
Debugging with Dominance:
On-the-fly RTL Debug Solution Implications

Hratch Mangassarian, Andreas Veneris
University of Toronto

ECE Department, Toronto, ON M5S 3G4
{hratch,veneris}@eecg.toronto.edu

Duncan Exon Smith, Sean Safarpour
Vennsa Technologies, Inc.

Toronto, ON, M5V 3B1
{duncan,sean}@vennsa.com

ABSTRACT

Design debugging has become a resource-intensive bottle-
neck in modern VLSI CAD flows, consuming as much as 60%
of the total verification effort. With typical design sizes ex-
ceeding the half-million synthesized gates mark, the growing
number of blocks to be examined dramatically slows down
the debugging process. The aim of this work is to prune the
number of debugging iterations for finding all potential bugs,
without affecting the debugging resolution. This is achieved
by using structural dominance relationships between circuit
components. More specifically, an iterative fixpoint algo-
rithm is presented for finding dominance relationships be-
tween multiple-output blocks of the design. These relation-
ships are then leveraged for the early discovery of potential
bugs, along with their corrections, resulting in significant
debugging speed-ups. Extensive experiments on real indus-
trial designs show that 66% of solutions are discovered early
due to dominator implications. This results in consistent
performance gains in all cases and a 1.7x overall speed-up
for finding all potential bugs, demonstrating the robustness
and practicality of the proposed approach.

1. INTRODUCTION
Once functional verification discovers a discrepancy between

a design and its specification, it returns a counter-example in
the form of an error trace exhibiting an erroneous behavior of
the design. Design debugging is the process of analyzing this
counter-example and tracking down the bug(s) in the design. This
is still a predominantly manual task in the industry. With the
growing size and complexity of designs and error traces, bugs are
increasingly difficult to locate. Hence, it comes as no surprise
that today design debugging consumes as much as 60% of the
total verification effort [1].

With the aim of alleviating the design debugging cost, several
methodologies have been proposed over the years to automate
this process [2–6]. The output of an automated design debugger
is a set of potential bug locations, referred to as solutions. Each
solution denotes a set of RTL lines or blocks, where corrections
can rectify the erroneous behavior in the given counter-example.
The automated debugger must return all solutions, along with
their corrections, with the engineer being given the final task of

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$10.00.

identifying the real bug and fixing it.
Modern debuggers make heavy use of formal tools, such as

Binary Decision Diagrams [3], Boolean Satisfiability (SAT) [4],
Quantified Boolean Formulas [5] and Maximum Satisfiability [6].
In all these techniques, finding each solution requires a separate
call to the formal engine. With typical design sizes exceeding the
half-million synthesized gates mark, discovering solutions one-by-
one is computationally expensive and limits the effectiveness of
automated debuggers. This work addresses this issue by gener-
ating on-the-fly implied solutions, thus reducing the number of
iterations for returning all solutions. This is done by using struc-
tural dominance relationships between circuit components.

A node u is said to be a (structural) single-vertex domina-
tor of another node v if every path from v to a primary out-
put passes through u. Single-vertex dominators can be found in
linear-time [7,8] and have been used for optimizing various CAD
tasks, e.g., test pattern generation [9, 10]. More recently, they
have been leveraged in the gate-level debugger in [4], which per-
forms an initial debugging pass on selected dominator gates. How-
ever, state-of-the-art automated design debuggers operate on the
RTL-level [11,12], where bugs occur in multiple-vertex, multiple-
output blocks in the circuit. As such, it is difficult to make use
of single-vertex dominators at the RTL-level. A multiple-vertex
block a dominates another multiple-vertex block b if every path
from every node in b to a primary output passes through a node in
a. Unlike existing approaches for finding multiple-vertex domina-
tors, where block boundaries are not specified in advance [13–15],
we are interested in establishing dominance relationships among
a fixed set of blocks, naturally provided in a hierarchical RTL
design.

The initial contribution of this work is a fixpoint algorithm that
iteratively calculates dominance relationships between a prede-
fined set of multiple-vertex blocks in a design. Next, it is proven
that for each (set of) block(s) returned as a solution by the auto-
mated design debugger, every corresponding (set of) dominator(s)
is a separate implied solution. As such, applying our fixpoint al-
gorithm as a preprocessing step, the number of design debugging
iterations for finding all solutions can be significantly reduced.
Furthermore, we prove that corrections for implied solutions can
be automatically generated without explicitly analyzing these so-
lutions. It is shown that dominator-based solution implications
are guaranteed to be valid given any error cardinality.

The proposed method is conveniently presented and imple-
mented on top of a SAT-based automated design debugging frame-
work [4, 11]. However, it is also applicable to simulation-based
and other formal diagnosis techniques. An extensive set of exper-
iments on real industrial designs obtained by our partners demon-
strates the consistent benefits of the presented framework. It is
shown that 66% of solutions are discovered early due to domina-
tor implications. This results in a 1.7x overall speed-up in solving
time in an industrial environment, demonstrating the robustness
of the proposed approach.

The paper is organized as follows. Section 2 contains prelimi-
naries on automated design debugging and dominators. Section 3
presents the iterative fixpoint algorithm for computing dominance
relationships between blocks. Section 4 shows how to leverage

block dominators for early solution implications in design debug-
ging. Section 5 gives experimental results and Section 6 concludes
the paper.

2. PRELIMINARIES
The following notation is used throughout the paper. Given a

sequential circuit C, the symbol l denotes the set of all nodes in C.
The symbols x, y and s label (possibly overlapping) subsets of l,
respectively referring to the sets of primary inputs, primary out-
puts and state elements (flip-flops) of C. For each z ∈ {x, y, s, l},
the Boolean variable zi denotes the ith element in the set z.

To simplify the presentation, we consider designs with sin-
gle clock-domains, although the described theory is applicable to
multiple clock-domains [16]. Time-frame expansion for k clock-
cycles is the process of replicating, or unrolling, the combinational
component of C k times, such that the next-state of each time-
frame is connected to the current-state of the next time-frame,
thus modeling the sequential behavior of C. For any variable (or
set of variables) zi (or z), symbol zti (or zt) denotes the corre-
sponding variable (or set of variables) in time-frame t of the un-
rolled circuit. The behavior of C during the tth clock-cycle is for-
malized using the transition relation predicate T (st, st+1, xt, yt),
which describes the dependence of the primary outputs yt and
next-state st+1 on the primary inputs xt and current-state st.
The transition relation T can be extracted from C and is nor-
mally given in Conjunctive Normal Form (CNF), using the set of
nodes lt as auxiliary variables.

The sequential circuit C can also be represented as a directed
graph. For convenience, we add an artificial sink node r to this
graph, such that the set of nodes V = l∪{r} and the set of edges
E = {(li, lj)|li is a fanin of lj in C} ∪ {(yi, r)|∀yi ∈ y}. We re-
serve the letters u and v to refer to nodes in V . Let fanout(v) =
{u ∈ V |(v, u) ∈ E} and fanin(v) = {u ∈ V |(u, v) ∈ E}. Fur-
thermore, let the nodes l of C be grouped into (possibly over-
lapping) blocks. Each block consists of the synthesized gates of
a given block of RTL code, such as an always block in Verilog.
Let B = {b1,b2, . . . ,b|B|} denote the set of all blocks, where
each bi ⊆ l is a collection of nodes. Note that the same node
li can belong to more than one block because of the hierarchical
nature of RTL. The set out(bi) denotes the outputs of block bi.
In the unrolled circuit, the set bt

i (out(bt
i)) contains the (output)

nodes of block bi in time-frame t. Finally, for each node v, we let
out−1(v) = {bj |v ∈ out(bj)} denote the set of blocks in which v
is an output.

Consider the sequential circuit in Figure 1(a). The blocks
{b1,b2,b3,b4,b5} are shown in dotted boxes. We have out(b1) =
{x1}, out(b3) = {g1, g2} and out(b4) = {g3}. Furthermore,
out−1(g3) = {b4}, out−1(s1) = {b5}, out−1(g1) = {b3} and
out−1(r) = ∅. Note that y1 and y2 are primary output labels
for g3 and g2, respectively, and do not represent separate nodes.
Figure 1(b) presents the corresponding directed graph, including
the artificial sink r.

2.1 Single-Vertex Dominators
In a directed graph C = (V,E, r) with a single output sink

r ∈ V , a node u ∈ V is said to be a structural single-vertex post-
dominator, or simply dominator, of a node v ∈ V , if every path

y1D

x1

b1
b3 b4

y2
x2

b2

Q

b5

g2

g1 s1 g3

(a) C, B

x2

b2

b1
b4

b5

b3

x1 g1

g2

g3

r

s1

(b) Graph representation
of C, B

Figure 1: A sequential circuit with blocks

from v to the sink r passes through u. The set dom(v) = {u ∈
V |u dominates v} consists of nodes that dominate v. As a con-
vention, we consider that a node dominates itself. Furthermore,
to ease the presentation, we assume that every node has a path
to r (i.e., all dangling logic has been removed).

The immediate dominator of a node v (v �= r), denoted by
idom(v), is a provably unique node u (u �= v) that dominates
v and is dominated by all the nodes in dom(v) − {v}. It can
be shown that for all v ∈ V − {r}, dom(v) = {v} ∪ idom(v) ∪
idom(idom(v)) ∪ · · · ∪ {r} [17]. Therefore it is sufficient to com-
pute all immediate dominators, which can be done in O(|E| +
|V |) time [7, 8]. In the directed graph shown in Figure 1(b),
dom(x1) = {x1, g1, s1, g3, r}, dom(x2) = {x2, r}, idom(x1) =
{g1}, idom(x2) = {r}.

In this work, we are interested in finding dominance relation-
ships between blocks in B, rather than between nodes in V . Sec-
tion 3 outlines our approach, and discusses why methods for com-
puting single-vertex dominators, as well as existing techniques for
computing multiple-vertex dominators are not applicable in a de-
sign debugging setting.

2.2 Design Debugging
This section describes SAT-based design debugging and in-

troduces relevant notation, which is used throughout the paper.
Given an erroneous design, a counter-example and an error car-
dinality N , the task of an automated design debugger is to find
all sets of N blocks that can potentially be responsible for the
counter-example. More precisely, each returned set of N blocks
{bi1 , . . . ,biN }, where {i1, . . . , iN} ⊆ {1, . . . , |B|}, can be mod-
ified to rectify the erroneous behavior exhibited in the counter-
example. We refer to each such set of N blocks as a solution
of cardinality N . These solutions help manage the tremendous
debugging complexity of modern designs [18] by significantly lim-
iting the potentially buggy lines in the RTL. SAT-based auto-
mated design debugging [4,11] encodes the debugging problem as
a propositional formula whose satisfying assignments correspond
to debugging solutions. The encoding process consists of several
steps. Figure 2 illustrates a design debugging encoding for the
circuit in Figure 1(a) and a two-cycle counter-example.

First, a set of error-select variables e = {e1, . . . , e|B|} are added

to the circuit, such that setting ei = 1 disconnects gates in out(bi)
from their fanins, making them free variables, whereas setting
ei = 0 does not modify the circuit. This can be achieved by
inserting special multiplexers or switches at block outputs or by
directly modifying the CNF of the transition relation. Next, this
enhanced circuit is replicated using time-frame expansion for the
length of the counter-example k, and such that for all time-frames
t, outputs out(bt

i) are controlled by the same error-select variable
ei. Figure 2 illustrates this, where each ei is shown as an enable
on the side of gates in out(bt

i), across all time-frames t. This
allows the SAT solver to modify the outputs of block bi across
all time-frames by setting ei = 1 to “fix” any potential errors in
bi.

Then, a set of constraints are applied to the initial state, the
primary inputs and primary outputs in order to ensure that given

1

0

y12

e3

s11

x12

y11

x11
e1

1

e2

e4

e5

e1e2

e4

x22 x21

y21
0

y22

e5

e3 e3

e3

1 0 1 0

1

g22

g11

g12

g21

g23
s21

g13

Figure 2: Design debugging formulation

the initial state ΦS(s
1) and primary input values ΦX(x1, . . . , xk)

in the counter-example, the primary outputs yield their expected
values ΦY (y1, . . . , yk) given by the specifications. ΦY can also
be expressed as a set of properties. Finally, an error cardinal-

ity constraint ΦN (e) is added, setting
∑|B|

i=1 ei to a pre-specified
constant N . The resulting propositional formula is given by:

Debug =
k
∧

t=1

Ten(s
t, st+1, xt, yt, e)∧ (1)

ΦS(s
0) ∧ ΦX(x1, . . . , xk) ∧ ΦY (y1, . . . , yk) ∧ ΦN (e)

where Ten(st, st+1, xt, yt, e) refers to the transition relation pred-
icate of the enhanced circuit at time-frame t.

Each assignment to e = {e1, . . . , e|B|} satisfying Debug (1)
corresponds to a debugging solution, and the SAT solver must
find all such satisfying assignments to e. This is normally done
by iteratively blocking each satisfying assignment using a block-
ing clause and re-solving Debug until the problem becomes un-
satisfiable. In a satisfying assignment where some ei = 1, the
values of out(bt

i) across all time-frames t represent a sequence
of corrections, which fix the erroneous behavior in the counter-
example. Note that Debug (1) allows these corrections to be
non-deterministic functions of the applied primary inputs.

Example 1 Consider the sequential circuit in Figure 1(a) to be
a buggy implementation. We are also given a two-cycle counter-
example with initial state 0, inputs 〈x1, x2〉 = 〈〈0, 1〉, 〈0, 1〉〉 and
expected outputs 〈y1, y2〉 = 〈〈1, 1〉, 〈0, 1〉〉, demonstrating a mis-
match in the second time-frame at the output y1.

The corresponding design debugging formulation is illustrated
in Figure 2. The constraints ΦS = s̄11, ΦX = x̄1

1x
1
2x̄

2
1x

2
2 and

ΦY = y11y
1
2 ȳ

2
1y

2
2 are shown in boxes, while ΦN is omitted for

brevity. For N = 1, {b1}, {b3}, {b4} and {b5} will be returned
by the solver as separate solutions, and can therefore be con-
sidered potentially buggy blocks. Corrections for solution {b1}
(respectively {b3}, {b4}, {b5}) consist of the satisfying assign-
ments to {x1} (respectively {g1, g2}, {g3}, {s1}) during the two
time-frames. For instance, in any correction for solution {b1},
x1
1 must be set to 1, whereas x2

1 is a don’t-care.

3. DOMINANCE BETWEEN BLOCKS
In this section, an iterative fixpoint algorithm is presented for

finding all dominance relationships among a fixed set of multiple-
vertex blocks, which are naturally defined in a hierarchical RTL
design.

Definition 1 A block bj dominates another block bi, denoted
as bjDbi, if and only if every path from every node in bi to a
primary output in y passes through a node in bj .

Assuming that internal (non-output) block nodes cannot be
primary outputs, any path to a primary output exiting a block
must pass through one of its outputs. Furthermore all primary
outputs are connected to the artificial sink r. As such, the block
dominator relation D ⊆ B × B can be formalized using restricted
quantifier notation [19] as follows:

bjDbi ⇔ ∀v[v ∈ out(bi)].∀p[v
p
� r].∃u[u ∈ p].(u ∈ out(bj)) (2)

where a path p : v
p
� r is a sequence of nodes starting at v and

ending at r. The right-hand-side of Equation 2 reads “for all
vertices v in out(bi), and for all paths p from v to r, there exists
a vertex u in p, such that u ∈ out(bj)”.

We let the set D(bi) = {bj |bjDbi} consist of blocks that dom-
inate bi. Note that biDbi according to (2). Consider the sequen-
tial circuit given in Figure 1(a). Although x2 is not dominated
by g1 or g2 separately, block b2 = {x2} is dominated by block
b3 = {g1, g2}.

The relation D on the blocks B of C in Figure 1(b) is illus-
trated in Figure 3. Unlike single-vertex dominators, a block does
not necessarily have a unique immediate dominator block. This

can be seen for block b1 in Figure 3. As such, algorithms for
calculating single-vertex immediate dominators cannot be used
for computing block dominators. On the other hand, in existing
approaches for computing so-called generalized or multiple-vertex
dominators [13–15], block boundaries are not defined in advance.
Instead, nodes are assembled into multiple-vertex dominators on-
the-fly according to certain conventions, e.g., the smallest subset
of fanout(v) collectively dominating a node v [13,14]. This is not
applicable in a design debugging setting, where circuit blocks are
defined in advance by the hierarchical RTL design.

In this work, the block dominator relation D on the set of blocks
B is computed in two steps. First, the block dominators of each
node v ∈ V are computed. Then, these block-to-node dominators
are used to compute the block-to-block dominator relation D.

Definition 2 A block bj dominates a node v, denoted as bjdv,
if and only if every path from v to a primary output in y passes
through a node in bj .

The block-to-node dominator relation d ⊆ B × V can be for-
malized as :

bjdv ⇔ ∀p[v
p
� r].∃u[u ∈ p].(u ∈ out(bj)) (3)

We let the set d(v) = {bj |bjdv} consist of blocks that dominate
node v. For instance, in Figure 1(b), d(x1) = {b1,b3,b4,b5},
d(x2) = {b2,b3} and d(s1) = {b4,b5}.

Algorithm 1 shows our pseudocode for computing the block
dominator relation D. It first computes the sets d(v) for every v ∈
V (lines 1 to 21). This is done using a fixpoint algorithm, where
the set of block dominators of each node is initialized to all blocks
B and iteratively refined until it converges to its actual block
dominators. These block-to-node dominators are subsequently
used on line 23 to compute D(bi) for every bi ∈ B.

On line 1, CT denotes the transpose of directed graph C (i.e.,
C with edges reversed). The function reversePostordering(CT , r)
performs a Depth-First Search of CT starting from r, and sorts
the nodes in decreasing finishing times. In general, a reverse pos-
tordering is not unique. For instance, for C given in Figure 1(b),
reversePostordering(CT , r) can return 〈r, g2, g3, s1, g1, x2, x1〉. Tra-
versing V in reverse postorder guarantees for each node u ∈ V
that at least one of v ∈ fanout(u) is already visited by the time
u is traversed. This will reduce the number of iterations needed
to reach a fixpoint when computing the sets d(v) later in the
algorithm.

Lines 3 to 6 calculate the sets out−1(v) for each node v. The it-
erative fixpoint algorithm for computing the sets d(v) for all nodes
v (lines 8 to 20) is based on the traditional data-flow analysis algo-
rithm for finding single-vertex dominators [17,20]. Lines 8 and 9
initialize each dominator set d(v) to all blocks B for v ∈ V −{r},
and to the empty set for v = r. In each iteration of the while
loop, the nodes are traversed in reverse postorder (as calculated
on line 1) and a refined set of dominator blocks is computed for
each node on line 14. The computation of this refined set of domi-
nator blocks of each node on line 14 is the main difference with the
data-flow analysis algorithm for single-vertex dominators. The
new set of dominator blocks of a node u ∈ V is updated to be
the intersection, over all v ∈ fanout(u), of the dominator blocks
of v as well as the blocks in which v is an output. If any of the
sets d(v) are changed during an iteration (i.e., the if condition on

b2

b1

b4

b5

b3

Figure 3: Block dominator relation D of C

Algorithm 1: Compute Block Dominators

input : Directed graph C, blocks B
output: Block dominator relation D

1 V ← reversePostordering(CT , r);

2 // For each node v, compute out−1[v]: the set

of blocks in which v is an output

3 foreach v ∈ V do out−1[v] ← ∅;
4 foreach bi ∈ b do

5 foreach v ∈ out[bi] do out−1[v]← out−1[v] ∪ bi;

6 end

7 // Compute block-to-node dominator relation d

8 d[r] ← ∅;
9 foreach v ∈ V − {r} do d[v] ← B;

10 changed ← true;
11 while changed do

12 changed ← false;
13 foreach u ∈ V in reverse postorder do

14 blocks ←
⋂

∀v∈fanout[u]

(

d[v] ∪ out−1[v]
)

;

15 if blocks �= d[u] then
16 d[u] ← blocks;
17 changed ← true;

18 end

19 end

20 end

21 foreach v ∈ V do d[v] ← d[v] ∪ out−1[v];

22 // Compute block dominator relation D

23 foreach bi ∈ B do D[bi] ←
⋂

∀v∈out[bi]
d[v];

line 15 is true), the while loop is executed again. The while loop
terminates after an iteration where all block-to-node dominator
sets remain unchanged. Line 21 adds the blocks in which node v
is an output, to the dominators of v. Finally, on line 23, the block
dominators D(bi) of each block bi are computed by intersecting
the block dominators of each node in out(bi).

Lemma 1 The while loop in Algorithm 1 terminates and the
block-to-node dominator relation d is correctly computed by the
end of the foreach loop on line 21.

Proof. In [21], the authors describe a class of iterative data-
flow analysis algorithms. They use a very general lattice theoretic
framework to analyze the termination and computation of this
class of algorithms, which have a variety of applications (e.g., in
compiler optimization [22]) and are not restricted to calculating
dominators. We will use the conclusions of [21] to analyze the
computation of the block-to-node dominator relation d in Algo-
rithm 1.

Due to lack of space, we will avoid using lattice algebra, and
will instead present the relevant results of [21] in our specific
context. The class of algorithms described in [21] have a common
structure, essentially conforming to lines 8 to 20 of Algorithm 1,
but such that line 14 is replaced by:

blocks ←
⋂

∀v∈fanout(u)

fv(d(v)) (4)

with certain conditions specifying the types of functions fv that
are allowed. In this proof, we will show that using fv(d(v)) =
d(v) ∪ out−1(v) (as done in Algorithm 1) satisfies the conditions
put forth in [21], in order to prove the termination and correctness
of our own algorithm.

Let F refer to any set of functions mapping sets of blocks to
sets of blocks. Formally, F refers to a set of functions f of the

form:

f : P(B) → P(B)

B �→ f(B) (5)

where P(B) refers to the power set of B (i.e., the set of all subsets
of B) andB ⊆ B is any arbitrary set of blocks. In [21], a set of such
functions F is said to be admissible if and only if the following
four conditions are satisfied:

1. All functions in F are distributive over ∪:
∀B,B′[B,B′ ⊆ B].∀f [f ∈ F].(f(B ∪B′) = f(B) ∪ f(B′))

2. F has an identity function:
∃e[e ∈ F].∀B[B ⊆ B].(e(B) = B)

3. F is closed under composition:
∀f, g[f, g ∈ F].(f ◦ g ∈ F)

4. ∀B[B ⊆ B].∃H[H ⊆ F].
(

B =
⋂

f∈H f(∅)
)

Given a set of such admissible functions F and a directed graph
C = (V,E, r) with output sink r, the authors of [21] map each
vertex v ∈ V to some function in F , which they call fv . This
mapping does not have to be one-to-one (i.e., each fv is not
necessarily unique) or onto (i.e., {fv |∀v ∈ V } ⊆ F). They prove
that if F is admissible, then any algorithm that conforms to lines 8
to 20 in Algorithm 1, with line 14 replaced by (4), terminates.
Furthermore, they show that in such a scenario, at the completion
of this while loop, for each v ∈ V , we get:

d(v) =
⋂

∀ paths p=〈v,v1,v2,...,vn,r〉

such that v
p
�r

fv1 (fv2 (· · · fvn (fr(∅)) · · ·)) (6)

In our case, we use the following set of admissible functions:

F ∗ = {f∗(B) = B ∪B′ | ∀B′ ⊆ B}.

We leave it to the reader to verify that F ∗ is indeed admissible
(i.e., it satisfies the four conditions given above), due to lack of
space. Next, as done in [21], we map each node v ∈ V to some
function f∗

v ∈ F ∗, where:

f∗
v (B) = B ∪ out−1(v).

Clearly, {f∗
v (B) = B ∪ out−1(v) | ∀v ∈ V } ⊆ F ∗.

Replacing the functions f∗
v in (4) yields line 14 in our algorithm.

Since f∗
v ’s are drawn from the admissible set of functions F ∗, the

while loop in Algorithm 1 terminates. Furthermore, using (6),
at the completion of this while loop, we have:

d(v) =
⋂

∀p[v
p
�r]

⎛

⎝

⋃

∀u∈p−{v}

out−1(u)

⎞

⎠ (7)

Finally, on line 21, out−1(v) is added to each d(v). As such,
by the end of the foreach loop on line 21, we have:

d(v) =

⎛

⎜

⎝

⋂

∀p[v
p
�r]

⎛

⎝

⋃

∀u∈p−{v}

out−1(u)

⎞

⎠

⎞

⎟

⎠
∪ out−1(v)

=
⋂

∀p[v
p
�r]

⎛

⎝

⋃

∀u∈p

out−1(u)

⎞

⎠ =
⋂

∀p[v
p
�r]

⎛

⎝

⋃

∀u∈p

{bj |u ∈ out(bj)}

⎞

⎠

=
⋂

∀p[v
p
�r]

{bj |∃u[u ∈ p].(u ∈ out(bj))}

= {bj |∀p[v
p
� r].∃u[u ∈ p].(u ∈ out(bj))}

As such, the computed sets d(v) satisfy the definition of the
block-to-node dominator relation d given in (3).

Theorem 1 Algorithm 1 correctly computes the block dominator
relation D.

Proof. D(bi) is computed on line 23 as
⋂

∀v∈out(bi)
d(v). Us-

ing Lemma 1, we get:

D(bi) =
⋂

∀v∈out(bi)

{bj |∀p[v
p
� r].∃u[u ∈ p].(u ∈ out(bj))}

= {bj |∀v[v ∈ out(bi)].∀p[v
p
� r].∃u[u ∈ p].(u ∈ out(bj))}

which satisfies the definition of the block dominator relation D

given in (2).

The overall run-time of Algorithm 1 is normally dictated by
the run-time of the while loop from line 11 to 20. Furthermore,
during each iteration of the while loop, line 14 clearly domi-
nates computation time. We assume that all dangling logic has
been removed during preprocessing (i.e., every node has a path
to r), and as such |V | = O(|E|). Using an aggregate analysis
of all executions of line 14 during a single iteration of the while
loop, it can be seen that line 14 performs a total of O(|E|) inter-
sections and unions between two sets of size at most |B| (since
d(v), out−1(v) ⊆ B). We assume that all sets are implemented
using ordered lists and therefore intersections and unions can be
done in linear time. As such, in a single iteration of the while
loop, line 14 takes O(|B| · |E|) time.

Let c denote the loop-connectedness of the directed graph C,
which refers to the maximum number of back edges in any cycle-
free path in C. The back edges are defined according to the Depth-
First Search performed in reversePostordering(CT , r) on line 1. It
is proven in [21] that the number of iterations of the while loop
for the general class of such fixpoint algorithms is bounded by
c+ 2, if and only if the following condition holds:

∀f, g[f, g ∈ F]. ((f ◦ g)(∅) ⊇ g(∅) ∩ f(B)) (8)

We show that (8) holds for our set of admissible functions F ∗

given in the proof of Lemma 1. Consider any two functions
f∗, g∗ ∈ F ∗ such that f∗(B) = B ∪ B′ and g∗(B) = B ∪ B′′,
where B′,B′′ ⊆ B are arbitrary sets of blocks. We have:

(f∗ ◦ g∗)(∅) = f∗(g∗(∅)) = f∗(B′′) = B′ ∪B′′

and

g∗(∅) ∩ f∗(B) = B′′ ∩ B = B′′,

clearly satisfying (8). Therefore, our fixpoint algorithm takes
O(c · |B| · |E|) time.

4. LEVERAGING BLOCK DOMINANCE IN

DESIGN DEBUGGING
In this section, we show how to leverage the relation D to im-

ply solutions early in the design debugging iterations. In effect,
given a solution consisting of a set of blocks, we show that we can
replace each block by any of its dominator blocks to get another
solution. Formally, it is proven that for each known solution
of Debug (1) of the form {bi1 , . . . ,biN }, every set of the form
{bj1 , . . . ,bjN } such that 〈bj1 , . . . ,bjN 〉 ∈ D(bi1)×· · ·×D(biN)
is also a solution of Debug (1). Furthermore, it is shown that
corrections for each implied solution can also be obtained auto-
matically from the satisfying assignment of the original solution.

First, due to the fixed length of a given counter-example, we
must define the following, slightly modified concept of domina-
tion.

Definition 3 We say that a block bj dominates another block
bi within k cycles, denoted as bjDkbi, if and only if every path
containing at most k state elements, starting from every node in
out(bi) to r passes through a node in out(bj).

The following three Lemmas are used in the proof of Theorem 2.

Note that in Lemma 2,
⋃N

n=1 bin (respectively
⋃N

n=1 bjn) de-
notes a“super-block”consisting of all nodes in blocks bi1 , . . . ,biN
(respectively bj1 , . . . ,bjN).

Lemma 2
∧N

n=1(bjnDbin) ⇒
(

⋃N
n=1 bjn

)

D
(

⋃N
n=1 bin

)

Proof. If ∀n[1 ≤ n ≤ N], any path from any node in out(bin)
to a primary output passes through a node in out(bjn), then
clearly any path from any node in one of out(bi1), . . . , out(biN)
to a primary output passes through a node in one of out(bj1), . . . ,
out(bjN).

Lemma 3 bjDbi ⇒ bjDkbi

Proof. If bjDbi then every path from bi to a primary output
passes through bj . In particular, all paths to a primary output
with at most k state elements also pass through bj .

Lemma 4 If bjDkbi in C, then in the k-cycle time-frame expan-
sion of C, every path from every node in out(bt

i) (∀t[1 ≤ t ≤ k])

to any primary output in {yt, . . . , yk} passes through a node in

out(bt′

j) (for some t′[t ≤ t′ ≤ k]).

Proof. True by construction.

Theorem 2 Given an erroneous design C, a counter-example of
length k along with the corresponding expected outputs and an
error cardinality N , if {bi1 , . . . ,biN } is a solution of Debug (1)

and
∧N

n=1(bjnDbin), then {bj1 , . . . ,bjN } is an implied solution
of Debug (1).

Proof. The theorem can be formalized as:

Debug ∧
N
∧

n=1

ein is SAT ⇒ Debug ∧
N
∧

n=1

ejn is SAT (9)

where we refer to the left-hand-side (right-hand-side) formula of
the implication as the LHS (RHS).

Let U refer to the k-time-frame expanded circuit obtained from
C as described in Subsection 2.2. Let I = {bt

in
|1 ≤ n ≤ N, 1 ≤

t ≤ k} (respectively J = {bt
jn

|1 ≤ n ≤ N, 1 ≤ t ≤ k}) de-

note the union of all nodes in blocks {bi1 , . . . ,biN } (respectively
{bj1 , . . . ,bjN }) across all time-frames in U . Also, let out(I) (re-
spectively out(J)) refer to the set of outputs of I (respectively J).
We will partition the nodes in U into three parts, UI , UJ and UR,
as follows.

Let UJ denote the transitive fanout of out(J) in U . Let UI

denote the nodes in U that are in the transitive fanout of out(I),
but not in UJ . Finally, let UR consist of the remaining nodes

in U , outside UI and UJ . We know that
∧N

n=1(bjnDbin), and

by Lemma 2 and Lemma 3, we get
(

⋃N
n=1 bjn

)

Dk

(

⋃N
n=1 bin

)

.

Given this and Lemma 4, we can imply that any path from out(I)
to a primary output must pass through out(J). As a result, these
partitions of U can be represented by the diagram shown in Fig-
ure 4.

UI

UJ

UR

out(J)

out(I)

ΦS ∧ ΦX

ΦJ
YΦR

Y ΦR
Y

Figure 4: Partition of U

Note that in Figure 4, the output constraints are separated into
two subsets: ΦY = ΦJ

Y ∧ΦR
Y , where ΦJ

Y (respectively ΦR
Y) denotes

the output constraints applied at the outputs of UJ (respectively
UR). This separation is only needed for this proof and is not
required by our method.

We know that given ei1 = 1, . . . , eiN = 1, there exist assign-
ments to the nodes in UI , UJ and UR satisfying the LHS. Let
π(UI), π(UJ) and π(UR) refer to these assignments. We want

to find assignments π′(UI), π
′(UJ) and π′(UR), such that given

ej1 = 1, . . . , ejN = 1, the RHS is satisfied. These assignments are
found as follows.

First consider the subset of output constraints applied at the
outputs of UR, denoted by ΦR

Y in Figure 4. Since π(UR) satisfies

ΦR
Y and the input constraints to UR (i.e., ΦS ∧ΦX) are the same

in the LHS and the RHS, setting π′(UR) = π(UR) will also satisfy
ΦR

Y in the RHS.
Next, consider UI . Note that any path from out(I) to a pri-

mary output must pass through out(J). Also, setting ej1 =
1, . . . , ejN = 1 in the RHS disconnects out(J) from their fanins.
Therefore, there are no output constraints applied on UI (i.e.,
UI is dangling logic in the RHS). As such, π′(UI) can simply
“propagate” the values of π′(UR) in UI .

Finally, since the nodes in out(J) are disconnected from their
fanins in the RHS, the SAT solver is free to pick any assignment
for these variables. Furthermore, setting π′(UR) = π(UR) already
assigned any inputs to UJ coming from UR to the same values as
the LHS. Therefore, we can simply pick π′(UJ) = π(UJ), which
will satisfy ΦJ

Y in Figure 4. This completes the satisfying as-
signment π′ to all the variables in UI , UJ and UR in the RHS.
Therefore, the RHS is SAT.

Corollary 1 Given a solution {bi1 , . . . ,biN } and its correspond-
ing satisfying assignment π of Debug (1), a sequence of correc-
tions for each implied solution {bj1 , . . . ,bjN } consists of the as-

signments to {out(bt
jn

)|1 ≤ n ≤ N, 1 ≤ t ≤ k} in π.

Proof. In the proof of Theorem 2, we showed how to build a
satisfying assignment π′ of the RHS of (9) given a satisfying as-
signment π of the LHS. In particular, we showed that the subset of
π′ corresponding to UJ is the same as the subset of π correspond-
ing to UJ . In other terms, π′(UJ) = π(UJ). Since UJ is simply
the transitive fanout of out(J) in U , the subset of π′ correspond-
ing to out(J) is also the same as the subset of π corresponding to
out(J). As such, given a satisfying assignment π for the original
solution {bi1 , . . . ,biN }, a sequence of corrections for the implied
solution {bj1 , . . . ,bjN } simply consists of the assignments in π

to out(J) = {out(bt
jn

)|1 ≤ n ≤ N, 1 ≤ t ≤ k}.

4.1 Overall Flow
The flowchart in Figure 5 illustrates the overall design debug-

ging flow using on-the-fly dominator implications. Algorithm 1
is first run to compute D(bi) for every block bi ∈ B. Next,
the automated debugger builds the original debugging problem,
Debug (1), and passes it to the SAT solver. If it is UNSAT, the flow
terminates. Otherwise, a solution {bi1 , . . . ,biN } is returned. A
simple implication engine takes in this solution, and using the
pre-computed block dominator relation D, generates all newly
implied solutions. A blocking clause is added to Debug for each
of these implied solutions, as well as the original solution. The
resulting debugging instance is given again to the automated de-
bugger, and this process is repeated until the problem becomes
UNSAT.

❄

✲

❄

✡
✡
✡ ✡

✡
✡

✲

❄

Debugger

solutions

solution

implied solutions

Engine

❄

❅
❅❅�

��
❅

❅❅�
��

❄

✛

✡
✡
✡ ✡

✡
✡ ✡

✡
✡ ✡

✡
✡

❄

Algorithm 1 D Implication

End

Automated

Yes
SAT?

ΦS,ΦX ,ΦY , NC,B

No

Figure 5: Debugging using Dominance Flow Chart

Example 2 Consider the sequential circuit in Figure 1(a) and
the corresponding design debugging formulation illustrated in Fig-
ure 2. Assume that D ⊆ B × B has been computed using Algo-
rithm 1. Furthermore, assume that N = 1, and that the solver
first returns the solution {b1}. Since D(b1) = {b1,b3,b4,b5},
the solutions {b3}, {b4} and {b5} (along with their corrections)
can be immediately implied, eliminating three SAT iterations for
finding these solutions. After adding the corresponding blocking
clauses (ē1), (ē3), (ē4) and (ē5) to Debug, the solver returns
UNSAT, indicating that all solutions have been found.

5. EXPERIMENTAL RESULTS
This section presents the experimental results for the proposed

dominator-based design debugging flow. All experiments are run
using a single core of a Core 2 Quad 2.66 Ghz workstation with
8 GB of RAM and a timeout of 3600 seconds. The proposed
debugging framework is implemented using a state-of-the-art hi-
erarchical SAT-based debugger based on [4, 11], with a Verilog
front-end to allow for RTL diagnosis. Minisat-v2.2 [23] is used
to solve all SAT instances.

Seven industrial Verilog RTL designs from OpenCores [24] and
three commercial designs provided by our industrial partners are
used in our experiments. For each design, several debugging in-
stances are generated by inserting different errors into the design.
The RTL errors that are injected are based on the experience
of our industrial partners. These are common designer mistakes
such as wrong state transitions, incorrect operators or incorrect
module instantiations. The erroneous design is then run through
an industrial simulator with the accompanying testbench, where a
failure is detected and a counter-example is recorded. Each block
bi ∈ B consists of the synthesized gates corresponding to a (set
of) line(s) in the RTL implementing an assignment, an if state-

Table 1: Instance Information

Instance |l| |B| k N

fdct-1 365 574 4 665 142 1

fdct-2 365 574 4 666 146 1

mips789-1 63 241 2 750 24 1

mips789-2 30 171 876 68 1

mips789-3 30 711 904 153 2

usb funct-1 35 158 3 397 31 1

usb funct 2 36 181 3 477 25 1

usb funct 3 36 181 3 401 36 2

wb dma-1 301 812 8 460 20 1

wb dma-2 187 874 6 236 69 1

fpu-1 79 504 1 988 312 1

fpu-2 139 932 2 145 312 1

opensparc ddr2-1 64 915 2 777 23 1

opensparc ddr2-2 58 399 2 779 31 1

vga-1 89 402 1 741 11 308 1

vga-2 89 488 1 833 7 1

vga-3 89 488 1 741 508 2

design1-1 242 086 16 736 25 1

design1-2 532 610 51 564 27 1

design1-3 203 718 10 258 151 1

design1-4 203 706 10 246 5 1

design1-5 532 634 51 564 29 1

design1-6 690 766 51 564 27 1

design2-1 875 837 84 975 212 1

design2-2 875 837 84 975 212 1

design2-3 875 837 84 975 212 1

design3-1 499 705 20 211 562 1

design3-2 499 705 20 211 177 1

design3-3 499 705 20 211 252 2

Table 2: Debugging with and without Dominance

Instance

Common dbg-trad dbg-dom

overhead total # dbg avg # % dom dbg dom+dbg impr
(sec) sols (sec) |D| impl impl (sec) (sec) (sec) (x)

fdct-1 52.4 79 95.1 15.2 52 66% 7.8 37.4 45.2 2.1x/1.5x

fdct-2 52.2 93 188.0 15.2 64 69% 7.8 148.2 156.0 1.2x/1.2x

mips789-1 15.7 162 76.1 14.2 100 62% 1.0 33.4 34.4 2.2x/1.8x

mips789-2 18.1 37 30.4 9.0 21 57% 0.8 18.5 19.3 1.6x/1.3x

mips789-3 38.4 45 84.4 10.6 34 76% 0.6 52.2 52.8 1.6x/1.3x

usb funct-1 11.9 423 163.5 10.6 231 55% 0.1 76.4 76.5 2.1x/2.0x

usb funct-2 9.6 93 21.4 10.2 51 55% 0.9 11.8 12.7 1.7x/1.4x

usb funct-3 14.6 3 517 1 667.1 10.6 2 656 76% 0.2 690.4 690.6 2.4x/2.4x

wb dma-1 71.0 135 105.8 14.6 75 56% 5.0 50.8 55.8 1.9x/1.4x

wb dma-2 32.0 234 178.6 20.8 125 53% 1.6 119.3 120.9 1.5x/1.4x

fpu-1 168.0 8 20.8 10.4 3 38% 1.6 16.0 17.6 1.2x/1.0x

fpu-2 18.4 80 23.5 7.0 43 54% 0.6 16.1 16.7 1.4x/1.2x

opensparc ddr2-1 17.1 76 48.2 8.6 44 58% 0.2 20.7 20.9 2.3x/1.7x

opensparc ddr2-2 11.5 99 34.9 8.6 56 57% 0.2 12.7 12.9 2.7x/1.9x

vga-1 72.0 23 50.2 19.3 21 91% 2.3 20.9 23.2 2.2x/1.3x

vga-2 2.9 52 2.2 19.3 28 54% 0.2 1.2 1.4 1.5x/1.2x

vga-3 11.0 1 226 941.8 19.3 1 088 89% 0.2 600.5 600.7 1.6x/1.6x

design1-1 94.0 93 240.6 17.9 53 57% 5.8 135.4 141.2 1.7x/1.4x

design1-2 188.2 122 1 214.0 32.4 93 76% 34.2 869.5 903.7 1.3x/1.3x

design1-3 36.3 127 119.8 18.8 85 67% 3.3 52.5 55.8 2.1x/1.7x

design1-4 16.5 41 31.2 22.5 27 66% 0.5 28.3 28.8 1.1x/1.1x

design1-5 174.5 58 832.3 32.3 45 78% 31.1 634.7 665.8 1.3x/1.2x

design1-6 219.0 71 1 978.3 15.7 40 56% 19.6 1 046.4 1 066.0 1.9x/1.7x

design2-1 456.3 40 410.0 22.7 27 68% 39.2 327.7 366.9 1.1x/1.1x

design2-2 472.7 42 312.2 22.7 32 76% 39.2 228.1 267.3 1.2x/1.1x

design2-3 454.8 32 313.1 22.8 21 66% 39.2 234.7 273.9 1.1x/1.1x

design3-1 99.6 117 180.9 48.8 88 75% 13.1 80.2 93.3 1.9x/1.5x

design3-2 84.8 89 127.0 48.8 67 75% 13.1 63.9 77.0 1.6x/1.3x

design3-3 83.4 1 120 2 326.5 48.8 953 85% 13.1 1 467.0 1 480.1 1.6x/1.5x

ment, a module definition, an instantiation, etc. Experiments are
conducted with and without dominator implications. dbg-trad
refers to the “traditional” debugging flow (without an implication
engine), and dbg-dom refers to our extended debugging flow us-
ing dominator implications, illustrated in Figure 5.

Table 1 shows the circuit characteristics of each design debug-
ging instance. The first column gives the instance name, which
consists of the design name and an appended number indicating a
different inserted error. The following four columns respectively
show the number gates |l|, the number of blocks |B|, the num-
ber of clock-cycles k in the counter-example, and finally the error
cardinality N .

Table 2 shows the results of all our experiments. The first
column gives the instance name. Columns overhead and total
#sols respectively refer to the run-time overhead for setting up
the problem (i.e., generating the CNF of Debug) and the total
number of returned solutions. The overhead run-time includes
graph optimizations such as dangling logic removal. The overhead
and the total #sols are common for both dbg-trad and dbg-
dom. Note that the number of solutions for instances with N =
2 can be greater than B (e.g., usb funct-3) because each two-
block combination {bi1 ,bi2} that can be modified to correct the
counter-example is a solution.

Column four (dbg) shows the total SAT solver run-time us-
ing dbg-trad for finding all debugging solutions. The remaining
columns present the results of our proposed framework, dbg-
dom. Column avg |D| shows the average size of the sets D(bi)
computed by Algorithm 1. Next, columns #impl and %impl re-
spectively show the number of implied solutions for each instance
and the percentage of implied solutions among all solutions. Col-
umn dom shows the run-time of Algorithm 1 for computing the

block dominator relation D. Column dbg gives the total SAT
solver run-time using dbg-dom, while column dom+dbg adds to
this the dominator computation run-time of Algorithm 1. Fi-
nally, column impr shows the speed-up achieved by dom+dbg
over dbg-trad, first excluding then including the common over-
head.

Figure 6 plots the ratio of implied solutions for each instance,
sorted in increasing order. On average, 66% of all solutions are
implied. In other terms, the number of calls to the SAT solver is
reduced by a factor of 2.9x due to the early discovery of solutions

Figure 6: Ratios of implied solutions to all solutions

0 5 10 15 20 25 30
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Debugging instances

R
a

ti
o

 o
f

im
p

li
e

d
 s

o
lu

ti
o

n
s

Figure 7: # solutions vs. run-time for design1-2

600 700 800 900 1000 1100 1200 1300
0

20

40

60

80

100

120

140

SAT run−time (sec)

#
 s

o
lu

ti
o

n
s

dbg−trad
dbg−dom

using our approach. For each solution found by the SAT solver,
about 2.6 more solutions are implied on average. This number
is significantly less than the average number of dominators of
each block, which is 19.5, because many implied solutions in later
iterations might have already been found (or implied) in previous
iterations. Figure 7 plots the number of found solutions versus
run-time for both dbg-trad and dbg-dom for design1-2. It can
be seen that while dbg-trad returns solutions at roughly equal
time intervals, dbg-dom initially discovers solutions at a fast
rate due to new implications, but the rate of discovery of new
solutions decreases with time. Returning most solutions early
is beneficial because the designer can start examining returned
solutions earlier, while the debugger continues to run.

The average speed-up in total SAT run-time from dbg-trad to
dbg-dom is 1.8x. In many cases, higher percentages of implied
solutions mean less debugging iterations, which result in less total
SAT solving time. For instance, in vga-1, 21 out of 23 solutions
(91%) are implied, yielding a 2.4x speed-up in total SAT run-
time, compared to the averages of 66% implied solutions and a
1.8x speed-up. However, this is not always true because of the
unpredictable behavior of SAT solvers. Furthermore, we have
not found any clear relationships between design parameters and
improvements due to solution implications. Including the time
to compute the dominator relation D, the speed-up from dbg-
trad to dbg-dom is about 1.7x disregarding common overhead,
and 1.4x including common overhead. Figure 8 plots the run-
times of our approach (dom+dbg) versus those of dbg-trad on a
logarithmic scale, along with the 1x, 2x, 3x and 10x lines, clearly
showing the consistent superiority of the proposed method.

Figure 8: dbg-dom vs. dbg-trad run-time compari-

son

10
0

10
1

10
2

10
3

10
0

10
1

10
2

10
3

dbg−trad: SAT run−time (sec)

d
b

g
−

d
o

m
:

A
lg

.
1
 +

 S
A

T
 r

u
n

−
ti

m
e
 (

s
e
c
)

1x 2x 3x 10x

6. CONCLUSION
We present an iterative fixpoint algorithm for computing dom-

inance relationships between multiple-output blocks of a design.
We then show how to leverage these dominance relationships to
reduce the number of design debugging iterations for finding all
potential bug locations, or solutions, in a design. Furthermore, we
prove that corrections for implied solutions can be automatically
generated without explicitly analyzing these solutions. Finally,
an extensive set of experiments on real industrial designs demon-
strates the consistent benefits of the presented framework.

7. REFERENCES
[1] H. Foster, “Assertion-based verification: Industry myths to

realities (invited tutorial),” in Computer Aided Verification,
2008, pp. 5–10.

[2] M. Abramovici, M. Breuer, and A. Friedman, Digital Systems
Testing and Testable Design. Computer Science Press, 1990.

[3] S. Huang and K. Cheng, Formal Equivalence Checking and
Design Debugging. Kluwer Academic Publisher, 1998.

[4] A. Smith, A. Veneris, M. F. Ali, and A. Viglas, “Fault diagnosis
and logic debugging using Boolean satisfiability,” IEEE Trans.
on CAD, vol. 24, no. 10, pp. 1606–1621, 2005.

[5] H. Mangassarian, A. Veneris, and M. Benedetti, “Robust QBF
encodings for sequential circuits with applications to
verification, debug, and test,” IEEE Trans. on Computers,
vol. 59, no. 7, pp. 981–994, 2010.

[6] Y. Chen, S. Safarpour, J. Marques-Silva, and A. Veneris,
“Automated design debugging with maximum satisfiability,”
IEEE Trans. on CAD, vol. 29, pp. 1804–1817, November 2010.

[7] S. Alstrup, D. Harel, P. W. Lauridsen, and M. Thorup,
“Dominators in linear time,” SIAM J. Comput., vol. 28, no. 6,
pp. 2117–2132, 1999.

[8] L. Georgiadis and R. E. Tarjan, “Finding dominators revisited:
extended abstract,” in SODA, 2004, pp. 869–878.

[9] T. Kirkland and M. R. Mercer, “A topological search algorithm
for ATPG,” in Design Automation Conf., 1987, pp. 502–508.

[10] T. Niermann and J. H. Patel, “Hitec: a test generation package
for sequential circuits,” in European Design Automation Conf.,
1991, pp. 214–218.

[11] M. F. Ali, S. Safarpour, A. Veneris, M. Abadir, and
R. Drechsler, “Post-verification debugging of hierarchical
designs,” in Int’l Conf. on CAD, 2005, pp. 871–876.

[12] S. Safarpour and A. Veneris, “Automated design debugging
with abstraction and refinement,” IEEE Trans. on CAD,
vol. 28, no. 10, pp. 1597–1608, 2009.

[13] R. Gupta, “Generalized dominators and post-dominators,” in
Symposium on Principles of Programming Languages, 1992,
pp. 246–257.

[14] S. Alstrup, J. Clausen, and K. Jørgensen, “An O(|V|*|E|)
algorithm for finding immediate multiple-vertex dominators,”
Inf. Process. Lett., vol. 59, no. 1, pp. 9–11, 1996.

[15] R. Krenz and E. Dubrova, “A fast algorithm for finding
common multiple-vertex dominators in circuit graphs,” in ASP
Design Automation Conf., 2005, pp. 529–532.

[16] M. Ganai and A. Gupta, “Efficient BMC for multi-clock
systems with clocked specifications,” in ASP Design
Automation Conf., 2007, pp. 310–315.

[17] K. Cooper, T. Harvey, and K. Kennedy, “A simple, fast
dominance algorithm,” Software Practice & Experience, vol. 4,
pp. 1–10, 2001.

[18] A. Veneris, B. Keng, and S. Safarpour, “From RTL to silicon:
the case for automated debug,” in ASP Design Automation
Conf., 2011, pp. 306–310.

[19] M. Benedetti, A. Lallouet, and J. Vautard, “QCSP made
practical by virtue of restricted quantification,” in International
Joint Conference on Artificial Intelligence, 2007, pp. 38–43.

[20] F. E. Allen and J. Cocke, “Graph-theoretic constructs for
program flow analysis,” Technical Report RC 3923 (17789),
IBM Thomas J. Watson Research Center, Tech. Rep., 1972.

[21] J. Kam and J. Ullman, “Global data flow analysis and iterative
algorithms,” Journal of the ACM, vol. 23, no. 1, pp. 158–171,
1976.

[22] A. V. Aho, R. Sethi, and J. D. Ullman, Compilers: Principles,
Techniques and Tools. Addison Wesley, 1986.

[23] N. Eén and N. Sörensson, “An extensible SAT-solver,” in Int’l
Conf. on Theory and Applications of Satisfiability Testing,
2003, pp. 502–518.

[24] OpenCores.org, “http://www.opencores.org,” 2007.

