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AbstractWe use surface air temperature to evaluate the decadal forecast skill of the fully coupled Max

Planck Institut Earth System Model (MPI-ESM) initialized using only surface wind stress applied to the ocean

component of the model (Modini: Model initialization by partially coupled spin-up). Our analysis shows that

the greenhouse gas forcing alone results in a significant forecast skill on the 2–5 and 6–9 year range even

for uninitialized hindcasts. For the first forecast year, the forecast skill of Modini is generally comparable with

previous initialization procedures applied to MPI-ESM. But only Modini is able to generate a significant skill

(correlation) in the tropical Pacific for a 2–5 year (and to a lesser extent for a 6–9 year) hindcast. Modini is

also better able to capture the observed hiatus in global warming in hindcast mode than the other methods.

Finally, we present forecasts for 2015 and the average of years 2016–2019 and 2020–2024, predicting an

end to the hiatus.

1. Introduction

It is possible nowadays to forecast the weather a few days to a week ahead with growing confidence.

This task is tackled by providing coherent initial conditions for numerical atmospheric models. In contrast,

climate projections for a century ahead are based on coupled atmosphere-ocean models, which are forced

with prescribed greenhouse gas (GHG) concentrations and aerosols based on future projections. These

projections serve as the scientific basis for the International Panel on Climate Change (IPCC) reports and

are getting more robust and authoritative with each update from the first report [Houghton et al., 1990]

to the most recent one [e.g., Stocker et al., 2013]. However, providing reliable forecasts on an intermediate

(seasonal to decadal) timescale is still challenging. Numerical simulations for this time frame require both

initial conditions (like weather forecasts) and boundary conditions (like climate projections). This leads to

so-called initialized climatepredictions (or forecasts) [e.g.,CoxandStephenson, 2007;HawkinsandSutton, 2009;

Kröger et al., 2012].

In general, model limitations (like resolution and the necessity to parameterize unresolved processes) funda-

mentally limit the ability of models to reproduce the observed climate leading to model biases [e.g., Wang

et al., 2014]. Thus, even if themodel is initialized in the best possible way, themodel forecast can be obscured

by drift toward themodel’s own inherent climate. In spite of these inevitable limitations for decadal forecasts,

it is possible to estimate the forecast skill of numerical models by applying statistical methods [e.g., Goddard

et al., 2013].

The ongoing German research project Decadal Predictions (MiKlip, Mittelfristige Klimaprognosen) aims to

develop a system for climate forecasts for up to a decade ahead. This system is based on the Max Planck

Institute Earth SystemModel (MPI-ESM). Three generations of decadal forecast systems have been developed

and released during the last years, namely, Baseline-0 (B0), Baseline-1 (B1), and Prototype (PT) [e.g., Pohlmann

etal., 2013;Kruschkeetal., 2015]. Herewe refer toB0, B1, andPTasMPI forecast systems. Theonly (but essential)

difference between these systems is the initialization procedure prior to any forecast, which we shortly recall

in section 2.

Here we presentmodel initialization by partially coupled spin-up (Modini) as an alternative initialization proce-

dure for MPI-ESM. Thoma et al. [2015] showed that Modini-MPI-ESM is able to reproduce the observed timing

of climate events or shifts as for instance observed in the El Niño Southern Oscillation (ENSO), the Pacific

Decadal Oscillation (PDO), or the Atlantic Meridional Overturning Circulation (AMOC) during the initializa-

tion phase. Ding et al. [2013] already demonstrated that Modini has potential as an initialization technique
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Table 1. Compilation of Initialization Procedures Used by MPI-ESM Forecast Systems Described in the Texta

Ocean (MPIOM) A/F Atmosphere (ECHAM6) A/F Ensemble Members

CMIP5 – – – – 10

Baseline-0 NCEP A – – 10(3)

Baseline-1 ORA-S4 A 3-D TVD and Surface Pressure (ERA40 and ERAI) F 10

Prototype ORA-S4 F 3-D TVD and Surface Pressure (ERA40 and ERAI) F 15

Modini Wind Stress (NCEPcfsr) A – – 18

aA = anomaly initialization and F = full-field initialization; 3-D TVD stands for a three-dimensional initialization of tem-

perature, vorticity, and divergence. CMIP5 refers to theMPI-ESM combination of the historical (until 2005) and the RCP4.5

scenarios (thereafter) without initialization. For Baseline-0 10(3) ensemblemembers exist for 1990, 1995, and 2000–2005

(1991–1994 and 1996–1999).

with the coarser resolved Kiel ClimateModel (KCM) [Park et al., 2009] showing some success at hindcasting the

1976/1977 and 1998/1999 climate shifts in the Pacific. In this study, we first describe the different initialization

systems in section 2. In section 3, we then apply a standardized tool, developed within the MiKlip framework

[Illing et al., 2014; Kadow et al., 2015], to evaluate and compare the Modini-MPI-ESM forecast skill with unini-

tialized forecasts and the initialized MPI forecast systems. Finally we provide a summary and discussion in

section 4 and also present a prediction for the near-surface air temperature for the years 2015–2024.

2. Model and Experimental Setup

The common basis for all decadal forecast systems described in this article is the Max Planck Institute Earth

System Model (MPI-ESM) in its LR (low resolution) configuration. This model has contributed successfully to

the Coupled Model Intercomparison Project Phase 5 (CMIP5), which has been the basis for the fifth IPCC report

[Stocker et al., 2013]. The ocean component (called Max Planck Institute Ocean Model (MPIOM)) [Jungclaus

et al., 2013] has 40 vertical levels and a horizontal resolution of about 12 to 150km on a curvilinear orthog-

onal grid with poles over Antarctica and Greenland. The atmospheric component ECHAM6 has a horizontal

resolution of T63 (about 200km)with 47 vertical levels including the upper stratosphere up to 0.1hPa [Stevens

etal., 2013]. TheMPI-ESM-LR is forced solelywith changing radiative boundary conditions and knownvolcanic

eruptions (identical to the CMIP5-historical and RCP4.5 experiments) during hindcast/forecast periods. The

essential differences between the evaluated decadal forecast systems is the initialization procedure prior to

the forecast period.

In Baseline-0 (B0) the initial conditions are taken from an ocean-only model driven by the National Centers

for Atmospheric Prediction (NCEP) reanalysis [Kalnay et al., 1996; Müller et al., 2012]. For Baseline-1 (B1) and

Prototype (PT) thermodynamical self-consistent descriptions of the ocean state according toORA-S4 from the

European Centre for Medium-Range Weather Forecasts (ECMWF) [Balmaseda et al., 2013] have been applied.

Additionally, the atmospheric component is initialized with 3-D temperature, 3-D vorticity, 3-D divergence,

and surface pressure fields from the ERA40 reanalysis [Uppala et al., 2005]. The main difference is that B1 has

been initialized with anomaly fields in the ocean, while PT uses a full-field initialization [Kruschke et al., 2015]

(compare Table 1). Pohlmann et al. [2013] demonstrated (with B1) that there is only little additional skill gain

fromusing thehigher resolutionMPI-ESM-MRversionof theMPI-ESM; therefore,we limit our analysis to results

for the MPI-ESM-LR.

In contrast to the quite complex 3-D data assimilation procedures, necessary for themore recent MPI forecast

systems, Modini-MPI-ESM uses a simpler approach: The ocean/sea ice component of theMPI-ESM is forced by

the time series of observed wind stress anomalies added to the wind stress climatology from MPI-ESM. The

atmosphere-ocean coupling of all other exchanged variables remains identical to that in the fully coupled

MPI-ESM during the initialization [Thomaet al., 2015]. This allows the atmosphere to respond to the ocean sea

surface temperature and sea ice in a self-consistent way rather than being initialized by an external forcing

field. This method is similar to that introduced by Cane et al. [1986] and, later, modified by Chen et al. [1997]

but here applied to a fully coupled climatemodel. The numerical experiments have three periods: The preini-

tialization period before 1980 consists of the three original historical CMIP5 experiments performed with the

fully coupled MPI-ESM-LR. During the initialization period the ocean and sea ice components of MPI-ESM-LR

are forcedwith observed (reanalyzed) wind stress anomalies estimated fromNCEPcfsr [Saha et al., 2010] using
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Figure 1. Sketch illustrating the Modini forecast system: During the initialization period three ensemble members are

forced. These serve as seeds for the 18 ensemble members for each forecast period, starting at the individual First

Forecast Years (FFYs).

bulk formulas according to LargeandYeager [2009] to convert wind velocity intowind stress. After aminimum

of 10years (from 1990 onward) of wind stress anomaly forcing the Modini mode is switched off on six con-

secutive days starting with 1 January of the First Forecast Year (FFY). These different switch-off dates generate

six ensemble members per original CMIP5 experiment, resulting in 18 ensemble members (Figure 1). With

2006 being the last FFY, we generate 17 historical forecasts, which are evaluated in the following section. It is

known that a larger ensemble size increases the significant prediction skill of a forecast system. We present

results for the highest number of ensemble members available in this study (section 3). Random sampling of

the ensemble members to generate ensembles of different size has shown that the main differences in pre-

dictive skill between the different forecast systems can be attributed to the initialization method rather than

the ensemble member size (not shown).

3. Results

The skill of the different initialization methods is assessed by correlating the surface air temperature (SAT)

against observations from HadCRUT4median [Morice et al., 2012]. We estimate the correlation and the corre-

sponding significance using the Murphy-Epstein decomposition and Continuous Ranked Probability Skill Score

(MurCSS) tool,whichanalyzesdecadal hindcast experiments in adeterministic andprobabilisticway following

and extending the framework suggested by Goddard et al. [2013]. This tool has been developed as part of the

MiKlip evaluation system to improve the comparability within the project [Illing et al., 2014; Kadowet al., 2015]

and has already been applied in Pohlmann et al. [2013]. The significance is tested using a 500-fold nonpara-

metric bootstrap approach, taking account of autocorrelation. The skill assessment implies spatial averaging

on a 5 × 5∘ grid, temporal aggregation and lead time-dependent bias adjustment including an implicit drift

reduction [International CLIVAR Project Office, 2011]. In particular, we focus on the accuracy of the hindcasts

using the anomaly correlation and the Mean Squared Error Skill Score (MSESS) between the initialized fore-

casts and the observations as skill for the average over the 2–5 and 6–9 year periods for FFYs from 1990 to

2006 (Figure 2). The MSESS represents the improvement in the accuracy of a hindcast over the climatology

with respect to the observations. It takes the anomaly correlation and the conditional bias into account and

ranges from−∞ (incredibly bad) to 1 (perfect hindcast). The anomaly correlation represents the potential skill

of a prediction system and measures the (linear) dependency between the modeled and observed values. It

ranges from −1 (reversed skill) over 0 (no correlation) to 1 (great potential skill).

Note that already the uninitializedCMIP5 experiment (Figure 2, first row) has a decent skill, in particular, for the

forecast years 2–5. This indicates how important the climate background GHG forcing is for multiyear fore-

casts. The B0 and, in particular, the subsequent B1 and PT initializations show some improvements compared

to uninitialized CMIP5 forecasts for the first forecast year [Pohlmannet al., 2013], but there is no significant skill

gain for the years 2–5 or for the second pentade (years 6–9). We also do not see any obvious skill gain of PT

compared to B1 for any forecast period (2–5 or 6–9) in the analyzed time frame. (In addition to the full-field

maps shown in Figure 2, we present differencemaps between individual prediction systems in Figures S1 and

S2 in the supporting information).
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Figure 2. Maps of (first and second columns) anomaly correlation and (third and fourth columns) Mean Squared Error Skill Score (MSESS) of ensemble mean

historical forecast skills of SAT calculated against HadCRUT4 median, averaged over the 2–5 and 6–9 year periods, respectively, for FFYs from 1990 to 2006.

Black regions in MSESS maps indicate areas with a value below −1. Crosses denote values significantly different from zero exceeding at a 5% level applying 500

bootstraps. Gray shaded areas mark missing values with less than 90% data consistency in the observations.

TheModini forecast systemgives a similar picture for the first forecast year (1–1, Figures 2, S3, and S4): The skill

gain is, in general, somewhat between B0 and B1 (or the nearly identical PT); only over the Atlantic Ocean do

the MPI forecast systems perform better during this first year. However, on the 2–5 year range, only Modini is

able to generate (correlation) skill in the tropical Pacific, the key region for ENSO, and many teleconnected

climate signals. Despite the simpler initialization method, the skill in the Atlantic Ocean is comparable to the

MPI forecast systems. Only in the Indian Ocean do theMPI forecast systems have a higher correlation. Consid-

ering the MSESS, which also takes the conditional bias into account, Modini has less areas with nonexisting

(negative) skill, compared to theMPI forecast system (rightpart of Figures 2, S1, andS2). However, compared to

climatology, there is still room for improvement in all cases, including Modini. The Modini advantages persist

(although to a lesser degree) even until forecast years 6–9.

Since about 1998 the globally averaged surface temperature has increased relatively little compared to the

long-term trend. This period is often referred to as global warming hiatus [Kosaka and Xie, 2013]. Compared to

the MPI forecast systems, Modini is better able to capture this hiatus in hindcast mode. Figure 3 shows that

the temperature anomalies estimated with Modini are much closer to observations than those of B0 or PT,

which feature a strong warming during the 2–5 and 6–9 year hindcast periods.

4. Discussion and Conclusion

We have compared the hindcast performance of the MPI-ESM (LR version) using different initialization

schemes; that is, the B0, B1, and PT schemes of the German MiKlip project [Pohlmann et al., 2013; Kruschke

et al., 2015] and what we have called Modini-MPI-ESM. For the latter, initial states are created by running the

MPI-ESM using a time series of observed wind stress anomalies applied only to the ocean/sea ice component
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Figure 3. Time series (4 year running means) of global mean temperature anomalies for the hindcast years (left) 2–5 and (right) 6–9 for FFYs ranging from 1990

to 2006. Anomalies are estimated with respect to the respective mean value of each individual graph. Green (red, blue) thick line indicates ensemble mean result

for Modini (Baseline-1, Prototype). Thin lines show individual ensemble members. Black line indicates 4 year running mean observations as reference according to

HadCRUT4 median. Note that the value assigned to the abscissa corresponds to the center of the hindcast period.

of MPI-ESM. The atmospheric component of the MPI-ESM responds, in turn, to the sea surface temperature

(SST) and sea ice given to it by the ocean component of the MPI-ESM using the thermodynamic coupling of

the fully coupled model. Despite its simplicity, initialization using Modini-MPI-ESM leads to a better hindcast

performance for both SAT and SST (not shown) in the Pacific sector than any of the other schemes, especially

after the first year. We attribute this improvement to the fact that inModini-MPI-ESM, the fully coupledmodel

is initialized, rather than the oceanic and atmospheric components being initialized separately, as in the B0,

B1, and PT initializations. Furthermore, using a long time series of observed wind stress for the initialization

ensures that the ocean component of the MPI-ESM is dynamically balanced with the wind stress used for the

initialization, an important consideration in the equatorial oceans [Chen et al., 1997; Bell et al., 2004; Luo et al.,

2005]. Herewe used a spin-up time of at least 10years. This enables the tropical PacificOcean to adjust towind

forcing before commencing the hindcasts. It should be noted that the performance of the B0 and B1 is very

similar to that shown in Pohlmann et al. [2013], even though the hindcasts were carried out over a different

time period (1961–2012 compared to 1990–2006 here).

A weak point of the hindcasts initialized using Modini-MPI-ESM is the generally weaker performance in the

Atlantic sector compared to the other schemes in the first forecast year (1–1, Figure 2), although after year

1, the performance of Modini-MPI-ESM is no worse in this sector than the other cases. We attribute this to

the fact that wind stress alone is used for the initialization in Modini-MPI-ESM. It is well known that variability

in the Atlantic on time scales of decadal and longer (for example, associated with the Atlantic Multidecadal

Variability) is strongly influenced by surface heat flux forcing [e.g., Eden and Jung, 2001], which is missing in

Modini-MPI-ESM.On the other hand, the ability ofModini-MPI-ESM to capture decadal variability in the Pacific

sector has been shown by Thoma et al. [2015] in initialization mode and by Ding et al. [2013, 2014] using the

Modini approach applied to the Kiel Climate Model. Indeed, that initialization using theModini approach can

lead to hindcast skill out to decadal time scales in the Pacific sector has already been anticipated byDing et al.

[2013]. A related feature of Modini is its much better performance at capturing, in hindcast mode, the hiatus

Figure 4. Predicted average SAT change for (left) year 2015, (middle) years 2016–2019, and (right) years 2016–2019 with respect to the Modini-MPI-ESM

climatology from 1990 to 2006, including an inherent model drift correction. This forecast has been initialized with Modini-MPI-ESM and started with FFY 2015.

Dotted (striped) areas indicate regions of significance in positive correlation (MSESS).
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in global warming than the MPI forecast systems. We attribute this success to the improved performance of

Modini in the Pacific sector compared to the other systems, while noting the importance of the Pacific sector

in the dynamics of the hiatus as argued by Kosaka and Xie [2013] and England et al. [2014].

Finally, we present a prediction for 2015 (corresponding to the first forecast year) and averaged over the years

2016–2019 (corresponding to forecast years 2–5) and 2020–2024 (years 6–9) based on a Modini-MPI-ESM

initialization until January 2015. The colors in Figure 4 indicate temperature anomalies with respect to the

forecast year-dependent climatology from the Modini initialized hindcasts with FFY 1990–2006, i.e., warmer

or colder than the period 1991–2006 (1992–2010 and 1996–2014) for the forecast of 2015 (2016–2019 and

2020–2024). This method implicitly corrects for an inherent forecast year-dependent model drift, although

the 16 years are shorter than the 30 years usually used to compute such a climatology.

The shaded areas in Figure 4 indicate areas where significance is estimated in correlation and/or MSESS

(and the corresponding values are positive), from the previous hindcasts according to the results described

in section 3. In general, we predict the global surface air temperature in 2015 to be 0.53K warmer than the

1990–2006 mean which would make 2015 the warmest year ever in the instrumental record, exceeding the

previous record in 2014. However, because of the short Modini climatology from 1990 to 2006, the model

drift might not be completely compensated in this forecast, and the real (to bemeasured) warmingmight be

slightly different in 2015. The warming is predicted to be most pronounced in high latitudes, but also

over most parts of the continents. Note that the warm tropical Pacific prediction for 2015 is consistent

with statements from the NOAA Climate Prediction Center who published the following synopsis on 5 March

2015: There is an approximately 50–60% chance that El Niño conditions will continue through Northern

Hemisphere summer 2015 (http://www.cpc.noaa.gov/products/analysis\_monitoring/enso\_advisory/

ensodisc.html), and also with the ENSO Tracker of the Australian Bureau of Meteorology, who raised the

El Niño status on 12 May 2015 (product code IDCKGEWW00, http://www.bom.gov.au/climate/enso/tracker/

\#tabs=History). As is usually the casewhen the tropical Pacific is warm, colder than normal SATs are predicted

in the North Pacific, associated with a deepened Aleutian low (Figure 4). These colder than normal SSTs in the

North Pacific persist into years 2–5 and 6–9 of the forecast, with a pattern resembling the Pacific Decadal

Oscillation (PDO). Given the importance of the PDO for influencing global mean surface air temperature

[Kosaka and Xie, 2013; England et al., 2014], it is no surprise that our forecast suggests that the current hiatus

in the rise of global mean surface air temperature will come to an end, leading to accelerated warming com-

pared to the past decade. Indeed, according to our prediction, the global mean temperature from 2016 to

2019 (2020–2024) will be 0.35K (0.28K) warmer than the 2–5 (6–9) year forecast mean for the 1990–2006

FFY hindcasts (cf. Figure 3).

The intensified cooling in the North Atlantic to the west of Europe from 2015 to years 2016–2019 is a con-

sequence of a weakening of the Atlantic Meridional Overturning Circulation (AMOC, not shown). Although

we have noted the weakness of Modini-MPI-ESM for capturing decadal and longer time scale variability in

the Atlantic sector, Modini-MPI-ESM does have skill at capturing variability associated with wind forcing of

the AMOC [Thoma et al., 2015]. Furthermore, we have seen that greenhouse gas forcing is important for

changes in SAT in years 2–5 and 6–9 of the hindcast experiments, suggesting that anthropogenic forcing

may also be a factor in the predicted weakening of the AMOC and the associated North Atlantic cooling

[Rahmstorf et al., 2015].

Baseline-1 participates in amultimodel assessment for decadal climate predictions [Smith et al., 2013]. Within

this context forecasts for 2015 and the 2015–2019 average are available online (http://www.metoffice.gov.uk/

research/climate/seasonal-to-decadal/long-range/decadal-multimodel). We have added the Baseline-1 fore-

cast and themultimodel average (MMA) forecast for temperature (fivemodels) to the supporting information

(Figure S6) for comparison with Figure 4. Although these forecasts are based on a 1971–2000 climatology, a

qualitative assessment is possible: A common feature of the Modini, B1, and the MMA forecast is a warmer

than average Northern Hemisphere for 2015, a trend that continues until 2019. The results for the Southern

Hemisphere are not as consistent. Here only Modini shows a spatially consistent warmer-than-average sur-

face air temperature for the Southern Ocean and Antarctica, while there are contradicting results between

B1 and MMA for 2015. However, on pentadal timescales (until 2019) all models agree on a general warming

of the Southern Hemisphere as well, although qualitative differences in the models for the Southern Ocean

remain. On a regional scale the features of all models differ quite a lot, which indicates that further studies are

needed until reliable decadal predictions can be used as basis for decision making on regional scales.
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Acronyms

AMOC Atlantic Meridional Overturning Circulation

B0 Baseline-0

B1 Baseline-1

PT Prototype

CMIP5 Coupled Model Intercomparison Project Phase 5

CRUTEM4 Climatic Research Unit Temperature data set, version 4

ECHAM Acronym from ECMWF and Hamburg

ECMWF European Centre for Medium-Range Weather Forecasts

ENSO El Niño Southern Oscillation

EOF empirical orthogonal function

ERA40 ECMWF-40 Year Re-analysis

ERAI ERA-Interim reanalysis

FFY First Forecast Year

GHG greenhouse gas

GPHA Geopotential Height Anomaly

HadSST Hadley Centre SST data set

HadISST Met Office Hadley Centre’s sea ice and sea surface temperature data set

HadCRUT4 Blended data set from the CRUTEM4 surface air temperature data set and the HadSST3 sea

surface temperature data set

KCM Kiel Climate Model

IPCC Intergovernmental Panel on Climate Change

LR Low resolution: Atmospheric resolution: T63L47, default; Ocean-Sea-Ice resolution GR15L40,

default ≈1.5∘

MiKlip Decadal Climate Predictions (Mittelfristige Klimaprognosen)

Modini Model initialization by partially coupled spin-up

MPI-ESM Max Planck Institute Earth SystemModel

MPIOM Max Planck Institute Ocean Model

MurCSS Murphy-Epstein decomposition and Continuous Ranked Probability Skill Score

MR Mixed resolution: Atmospheric resolution: T63L95, highly resolved middle atmosphere;

Ocean-Sea-Ice resolution GR04L40, eddy permitting ≈0.4∘

MSESS Mean Squared Error Skill Score

NCEP National Centers for Atmospheric Prediction

NCEPcfsr National Center for Environmental Prediction, Climate Forecast System Reanalysis

ORA-S4 Ocean Reanalysis System 4

PDO Pacific Decadal Oscillation

RCP Representative Concentration Pathway

SAT surface air temperature

SST sea surface temperature
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