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Debye series for light scattering by a nonspherical particle
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1Fachgebiet Strömungslehre und Aerodynamik, Technische Universität Darmstadt, Petersenstraβe 30, D-64289 Darmstadt, Germany

2Department of Physics, Cleveland State University, Cleveland, Ohio 44115, USA
3LESP/CORIA, CNRS, Université, et INSA de Rouen, F-76801 Rouen, France

(Received 9 January 2010; published 19 April 2010)

The Debye series is developed for scattering of light by a homogeneous nonspherical particle to interpret
the angular dependence of the scattered intensity in terms of various physical processes. In contrast to the
previously developed Debye series for several regularly shaped particles that mirror the orthogonal curvilinear
coordinate system where the variable-separation method can be applied, we develop and verify the Debye series
in a coordinate-independent way using the extended boundary condition method. Verification computations are
made for an oblate spheroidal water droplet of equivalent-volume sphere radius 10 µm.

DOI: 10.1103/PhysRevA.81.043824 PACS number(s): 42.25.Fx, 41.20.Jb, 42.68.Mj

I. INTRODUCTION

As an important tool for optical meteorological analysis
and the theoretical basis for a number of elastic-scattering-
based particle characterization methods, Lorenz-Mie theory
(LMT) [1] provides a rigorous way to describe scattering of
a linearly polarized plane wave by a homogeneous sphere.
To meet the requirements of more practical situations, LMT
has been generalized in the past half century along two lines
(i) beam shape and (ii) particle shape.

On one hand, since the advent of lasers, the development
of LMT along line (i) received a vigorous effort. After some
precursory work, such as in Refs. [2–4], a systematic study of
laser-beam interaction with a class of regular particles has
been contributed to by many researchers in the last three
decades, as reviewed in Refs. [5,6]. Since the beam shape will
differ for different purposes, the theory is developed under
the name of generalized Lorenz-Mie theory (GLMT). GLMT
provides a rigorous description of the transversely localized
beam in terms of a set of beam shape coefficients (BSC’s)
and solves Maxwell equations subject to boundary conditions
at the particle surface by the variable-separation method
(VSM).

On the other hand, most particles existing in nature or
produced in industrial processes are nonspherical. Therefore
the development of LMT along line (ii) is significant for op-
tical particle characterization by elastic-scattering techniques.
Compared to the volume-based numerical solutions for light
scattering by nonspherical particles which discritizes the entire
volume, including the scatterer, into cells or substructures (e.g.,
the finite-difference time-domain method, the finite-element
method, etc. [7]), the extended boundary condition method
(EBCM, also known under the name of null-field method)
introduced by Waterman is a surface-based solution [8]. It
replaces the scattering object by a set of polarization currents
over its surface. To analytically express the radiation problem,
the Green dyadic is expanded in terms of vector spherical
wave functions (VSWF’s) and the scattered field coefficients
are related to the incident field coefficients by a transition
matrix (T matrix). But differing from the T -matrix formulation

*f3 xu@yahoo.com

of LMT and GLMT where the VSM is used to evaluate the
elements of the diagonal T matrix [9], the EBCM evaluates the
T -matrix elements by integrating vector spherical functions
over the particle surface [10–12]. Moreover, the matrix is not
diagonal as usually happens when particles are nonspherical.

Although the T -matrix formulation based on either VSM
or EBCM can be used to numerically compute the scattered
intensity, it cannot readily explain the physical mechanisms
that cause various prominent features appearing in the in-
tensity. In contrast, the Debye series formulation allows a
detailed view of scattering by following the propagation of
each partial wave (or equivalent light ray using van de Hulst’s
localization principle) inside the particle. By use of the Debye
series, the far-zone scattered field can be decomposed into
various orders with each order p corresponding, in analogy to
geometrical optics, to transmitted partial waves experiencing
(p − 1) internal reflections, with p = 0 corresponding to a
purely reflected ray. This way, the physical cause of various
features of the Mie scattering curve can be identified so that
the scattering can be more clearly interpreted.

To date, the Debye series for plane-wave incidence was
developed and verified for several types of particles. It is
necessary to take a look back before introducing our work.
The Debye series was first proposed by Debye in his studies on
light scattering by a circular cylinder with normal plane-wave
incidence [13]. The Debye series for the scattering amplitudes
for plane-wave incidence on a sphere was first worked out by
van der Pol and Bremmer [14] and was greatly popularized by
Nussenzveig [15]. As a complement, the Debye series for the
interior amplitudes for a sphere was derived in Ref. [16]. The
Debye series for coated and multilayered spheres was derived
in Ref. [17] and Refs. [18,19], respectively. The Debye series
for a sphere with an embedded electric dipole source was
derived in Ref. [20]. It is noteworthy that the Debye series
with diagonal plane-wave incidence on a circular cylinder was
derived in Ref. [21]. Generalizing the incident wave profile,
the Debye series for shaped beam incidence was derived
for a sphere through including a set of BSC’s defined in
GLMT [22]. A similar generalization was done afterward
for a multilayered cylinder and for a multilayered sphere in
Refs. [23,24], respectively. Recently, the Debye series for
both plane-wave incidence and shaped-beam incidence on a
homogeneous spheroid was worked out and verified [25].
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However, all particle shapes involved above have mirrored a
certain type of coordinate system (e.g., the spherical coordinate
system, the cylindrical coordinate system, or the spheroidal
coordinate system). This is a prerequisite for VSM to be
applied so that by matching boundary conditions at the particle
surface the coefficients for the expansion of the externally
or internally reflected wave and transmitted waves can be
determined in an analytical or numerical way. But the number
of separable coordinate systems is very limited, namely,
according to Kerker [26] and Morse and Feshbach [27], there
are only 11 such separable systems for the wave equation.

The purpose of this article is to incorporate the Debye series
decomposition into the EBCM for scattering by an arbitrarily
shaped particle so as to have the strengths of both methods
available in one formalism. It is our hope that the results
derived here may be used to improve the interpretability of
the various features of the scattered intensity when a plane
wave is incident on an arbitrary shaped particle, a situation
which commonly occurs in atmosphere measurement [28],
or when an arbitrary-shaped laser beam is incident on an
arbitrary-shaped particle, a situation which commonly occurs
in two-phase flow and multiphase flow measurement [29].

The body of this study is organized as follows. In Sec. II A
we briefly summarize the description of an arbitrary incident
beam using the beam-shape coefficients of GLMT, and in
Sec. II B we briefly summarize the EBCM formulation of light
scattering by a particle of arbitrary shape. The verification
of the Debye series for scattering of an electromagnetic
wave by a particle of a given shape entails two separate
calculations. The first is the determination of all the partial
wave transmission and reflection amplitudes, and the second
is the demonstration that when all the external and internal
reflections are added together, the results exactly match the full
partial wave scattering and interior amplitudes, with nothing
left over and nothing missing. The partial wave transmission
and reflection amplitudes are determined in Sec. III by
extending the EBCM formulation from a radially incident
standing wave to either a radially incoming traveling wave
initially outside the particle or a radially outgoing traveling
wave initially inside the particle. The results obtained in this
section provide a practical way of computing any Debye series
contribution to the partial wave scattering amplitudes. The
progression of a single radially incoming partial wave as it
successively internally reflects inside the particle is described
in Sec. IV. At each interaction of the partial wave with the
particle surface, transmitted and reflected contributions are
produced in all partial wave channels for both transverse
electric (TE) and transverse magnetic (TM) polarizations.
Section IV serves as a transition between the computational
point of view developed in Sec. III and the physical point
of view required to complete the Debye series verification in
the following section. In Sec. V the ideas concerning partial
wave and polarization coupling introduced in Sec. IV are
further developed. The terms of the Debye series are then
added together and are shown to be identical to the full partial
wave scattering and interior amplitudes, thus completing our
verification of the Debye series for scattering of an arbitrary
incident beam by a homogeneous dielectric particle of arbitrary
shape. Verification computations using the EBCM Debye
series developed in Sec. III are carried out in Sec. VI for an

oblate spheroidal water droplet of equivalent-volume sphere
radius 10 µm. The results of the scattering orders p = 0, 1,
and 2 are analyzed by using Fraunhofer diffraction theory
and geometrical optics, or compared with the computation by
VSM Debye series in oblate spheroidal coordinates. Finally,
in Sec. VII we state our conclusions. We also included two
appendices. In Appendix A we determine the constant of
proportionality between the vector spherical wave functions
as used in GLMT calculations and those used in EBCM
calculations. In Appendix B we formally sum the Debye series
for both the interior and exterior partial wave amplitudes when
they are considered as matrix equations in the partial wave and
azimuthal mode numbers. We also develop a set of coupled
recursion relations to determine the amplitude matrices to any
order of scattering.

For readers primarily interested in Debye series EBCM
numerical computations, the key equations are as follows.
To calculate the scattered electric field in standard EBCM,
one constructs the matrices U and V according to Eqs. (23)
and (28), respectively. The partial wave scattering amplitudes
are then obtained using Eq. (29). Finally, the scattered
electric field is given by Eq. (9). The method for computing
a particular Debye series component of the partial wave
scattering amplitudes is similar. For external reflection, the
matrices UD0 and V D0 are constructed according to Eqs. (42)
and (48), respectively. The partial wave internal transmission
and external reflection amplitudes T 21 and R22 are obtained
using Eqs. (41) and (49), respectively. Finally, the reflected
electric field is given by Eq. (34). If one were instead interested
in the contribution of transmission following a given number of
internal reflections, the matrices UDp and V Dp are constructed
according to Eqs. (59) and (65), respectively. The partial wave
external transmission and internal reflection amplitudes T 12

and R11 are then obtained using Eqs. (58) and (66) where
the incident amplitudes I are defined following Eq. (51).
Finally, the transmitted electric field is given by Eq. (54).
These equations were used to obtain the results of Sec. VI.

II. LIGHT SCATTERING THEORY

Consider a monochromatic and arbitrarily oriented shaped
beam that is incident on a nonspherical particle bounded by
the surface S. We designate regions 2 and 1 to be the external
and enclosed regions of the particle, respectively. We have the
wave numbers k2(k2 = 2π/λ) and k1 = mk2 for regions 2 and
1, respectively, where m is the complex refractive index of the
particle relative to that of the medium. The particle and the
medium are nonmagnetic, isotropic, and homogeneous, and
the medium is infinite and nonabsorbing. For a nonmagnetic
particle and medium, the permeabilities µ2 and µ1 are equal
to the permeability of vacuum µ0.

The scattering problem is then considered to be the
interaction of a particle with an arbitrary beam described by
standing waves based on the spherical Bessel function of the
first kind or with incoming or outgoing spherical multipole
waves described by radially propagating waves based on the
Hankel function of the second or first kind. GLMT and EBCM
adopt the first way to deal with the incident wave, the spherical
Bessel function of the first kind jn(kr) is used to generate
the VSWF’s of the first kind (M(1)

mn,N(1)
mn), which are finite at
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the origin. The Debye series formulation, however, adopts
the second way to deal with the incident wave, namely the
spherical Hankel functions of the first kind h(1)

n and second kind
h(2)

n are used to denote the spherically outgoing and incoming
traveling waves, respectively. Accordingly, the VSWF’s of
the third and fourth kinds (M(3)

mn,N(3)
mn) and (M(4)

mn,N(4)
mn) are

generated, respectively.

A. GLMT description of the incident beam

Assuming the time dependence e−iωt , the beam can be
described in spherical coordinates (r ,θ ,ϕ) associated with the
particle’s Cartesian coordinates OXYZ by a set of BSC’s GTE

mn

and GTM
mn in the following way

E(i)(r) =
∞∑

n=1

+n∑
m=−n

[
GTE

mnM(1)
mn(k2r) + GTM

mn N(1)
mn(k2r)

]
, (1)

H(i)(r) = −i
k2

ωµ2

∞∑
n=1

+n∑
m=−n

[
GTM

mn M(1)
mn(k2r)+GTE

mnN(1)
mn(k2r)

]
,

(2)

where r is the position vector from the interior origin of
coordinates O to the field point (see Fig. 1).

Referring to the derivation in Appendix A, we can obtain
the BSC’s (GTE

mn,GTE
mn) in Eqs. (1) and (2) in terms of the BSC’s

(gTE
mn,gTM

mn ) defined in the GLMT formulation [9,30] by

GTE
mn = k2

Fmn

(2n + 1)in+1

n(n + 1)
iḡTE

−mn, (3)

GTM
mn = k2

Fmn

(2n + 1)in+1

n(n + 1)
ḡTM

−mn, (4)

where the bar over g denotes complex conjugation. The need
for this new notation for the BSC’s is caused by (1) the different
assumptions of time dependence (e−iωt in EBCM and eiωt

in GLMT) and (2) the different definitions of VSWF’s in
GLMT as formulated by Gouesbet et al. [30] and the EBCM as
formulated by Mishchenko et al. [31] (see Appendix A). The

1 

2 

S 
r

rs 

O 

P 

r> 

r< 

n2 
n1 

FIG. 1. Cross-section geometry of a homogeneous nonspherical
particle bounded by the surface S. The radius r> is that of the smallest
circumscribing sphere centered on the origin O, and r< is the radius
of the largest concentric-inscribed sphere. The vector r goes from the
origin to any point P in space, and the vector rs goes from the origin
to any point on the particle surface. The vectors n2 and n1 are the
outward and inward directed surface normals, respectively.

constant of proportionality between the two sets of VSWF’s is

Fmn =

⎧⎪⎨
⎪⎩

[
(2n+1)(n−m)!

4πn(n+1)(n+m)!

]1/2
, m � 0

(−1)m
[

(2n+1)(n+m)!
4πn(n+1)(n−m)!

]1/2
, m < 0.

(5)

For a beam of arbitrary orientation in the particle co-
ordinates, gTE

mn and gTM
mn can be rigorously evaluated, if

the description of the incident beam used exactly satisfies
Maxwell’s equations, by a three-dimensional integral (or with
a two-dimensional integral) of the radial components of the
magnetic and the electric fields H (i)

r and E(i)
r in the spherical

coordinates (r ,θ ,ϕ) [30,32,33]

gTE
mn = (2n + 1)2

2π2n(n + 1)cpw
n

(n − |m|)!
(n + |m|)!

∫ ∞

0
rjn(k2r)

×
∫ 2π

0
exp(−imφ)

∫ π

0

H (i)
r (r,θ,φ)

H0

×P|m|n(cos θ ) sin θdθdφd(k2r), (6)

gTM
mn = (2n + 1)2

2π2n(n + 1)cpw
n

(n − |m|)!
(n + |m|)!

∫ ∞

0
rjn(k2r)

×
∫ 2π

0
exp(−imφ)

∫ π

0

E(i)
r (r,θ,φ)

E0

×P|m|n(cos θ ) sin θdθdφd(k2r), (7)

where Pmn is the associated Legendre function using Hobson’s
definition, and the partial wave amplitude of an incident plane
wave c

pw
n is

cpw
n = 1

k2
in−1(−1)n

2n + 1

n(n + 1)
. (8)

To improve the computational efficiency of the BSC’s,
other methods were developed, namely the finite series
method [34,35], the localized approximation or localized
beam model approach ([36] and references therein), and the
hybrid method combining the localized approximation and
quadrature [37]. When off-axis and diagonal incidence of a
beam is concerned, the translational addition theorem [38,39]
provides an alternative way for BSC’s computation.

Similarly, the electric component of the scattered field
(denoted by the superscript “s”) may be expanded in terms
of the VSWF’s of the third kind (M(3)

mn,N(3)
mn)

E(s)(r) =
∞∑

n=1

+n∑
m=−n

[
BmnM(3)

mn(k2r) + AmnN(3)
mn(k2r)

]
. (9)

Note that the definitions of Amn and Bmn in Eq. (9) differ
by a minus sign to what is standardly written down in Mie
theory for Amn and Bmn [40,41]. This new convention will
have all of our final Debye series expansion of Amn and
Bmn differ from what is in the literature [15,16] by a minus
sign.

B. EBCM formulation for light scattering by a particle

Applying Schelkunoff’s equivalence theorem to the scat-
tered field (E(s),H(s)) in region 2 and to the negative of the
incident field (−E(i),−H(i)) in region 1 [42], a set of polar-
ization currents M+ = E+(rs) × n2 = (E(i) + E(s)) × n2 and
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J+ = n2 × H+(rs) = n2 × (H(i) + H(s)) are generated where
n2 is the outward directed surface normal and rs is the position
vector from the interior origin of coordinates O to a point on
the particle surface S. The polarization currents are distributed
on S and radiate the field (E(R)(r),H(R)(r)) into space. In region
2, the radiation field is exactly the scattered field in the original

problem, namely [10]

E(R)(r) = E(s)(r) =
∫

S

{iωµ0[n2 × H+(rs)] · ¯̄G(rs |r)

+ [n2 × E+(rs)] · [∇ × ¯̄G(rs |r)]}dS, (10)

where ¯̄G is the free space Green’s dyadic

¯̄G(rs |r) = ik

∞∑
n=1

+n∑
m=−n

(−1)m ×
{[

M(3)
−mn(krs,θ,ϕ) ⊗ M(1)

mn(kr,θ,ϕ) + N(3)
−mn(krs,θ,ϕ) ⊗ N(1)

mn(kr,θ,ϕ)
]

for rs > r[
M(1)

−mn(krs,θ,ϕ) ⊗ M(3)
mn(kr,θ,ϕ) + N(1)

−mn(krs,θ,ϕ) ⊗ N(3)
mn(kr,θ,ϕ)

]
for rs < r,

(11)

where ⊗ represents the dyadic product. In region 1, the
radiation field is the negative of the incident field

E(R)(r) = −E(i)(r) =
∫

S

{iωµ0[n2 × H+(rs)] · ¯̄G(rs |r)

+ [n2 × E+(rs)] · [∇ × ¯̄G(rs |r)]}dS. (12)

Denoting the radius of the smallest circumscribing sphere for
the particle centered on the origin to be r> (see Fig. 1), to
ensure the convergence of the Green’s function expansion of
Eq. (11) we restrict r to be r > r> so that for rs we have r > rs .
The substitution of Eq. (10) to Eq. (9) gives

Bmn = −(−1)mk2

∫
S

{
ωµ0[n2 × H+(rs)] · M(1)

−mn(k2rs,θ,ϕ)

− ik2[n2 × E+(rs)] · N(1)
−mn(k2rs,θ,ϕ)

}
dS, (13)

Amn = −(−1)mk2

∫
S

{
ωµ0[n2 × H+(rs)] · N(1)

−mn(k2rs,θ,ϕ)

− ik2[n2 × E+(rs)] · M(1)
−mn(k2rs,θ,ϕ)

}
dS. (14)

Denoting the radius of the largest concentric inscribed sphere
to be r< (see Fig. 1), to ensure the convergence of the Green’s
function expansion of Eq. (11) we restrict r to be r < r< so
that for all rs we have r < rs . The substitution of Eq. (12) to
Eq. (1) gives

GTE
mn = (−1)mk2

∫
S

{
ωµ0[n2 × H+(rs)] · M(3)

−mn(k2rs,θ,ϕ)

− ik2[n2 × E+(rs)] · N(3)
−mn(k2rs,θ,ϕ)

}
dS, (15)

GTM
mn = (−1)mk2

∫
S

{
ωµ0[n2 × H+(rs)] · N(3)

−mn(k2rs,θ,ϕ)

− ik2[n2 × E+(rs)] · M(3)
−mn(k2rs,θ,ϕ)

}
dS. (16)

Continuity of the tangential components of the field (E+, H+)
at the particle surface S is ensured by the boundary conditions

n2 × E+(rs) = n2 × E−(rs), (17)

n2 × H+(rs) = n2 × H−(rs), (18)

where (n × E−) and (n × H−) are obtained from the interior
field (denoted by the superscript “in”) assumed to be expanded
throughout region 1 in the following form

E(in)(r) =
∞∑

n′=1

+n′∑
m′=−n′

[
Dm′n′M(1)

m′n′(k1r) + Cm′n′N(1)
m′n′ (k1r)

]
,

(19)

H(in)(r) = −i
k1

ωµ0

∞∑
n′=1

+n′∑
m′=−n′

[
Dm′n′N(1)

m′n′(k1r)

+Cm′n′M(1)
m′n′ (k1r)

]
. (20)

Accordingly, we have

n2 × E− =
∞∑

n′=1

+n′∑
m′=−n′

[
Dm′n′n2 × M(1)

m′n′ (k1rs)

+Cm′n′n2 × N(1)
m′n′(k1rs)

]
, (21)

n2 × H− = −i
k1

ωµ0

∞∑
n′=1

+n′∑
m′=−n′

[
Dm′n′n2 × N(1)

m′n′(k1rs)

+Cm′n′n2 × M(1)
m′n′(k1rs)

]
. (22)

The substitution of Eqs. (17), (18), (21), and (22) into Eqs. (15)
and (16) gives the following relation between the interior
coefficients and the BSC’s

⎡
⎢⎣ −ik1k2Kmn,m′n′ − ik2

2Jmn,m′n′
... −ik1k2Lmn,m′n′ − ik2

2Imn,m′n′

. . . . . . . . . . . . . . . . . . . . . . . . . . .
... . . . . . . . . . . . . . . . . . . . . . . . . . . .

−ik1k2Imn,m′n′ − ik2
2Lmn,m′n′

... −ik1k2Jmn,m′n′ − ik2
2Kmn,m′n′

⎤
⎥⎦

⎡
⎣ Dm′n′

. . . . . .

Cm′n′

⎤
⎦ =

⎡
⎣ GTE

mn

. . . . . .

GTM
mn

⎤
⎦ , (23)
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where

Imn,m′n′ = (−1)m
∫

S

n2 · M(1)
m′n′(k1rs,θ,ϕ) × M(3)

−mn(k2rs,θ,ϕ)dS, (24)

Jmn,m′n′ = (−1)m
∫

S

n2 · M(1)
m′n′(k1rs,θ,ϕ) × N(3)

−mn(k2rs,θ,ϕ)dS, (25)

Kmn,m′n′ = (−1)m
∫

S

n2 · N(1)
m′n′(k1rs,θ,ϕ) × M(3)

−mn(k2rs,θ,ϕ)dS, (26)

Lmn,m′n′ = (−1)m
∫

S

n2 · N(1)
m′n′ (k1rs,θ,ϕ) × N(3)

−mn(k2rs,θ,ϕ)dS. (27)

If Cmn and Dmn were known, the substitution of Eqs. (17), (18), (21), and (22) into (13) and (14) gives the scattered field
coefficients ⎡

⎣ Bmn

. . . . . .

Amn

⎤
⎦ = −

⎡
⎢⎣ −ik1k2K̃mn,m′n′ − ik2

2 J̃mn,m′n′
... −ik1k2L̃mn,m′n′ − ik2

2 Ĩmn,m′n′

. . . . . . . . . . . . . . . . . . . . . . . . . . .
... . . . . . . . . . . . . . . . . . . . . . . . . . . .

−ik1k2Ĩmn,m′n′ − ik2
2L̃mn,m′n′

... −ik1k2J̃mn,m′n′ − ik2
2K̃mn,m′n′

⎤
⎥⎦

⎡
⎣ Dm′n′

. . . . . .

Cm′n′

⎤
⎦ , (28)

where (Ĩ ,J̃ ,K̃ ,L̃) are similarly expressed as (I ,J ,K ,L) except
that M(3)

−mn is replaced by M(1)
−mn and N(3)

−mn is replaced by
N(1)

−mn. If we designate the matrix in Eq. (23) as U , the matrix
in Eq. (28) as V , and their multiplication V U−1 as T , Eq. (28)
can be simplified to the T -matrix form as follows

⎡
⎣ Bmn

. . . . . .

Amn

⎤
⎦ = −T

⎡
⎣ GTE

m′n′
. . . . . .

GTM
m′n′

⎤
⎦ . (29)

III. DEBYE SERIES FOR A SPECIFIC ORDER p

In Morse and Feshbach’s derivation of the Green’s dyadic
expansion in terms of VSWF’s [43], the Bessel function of first
kind jn is used to denote the standing wave and the Hankel
function of the first kind h(1)

n is used to denote the outgoing
traveling wave. The Wronskian relation used by them to obtain

Eq. (11) is [44]

jn(kr)h(1)′
n (kr) − j ′

n(kr)h(1)
n (kr) = i

(kr)2
. (30)

In the Debye series formulation, however, the spherical Hankel
functions of the first kind h(1)

n and second kind h(2)
n are used

to denote the outgoing and the incoming traveling waves,
respectively. For external wave incidence on the particle
surface (p = 0), the incident and transmitted waves are an
incoming traveling wave and the externally reflected wave
from the particle-medium surface is an outgoing traveling
wave. For internal incidence at the particle surface (p � 1), the
incident and transmitted waves are an outgoing traveling wave
and the internally reflected wave from the particle-medium
surface is an incoming traveling wave. Whatever the case one
has, the Wronskian relation becomes [44]

h(2)
n (kr)h(1)′

n (kr) − h(2)′
n (kr)h(1)

n (kr) = 2i

(kr)2
, (31)

and is used for the following expansion of the Green’s dyadic
for the Debye series indicated by the superscript “D”

¯̄GD(rs |r) = 1

2
ik

∞∑
n=1

+n∑
m=−n

(−1)m ×
{[

M(3)
−mn(krs,θ,ϕ) ⊗ M(4)

mn(kr,θ,ϕ) + N(3)
−mn(krs,θ,ϕ) ⊗ N(4)

mn(kr,θ,ϕ)
]

for rs > r[
M(4)

−mn(krs,θ,ϕ) ⊗ M(3)
mn(kr,θ,ϕ) + N(4)

−mn(krs,θ,ϕ) ⊗ N(3)
mn(kr,θ,ϕ)

]
for rs < r.

(32)

A. External incidence at the particle surface, p = 0

Using the types of radial functions appropriate to the order
p = 0, the VSWF’s (M(4)

mn,N(4)
mn) and (M(3)

mn,N(3)
mn) are generated

for the description of the incident (i) and externally reflected
(r) waves, respectively

E(i)
p=0 =

∞∑
n0=1

+n0∑
m0=−n0

[
GTE

m0n0
M(4)

m0n0
(k2r) + GTM

m0n0
N(4)

m0n0
(k2r)

]
,

(33)

E(r)
p=0 =

∞∑
n0=1

+n0∑
m0=−n0

[
R22,TE

m0n0
M(3)

m0n0
(k2r) + R22,TM

m0n0
N(3)

m0n0
(k2r)

]
,

(34)

where R22,TE
m0n0

and R22,TM
m0n0

are the external reflection amplitudes
for the partial wave (m0,n0) summed over contributions from
all the incident partial wave channels. We then apply the
equivalence theorem to the externally reflected and incident
fields in our scattering problem. A set of reflected field sources
M and J are assumed to be inside S and radiate in all of
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space to produce (E(r),H(r)). When the field in region 2 is
considered, the equivalence theorem states that M and J can
be replaced by the equivalent surface currents M(r)= E(r) × n2

and J(r) = n2 × H(r), radiating the field (E(r),H(r)) outside S

and a null field inside S. Similarly, we consider another set
of incident field sources M′ and J′ outside S, radiating in
all of space to produce a field (−E(i),−H(i)). Designating n1

as the inward directed unit surface normal, M′ and J ′ can

be replaced by the surface currents M(i) = (−E(i)) × n1 and
Ji = n1 × (−H(i)), radiating the field (−E(i),−H(i)) inside S

and a null field outside S. Adding M(r) to M(i) and J(r) to
J(i) produces the surface currents M+ = (E(i) + E(r)) × n2 =
E+ × n2 and J+ = n2 × (H(i) + H(r)) = n2 × H+, radiating
(−E(i),−H(i)) in region 1 and (E(r),H(r)) in region 2. A
mathematical description of the radiation electric field E(R)

in this situation is

E(R)(r) = E(r)(r) =
∫

S

{iωµ0[n2 × H+(rs)] · ¯̄GD(rs |r) + [n2 × E+(rs)] · [∇ × ¯̄GD(rs |r)]}dS for rs < r, (35)

E(R)(r) = −E(i)(r) =
∫

S

{iωµ0[n2 × H+(rs)] · ¯̄GD(rs |r) + [n2 × E+(rs)] · [∇ × ¯̄GD(rs |r)]}dS for rs > r. (36)

Adding the incident field to the radiation field produces a null
field in region 1 and the external field (E(r) + E(i), H(r) + H(i))
in region 2. The latter are exactly equivalent to the field in the
original problem for p = 0.

Demanding the continuity of the tangential components of
the electric and magnetic fields on the surface S, (n2 × E+)
and (n2 × H+) can be obtained using Eqs. (17) and (18). Since
the transmitted field denoted by the superscript t is assumed
to be expanded in terms of vector spherical waves in region 1

E(t)
p=0 =

∞∑
n′

0=1

+n′
0∑

m′
0=−n′

0

[
T

21,TE
m′

0n
′
0

M(4)
m′

0n
′
0
(k1r) + T

21,TM
m′

0n
′
0

N(4)
m′

0n
′
0
(k1r)

]
,

(37)

H(t)
p=0 = −i

k1

ωµ1

∞∑
n′

0=1

+n′
0∑

m′
0=−n′

0

× [
T

21,TM
m′

0n
′
0

M(4)
m′

0n
′
0
(k1r) + T

21,TE
m′

0n
′
0

N(4)
m′

0n
′
0
(k1r)

]
, (38)

where the T
21,TE
m′

0n
′
0

and T
21,TM
m′

0n
′
0

, differing from the bold T -matrix
symbol T in Eq. (29), are the transmission amplitudes from
region 2 to region 1 for the partial wave (m′

0, n
′
0) summed over

contributions from all the incident partial wave channels, we
have

n2 × E+ = n2 × E− =
∞∑

n′
0=1

+n′
0∑

m′
0=−n′

0

[
T

21,TE
m′

0n
′
0

n2 × M(4)
m′

0n
′
0
(k1rs) + T

21,TM
m′

0n
′
0

n2 × N(4)
m′

0n
′
0
(k1rs)

]
, (39)

n2 × H+ = n2 × H− = −i
k1

ωµ1

∞∑
n′

0=1

+n′
0∑

m′
0=−n′

0

[
T

21,TE
m′

0n
′
0

n2 × N(4)
m′

0n
′
0
(k1rs) + T

21,TM
m′

0n
′
0

n2 × M(4)
m′

0n
′
0
(k1rs)

]
. (40)

Substituting Eqs. (32), (33), (39), and (40) into Eq. (36), after some algebra the transmitted-field coefficients are related to the
incident-field coefficients by the matrix UD0

UD0

⎡
⎢⎣

T
21,TE
m′

0n
′
0

. . . . . .

T
21,TM
m′

0n
′
0

⎤
⎥⎦ =

⎡
⎣GTE

m0n0

. . . . . .

GTM
m0n0

⎤
⎦ , (41)

where

UD0 =

⎡
⎢⎢⎣

−ik1k2K
D0

m0n0,m
′
0n

′
0
− ik2

2J
D0

m0n0,m
′
0n

′
0

... −ik1k2L
D0

m0n0,m
′
0n

′
0
− ik2

2I
D0

m0n0,m
′
0n

′
0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

−ik1k2I
D0

m0n0,m
′
0n

′
0
− ik2

2L
D0

m0n0,m
′
0n

′
0

... −ik1k2J
D0

m0n0,m
′
0n

′
0
− ik2

2K
D0

m0n0,m
′
0n

′
0

⎤
⎥⎥⎦ , (42)

and the elements (ID0 ,JD0 ,KD0 ,LD0 ) in the UD0 matrix are evaluated by integrating vector spherical functions over the particle
surface

I
D0

m0n0,m
′
0n

′
0
= 1

2
(−1)m

∫
S

n2 · M(4)
m′

0n
′
0
(k1rs,θ,ϕ) × M(3)

−m0n0
(k2rs,θ,ϕ)dS, (43)

J
D0

m0n0,m
′
0n

′
0
= 1

2
(−1)m

∫
S

n2 · M(4)
m′

0n
′
0
(k1rs,θ,ϕ) × N(3)

−m0n0
(k2rs,θ,ϕ)dS, (44)

K
D0

m0n0,m
′
0n

′
0
= 1

2
(−1)m

∫
S

n2 · N(4)
m′

0n
′
0
(k1rs,θ,ϕ) × M(3)

−m0n0
(k2rs,θ,ϕ)dS, (45)
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L
D0

m0n0,m
′
0n

′
0
= 1

2
(−1)m

∫
S

n2 · N(4)
m′

0n
′
0
(k1rs,θ,ϕ) × N(3)

−m0n0
(k2rs,θ,ϕ)dS. (46)

Utilization of Eq. (34) instead of Eq. (33) and Eq. (35) instead of Eq. (36) gives the relation between the reflected-field coefficients
and the transmitted-field coefficients ⎡

⎣R22,TE
m0n0

. . . . . . .

R22,TM
m0n0

⎤
⎦ = −V D0

⎡
⎢⎣

T
21,TE
m′

0n
′
0

. . . . . . .

T
21,TM
m′

0n
′
0

⎤
⎥⎦ , (47)

where

V D0 =

⎡
⎢⎢⎣

−ik1k2K̃
D0

m0n0,m
′
0n

′
0
− ik2

2 J̃
D0

m0n0,m
′
0n

′
0

... −ik1k2L̃
D0

m0n0,m
′
0n

′
0
− ik2

2 Ĩ
D0

m0n0,m
′
0n

′
0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

−ik1k2Ĩ
D0

m0n0,m
′
0n

′
0
− ik2

2L̃
D0

m0n0,m
′
0n

′
0

... −ik1k2J̃
D0

m0n0,m
′
0n

′
0
− ik2

2K̃
D0

m0n0,m
′
0n

′
0

⎤
⎥⎥⎦ , (48)

and the elements (Ĩ D0 ,J̃ D0 ,K̃D0 ,L̃D0 ) in the V D0 matrix are
similarly expressed as (ID0 ,JD0 ,KD0 ,LD0 ) except that M(3)

−m0n0

is replaced by M(4)
−m0n0

and N(3)
−m0n0

is replaced by N(4)
−m0n0

.
The substitution of Eq. (41) into Eq. (47) gives a direct

T -matrix relation between the reflected-field coefficients
and the incident-field coefficients for p = 0, namely TD0 =
V D0

[
UD0

]−1
and⎡
⎣R22,TE

m0n0

. . . . . . .

R22,TM
m0n0

⎤
⎦ = −TD0

⎡
⎢⎣

GTE
m′

0n
′
0

. . . . . . .

GTM
m′

0n
′
0

⎤
⎥⎦ . (49)

B. Internal incidence at the particle surface, p � 1

Using the types of radial functions appropriate to the orders
p � 1, the VSWF’s (M(3)

mn,N(3)
mn) and (M(4)

mn,N(4)
mn) are generated

for the internally incident and reflected waves, respectively,

E(i)
p =

∞∑
np=1

+np∑
mp=−np

[
ITE
mpnp

M(3)
mpnp

(k1r) + ITM
mpnp

N(3)
mpnp

(k1r)
]
,

(50)

E(r)
p =

∞∑
np=1

+np∑
mp=−np

[
R11,TE

mpnp
M(4)

mpnp
(k1r) + R11,TM

mpnp
N(4)

mpnp
(k1r)

]
,

(51)

where R11,TE
mpnp

and R11,TM
mpnp

are the internal reflection amplitudes
for the partial wave (mp,np) summed over contributions from
all the incident partial wave channels. Note that for the
order p = 1 the transmitted field of order p = 0 is used
as the incident field, namely ITE

mpnp
= T 21,TE

mp−1np−1
and ITM

mpnp
=

T 21,TM
mp−1np−1

. For p � 2, the reflected field of order (p − 1)

is used as the incident field, namely ITE
mpnp

= R11,T E
mp−1np−1

and

ITM
mpnp

= R11,TM
mp−1np−1

. Again we apply the equivalence theorem to
the fields for p � 1. Consider a set of reflected field sources M
and J outside S, radiating in all of space to produce (E(r),H(r)).
When the field in region 1 is considered, M and J can be
replaced by the equivalent surface currents M(r)= E(r) × n1

and J(r) = n1 × H(r), radiating the field (E(r),H(r)) inside S

and a null field outside S. Consider another set of incident
field sources M′ and J′ inside S, radiating in all of space

to produce (−E(i),−H(i)). When the field in region 2 is
considered, M′ and J′ can be replaced by the surface currents
M(i) = (−E(i)) × n2 and J(i) = n2 × (−H(i)), radiating the
field (−E(i),−H(i)) outside S and a null field inside S. Adding
M(r) to M(i) and J(r) to J(i) produces the surface currents
M− = (E(i) + E(r)) × n1= E− × n1 and J− = n1 × (H(i) +
H(r)) = n1 × H−, radiating the field (−E(i),−H(i)) outside S

(region 2) and the field (E(r),H(r)) inside S (region 1). A
mathematical description for the radiation electric field E(R)

becomes

E(R)(r) = E(r)(r) =
∫

S

{iωµ0[n1 × H−(rs)] · ¯̄GD(rs |r)

+ [n1 × E−(rs)] · [∇ × ¯̄GD(rs |r)]}dS for rs > r,

(52)

E(R)(r) = −E(i)(r) =
∫

S

{iωµ0[n1 × H−(rs)] · ¯̄GD(rs |r)

+ [n1 × E−(rs)] · [∇ × ¯̄GD(rs |r)]}dS for rs < r.

(53)

Adding the incident field to the radiation field produces a null
field in region 2 and the internal field (E(r) + E(i),H(r) + H(i))
in region 1. The latter is equivalent to the field in the original
problem of p � 1.

Again demanding the continuity of the tangential compo-
nents of the electric and magnetic fields across the surface S,
(n1 × E−) and (n1 × H−) can be obtained using Eqs. (17) and
(18) for the transmitted field, which is assumed to be expanded
in terms of vector spherical waves in region 2

E(t)
p =

∞∑
n′

p=1

+n′
p∑

m′
p=−n′

p

[
T

12,TE
m′

pn′
p

M(3)
m′

pn′
p
(k2r) + T

12,TM
m′

pn′
p

N(3)
m′

pn′
p
(k2r)

]
,

(54)

H(t)
p = −i

k2

ωµ2

∞∑
n′

p=1

+n′
p∑

m′
p=−n′

p

[
T

12,TM
m′

pn′
p

M(3)
m′

pn′
p
(k2r)

+ T
12,TE
m′

pn′
p

N(3)
m′

pn′
p
(k2r)

]
, (55)

where T
12,TE
m′

pn′
p

and T
12,TM
m′

pn′
p

are the transmission amplitudes from

region 1 to region 2 for the partial wave (m′
p,n′

p) summed
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over contributions from all the incident partial wave channels.
Accordingly, we have

n1 × E+ = n1 × E− =
∞∑

n′
p=1

+n′
p∑

m′
p=−n′

p

[
T

12,TE
m′

pn′
p

n1 × M(3)
m′

pn′
p
(k2rs)

+ T
12,TM
m′

pn′
p

n1 × N(3)
m′

pn′
p
(k2rs)

]
, (56)

n1 × H+ = n1 × H− = −i
k2

ωµ2

∞∑
n′

p=1

+n′
p∑

m′
p=−n′

p

[
T

12,TE
m′

pn′
p

n1

× N(3)
m′

pn′
p
(k2rs) + T

12,TM
m′

pn′
p

n1 × M(3)
m′

pn′
p
(k2rs)

]
.

(57)

The substitution of Eqs. (32), (50), (56), and (57) into Eq. (53)
gives the relation of the transmitted-field coefficients and the
incident-field coefficients

UDp

⎡
⎢⎣

T
12,TE
m′

pn′
p

. . . . . . .

T
12,TM
m′

pn′
p

⎤
⎥⎦ =

⎡
⎣ITE

mpnp

. . . . . . .

ITM
mpnp

⎤
⎦ , (58)

where

UDp =

⎡
⎢⎢⎣

−ik1k2K
Dp

mpnp,m′
pn′

p
− ik2

1J
Dp

mpnp,m′
pn′

p

... −ik1k2L
Dp

mpnp,m′
pn′

p
− ik2

1I
Dp

mpnp,m′
pn′

p

.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
... .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

−ik1k2I
Dp

mpnp,m′
pn′

p
− ik2

1L
Dp

mpnp,m′
pn′

p

... −ik1k2J
Dp

mpnp,m′
pn′

p
− ik2

1K
Dp

mpnp,m′
pn′

p

⎤
⎥⎥⎦ , (59)

and the elements (IDp ,JDp ,KDp ,LDp ) in the Debye-series based UDp matrix are evaluated by the following surface integrals

I
Dp

mpnp,m′
pn′

p
= 1

2
(−1)m

∫
S

n1 · M(3)
m′

pn′
p
(k2rs,θ,ϕ)M(4)

−m′
pn′

p
(k1rs,θ,ϕ)dS, (60)

J
Dp

mpnp,m′
pn′

p
= 1

2
(−1)m

∫
S

n1 · M(3)
m′

pn′
p
(k2rs,θ,ϕ)N(4)

−m′
pn′

p
(k1rs,θ,ϕ)dS, (61)

K
Dp

mpnp,m′
pn′

p
= 1

2
(−1)m

∫
S

n1 · N(3)
m′

pn′
p
(k2rs,θ,ϕ)M(4)

−m′
pn′

p
(k1rs,θ,ϕ)dS, (62)

L
Dp

mpnp,m′
pn′

p
= 1

2
(−1)m

∫
S

n1 · N(3)
m′

pn′
p
(k2rs,θ,ϕ)N(4)

−m′
pn′

p
(k1rs,θ,ϕ)dS. (63)

The utilization of Eq. (50) instead of Eq. (51) and Eq. (52) instead of Eq. (53) gives the relation between the reflected-field
coefficients and the transmitted-field coefficients⎡

⎣R11,TE
mpnp

. . . . . .

R11,TM
mpnp

⎤
⎦ = −V Dp

⎡
⎢⎣

T
12,TE
m′

pn′
p

. . . . . .

T
12,TM
m′

pn′
p

⎤
⎥⎦ , (64)

where

V Dp =

⎡
⎢⎢⎣

−ik1k2K̃
Dp

mpnp,m′
pn′

p
− ik2

1 J̃
Dp

mpnp,m′
pn′

p

... −ik1k2L̃
Dp

mpnp,m′
pn′

p
− ik2

1 Ĩ
Dp

mpnp,m′
pn′

p

.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
... .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

−ik1k2Ĩ
Dp

mpnp,m′
pn′

p
− ik2

1L̃
Dp

mpnp,m′
pn′

p

... −ik1k2J̃
Dp

mpnp,m′
pn′

p
− ik2

1K̃
Dp

mpnp,m′
pn′

p

⎤
⎥⎥⎦ , (65)

and the elements (Ĩ Dp ,J̃ Dp ,K̃Dp ,L̃Dp ) contained in the V Dp

matrix are similarly expressed as (IDp ,JDp ,KDp ,LDp ) except
that M(4)

−m′
pn′

p
is replaced by M(3)

−m′
pn′

p
and N(4)

−m′
pn′

p
is replaced

by N(3)
−m′

pn′
p
. The substitution of Eq. (58) into Eq. (64) gives a

direct T -matrix relation between the reflected-field coefficients
and the incident-field coefficients for p � 1, namely TDp =
V Dp

[
UDp

]−1
and⎡

⎣R11,T E
mpnp

. . . . . . .

R11,T M
mpnp

⎤
⎦ = −TDp

⎡
⎢⎣

ITE
m′

pn′
p

. . . . . . .

ITM
m′

pn′
p

⎤
⎥⎦ . (66)

Note that for p � 1, the matrices UDp ,V Dp , and TDp

are independent of p. Therefore they only need to be
evaluated once. Moreover, the computation for axisymmet-
ric particles can be much simplified since all the sur-
face integrals vanish for mp �= m′

p, which occurs for all
p � 0.

With the known coefficients describing the incident field
at the order p obtained from the previous order (p −
1), the transmitted and reflected fields at the order p

can be determined via Eqs. (58) and (66), respectively.
In an iterative way, all orders of scattering are thus
determined.
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IV. DEBYE SERIES FOR A SINGLE PARTIAL WAVE

A. External incidence at the particle surface, p = 0

In this section we examine the Debye series amplitudes
from a more physically motivated point of view. We follow a
single incident partial wave’s propagation inside the particle,
examining its successive interactions with the particle-medium
interface and observing its evolution. For external incidence at
the particle surface (p = 0), the incidence plane is formed by
the beam propagation direction and the z axis of the particle
Cartesian coordinates. A single incident spherical partial wave
with the electric field vibrating perpendicular to the incidence
plane (i.e., TE polarization) is described by

E(i),TE
p=0 = GTE

m0n0
M(4)

m0n0
(k2r), (67)

H(i),TE
p=0 = − ik2

ωµ2

[
GTE

m0n0
N(4)

m0n0
(k2r)

]
, (68)

where n0 is the partial wave number, m0 is the azimuthal
mode number, and GTE

m0n0
is the TE partial wave amplitude.

Similarly, a single incident spherical partial wave with the
magnetic field vibrating perpendicular to the incidence plane
(i.e., TM polarization) is described by

E(i),TM
p=0 = GTM

m0n0
N(4)

m0n0
(k2r), (69)

H(i),TM
p=0 = − ik2

ωµ2

[
GTM

m0n0
M(4)

m0n0
(k2r)

]
. (70)

We define R22
m1n1,m0n0

and T 21
m1n1,m0n0

as the portions reflected
back into region 2 and transmitted into the particle, respec-
tively, in the partial wave channel (m1,n1) when the single
partial wave (m0,n0) of unit amplitude encounters the particle
surface. Then the entire reflected and transmitted electric fields
induced by a single TE incident partial wave (m0, n0) with the
amplitude GTE

m0n0
can be expressed as

E(r)
p=0 =

∞∑
n1=1

+n1∑
m1=−n1

[(
R22,TE/TE

m1n1,m0n0
GTE

m0n0

)
M(3)

m1n1
(k2r)

+ (
R22,TM/TE

m1n1,m0n0
GTE

m0n0

)
N(3)

m1n1
(k2r)

]
, (71)

and

E(t)
p=0 =

∞∑
n1=1

+n1∑
m1=−n1

[(
T 21,TE/TE

m1n1,m0n0
GTE

m0n0

)
M(4)

m1n1
(k1r)

+ (
T 21,TM/TE

m1n1,m0n0
GTE

m0n0

)
N(4)

m1n1
(k1r)

]
, (72)

respectively. The superscript TE/TE indicates the TE wave
generated from the incident TE wave, and the superscript
TM/TE indicates the TM wave generated from the incident
TE wave. The situation considered here of a single incident
TE partial wave represents a special case. The more general
situation of both TE and TM incident partial waves is
considered in Eqs. (75) and (94) through (101) when we
relate these partial wave coupled transmission and reflection
amplitudes to the entire partial wave amplitudes of Eqs. (34),
(37), (51), and (54). Together with the TE wave generated from
a TM incident wave, a cross polarization effect is induced at
the order p = 0. Multiplying Eqs. (71) and (72) by the factors
(−ik2/ωµ2) and (−ik1/ωµ1), respectively, and interchanging

Mmn with Nmn gives the series describing the magnetic field.
Note that the incident field in region 2 is radially incoming.

One can obtain analytical expressions for R22
m1n1,m0n0

and
T 21

m1n1,m0n0
for electromagnetic wave scattering by a sphere,

coated sphere, cylinder, and scalar wave scattering by spheroid.
But for electromagnetic wave scattering by more complicated
nonspherical particles, we obtain the coefficients R22

m1n1,m0n0

and T 21
m1n1,m0n0

numerically from the EBCM-based T -matrix
solution to the reflected and the transmitted fields. For example,
for the single incident TE partial wave (m0,n0), the transmis-
sion amplitudes T

21,TE/TE
m1n1,m0n0 and T

21,TM/TE
m1n1,m0n0 are determined by

assuming it has unit amplitude and neglecting other incident
partial waves (namely for all partial waves (m, n), GTM

mn = 0
and GTE

mn = 0 except GTE
mn = 1 as m = m0 and n = n0) so that

viewing Eq. (41)

⎡
⎢⎣T

21,TE/TE
m1n1,m0n0

. . . . . . . . .

T
21,TM/TE
m1n1,m0n0

⎤
⎥⎦ = [

UD0
]−1

⎡
⎣GTE

m0n0
= 1

. . . . . . . . . ..

0

⎤
⎦ . (73)

Similarly, viewing Eq. (49), R
22,TE/TE
m1n1,m0n0 and R

22,TM/TE
m1n1,m0n0 are

determined by

⎡
⎢⎣R

22,TE/TE
m1n1,m0n0

. . . . . . . . .

R
22,TM/TE
m1n1,m0n0

⎤
⎥⎦ = −TD0

⎡
⎣GTE

m0n0
= 1

. . . . . . . . . ..

0

⎤
⎦ . (74)

Summing the contribution over all incident TE and TM partial
waves, the externally reflected total electric field for the order
p = 0 becomes

E(r)
p=0 =

∞∑
n1=1

+n1∑
m1=−n1

[
W (r),TE

m1n1
(0)M(3)

m1n1
(k2r)

+W (r),TM
m1n1

(0)N(3)
m1n1

(k2r)
]
, (75)

where[
W (r),TE

m1n1
(0)

W (r),TM
m1n1

(0)

]

=
∞∑

n0=1

+n0∑
m0=−n0

[
R

22,TE/TE
m1n1,m0n0 R

22,TE/TM
m1n1,m0n0

R
22,TM/TE
m1n1,m0n0 R

22,TM/TM
m1n1,m0n0

] [
GTE

m0n0

GTM
m0n0

]
. (76)

The total transmitted electric field inside the particle for the
order p = 0 becomes

E(t)
p=0 =

∞∑
n1=1

+n1∑
m1=−n1

[
W (t),TE

m1n1
(0)M(4)

m1n1
(k1r)

+W (t),TM
m1n1

(0)N(4)
m1n1

(k1r)
]
, (77)

where[
W (t),TE

m1n1
(0)

W (t),TM
m1n1

(0)

]

=
∞∑

n0=1

+n0∑
m0=−n0

[
T

21,TE/TE
m1n1,m0n0 T

21,TE/TM
m1n1,m0n0

T
21,TM/TE
m1n1,m0n0 T

21,TM/TM
m1n1,m0n0

] [
GTE

m0n0

GTM
m0n0

]
. (78)
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B. Internal incidence at the particle surface, p � 1

Assuming the linearity of the scattering process as ex-
pressed in Eqs. (94) through (101), the incident electric field

for the wave-particle interaction for the second time (p = 1)
is expressed in terms of the p = 0 transmitted wave as

E(i)
p=1 =

∞∑
n1=1

+n1∑
m1=−n1

⎧⎨
⎩

⎡
⎣ ∞∑

n0=1

+n0∑
m0=−n0

(
T 21,TE/TE

m1n1,m0n0
GTE

m0n0
+ T 21,TE/TM

m1n1,m0n0
GTM

m0n0

)⎤⎦ M(3)
m1n1

(k1r)

+
⎡
⎣ ∞∑

n0=1

+n0∑
m0=−n0

(
T 21,TM/TE

m1n1,m0n0
GTE

m0n0
+ T 21,TM/TM

m1n1,m0n0
GTM

m0n0

)⎤⎦ N(3)
m1n1

(k1r)

⎫⎬
⎭ . (79)

Taking into account the amplitudes of all incident TE and TM partial waves of a shaped beam as done in Eqs. (75) and (77), the
reflected and transmitted electric fields of order p = 1 are

E(r)
p=1 =

∞∑
n2=1

+n2∑
m2=−n2

({ ∞∑
n1=1

+n1∑
m1=−n1

∞∑
n0=1

+n0∑
m0=−n0

[
R11,TE/TE

m2n2,m1n1

(
T 21,TE/TE

m1n1,m0n0
GTE

m0n0
+ T 21,TE/TM

m1n1,m0n0
GTM

m0n0

) + R11,TE/TM
m2n2,m1n1

(
T 21,TM/TE

m1n1,m0n0
GTE

m0n0

+ T 21,TM/TM
m1n1,m0n0

GTM
m0n0

)]}
M(4)

m2n2
(k1r)

+
{ ∞∑

n1=1

+n1∑
m1=−n1

∞∑
n0=1

+n0∑
m0=−n0

[
R11,TM/TE

m2n2,m1n1

(
T 21,TE/TE

m1n1,m0n0
GTE

m0n0
+ T 21,TE/TM

m1n1,m0n0
GTM

m0n0

) + R11,TM/TM
m2n2,m1n1

(
T 21,TM/TE

m1n1,m0n0
GTE

m0n0

+ T 21,TM/TM
m1n1,m0n0

GTM
m0n0

)]}
N(4)

m2n2
(k1r)

)
, (80)

and

E(t)
p=1 =

∞∑
n2=1

+n2∑
m2=−n2

({ ∞∑
n1=1

+n1∑
m1=−n1

∞∑
n0=1

+n0∑
m0=−n0

[
T 12,TE/TE

m2n2,m1n1

(
T 21,TE/TE

m1n1,m0n0
GTE

m0n0
+ T 21,TE/TM

m1n1,m0n0
GTM

m0n0

) + T 12,TE/TM
m2n2,m1n1

(
T 21,TM/TE

m1n1,m0n0
GTE

m0n0

+ T 21,TM/TM
m1n1,m0n0

GTM
m0n0

)]}
M(3)

m2n2
(k2r)

+
{ ∞∑

n1=1

+n1∑
m1=−n1

∞∑
n0=1

+n0∑
m0=−n0

[
T 12,TM/TE

m2n2,m1n1

(
T 21,TE/TE

m1n1,m0n0
GTE

m0n0
+ T 21,TE/TM

m1n1,m0n0
GTM

m0n0

) + T 12,TM/TM
m2n2,m1n1

(
T 21,TM/TE

m1n1,m0n0
GTE

m0n0

+ T 21,TM/TM
m1n1,m0n0

GTM
m0n0

)]}
N(4)

m2n2
(k2r)

)
, (81)

respectively, where the reflected and transmitted portions of the partial wave (m2,n2) coupled to the incident partial wave (m1,n1)
of unit amplitude are designated as R11

m2n2,m1n1
and T 12

m2n2,m1n1
, respectively, for the order p = 1.

In contrast to order p = 0, the incident field is now radially outgoing in region 1. But as was the case for the order p = 0, one
cannot get an explicit expression for R11

m2n2,m1n1
and T 12

m2n2,m1n1
for electromagnetic wave scattering by a nonspherical particle.

Therefore again these amplitudes are determined from the EBCM-based T -matrix solutions to the reflected and transmitted
fields. For example, for the single TE partial wave (m2,n2), the transmission coefficients T

12,TE/TE
m2n2,m1n1 and T

12,TM/TE
m2n2,m1n1 coupled to the

incident partial wave (m1,n1) are determined by assuming its amplitude to be unity and neglecting other incident partial waves
so that viewing Eq. (58) ⎡

⎢⎣T
12,TE/TE
m2n2,m1n1

. . . . . . . . .

T
12,TM/TE
m2n2,m1n1

⎤
⎥⎦ = [

UDp
]−1

⎡
⎣ ITE

m1n1
= 1

. . . . . . . . .

0

⎤
⎦ , (82)

and viewing Eq. (66) ⎡
⎢⎣R

11,TE/TE
m2n2,m1n1

. . . . . . . . .

R
11,TM/TE
m2n2,m1n1

⎤
⎥⎦ = −TDp

⎡
⎣ ITE

m1n1
= 1

. . . . . . . . .

0

⎤
⎦ . (83)
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Without loss of generality, the incident electric field inside the particle for an arbitrary order p(p � 1) can be described in the
following way

E(i)
p =

∞∑
np=1

+np∑
mp=−np

[
W (i),TE

mpnp
(p)M(3)

mpnp
(k1r) + W (i),TM

mpnp
(p)N(3)

mpnp
(k1r)

]
, (84)

where W (i),TE
mpnp

and W (i),TM
mpnp

are given by[
W (i),TE

mpnp
(p)

W (i),TM
mpnp

(p)

]
=

∞∑
np−1=1

np−1∑
mp−1=−np−1

· · ·
∞∑

n0=1

+n0∑
m0=−n0

[
F

TE/TE
mpnp,mp−1np−1 F

TE/TM
mpnp,mp−1np−1

F
TM/TE
mpnp,mp−1np−1 F

TM/TM
mpnp,mp−1np−1

]
· · ·

[
F

TE/TE
m1n1,m0n0 F

TE/TM
m1n1,m0n0

F
TM/TE
m1n1,m0n0 F

TM/TM
m1n1,m0n0

] [
GTE

m0n0

GTM
m0n0

]
, (85)

where F = T 21 for ni with i = 1 and F = R11 for ni with
i � 2.

The full reflected electric field inside the particle at the
order p can be described by taking the incident field [Eq. (84)]
and determining its reflected portion in region 1 so that

E(r)
p =

∞∑
np+1=1

+np+1∑
mp+1=−np+1

[
W (r),TE

mp+1np+1
(p)M(4)

mp+1np+1
(k1r)

+W (r),TM
mp+1np+1

(p)N(4)
mp+1np+1

(k1r)
]
, (86)

where[
W (r),TE

mp+1np+1
(p)

W (r),TM
mp+1np+1

(p)

]

=
∞∑

np=1

+np∑
mp=−np

[
R

11,TE/TE
mp+1np+1,mpnp

R
11,TE/TM
mp+1np+1,mpnp

R
11,TM/TE
mp+1np+1,mpnp

R
11,TM/TM
mp+1np+1,mpnp

]

×
[

W (i),TE
mpnp

(p)

W (i),TM
mpnp

(p)

]
. (87)

The electric field transmitted out of the particle is obtained
by taking the incident field and determining its transmitted
portion in region 2 so that

E(t)
p =

∞∑
np+1=1

+np+1∑
mp+1=−np+1

[
W (t),TE

mp+1np+1
(p)M(3)

mp+1np+1
(k2r)

+W (t),TM
mp+1np+1

(p)N(3)
mp+1np+1

(k2r)
]
, (88)

where [
W (t),TE

mp+1np+1
(p)

W (t),TM
mp+1np+1

(p)

]

=
∞∑

np=1

+np∑
mp=−np

[
T

12,TE/TE
mp+1np+1,mpnp

T
12,TE/TM
mp+1np+1,mpnp

T
12,TM/TE
mp+1np+1,mpnp

T
12,TM/TM
mp+1np+1,mpnp

]

×
[

W (i),TE
mpnp

(p)

W (i),TM
mpnp

(p)

]
. (89)

In each order of scattering the TE/TM cross-polarization part
contains the term F

TE/TM
mp+1np+1,mpnp

in WTE and the TM/TE

cross-polarization part contains the term F
TM/TE
mp+1np+1,mpnp

in
WTM, where F = R11 for Eq. (87) and F = T 12 for Eq. (89).

We have not yet addressed the question of whether when all
such terms have been added together, the result is exactly equal
to the full partial wave amplitudes of the beam being scattered
by the particle. This question is taken up in the next section.
In addition, it is noteworthy that the expansion of the scattered
field in the form of Eq. (9) and the expansion of the reflected
field in the form of Eqs. (34), (71), and (75) are numerically
valid outside the circumscribed sphere, and the expansion of
the reflected field in the form of Eqs. (51), (80), and (86) is valid
inside the inscribed sphere. Generally they cannot be applied
for accurate field calculation in the near-zone region due to the
nonconvergence of the Green dyadic expansion. The near-zone
region is the domain bounded by the particle’s surface and
the circumscribed sphere in the Mie scattering problem and
in the Debye series problem of the order p = 0. In the Debye
series problem of orders p � 1, it is the domain bounded by
the particle’s surface and the inscribed sphere. To calculate
the field in the near-zone region in the Mie scattering problem,
Doicu and Wriedt [45] proposed to use the integral representa-
tion of the scattered field, namely Eq. (10). Their method might
also be applied in the Debye series problem through using the
integral representation of the reflected field, namely Eq. (35)
for the order p = 0 and Eq. (52) for the orders p � 1, with
the surface currents determined from the boundary conditions
Eqs. (39) and (40) for p = 0 and Eqs. (56) and (57) for p � 1.

V. VERIFICATION OF DEBYE SERIES

The verification of the Debye series decomposition of the
various partial wave amplitudes for scattering of an incident
electromagnetic wave by a particle of general shape differs
from that for scattering by a sphere or a circular cylinder
at normal incidence because all the amplitudes involved
are elements of matrices rather than being scalars. This
occurs because scattering by a particle of arbitrary shape
couples different partial waves, different azimuthal modes,
and different polarizations between the incident and scattered
states. The verification of the Debye series consists of five
steps, the first three of which were already addressed in Secs. II
through IV.

Step 1: Consider the full Mie scattering problem of a
shaped electromagnetic wave incident on the particle. The
incident and scattered electric fields are given by Eqs. (1)
and (9), respectively, and the interior electric field is given
by Eq. (19). In these equations the coefficients Amn and Bmn

are the partial wave scattering amplitudes and Cmn and Dmn
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are the partial wave interior amplitudes corresponding to the
incident wave field strengths GTE

mn and GTM
mn . Linearity of

the scattering process requires that each of the interior and
scattering amplitudes depends linearly on the field strength of
each of the incident partial waves (m1,n1) as

Amn =
∞∑

n1=1

+n1∑
m1=−n1

[
ATM/TE

mn,m1n1
GTE

m1n1
+ ATM/TM

mn,m1n1
GTM

m1n1

]
, (90)

Bmn =
∞∑

n1=1

+n1∑
m1=−n1

[
BTE/TE

mn,m1n1
GTE

m1n1
+ BTE/TM

mn,m1n1
GTM

m1n1

]
, (91)

Cmn =
∞∑

n1=1

+n1∑
m1=−n1

[
CTM/TE

mn,m1n1
GTE

m1n1
+ CTM/TM

mn,m1n1
GTM

m1n1

]
, (92)

Dmn =
∞∑

n1=1

+n1∑
m1=−n1

[
DTE/TE

mn,m1n1
GTE

m1n1
+ DTE/TM

mn,m1n1
GTM

m1n1

]
, (93)

and each polarization of each incoming partial wave (m1,n1)
contributes to both polarizations of all of the scattered and
interior partial waves (m,n). For any given scattering geometry
the numerical values of the partial wave scattering and interior
amplitudes may be determined using the EBCM of Sec. II B.

Step 2: Consider a radially incoming wave with partial wave
coefficients (1/2)GTE

mn and (1/2)GTM
mn incident on the particle.

The interaction of the radially incident wave with the particle
surface creates both a radially outgoing reflected wave in the
external medium with partial wave amplitudes R22

mn for each
polarization and a radially incoming transmitted wave inside
the particle with partial amplitudes T 21

mn for each polarization.
The incident, reflected, and interior electric fields for this case
are given by Eqs. (33), (34), and (37), respectively.

Again linearity of the scattering process dictates that each
partial wave reflection and transmission amplitude depends on
the strength of all of the incoming partial waves as

R22,TE
mn = 1

2

∞∑
n1=1

+n1∑
m1=−n1

[
R22,TE/TE

mn,m1n1
GTE

m1n1
+R22,TE/TM

mn,m1n1
GTM

m1n1

]
,

(94)

R22,TM
mn = 1

2

∞∑
n1=1

+n1∑
m1=−n1

[
R22,TM/TE

mn,m1n1
GTE

m1n1
+ R22,TM/TM

mn,m1n1
GTM

m1n1

]
,

(95)

T 21,TE
mn = 1

2

∞∑
n1=1

+n1∑
m1=−n1

[
T 21,TE/TE

mn,m1n1
GTE

m1n1
+ T 21,TE/TM

mn,m1n1
GTM

m1n1

]
,

(96)

T 21,TM
mn = 1

2

∞∑
n1=1

+n1∑
m1=−n1

[
T 21,TM/TE

mn,m1n1
GTE

m1n1
+ T 21,TM/TM

mn,m1n1
GTM

m1n1

]
.

(97)

This linearity property was assumed in the development
of Sec. IV A when a single partial wave was incident on
the particle surface [see Eqs. (71) and (72)]. For any given
scattering geometry the numerical value of all these amplitudes
may be determined using the EBCM for the Debye series of
Secs. III A and IV A.

Step 3: Lastly, consider a radially outgoing wave inside the
particle with partial wave coefficients (1/2)ITE

mn and (1/2)ITM
mn

that is incident on the particle surface. The interaction of
the incident wave with the particle surface creates both a
radially outgoing transmitted wave in the external medium
with partial wave amplitudes T 12

mn for each polarization and
a radially incoming reflected wave inside the particle with
partial amplitudes R11

mn for each polarization. The incident,
reflected, and interior electric fields for this case are given by
Eqs. (50), (51), and (54), respectively. Again each of the partial
wave reflection and transmission amplitudes depends on the
strength of all of the incoming partial waves by

R11,TE
mn = 1

2

∞∑
n1=1

+n1∑
m1=−n1

[
R11,TE/TE

mn,m1n1
ITE
m1n1

+ R11,TE/TM
mn,m1n1

ITM
m1n1

]
,

(98)

R11,TM
mn = 1

2

∞∑
n1=1

+n1∑
m1=−n1

[
R11,TM/TE

mn,m1n1
ITE
m1n1

+ R11,TM/TM
mn,m1n1

ITM
m1n1

]
,

(99)

T 12,TE
mn = 1

2

∞∑
n1=1

+n1∑
m1=−n1

[
T 12,TE/TE

mn,m1n1
ITE
m1n1

+ T 12,TE/TM
mn,m1n1

ITM
m1n1

]
,

(100)

T 12,TM
mn = 1

2

∞∑
n1=1

+n1∑
m1=−n1

[
T 12,TM/TE

mn,m1n1
ITE
m1n1

+ T 12,TM/TM
mn,m1n1

ITM
m1n1

]
.

(101)

The numerical values of all these amplitudes may be deter-
mined using the EBCM for Debye series of Secs. III B and
IV B.

Step 4: To evaluate the interior amplitudes Cmn and Dmn

for the full scattering problem of step 1 in terms of the partial
wave reflection and transmission amplitudes, the interior field
of Eq. (37) of step 2 is added to the total interior field of
Eq. (50) plus Eq. (51) of step 3. The incident beam coefficients
ITE
m1n1

and ITM
m1n1

are then varied while GTE
m1n1

and GTM
m1n1

are held
constant until the total interior field of Eqs. (37), (50), and (51)
takes the form of a standing wave proportional to M(1)

mn(k1r)
and N(1)

mn(k1r) so as to match the form of the interior wave
of Eq. (19) of the full scattering problem of step 1. For the
M(1)

mn(k1r) standing wave this occurs when

1
2ITE

mn = R11,TE
mn + T 21,TE

mn , (102)

and for the N(1)
mn(k1r) standing wave it occurs when

1
2ITM

mn = R11,TM
mn + T 21,TM

mn . (103)

The same conditions hold for the magnetic field as well.
Substituting Eqs. (96) through (99) into Eqs. (102) and (103)
and simplifying, one obtains

ITE
m2n2

=
∞∑

n=1

+n∑
m=−n

∞∑
n1=1

+n1∑
m1=−n1

× [
(I − R11,TE/TE)−1

m2n2,mnR
11,TE/TM
mn,m1n1

ITM
m1n1

+ (I − R11,TE/TE)−1
m2n2,mnT

21,TE/TE
mn,m1n1

GTE
m1n1

+ (I − R11,TE/TE)−1
m2n2,mnT

21,TE/TM
mn,m1n1

GTM
m1n1

]
, (104)
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and

ITM
m2n2

=
∞∑

n=1

+n∑
m=−n

∞∑
n1=1

+n1∑
m1=−n1

× [
(I − R11,TM/TM)−1

m2n2,mnR
11,TM/TE
mn,m1n1

ITE
m1n1

+ (I − R11,TM/TM)−1
m2n2,mnT

21,TM/TM
mn,m1n1

GTM
m1n1

+ (I − R11,TM/TM)−1
m2n2,mnT

21,TM/TE
mn,m1n1

GTE
m1n1

]
, (105)

where I is the identity matrix. The coefficients of M(1)
mn(k1r)

and N(1)
mn(k1r) obtained in this way are identified as the interior

scattering amplitudes Cmn and Dmn giving

Cmn = ITM
mn =

∞∑
n1=1

+n1∑
m1=−n1

(
R11,TM/TE

mn,m1n1
ITE
m1n1

+ R11,TM/TM
mn,m1n1

ITM
m1n1

+ T 21,TM/TE
mn,m1n1

GTE
m1n1

+ T 21,TM/TM
mn,m1n1

GTM
m1n1

)
, (106)

Dmn = ITE
mn =

∞∑
n1=1

+n1∑
m1=−n1

(
R11,TE/TE

mn,m1n1
ITE
m1n1

+ R11,TE/TM
mn,m1n1

ITM
m1n1

+ T 21,TE/TE
mn,m1n1

GTE
m1n1

+ T 21,TE/TM
mn,m1n1

GTM
m1n1

)
. (107)

Equations (104) and (105) form a set of coupled linear
equations in the amplitudes ITE

mn and ITM
mn . One can solve this

set of equations by iteration using the identity(
I − R11

)−1

m2n2,mn

= δm2mδn2n+R11
m2n2,mn+

∞∑
n3=1

+n3∑
m3=−n3

R11
m2n2,m3n3

R11
m3n3,mn

+
∞∑

n4=1

+n4∑
m4=−n4

∞∑
n3=1

+n3∑
m3=−n3

R11
m2n2,m4n4

R11
m4n4,m3n3

R11
m3n3,mn + · · · ,

(108)

assuming that the reflection amplitudes are less than unity. The
interior Debye series is obtained by substituting the iteration
solution of Eqs. (104) and (105) into Eqs. (106) and (107),
with each order of the iteration giving the respective order
of the Debye series sum. The results can be decomposed
into the polarization-preserving scattering amplitudes C

TM/TM
mn,m1n1

and D
TE/TE
mn,m1n1 , and cross-polarized amplitudes C

TM/TE
mn,m1n1 and

D
TE/TM
mn,m1n1 of Eqs. (92) and (93).
Step 5: To evaluate the partial wave scattering Amn and

Bmn in terms of the partial wave reflection and transmission
amplitudes, one now adds the total exterior field of Eqs. (33)
and (34) of step 2 to the exterior field of Eq. (54) of step 3 and
demands that the result be the combination of a standing wave
of the form of Eq. (1) plus an outgoing wave proportional
to M(3)

mn(k2r) and N(3)
mn(k2r) so as to match the form of the

total exterior field of the total problem of Eqs. (1) and (9) of
step 1. The constants of proportionality multiplying M(3)

mn(k2r)
and N(3)

mn(k2r) are identified as the partial wave scattering
amplitudes Bmn and Amn, respectively. This gives

Amn = − 1
2GTM

mn + R22,TM
mn + T 12,TM

mn , (109)

Bmn = − 1
2GTE

mn + R22,TE
mn + T 12,TE

mn . (110)

Substituting Eqs. (94), (95), (100), and (101) into Eqs. (109)
and (110) one obtains

Amn =−1

2
GTM

mn + 1

2

∞∑
n1=1

+n1∑
m1=−n1

(
R22,TM/TE

mn,m1n1
GTE

m1n1

+R22,TM/TM
mn,m1n1

GTM
m1n1

+T 12,TM/TE
mn,m1n1

ITE
m1n1

+T 12,TM/TM
mn,m1n1

ITM
m1n1

)
,

(111)

Bmn =−1

2
GTE

mn + 1

2

∞∑
n1=1

+n1∑
m1=−n1

(
R22,TE/TE

mn,m1n1
GTE

m1n1

+R22,TE/TM
mn,m1n1

GTM
m1n1

+T 12,TE/TE
mn,m1n1

ITE
m1n1

+ T 12,TE/TM
mn,m1n1

ITM
m1n1

)
.

(112)

Now substituting the iteration solution of Eqs. (104) and (105)
into Eqs. (111) and (112) one obtains the Debye series of
the scattering amplitudes. Again the partial wave amplitudes
can be decomposed into the polarization-preserving scattering
amplitudes A

TM/TM
mn,m1n1 and B

TE/TE
mn,m1n1 , and cross-polarized ampli-

tudes A
TM/TE
mn,m1n1 and B

TE/TM
mn,m1n1 of Eqs. (90) and (91). The formal

solution of Eqs. (106), (107), (111), and (112) by inversion
and by using recursion relations is given in Appendix B.

As mentioned previously, the iterated form of the interior
Debye series is given by substituting Eqs. (104), (105),
and (108) into Eqs. (106) and (107). Using the notation of
Secs. IV A and IV B, a condensed version of the interior Debye
series which emphasizes the individual orders-of-scattering is
obtained by collecting together all the terms having the same
number of internal reflections, giving

Cmn = W (t),TM
mn (0) +

∞∑
p=1

W (r),TM
mn (p), (113)

Dmn = W (t),TE
mn (0) +

∞∑
p=1

W (r),TE
mn (p). (114)

Similarly, the iterated form of the exterior Debye series is given
by Eqs. (111) and (112). Again collecting together all the terms
having the same number of internal reflections and using the
notation of Secs. IV A and IV B, we obtain the condensed
expressions

Amn = −1

2

⎡
⎣GTM

mn − W (r),TM
mn (0) −

∞∑
p=1

W (t),TM
mn (p)

⎤
⎦ , (115)

Bmn = −1

2

⎡
⎣GTE

mn − W (r),TE
mn (0) −

∞∑
p=1

W (t),TE
mn (p)

⎤
⎦ . (116)

These condensed expressions are reminiscent of the structural
form of the Debye series for scattering of a plane wave by either
a sphere or by a cylinder at normal incidence. But hidden in the
W terms via Eqs. (76), (78), (85), (87), and (89) are products
of amplitude matrices that are coupled in partial waves, in
azimuthal modes, and in polarization state.
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VI. NUMERICAL VERIFICATION

To numerically verify the correctness of the EBCM Debye
series developed in Sec. III for electromagnetic scattering
by a nonspherical particle, we computed the p = 0,1,2
scattering contributions for a plane wave with wavelength
λ = 0.5145 µm traveling in the Z direction and vertically
polarized in the Y direction incident on an oblate spheroidal
water droplet with an equivalent-volume sphere radius of
10.0 µm, horizontal-to-vertical radius ratio b/a = 1.25,1.31,
and refractive index m = 1.334 + 1.2 × 10−9i. The laboratory
coordinate system OXYZ for an oblate spheroid illuminated
by the plane wave is illustrated in Fig. 2. These parameters
were chosen because the p = 2 Debye series component of
this system has already been extensively studied using VSM
Debye series in oblate spheroidal coordinates [46]. Thus a
comparison of the results of the procedure described in Sec. III
with published results may be readily made. The results of our
numerical computations are shown in Figs. 3 through 6. In
the polar plots of Figs. 3 through 6, the scattering angle 	

(varying in the radial direction) is measured with respect to
the beam propagation direction while the azimuthal scattering
angle 
 (varying in the angular direction in the figures) is
measured with respect to the equatorial plane of the oblate
droplet. These angles are obtained from a conversion of the
spherical coordinate angles defined in Sec. II.

The p = 0 scattering contribution of Fig. 3(a) is domi-
nated by diffraction. For the radius ratio b/a = 1.25, the
horizontal radius of the spheroidal droplet is b = 10.77 µm.
The diffraction structure should be well-approximated by the
Fraunhofer diffraction pattern of Refs. [47,48] which in the

 = 0◦ horizontal direction should have its first two minima
at 	 = 1.70◦ and 3.06◦. In the 
 = 90◦ vertical direction, the
Fraunhofer minima are predicted to be at 	 = 2.09◦ and 3.82◦.
These predictions agree well with Fig. 3.

The p = 1 plot for transmission in Fig. 4(a) exhibits the
monotonic falloff of the scattered intensity as a function of
	 for all 
 due to the progressive decrease in the Fresnel
coefficients for transmission into and out of the particle, the
Fock transition in the vicinity of the grazing incident ray
having the critical internal angle for total reflection, and
the exponential decrease in the intensity thereafter due to
electromagnetic surface waves created at the total internal
reflection locations on the particle surface. The horizontal
radius of the particle is again b = 10.77 µm giving a size
parameter of k2b = 131.55. For scattering in the horizontal
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FIG. 2. Geometry of the laboratory coordinates for an oblate
spheroid of semimajor axis b and semiminor axis a is illuminated by
a side-on incident plane wave with electric field component polarized
in the Y direction.
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FIG. 3. (Color online) (a) Polar plot of near forward scattered
intensities of order p = 0 as a function of the scattering angle 	 and
the azimuthal angle 
 for a vertically polarized incident plane wave
with wavelength λ = 0.5145 µm scattered by an oblate spheroid of
refractive index m = 1.334 + 1.2 × 10−9i, equivalent-volume sphere
radius 10.0 µm, and horizontal-to-vertical radius ratio b/a = 1.25.
The intensities are plotted in a common logarithm scale. (b) Two-
dimensional plot of the intensities in the equatorial plane (
 = 0◦)
and vertical plane (
 = 90◦) versus the scattering angle.

plane with 
 = 0◦, the scattering angle of the grazing incident
ray is 	 = 82.88◦. The 
 = 0◦ intensity of Fig. 4(b) closely
matches the intensity for k2b = 100 of Fig. 2(b) of Ref. [49]
for scattering by a sphere. The small difference between the
spheroid and sphere cases is likely due to the fact that for
scattering by a sphere each ray path is confined to a single
plane. The intensity of Fig. 2(b)of Ref. [49] is then due only to
rays incident in the horizontal plane. But the plane of incidence
of a given ray for scattering by a spheroid changes at each
interaction of the ray with the spheroid surface. This produces
small contributions in the horizontal scattering plane from

043824-14



DEBYE SERIES FOR LIGHT SCATTERING BY A . . . PHYSICAL REVIEW A 81, 043824 (2010)

0 30 60 90 120 150 180
−8

−6

−4

−2

0

2

4

6

Θ (deg)

L
og

10
 (

i)

 

 

iΦ=0 (deg)

iΦ=90 (deg)

(a)

(b)

FIG. 4. (Color online) Same as Fig. 3 but for p = 1-order
scattered intensities at the angles (a) 0◦ � 	 � 100◦ and (b) 0◦ �
	 � 180◦.

skew rays that were incident on the spheroid in other planes.
For scattering by a spheroid in the 
 = 90◦ vertical plane,
two effects occur that tend to compensate for each other. First,
when the grazing incident ray inside the particle approaches
the p = 1 interaction with the particle surface, the internal
transmission angle is smaller than the critical angle. Thus an
increasing portion of the wave is transmitted out of the particle
leading to a slower attenuation of the transmitted intensity
as a function of 	 than for a sphere. Second, at the p = 0
interaction of the grazing ray with the spheroid surface, the
radius of curvature of the surface is now b(b/a) rather than b,
as was the case for a sphere. As a result of this increased radius
of curvature, the incoming grazing ray sees an effectively larger
size particle, the surface wave created at the p = 0 interface
dies off faster, and the resulting scattered intensity as a function
of 	 is attenuated at a faster rate than for a sphere. In Fig. 4(b),

FIG. 5. Same as Fig. 3(a) but for p = 2-order scattered intensities
at the angles 130◦ � 	 � 180◦. The intensities are plotted on a linear
scale.

it is seen that the increasing angular attenuation effect is
somewhat larger than the decreasing angular attenuation effect.

The p = 2 plots of Figs. 5 and 6 for b/a = 1.25 with
b = 10.77 µm, and b/a = 1.31 with b = 10.94 µm closely
match Figs. 5(d) and 5(e) of Ref. [46], which were computed
for b = 6.00 µm (or a = 6.00 µm in Ref. [46]) using the VSM
Debye series in spheroidal coordinates. More detail of the
interference structure is visible in Figs. 5 and 6 here than was
the case in Figs. 4(d) and Fig. 4(e) of Ref. [46] since the
spheroid is somewhat larger than it was before, the angular
size of the diffraction structure is correspondingly smaller, so
corresponding more of it can fit into a given angular interval.
This agreement for p = 0,1,2, along with the fact that the
EBCM formalism is capable of being used for larger particle
sizes than the spheroidal coordinate VSM formulism can,
underscores the predictive power of the EBCM Debye series.

FIG. 6. Same as Fig. 5 but for b/a = 1.31.
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FENG XU, JAMES A. LOCK, AND GÉRARD GOUESBET PHYSICAL REVIEW A 81, 043824 (2010)

VII. CONCLUSION

The original version of the Debye series, first derived
by Peter Debye in [1908], decomposed the partial wave
amplitudes for scattering of a plane wave by a homogeneous
dielectric circular cylinder at normal incidence into the effects
produced by diffraction, external reflection, and transmission
following (p − 1) internal reflections. This is the wave theory
analog of scattering by geometrical light rays, and in the short
wavelength limit the Debye series results have been shown
to approach the corresponding ray theory results. Since the
time of Debye, his series has been generalized to scattering
of a plane wave or an arbitrary incident beam by a plethora
of high-symmetry particles such as a sphere, a coated sphere,
a multilayer sphere, a circular cylinder at diagonal incidence,
and a spheroid. In each case the total scattering can again be
decomposed into the contributions produced by diffraction,
external reflection, and transmission following all numbers
of internal reflections. This pattern leads one to believe that
this decomposition is universal, and that as a result, when the
scattering and interior amplitudes are partitioned into this
particular form, there are no additional physical process
waiting to be discovered in scattering by a homogeneous
particle having a more general shape. This is not to mean
that transmissions or reflections of light from such particles
will not produce novel and unexpected cooperative effects. It
only means that such cooperative effects should be capable of
being understood in terms of the transmission and reflection
amplitudes described in this article. The verification of the
Debye series described in detail here shows that this indeed will
be the case as long as the particle in question is homogeneous
with a well-defined outer surface. Our verification uses an
extension of the EBCM formalism which treats light scattering
in spherical coordinates independent of the details of the
shape of the particle’s surface. Thus no special coordinate
system in which the vector wave equation is separable is
required to match the boundary conditions of the electric and
magnetic fields at the particle surface. The pertinent Debye
series EBCM equations are enumerated in the last paragraph
of Sec. I. In future studies we will continue the program of
numerically examining and physically interpreting the Debye
decomposition of light scattering by various nonspherical
particles in a number of practical situations. Lastly, it should be
noted that the generalization of Debye series for a multilayer
particle or a particle with continuously varying refractive
index, and fully understanding all the ramifications of the
Debye series expansion for an inhomogeneous particle, need
further efforts.
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APPENDIX A: DEFINITION OF VSWF’S
IN GLMT AND EBCM

In GLMT the incident field is determined from the
Bromwich scalar potentials using derivative rules [9]. Assum-
ing E0 to be unity, the electric field can be expressed by

Ei
r = 1

kr2

+∞∑
n=1

+n∑
m=−n

cpw
n gTM

mn n (n + 1)

× ψn(kr)P|m|n(cos θ ) exp(imφ), (A1)

Ei
θ = 1

r

+∞∑
n=1

+n∑
m=−n

cpw
n

[
gTE

mnmψn(kr)
P|m|n(cos θ )

sin θ

+ gTM
mn ψ ′

n(kr)
dP|m|n(cos θ )

dθ

]
exp(imφ), (A2)

Ei
φ = i

r

+∞∑
n=1

+n∑
m=−n

cpw
n

[
gTE

mnψn(kr)
dP|m|n(cos θ )

dθ

+ gTM
mn mψ ′

n(kr)
P|m|n(cos θ )

sin θ

]
exp(imφ), (A3)

where c
pw
n is defined by Eq. (8), the Riccatti-Bessel function

ψn(x) is related to the spherical Bessel function jn(x) by
ψn(x) = xjn(x), and Pmn is the associated Legendre function
using Hobson’s definition

Pmn(x) = (−1)m(1 − x2)
m
2

dm

dxm
Pn(x). (A4)

However, Eqs. (A1) through (A3) use the time dependence
eiωt . When the time dependence e−iωt is assumed instead, we
have

Ei
r = 1

kr2

+∞∑
n=1

+n∑
m=−n

c̄pw
n ḡTM

mn n (n + 1)

×ψn(kr)P|m|n(cos θ ) exp(−imφ), (A5)

Ei
θ = 1

r

+∞∑
n=1

+n∑
m=−n

c̄pw
n

[
ḡTE

mnmψn(kr)
P|m|n(cos θ )

sin θ

+ ḡTM
mn ψ ′

n(kr)
dP|m|n(cos θ )

dθ

]
exp(−imφ), (A6)

Ei
φ = − i

r

+∞∑
n=1

+n∑
m=−n

c̄pw
n

[
ḡTE

mnψn(kr)
dP|m|n(cos θ )

dθ

+ ḡTM
mn mψ ′

n(kr)
P|m|n(cos θ )

sin θ

]
exp(−imφ), (A7)

where the bar over g and c denotes complex conjugation.
Replacing m by −m and defining the VSWF’s M(1),G

mn and
N(1),G

mn as follows for GLMT

M(1),G
mn (kr,θ,ϕ) =

[
imjn(kr)

P|m|n(cos θ )

sin θ
iθ

− jn(kr)
dP|m|n(cos θ )

dθ
iϕ

]
exp(imφ),

(A8)
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N(1),G
mn (kr,θ,ϕ) = 1

kr

[
n(n + 1)jn(kr)P|m|n(cos θ )ir

+ d(krjn(kr))
d(kr)

dP|m|n(cos θ )

dθ
iθ

+ im
d(krjn(kr))

d(kr)

P|m|n(cos θ )

sin θ
iϕ

]
exp(imφ),

(A9)

the incident electric field can be rewritten in terms of VSWF’s

E(i) =
+∞∑
n=1

+n∑
m=−n

kc̄pw
n

[(
iḡTE

−mn

)
M(1),G

mn + ḡTM
−mnN(1),G

mn

]
. (A10)

Substituting Eq. (8) into Eq. (A10) we have

E(i) =
+∞∑
n=1

+n∑
m=−n

{[
k

(2n + 1)in+1

n(n + 1)
iḡTE

−mn

]
M(1),G

mn

+
[
k

(2n + 1)in+1

n(n + 1)
ḡTM

−mn

]
N(1),G

mn

}
. (A11)

In the T -matrix formulation of Ref. [31], however, M(1),T
mn and

N(1),T
mn are defined by

M(1),T
mn (kr,θ,ϕ) = γmn

[
imjn(kr)

Pmn(cos θ )

sin θ
iθ

− jn(kr)
dPmn(cos θ )

dθ
iϕ

]
exp(imφ),

(A12)

N(1),T
mn (kr,θ,ϕ) = γmn

kr

[
n(n + 1)jn(kr)Pmn(cos θ )ir

+ d(krjn(kr))
d(kr)

dPmn(cos θ )

dθ
iθ

+ im
d(krjn(kr))

d(kr)

Pmn(cos θ )

sin θ
iϕ

]
exp(imφ),

(A13)

where

γmn =
[

(2n + 1)(n − m)!

4πn(n + 1)(n + m)!

]1/2

. (A14)

Comparison of the two definitions of VSWF’s shows the
following relation

M(1),T
mn = FmnM(1),G

mn , (A15)

N(1),T
mn = FmnN(1),G

mn , (A16)

where the connection factor Fmn is expressed by Eq. (5). Using
the VSWF’s defined in Ref. [31] and substituting Eqs. (A15)
and (A16) into Eq. (A11), Eq. (1) can be obtained. Note that
the superscript “T ” is dropped in the main body of the article.

APPENDIX B: FORMAL AND RECURSION SOLUTIONS
OF THE DEBYE SERIES

A formal summation of the interior Debye series can be
obtained by the inversion of Eqs. (106) and (107). These

equations can be written as a set of coupled matrix equations
as

C = R11,TM/TE D + R11,TM/TMC + T 21,TM/TEGTE

+ T 21,TM/TMGTM, (B1)

D = R11,TE/TE D + R11,TE/TMC + T 21,TE/TEGTE

+ T 21,TE/TMGTM. (B2)

This makes implicit the coupling of partial waves and
azimuthal modes in the off-diagonal elements of the matrices
and focuses on the coupling of the polarization states. We
define the matrices S,U , and V as

STE/TE = (I − R11,TE/TE)−1, (B3)

STM/TM = (I − R11,TM/TM)−1, (B4)

UTE/TE = (I − STE/TE R11,TE/TM STM/TM R11,TM/TE)−1,

(B5)

UTM/TM = (I − STM/TM R11,TM/TE STE/TE R11,TE/TM)−1,

(B6)

V TE/TE = R11,TE/TM STM/TMT 21,TM/TE + T 21,TE/TE,

(B7)

V TE/TM = R11,TE/TM STM/TMT 21,TM/TM + T 21,TE/TM,

(B8)

V TM/TE = R11,TM/TE STE/TET 21,TE/TE + T 21,TM/TE,

(B9)

V TM/TM = R11,TM/TE STE/TET 21,TE/TM + T 21,TM/TM.

(B10)

Then substituting Eq. (B2) into Eq. (B1) and decomposing the
result into the form of Eqs. (95) and (96), we obtain

CTM/TE = UTM/TM STM/TMV TM/TE, (B11)

CTM/TM = UTM/TM STM/TMV TM/TM, (B12)

DTE/TE = UTE/TE STE/TEV TE/TE, (B13)

DTE/TM = UTE/TE STE/TEV TE/TM, (B14)

for the interior Debye series.
A formal summation of the Debye series of the scattering

amplitudes can then be obtained from the interior amplitude
solution. We write Eqs. (111) and (112) as matrix equations,
substitute Eqs. (106) and (107), and decompose the result in
the form of Eqs. (90) and (91). We obtain

ATM/TE = 1
2 (R22,TM/TE + T 12,TM/TE DTE/TE

+ T 12,TM/TMCTM/TE), (B15)

ATM/TM = − 1
2 (I − R22,TM/TM − T 12,TM/TE DTE/TM

− T 12,TM/TMCTM/TM), (B16)

BTE/TE = − 1
2 (I − R22,TE/TE − T 12,TE/TE DTE/TE

− T 12,TE/TMCTM/TE), (B17)

BTE/TM = 1
2 (R22,TE/TM + T 12,TE/TE DTE/TM

+ T 12,TE/TMCTM/TM). (B18)

Diffraction (i.e., the identity matrix term) occurs only in the
polarization-preserving channels, external reflection occurs in
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all polarization channels, and the last two terms of Eqs. (B15)
through (B18) describe light already in the particle that must be
transmitted back out. Substitution of Eqs. (B11) through (B14)
to Eqs. (B15) through (B18) gives the formal summation of
the Debye series of the scattering amplitudes.

These results can be recast in the order-of-scattering
formalism to provide a recursive generation of the Debye
series. Let

C i/j =
∞∑

p=0

C i/j
p , (B19)

Di/j =
∞∑

p=0

Di/j
p , (B20)

for the interior amplitudes where i and j are each either TE or
TM, and

Ai/j =
∞∑

p=0

Ai/j
p , (B21)

Bi/j =
∞∑

p=0

Bi/j
p , (B22)

for the scattering amplitudes where the integer p parameterizes
the number of internal reflections that have occurred to that
point in the series. For the interior field, from Eqs. (104)
through (107), one has the starting conditions

CTM/j

0 = T 21,TM/j , (B23)

DTE/j

0 = T 21,TE/j , (B24)

where j is either TE or TM, and the coupled recursion
relations[

DTE/j
p

CTM/j
p

]
=

[
R11,TE/TE R11,TE/TM

R11,TM/TE R11,TM/TM

] ⎡
⎣ DTE/j

p−1

CTM/j

p−1

⎤
⎦ , (B25)

for p � 1, which are equivalent to Eqs. (113) and (114). The
p-order interior amplitudes thus contain p internal reflections.
Similarly, from Eqs. (104), (105), (108), (111), and (112) the
p-order scattering amplitudes are given by the starting
conditions

ATM/TE
0 = 1

2 R22,TM/TE, (B26)

ATM/TM
0 = − 1

2 (I − R22,TM/TM), (B27)

BTE/TE
0 = − 1

2 (I − R22,TE/TE), (B28)

BTE/TM
0 = 1

2 R22,TE/TM, (B29)

and the recursion relations using the (p − 1)-order interior
amplitudes as input are

[
BTE/j

p

ATM/j
p

]
=

[
T 12,TE/TE T 12,TE/TM

T 12,TM/TE T 12,TM/TM

] ⎡
⎣ DTE/j

p−1

CTM/j

p−1

⎤
⎦ , (B30)

for p � 1, which are equivalent to Eqs. (115) and (116). The
p-order scattering amplitudes now contain (p − 1) internal re-
flections, and both polarization-preserving and cross-polarized
effects occur at every step along the way.
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