
to debug for DION. As both DION and MUPSter implement the
same algorithm to calculate MIPS from MUPS this algorithm cannot
be the explanation for DION’s problems, i.e. the real problem must be
to find the MUPS.

Table IV summarizes other properties of the 4 terminologies for
which MUPSter found MIPS. It shows that the number of MUPS
(#mups) roughly corresponds to the number of unsatisfiable concepts,
as the average number of MUPS (avrg # mups) per unsatisfiable con-
cept does not vary significantly.

Another explanation of this artifact could be the number and size
of the MUPS, as there is a direct correlation between the complexity
of algorithm implemented in DICE, and the size of the MUPS. The
mean of the size of the MUPS for MGED would confirm this theory,
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Table IV. Properties of MUPS in the real-world terminologies

#mups avrg #mups mean |mups| std deviation |mups|

DICE-A 152 2 6.46 0.65

DICE 70 2.59 6.45 1.2

MGED 244 3.4 8.13 1.05

Geo 22 2 5.14 0.69

but for DICE and DICE-A no significant difference can be seen. The
lower standard-deviation of the size of the MUPS for DICE-A could
suggest that a higher percentage of MUPS calculations is done in lower
branches of the search-tree for relevant concepts (with exponential blow
of complexity).

Unfortunately, for such a study one needs the debugging output as
input to the experiments, something that was outside the scope of this
paper. What we investigated in more detail, was whether there are other
criteria that could be responsible for particular run-time behavior.

For this purpose we conducted some experiments on two sets of
systematically built benchmarks.

6.2. Experiments with existing benchmarks

The generalizability of the results of the previous set of experiments is
limited as they could be severely influenced by some peculiarity of the
chosen terminologies. Thus we conducted a second set of experiments
based on the benchmark set from the DL98 systems competition. To
get a better understanding of the influence of specific properties of
terminologies on the computational properties of the respective al-
gorithms we run both MUPSter and DION against the set of 27
TBoxes translated from the DL98 test-bench as described in Section
5.2.2. The results for MUPSter and DION are summarized in Figure
6. The graphics show the runtime per problem up to the time-out of
100 seconds.

We kept this relatively short time-out from the original DL experi-
ments. This has to do with the nature of the experiments. Remember
that the DL benchmark was created in such a way that it show the
weakness of an algorithm in an exponential way, so adding more time
will not change anything substantially. DION might solve one class
more, and MUPSter over the first two levels in some cases, but the
general picture will be the same.
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Figure 6. Runtime (in seconds) of DION and MUPSter on DL98 test set

Results The results of the experiments with the adapted DL bench-
mark set differ from the results described in the previous section, as
they show high failure rate of the MUPSter tool to solve the more
difficult cases, but very good computational behavior of DION. More
concretely, it can be noticed that MUPSter fails in all of the 9 different
classes to calculate even the 3rd problem, whereas DION only fails in
a single case (k branch p) to terminate in time.

Analysis The MUPSter tool fails to debug terminologies that are
based on complex unsatisfiability problems, such as the ones used in
the DL98 evaluation. These problems have been purpose-built to point
to computational difficulties in satisfiability checking, i.e. they explicitly
exploit structural properties of formulas and provers. More concretely,
experience showed that the DL systems of the 90s failed in these cases,
because they used naive tableau algorithms, and the complexity of the
test-set forced their calculations to be “lost in the search space”.

This allows the conclusion that basic optimizations can significantly
improve the performance of MUPSter, because techniques such as
lemmatizing and caching can avoid the mentioned computational traps.
The price in this case is a loss of theoretical correctness. More precisely,
the terminologies returned by our algorithm might not be minimal any
more. We doubt whether this is a problem in practice, as minimality is
a nice, but not strictly required feature of the MIPS.

As DION uses optimized reasoners, which can nowadays solve prob-
lems like those of the DL98 test-set within milliseconds it solved the
problems easily. This also has to do with the structure of the test-set:
as we created the TBoxes from concepts in a deterministic way, each
axiom is related to the part of the concept it was created from. But this
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Figure 7. Runtime (in seconds) of DION depending on the number of (unrelated)
axioms to k path p1

syntactic structure corresponds one-to-one to DION’s search strategy:
in DION we basically start with the definition on an unsatisfiable con-
cept, and include the next following axioms in our test procedure on
the basis of a syntactic relation (occurrence of the defined name). Each
calculation of MIPS therefore mirrors the construction of the TBox
from the unsatisfiable concept.

To counter this process we decided to add a number of irrelevant
axioms to the test-set. We arbitrarily chose the first TBox k path p and
added 100, 200, 400 and 800 random axioms.23 Figure 7 summarizes
the run-times of this experiments. Although the problem is in princi-
ple exponential in the size of the TBox, DION shows linear behavior
in this experiment. This also corresponds to the increasing run-time
RacerPro needs for checking coherence. This has an relatively simple
explanation: it shows that the strategy underlying DION controls the
inherent complexity of the search process in a nice ways.

6.3. Experiments with purpose-built benchmark

The final set of experiments to evaluate algorithms of debuggers was
conducted on our own purpose built benchmark that was described in
Section 5.2.3. Here the focus was not on creating difficult reasoning
problems, but on identifying features of terminologies that would make
debugging hard or easy.

23 We took arbitrary coherent sets of axioms from our purpose-built test-set.
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In these experiments we constructed classes of TBoxes according
to some varying parameters, and compared the run-times of our tools
for these classes with other classes. This allows us to get some more
insights into the influence of structural peculiarities of TBoxes on the
time needed for debugging.

Results For the 1611 TBoxes tested in these experiments we checked
the run-times of the three tools DION and MUPSter for debugging,
and RacerPro for consistency checking. The overall average run-times
in seconds are summarized in the following table:

MUPSter DION RacerPro

average in sec 2.05 1.68 1.35

These numbers show DION as the clear overall winner over MUP-
Ster, which is in line with the results of the previous experiments. It is
worth noticing, that the overall run-times of MUPSter contain a call
to RacerPro for a list of unsatisfiable concepts. Since this external run-
time takes on average about 70% of MUPSter’s runtime, we expect
a strong correlation between RacerPro and MUPSter for those cases
where MUPSter takes reasonably short time. Any difference in the
run-time behavior of these two tools therefore points to an additional
source of complexity in MUPSter’s core algorithm. On the other hand,
DION’s algorithm is completely based on calls to an external reasoner,
in our experiments RacerPro. Therefore, also a correlation between the
times of these tools can be expected.

The results of our experiments to identify computational properties
of particular classes of TBoxes are summarized in a number of figures,
in which we show the average run-time (in seconds) for each tool given
a particular instantiation of values for the varying features.

Figure 8 summarizes the results, where we compare the run-times
of our three tools on classes of TBoxes with concept-length 3 to 7. In
the case of varying concept-size, the result shows a clear correlation
between the three methods. There is a slight dip in computational
difficulty of the concepts of size 4, followed by an increasing run-time
for all tools. Interestingly, the curve for DION is the steepest, and for
concepts of size 7, DION already takes more time than MUPSter.

The most natural results can be seen in the experiments were the
size of the TBox is varied. Here, we take TBoxes of different length
into account varying from 10 to 90 in steps of 10. The general line is an
almost linear increase in run-time for all three tools up to 90 concepts.

We also conducted experiments with varying the ratio between dis-
junctions and conjunctions and with varying the ratio of negated versus
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non-negated atoms in the axioms of the TBox. However, these exper-
iments did not reveal any interesting structural dependencies of the
behavior of our implementations on these parameters. Hence, we omit
the detailed reports of these experiments.

Analysis Unfortunately, none of the initial experiments seem to indi-
cate a clear explanation for the run-time behavior of particular classes
of TBoxes. A tendency can be seen that debugging becomes more dif-
ficult with increasing TBox and concept-size. But another conclusion
might be drawn. Figure 8 shows an increase in the runtime of DION
which is much steeper than those of the other two tools. This has its
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reasons in the DION algorithm, where the size of the search tree is
determined by the length of the concepts of the definitions (because of
the choice of selection function). The experiment described in Figure 9
suggests that the increase in complexity of the TBox is controlled by
the heuristics in a better way.

Both experiments depend on the features of the TBoxes that are
known previous to debugging. This could be useful if we want to decide
automatically which tool to use for which terminology. A second class
of features are those that are inherent to debugging, i.e., which can
only be determined by running a debugger on the data-sets. One such
feature is the number of MIPS for an incoherent terminology.

Figure 10 shows the run-times with respect to the number of MIPS
of the incoherent terminologies. The results differ from the previous
ones, and show a very distinct behavior for each of the three tools.
Whereas RacerPro’s runtime remains almost constant for increasing
MIPS-size, and MUPSter shows an almost linear increase (up to the
number 11), there is an exponential behavior visible for DION.

For the values above 10, the numbers have to be read with care, as
there are only six examples, but the average is clear: to debug 6 TBoxes
with more than 10 MUPS, DION needs 232 seconds as compared to
the 50 seconds MUPSter needs.

How can we explain the increasing run-time of the debugger, partic-
ularly of DION, for an increasing number of MIPS? Both MUPSter
and DION implement the same method to calculate MIPS from MUPS.
As an increasing number of MIPS is directly related to an increasing
number of MUPS, the difference is that MUPSter calculates all MUPS
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for an unsatisfiable concept at the same time from a fully expanded
tableau. This means that calculating several MUPS is not more diffi-
cult than calculating fewer MUPS, as the initial time-consuming act
is the expansion of the tableau. However, the number of MUPS is
directly related to the depth of the search-tree of DION, which adds
one exponential factor for each additional level in the tree.

As the latest experiments show, studying the properties of the results
of the debug seems to be a fruitful line to explain of the run-time
behavior of DION on the realistic terminologies studied in Section 6.1.

There are a number of open questions, that we have to leave for
future research:

− What is the influence of other properties of TBoxes, i.e. the number
of MUPS or the average size of MIPS and MUPS.

− What is the relation between the a-posteriori features (#MIPS
etc) and the data-set? Can we explain the peculiarities of some
results by secondary properties of the benchmark?

In this paper we focused on a-priori properties of TBoxes, i.e. prop-
erties that can be determined before diagnosis and debugging, because
one of our initial research goals was to determine the best tool for a
particular class of incoherent terminologies.

6.4. Answering the research questions

Let us end this section by answering the research questions we presented
in Section 5. More concretely, there are three questions regarding the
computational properties of debugging, our tools and particular sub-
classes of incoherent terminologies, which we can now answer on the
basis of the experiments of the previous section.

Can debugging be performed efficiently? Realistic terminologies can be
debugged in some, but not all, cases. Overall MUPSter shows better
performance on our real-world examples than DION, which probably
has to do with the large number of MIPS. On the other hand, the
other two benchmark show a more fine-grained picture: given our own
benchmark we can conclude that both methods scale quite well with the
overall size of the terminology and even the average length of the con-
cepts. Finally, the DL benchmark where complex reasoning is required
show that optimized reasoners can be used for efficient (if incomplete)
debugging, but also that non-optimized techniques (such as the one
employed by MUPSter, which are naive w.r.t. the logical complexity
of the reasoning) necessarily fail. It is an open question whether there
are any complete approaches that might scale up in this case.

journalAR_DLissue.tex; 30/03/2007; 15:42; p.37



38 Schlobach, Huang, Cornet, van Harmelen

What makes an incoherent terminology difficult to debug? The larger
an incoherent terminology, the more difficult it becomes. It seems that
the increase in run-time is linear with increasing TBox size, but expo-
nential in the average size of the concepts. Finally, the runtime w.r.t. the
number of MUPS gives a clear indication that the complexity increases
with an increase in the number of modelling errors.

Which are the most appropriate methods to calculate? There are two
critical cases: first, the complexity of the standard reasoning is so that
MUPSter’s unoptimized tableau calculus fails. Then, DION is a good
choice, as it uses optimized DL reasoner. In the second case, there are
multiple-errors, which might hamper DION’s efficiency. In this case,
MUPSter can often be more efficient, as it uses a single procedure
which is independent on the number of errors. In all other cases, our
results seem to indicate that both methods perform comparably.

7. Concluding remarks

In this paper we have presented a formal characterization for debugging
and diagnosis, we defined two algorithms for computing MIPS, which
are both directly useful and the basis for the calculation of diagnoses.
In a second step we provided an evaluation of these algorithms. The
evaluation was done in two ways: we first studied the effectiveness
of our proposal in a realistic setting on two real-world terminologies.
Secondly, in some controlled experimental analysis, we tried to get a
better understanding of the computational properties of the debugging
problem and our algorithms for solving it.

The results of these evaluations are mixed: in general we can con-
clude that our proposed notions for debugging are useful in practice.
Our experience shows that a number of heuristics and additional mea-
sures, such as the weight of MIPS or the pinpoints are crucial in
practical applications.

In terms of computational behavior our results are less positive:
for each of the described methods there are relatively simple cases,
where debugging fails in reasonable time. For example, the DION tool,
which performs slightly better on average in our controlled experiments,
fails to compute MIPS for a number of real-world terminologies, where
MUPSter comes up with a solution within minutes. On the other
hand, the more complex reasoning becomes the worse is MUPSter’s
performance.

Our experiments yielded a better understanding of the properties
of incoherent terminologies that influence the debugging time, most
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notably the complexity of the definitions, and the number of logical
modeling errors. There are, however, still several open questions, mostly
related to the combination of properties. This means that an estimation
of the run-time of the debuggers on the basis of the structure of the
incoherent terminology is still very difficult.

An interesting result is the comparison of the two methods: top-down
versus bottom-up, which both have their merits in different cases. This
might be an argument to extend the MUPSter approach to more
expressive languages, and non-restricted ontologies.

Finally, since this article was written, extensions of our methods
and alternative implementations have been published (most notably
(Meyer et al., 2006) and (Kalyanpur, 2006)). Availability of these tools
will offer the opportunity for more extensive benchmarking, also on
more expressive terminologies and ontologies.
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