
Debugging Large-Scale Data Science Pipelines
using Dagger

El Kindi Rezig⋆ Ashrita Brahmaroutu⋄ Nesime Tatbul⋆⋄ Mourad Ouzzani♣ Nan Tang♣

Timothy Mattson⋄ Samuel Madden⋆ Michael Stonebraker⋆

⋆MIT CSAIL ⋄Intel ♣Qatar Computing Research Institute, HBKU
{elkindi, tatbul, madden, stonebraker}@csail.mit.edu

{ashrita.brahmaroutu, timothy.g.mattson}@intel.com {mouzzani, ntang}@hbku.edu.qa

ABSTRACT

Data pipelines are the new code. Consequently, data scientists need

new tools to support the often time-consuming process of debug-

ging their pipelines. We introduce Dagger, an end-to-end system

to debug and mitigate data-centric errors in data pipelines, such as

a data transformation gone wrong or a classifier underperforming

due to noisy training data. Dagger supports inter-module debug-

ging, where the pipeline blocks are treated as black boxes, as well

as intra-module debugging, where users can debug data objects in

Python scripts (e.g., DataFrames). In this demo, we will walk the

audience through a rich, real-world business intelligence use case

from our industrial collaborators at Intel, to highlight how Dagger

enables data scientists to productively identify and mitigate data-

centric problems at different stages of pipeline development.

PVLDB Reference Format:

El Kindi Rezig, Ashrita Brahmaroutu, Nesime Tatbul, Mourad Ouzzani,
Nan Tang,Timothy Mattson, Samuel Madden, Michael Stonebraker. De-
bugging Large-Scale Data Science Pipelines using Dagger. PVLDB, 13(12):
2993-2996, 2020.
DOI: https://doi.org/10.14778/3415478.3415527

1. INTRODUCTION
Data scientists use data pipelines for a myriad of applications

(e.g., business forecasting, medical diagnosis). Python libraries

such as Pandas, scikit-learn have matured significantly over the

past few years. As a result, authoring data science pipelines has

become more accessible than ever.

Data scientists typically have a collection of connected Python

modules to handle different tasks in a data pipeline (e.g., data prepa-

ration, data analytics, etc.) [6, 8, 11]. Oftentimes, pipeline errors

stem from the data (input or intermediate data), and not the code [5,

3, 8, 10]. Debugging pipelines at the data level is still in its infancy.

There is a lack of tools to assist in debugging data handled in the

pipeline. For instance, when data produced by a particular pipeline

module is erroneous (e.g., inadequate data transformation or miss-

ing values), then the rest of the pipeline will likely produce poor

data as well.

This work is licensed under the Creative Commons Attribution­
NonCommercial­NoDerivatives 4.0 International License. To view a copy
of this license, visit http://creativecommons.org/licenses/by­nc­nd/4.0/. For
any use beyond those covered by this license, obtain permission by emailing
info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 13, No. 12
ISSN 2150­8097.
DOI: https://doi.org/10.14778/3415478.3415527

Pipeline data exists at two levels: (1) inter-module: data that is

passed across the pipeline modules (e.g., files) through their I/O in-

terfaces; and (2) intra-module: Python data structures (e.g., Pandas

DataFrames) that are used inside the module. Data errors can occur

at either one of these two levels.

While very mature, code debuggers are not ideal in finding prob-

lems that stem from the data. To address this shortcoming, we have

built Dagger [7], an end-to-end system that supports data debug-

ging at two granularities: (1) inter-module debugging, where users

can treat the pipeline modules as black boxes and only debug the

data in the input/output of those modules; and (2) intra-module de-

bugging, where users debug code-handled data. We focus on scripts

written in Python for the latter.

Dagger offers data scientists a set of primitives to query and de-

bug data pipelines. For instance, if the training data has records

with missing values in the attribute salary, a data scientist might

ask the question: “What if I train two models, one with data that

includes all the rows, and another with data that excludes the rows

without a salary value?” (using Dagger’s split primitive), and

then compare the models in terms of accuracy (using Dagger’s

compare primitive). Dagger makes it easy to express such ad-hoc

queries allowing data scientists to experiment with various what-if

questions.

We propose to demonstrate how Dagger helps identify and de-

bug a real-world data science pipeline. The audience will expe-

rience firsthand how Dagger significantly reduces the number of

iterations needed to converge to a satisfactory pipeline by reducing

the time needed to identify data-centric problems. Specifically, we

will use a live pipeline debugging session of a business forecast-

ing scenario and show how Dagger addresses various data-centric

problems that typically happen during development (e.g., suspect

training data, erroneous values). In the spirit of GDB [1], Dagger

is a command-line tool where users issue statements to perform var-

ious debugging operations. For the purpose of the demo, we will

show a graphical user interface to author the pipelines and to run

Dagger statements on them.

There is currently a plethora of tools to address different facets of

pipeline development. For instance, a popular choice to author and

debug data pipelines is through Jupyter notebooks [2]. Such note-

books allow the mixing of scripts (cells), descriptive text, and code

output in one document. However, notebooks are not specifically

geared towards data debugging, i.e., users still need to write code

to test for different data-centric scenarios. Another line of work fo-

cuses on tracing and exploring data provenance to expose potential

data-centric problems. VisTrails tracks data provenance and allows

users to interact with it through visual interfaces [9]. Vizier allows

using multiple interfaces (e.g., spreadsheets and Jupyter notebooks)

2993



to interact with pipeline data [4]. While those tools are useful to

explore pipeline data, they do not provide explicit data debugging

primitives, i.e., the burden is on the user to take note of errors and

anomalies in the data. Dagger is a novel tool that takes away this

burden from the users, thereby improving their productivity.

2. SYSTEM OVERVIEW
Figure 1 illustrates the architecture of Dagger. Dagger takes

as input the Python modules of a given pipeline, called pipeline

blocks, and then runs these blocks and logs their data objects at run

time. We currently log tabular data from Pandas DataFrames and

numpy arrays. The logged data is stored in a Postgres database.

Users then use a SQL-like language to declaratively query, inspect,

and debug the data.

Workflow manager. Users can load their pipelines (i.e., Python

scripts) in Dagger with no additional coding effort. Users just

need to tag Python code blocks (i.e., a range of line numbers) in

their scripts (or use the whole script files) where they want data

to be tracked and stored by Dagger for later querying. For exam-

ple, the following Dagger statements create pipeline blocks (named

b1 and DEDUP) from two code blocks (in preprocessing.py and

dedup.py):

CREATE BLOCK b1 FOR PIPELINE P1: preprocessing.py:1-600

CREATE BLOCK DEDPUP FOR PIPELINE P1: dedup.py:10-144

Logging manager. Dagger logs data from the tagged blocks into

a Postgres database. The logging manager tracks and stores val-

ues of tabular data (e.g., Pandas DataFrames) across the pipeline

blocks. It also stores inter-module data. Additionally, because the

data generated at each run can be overwhelmingly large, Dagger

strives to avoid storing duplicate data by dividing data objects into

a “base” and “delta”. The former is a data subset that is repeated

in two or more data objects, and the latter is the “new” data that

is added to the base. This way, we can reconstruct a data object

by combining its base and delta. We refer to this data compression

scheme as “delta logging”. Currently, Dagger supports logging for

Pandas DataFrames and Numpy arrays in a python script by pars-

ing its Abstract Syntax Tree and adding logging calls each time a

DataFrame or Numpy object is modified.

Debugging primitives. Dagger exposes four primitives to debug

pipeline data:

• data breakpoints are used to test data assertions across the

pipeline blocks (e.g., salary should not exceed a certain value).

• split is used at runtime to split an input table into multiple

partitions that are fed as input to subsequent pipeline blocks.

• data generalization is for gathering data points that are sim-

ilar to sample data points (e.g., find values that exhibit the

same errors, or find more “good” values to use as input).

• compare is designed to compare two pipelines by the data

they generate. This helps in identifying pipelines that gener-

ate the same data even though they might be different (e.g.,

different parameters or modules).

In Section 3, we demonstrate how those primitives are used to de-

bug various data-centric problems in a real-world pipeline.

Interaction language. Dagger features a SQL-like language to

express debugging queries and statements. We refer to this lan-

guage as DQL (Dagger Query Language). The following statement

generates two runs of the block DEDUP in pipeline P1 with dataset

salary data: One run with records whose salary is less than

60,000, and the other run with records whose salary is greater

than or equal to 60,000.

In-memory data structures (e.g., Pandas DataFrames)

Code

Logging manager

DB

code symbols

code-handled data

delta logging

Interaction language

Query interpreter

Query processor

Debugging primitives

data breakpoints

split

data generalization

Workflow manager code tagging

code static analysis

compare

Figure 1: Dagger architecture

RUN BLOCK DEDUP IN P1 WITH SPLIT salary_data

WHERE salary < 60,000

We now show how Dagger helps accelerate pipeline develop-

ment in a real-world use case.

3. DEMONSTRATION SCENARIO
Our demo will focus on a machine learning pipeline (Figure 2)

that predicts which marketing campaigns are best suited for cus-

tomers. This prediction is based on historical data from the out-

come of previous marketing campaigns. The goal is to establish

models to forecast where marketing budget should be allocated and

how we can optimize existing marketing campaigns. We want to

assess whether certain marketing campaigns are bringing in more

return for certain customers (e.g., sales impact) as well as predict-

ing what this trend will look like over time.

3.1 Dataset
Our core data source is the Customers table with the following

schema elements:
Spend Type Customer ID Customer Name Year

Month Activity Category Vertical Industry Product Type

Geo Initiative/Campaign Marketing Program Payment

Quarter

The table contains mostly categorical variables and subcategories

of other existing variables. These include the marketing program

and campaign, the type of spending, the target product, vertical

industry along with the investment made, the geographical region

in which the customer is located, the customer name, time depen-

dencies - yearly, quarterly, monthly - and the amount invested (nu-

merical), among others. We use these raw attributes to construct,

aggregate, and transform the data before feeding it to a classifier.

This table contains well over a million rows, dating from 2010 to

the present.

2994



data 
preparation

value 
standardization

missing value 
imputation aggregation

label 
generation

train and test 
classifier

Is customer ID mapped to the same customer name?

While running, if the profits exceed 1B, something 
must have gone wrong, abort and inspect

Model accuracy is not satisfactory. 
Generate training data for different time 
granularities (quarters, years, months). 
Re-train the model and compare 
accuracy

I have data for a new customer, and I have k 
pipelines that work well. I am not sure which pipeline 
would fit it best

raw training 
data

new customer 
data

Would adding the “customer 
payment history” feature improve 
the accuracy of the model?

payment location ...

Candidate features

?

Replace value company name “Alpha” with “Alpha tech.” and see what happens

Figure 2: A typical use case pipeline from a data scientist (referred to in the text as “Lou”)

3.2 Pipeline Blocks
Figure 2 illustrates the key pipeline blocks for our use case.

Data preparation: This includes imputing missing values, finding

and correcting incomplete fields, and standardizing value represen-

tations (e.g., MA instead of Mass.). Additionally, some numerical

fields may be aggregated over various time granularities (months,

quarters, etc.). From this step, the data scientist selects a subset of

the data to label. We refer to those labels as seed labels.

Label creation and ranking: We use a similarity model with var-

ious features, such as customer type, vertical industry, and validity

of the marketing campaign to generate more training data by in-

cluding data points that are similar to those in the seed labels.

Modeling and output: We train multiple models at different lev-

els of aggregation (forecasting for short term vs. long term) using

classification and uplift modeling techniques, and assess their per-

formance. We can use these models to estimate how marketing

programs will fare in the future (based on similar programs).

3.3 Debugging Scenario
A data scientist, Lou, prepares the data pipeline in Figure 2 and

starts noticing a few problems concerning the data produced by

different pipeline blocks. We describe some of these problems and

how Dagger helps Lou address them with minimal effort.

Maintaining data invariants throughout the pipeline: During

each stage of the data pipeline, data objects (intra-module and inter-

module) go through multiple transformations and iterations, some-

times resulting in data errors due to several factors including poor

input data, code bugs, and bad module parameters. However, Lou

knows of a few assertions that must always hold on the data and

can express them using the data breakpoint primitive in Dagger.

We provide a couple of examples of breakpoints below.

Customer ID and name mapping: Rows with the same customer ID

must carry the same customer name value. There may be points in

the pipeline where that 1:1 mapping may be violated; due to typos,

or accidental changes in values. In this scenario, customer name

may take several forms in the data. For example, a company named

“Alpha” may be denoted as “Alpha Technologies” or “Alpha Inc.”

in other rows or sections of the data. For this reason, we may refer

to the customer ID to identify a particular company. In DQL, the

breakpoint can be created with the following statement (for any pair

of records t1 and t2 in pipeline P1, if t1 and t2 share the same

company ID, they must share the same company name):

CREATE BREAKPOINT B1 ON PIPELINE P1 WHERE

P1.t1.company_id = P1.t2.company_id AND

P1.t1.company_name = P1.t2.company_name

Profit and loss assertion: Since the data includes various marketing

programs, we want to make sure certain numerical values do not ex-

ceed certain thresholds. We first construct a simple profit and loss

matrix (how much is earned vs. how much is lost per program) to

understand the return on investment on campaigns. Processing each

campaign takes time (data preparation and training), so we would

like to skip campaigns that show low returns. Data breakpoints are

useful in this case, as they allow for identification of failed mar-

keting campaigns (i.e., loss >> profit) and abnormal output (e.g.,

profit > 1B over the past 3 months).

Diagnosing what is wrong with the training data: Lou notices

that the trained model is producing poor results (i.e., low testing

accuracy). A problem with the training data is suspected. Lou can

use the split primitive in Dagger to test this hypothesis.

Experimenting with different time granularities: Lou knows that in

many business intelligence prediction applications, the sampling

frequency of the data impacts the model output. Typically, more

granular data, in this case, weekly and monthly samples, will pro-

duce a shorter term forecast to use. In other cases, using quarterly

or yearly data aggregations establishes a longer term forecast. The

variation in forecasts may result in differences in executive deci-

sions, which has direct impact on the business. This leads to un-

certainty within the data itself, and the forecasting model. Split-

ting the data at different time granularities allows Lou to test vari-

ability in model outputs and assess this uncertainty in operational

outcomes. To do this, Lou aggregates by summing the total in-

vestment along each corporate partner and marketing program at a

weekly level. Lou then increases the time granularity and does the

same for monthly, quarterly, and yearly data. Doing this manually

can be time consuming, as we separate and run different pipelines

and algorithms on each of the time frequencies. Dagger makes this

easy by splitting the training data on those different granularities

and automatically invoking the training block on each one of them.

Taking advantage of what has already been run: Lou goes

through many iterations building and refining the pipeline. If Lou

makes a change in a previously run pipeline (e.g., new modules pa-

rameters), it is important to know whether this new pipeline would

produce different results from one that was already run. This is

important because running those pipelines may take a long time.

Dagger provides a primitive, compare to compare data intermedi-

ates between two pipelines. Lou can see, while the pipeline is run-

ning, whether the data produced so far is exactly the same as the

one produced in a previous run. Lou can then, abort the execution.

Is this new feature useful? Lou would like to see if the addition of a

new feature would have any impact. For example, Lou anticipated

that using the activity status (invalid or valid payments) could have

2995



Figure 3: Dagger user interface. Upper-left: Pipeline editor. Upper-right: ML performance charts. Bottom: Dagger console

some impact on the accuracy of the model. Lou adds this feature

to the data, but notices right after the data preparation step that the

“profits and losses” are the exact same as the ones produced on

data without this feature. So, Lou aborts the execution before even

training a model, since the model would most likely be the same as

the one obtained from a previous run.

Finding similar data points: Lou often notices data points at

different stages of the pipeline that are worth inspecting, e.g., out-

liers and errors. To inspect those points further, Lou first needs to

find other data points that are similar to them. Additionally, given a

new batch of records for a new customer, Lou would need to decide

which pipeline would fit this data best (assuming Lou has a list of

K pipelines dealing with different customers’ data).

Which pipeline is best for new data? Lou already has a list of K

pipelines dealing with different classes of customers (e.g., a

pipeline handling customer data pulled from a legacy HR system

requires different modules than one handling customer data with a

current HR system). When a new batch of records for a new cus-

tomer comes in, Lou needs to quickly tell which of the K pipelines

has input data that is most similar to the incoming data. The simi-

larity functions are defined by Lou for the different table attributes.

3.4 User Interface
Figure 3 illustrates the user interface of Dagger. The upper-

left side of the interface is dedicated to editing pipelines, while

the upper-right side contains charts to show the audience how well

different ML models perform. The bottom pane contains the con-

sole from which users can write DQL statements (e.g., LOOKUP

performs a keyword lookup) and examine their output. Demo at-

tendees will have an opportunity to interact with this interface and

play the role of “Lou”.

Acknowledgements: This research is supported by Intel Corpora-

tion as part of the MIT Data Systems and AI Lab (DSAIL).

4. REFERENCES
[1] GNU Debugger. https://www.gnu.org/software/gdb/.

Accessed: March 2020.

[2] Jupyter Notebooks. https://jupyter.org/. Accessed: March
2020.

[3] Z. Abedjan, X. Chu, D. Deng, R. C. Fernandez, I. F. Ilyas,
M. Ouzzani, P. Papotti, M. Stonebraker, and N. Tang. Detecting data
errors: Where are we and what needs to be done? PVLDB,
9(12):993–1004, 2016.

[4] M. Brachmann, C. Bautista, S. Castelo, S. Feng, J. Freire, B. Glavic,
O. Kennedy, H. Müeller, R. Rampin, W. Spoth, and Y. Yang. Data
Debugging and Exploration with Vizier. In SIGMOD, 2019.

[5] D. Deng, R. C. Fernandez, Z. Abedjan, S. Wang, M. Stonebraker,
A. K. Elmagarmid, I. F. Ilyas, S. Madden, M. Ouzzani, and N. Tang.
The Data Civilizer System. In CIDR, 2017.

[6] T. Kraska. Northstar: An interactive data science system. PVLDB,
11(12):2150–2164, 2018.

[7] E. K. Rezig, L. Cao, G. Simonini, M. Schoemans, S. Madden,
N. Tang, M. Ouzzani, and M. Stonebraker. Dagger: A Data (not
code) Debugger. In CIDR, 2020.

[8] E. K. Rezig, L. Cao, M. Stonebraker, G. Simonini, W. Tao,
S. Madden, M. Ouzzani, N. Tang, and A. K. Elmagarmid. Data
civilizer 2.0: A holistic framework for data preparation and analytics.
PVLDB, 12(12):1954–1957, 2019.

[9] C. T. Silva, J. Freire, E. Santos, and E. W. Anderson.
Provenance-Enabled Data Exploration and Visualization with
VisTrails. In SIBGRAPI Conference on Graphics, Patterns and

Images, pages 1–9, 2010.

[10] M. Vartak, J. M. F. da Trindade, S. Madden, and M. Zaharia.
MISTIQUE: A System to Store and Query Model Intermediates for
Model Diagnosis. In SIGMOD, pages 1285–1300, 2018.

[11] D. Xin, L. Ma, J. Liu, S. Macke, S. Song, and A. G. Parameswaran.
Helix: Accelerating human-in-the-loop machine learning. PVLDB,
11(12):1958–1961, 2018.

2996


