

## Decadal Survey Tier 2 Mission Study Summative Progress Report

# Geo-CAPE Ocean Science and STM

Antonio Mannino November 15, 2010

## Advantages of Coastal Observations from Geo



- Observations analogous to "weather" for coastal waters
  - water quality, primary production, harmful blooms, etc.
- Discriminate physical from biological forcing
  - Rates of processes possible:

Primary productivity, photooxidation, transport of materials, etc.

- Resolve sub-mesoscale processes (lateral scales <1km)
- Study short time scales associated with dynamic coastal processes (tides, wind-driven currents, storm surges, algal blooms)
- More opportunities for cloud-free viewing
- High signal-to-noise at finer spatial resolution (~300m) can be achieved by longer integration time
- Opportunity to monitor hazardous events on high frequency time scales (oil slicks, HABs, etc.)

## **Summary of Accomplishments**



- Developed Science Traceability Matrix
- Supported Instrument Design Lab study
- Supported Mission Design Lab study
- Atmospheric correction studies
- Additional science studies underway to inform on requirements
- Joint ACE/Geo-CAPE Ocean product assessments
- Completed draft white paper



## **Geo-CAPE Coastal Ocean Ecosystem STM**



4

| Science<br>Focus                         | Science<br>Questions                                                                                                                                                                                                                                                                                                                                                                               | Approach Sector Action Contraction Contractico Contractico Contractico Contractico Contrac | Measurement<br>Requirements                                                                                                                                                          | Instrument<br>Requirements                                                                                                                                                                                                                                         | Platform<br>Requirem.                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Ancillary<br>Data<br>Requirem.                                                                                                                                              |  |  |
|------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Short-Term<br>Processes                  | 1 How do short-term<br>coastal and open ocean<br>processes interact with and<br>influence larger scale<br>physical, biogeochemical<br>and ecosystem dynamics?                                                                                                                                                                                                                                      | PRODUCTS<br><u>Standing Stocks</u> : Aquatic chlorophyll a, POC, DOC, PIC, DIC*,<br>inherent & apparent optical properties, total suspended matter,<br>phytoplankton biomass*, pigments* and key functional groups,<br>terrigenous DOC*, & black carbon*.<br><u>Rate Measurements:</u> Aquatic primary productivity, respiration*,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Water-leaving radiances in<br>the near-UV, visible & NIR<br>for separating absorbing &<br>scattering constituents &<br>chlorophyll fluorescence                                      | Spectral Range:<br>Hyperspectral UV-VIS-NIR<br>• Threshold: 345-900 nm; 3 SWIR<br>bands 1245, 1640, 2135 nm<br>• Goal: 340-1100 nm; 3 SWIR bands<br>1245, 1640, 2135 nm                                                                                            | Geostationary<br>orbit to permit<br>sub-hourly<br>observations of<br>coastal waters<br>adjacent to the<br>continental U.S.,                                                                                                                                                                                                                                                                                                                                                     | Western<br>hemisphere data<br>sets from<br>models,<br>missions, or field<br>observations:<br>Measurement                                                                    |  |  |
| Land-<br>Ocean<br>Exchange               | (OBB1)<br>2 How are variations in<br>exchanges across the land-<br>ocean interface related to<br>changes within the<br>watershed, and how do<br>such exchanges influence                                                                                                                                                                                                                           | air-sea CO2 fluxes*, photooxidation, phytoplankton fluorescence<br>responses*, phytoplankton vertical migration*, net community<br>production of DOC* and POC*, and other associated trophic<br>responses*<br><u>Hazards</u> : Aquatic HABs, petroleum-derived hydrocarbons, and<br>other pollutants*.<br>*Products not currently derived from ocean color observations.<br>Targeted, high-frequency, episodic event-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Product uncertainty TBD<br>Temporal Resolution:<br>Targeted Events:<br>• Threshold: 1 hour<br>• Goal: 0.5 hour<br>Routine Coastal U.S.:<br>• Threshold: ≤3 hours<br>• Goal: 0.5 hour | •Spectral Resolution:<br>• Threshold: UV-VIS: 0.5 nm<br>FWHM; NIR: 1 nm; SWIR: 20-50 nm<br>• Goal: UV-VIS: 0.25 nm FWHM;<br>NIR: 0.5 nm; SWIR: 20-50 nm<br>- Retrieval of NO <sub>2</sub> and O <sub>2</sub> A-band<br>for atm. corrections? (TBD)                 | Central and<br>South America<br>Storage and<br>download of full<br>spatial data and<br>spectral data.                                                                                                                                                                                                                                                                                                                                                                           | Requirements<br>(1) Ozone<br>(2) Total water<br>vapor<br>(3) Surface wind<br>velocity<br>(4) Surface<br>barometric<br>pressure<br>(5) NO2<br>concentration<br>(6) Vicarious |  |  |
| Impacts of                               | coastal and open ocean<br>biogeochemistry and<br>ecosystem dynamics? ‡<br>(OBB1 & 2)                                                                                                                                                                                                                                                                                                               | based monitoring and evaluation of tidal and<br>diurnal variability of Standing Stocks, Rate<br>Measurements and Hazards from river<br>mouths to the coastal ocean (and lakes).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Regions of Special Interest<br>(RSI): Threshold: 1 RSI 3<br>scans/day<br>Other Coastal N. & S.<br>America 50°N to 45°S:                                                              | Signal-to-Noise Ratio (SNR):<br>• Threshold: 1000:1 for 10 nm FWHM<br>600:1 for 40 nm FWHM in NIR; 300:1<br>SWIR bands (20-50nm FWHM)<br>• Goal: 1500:1 for 10 nm (380-800 nm<br>nm FWHM in NIR; 300:1 to 200:1 for S                                              | (380-800 nm);<br>to 100:1 for<br>); 600:1 for 40<br>SWIR bands                                                                                                                                                                                                                                                                                                                                                                                                                  | calibration &<br>validation -<br>coastal<br>(7) Full<br>prelaunch<br>characterization<br>Science                                                                            |  |  |
| Climate<br>Change &<br>Human<br>Activity | <ul> <li>How do natural and<br/>anthropogenic changes<br/>including climate-related<br/>forcing impact coastal<br/>ecosystem biodiversity and<br/>productivity? ‡<br/>(OBB1, 2 &amp; 3)</li> </ul>                                                                                                                                                                                                 | Routine sampling of seasonal and interannual<br>variations in the Standing Stocks, Rate<br>Measurements and Hazards for estuarine and<br>continental shelf regions with linkages to<br>open-ocean processes at appropriate spatial<br>scales.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <ul> <li>Threshold: 4 times/yr</li> <li>Goal: ≤3 hours</li> <li>Spatial Resol. (nadir):</li> <li>Threshold: 375 x 375 m</li> <li>Goal: 250 x 250 m</li> </ul>                        | <ul> <li>(20-50nm FWHM); 400:1 NO<sub>2</sub> band (T see Measurement Requirements for Tc Spatial Resolutions and Field of View.</li> <li>Field of Regard: <ul> <li>±9° N to S &amp; E to W imaging capabilities for Lunar &amp; Solar Cals</li> </ul> </li> </ul> | (1) SST<br>(2) SSH<br>(3) PAR<br>(4) UV<br>(5) MLD<br>(6) CO2<br>(7) pH<br>(8) Ocean<br>circulation<br>(9) Tidal & other<br>coastal currents<br>(10) Aerosol &<br>dust deposition<br>(11) run-off<br>loading in<br>coastal zone<br>(12) Wet<br>deposition in<br>coastal zone<br>(12) Wet<br>deposition in<br>coastal zone<br><b>Validation</b><br><b>Requirements</b><br>Conduct high<br>frequency field<br>measurements<br>and modeling to<br>validate GEO-<br>CABE certaivals |                                                                                                                                                                             |  |  |
| SYNERGY<br>Impacts of<br>Airborne-       | <ul> <li>How do airborne-derived fluxes from precipitation, fog and episodic events such as fires, dust storms &amp; volcances significantly affect the ecology and biogeochemistry of coastal and open ocean ecosystems? (OBB1 &amp; 2)</li> <li>How do episodic hazards, contaminant loadings, and alterations of habitats impact the biology and ecology of the coastal zone? (OBB4)</li> </ul> | Observe coastal region at sufficient spatial<br>scales to resolve near-shore processes,<br>coastal fronts, eddies, and track carbon pools<br>and pollutants.<br>Integrate GEO-CAPE observations with field<br>measurements, models and other satellite<br>data:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Field of Regard for<br>Ocean Color Retrievals <sup>1</sup> :<br>50°N to 45°S;<br>~145°W to 45°W<br>Coastal Coverage:<br>width from coast to ocean:                                   | <ul> <li>Jitter</li> <li>Threshold: &lt;25% pixel size during site Goal: TBD</li> <li>Non-saturating detector array(s) at I</li> <li>On-board Calibration:</li> <li>Monthly Lunar Calibration at ≤7° pha</li> </ul>                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                             |  |  |
| Derived<br>Fluxes                        |                                                                                                                                                                                                                                                                                                                                                                                                    | <ol> <li>To derive coastal carbon budgets and<br/>determine whether coastal ecosystems are<br/>sources or sinks of carbon to the atmosphere</li> <li>To quantify the responses of coastal<br/>ecosystems and biogeochemical cycles to<br/>river discharge land use change airborne-</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <ul> <li>Ihreshold: 3/5 km</li> <li>Goal: 500 km</li> <li>RSI: Amazon &amp; Orinoco<br/>River plumes, Peruvian<br/>upwelling, Cariaco Basin,<br/>Bay of Fundy. Rio Plata.</li> </ul> | <ul> <li>Solar Calibration (TBD)</li> <li>Polarization: &lt;0.5%</li> <li>Relative Radiometric Precision:</li> <li>Threshold: 1% through mission lifetii</li> <li>Goal: 0.5% through mission lifetime</li> </ul>                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                             |  |  |
| Episodic<br>Events &<br>Hazards          |                                                                                                                                                                                                                                                                                                                                                                                                    | derived fluxes, hazards and climate change. <b>5</b><br>3. To estimate fishery yields, extent of oxygen<br>minimum zones, and ecosystem health<br>(including ocean acidification). <b>3 5</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | etc. (TBD)<br>Intelligent Payload Module<br>sensors (GOES, etc.) for on<br>• To bypass scanning mostly<br>Pre-launch characterizatio                                                 | from river<br>mouths to<br>beyond the edge<br>of the<br>continental<br>margin.                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                             |  |  |
|                                          |                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Solar Zenith Angle Sensitivity': Threshold: 0°; Goal: </5°</td                                                                                                                       |                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                             |  |  |

#### **‡** Climate change-related science questions

GEO-CAPE Science Questions are traceable to NASA's OBB Advanced Planning Document ...

Draft v.2.7 – March 24, 2010 <sup>1</sup> Corrections Nov. 2010 \* Coverage area within field-of-view (FOV) includes major estuaries and rivers such as Chesapeake Bay & Lake Pontchartrain/Mississippi River delta, e.g., the Chesapeake Bay coverage region would span west to east from Washington D.C. to several hundred kilometers offshore (total width of 375 km threshold).

### **Geo-CAPE Ocean Science Questions**



Draft v.2.7 - March 24, 2010

### Short-Term Processes

Land-Ocean Exchange

Impacts of Climate Change & Human Activity

Impacts of Airborne-Derived Fluxes

### Episodic Events & Hazards

- 1. How do short-term coastal and open ocean processes interact with and influence larger scale physical, biogeochemical and ecosystem dynamics?
- 2. How are variations in exchanges across the land-ocean interface related to changes within the watershed, and how do such exchanges influence coastal and open ocean biogeochemistry and ecosystem dynamics?
- 3. How do natural and anthropogenic changes including climate-related forcing impact coastal ecosystem biodiversity and productivity?
- 4. How do airborne-derived fluxes from precipitation, fog and episodic events such as fires, dust storms & volcanoes significantly affect the ecology and biogeochemistry of coastal and open ocean ecosystems?
- 5. How do episodic hazards, contaminant loadings, and alterations of habitats impact the biology and ecology of the coastal zone?

## **Studies Enabled by Geo-CAPE**



What cannot be achieved with existing sensors but possible with Geo-CAPE?

- Estimate surface oil film thickness (with multi-angle illumination)
- Study vertical migration of harmful and non-harmful algae
- Trace origin and evolution of hazardous events more effectively
- Assess impacts more precisely (e.g., changes in species)

# Changes in color contrast are due to changes in solar/viewing angles

#### Oil spill volume assessment possible



HAB detection from diurnal vertical migration of the toxic Karenia brevis





## **Ocean Data Products**



### Mission Critical Products (drive requirements; algorithms exist)

- Spectral remote sensing reflectances (& water-leaving radiances)
- Chlorophyll-a, Primary Productivity
- Particulate Organic Carbon, Dissolved Organic Carbon, Particulate Inorganic Carbon (coccolithophore blooms)
- Total Suspended Matter
- Absorption coefficients of Colored Dissolved Organic Matter, Particles & Phytoplankton; Particle backscatter coefficient
- Water clarity (kd[490nm]; euphotic depth)
- Photosynthetically Available Radiation
- Fluorescence Line Height, Phytoplankton Carbon
- Trichodesmium, Harmful Algal Bloom detection & magnitude
- Aerosol & other atmospheric products for atmospheric corrections

### Highly Desirable Products (experimental products)

- Particle size distributions & composition, other plant pigments, Functional/ taxonomic group distributions, Phytoplankton physiological properties, Vertical migration detection
- Net Community Production, Export production, Respiration
- Air Sea CO<sub>2</sub> fluxes, pCO<sub>2</sub>(aq)
- Terrigenous Dissolved Organic Carbon
- Petroleum detection and thickness, Photooxidation

## Approach



- Survey mode for evaluation of diurnal, seasonal and interannual variability
  - U.S. coastal waters
  - Regions of special interest
  - All other coastal waters from 50°N to 45°S
- Targeted observations of high-frequency and episodic events including evaluation of tidal and diurnal variability
- High spatial resolution to resolve near-shore processes, fronts, eddies, and track carbon pools and pollutants
- Integrate Geo-CAPE observations with field measurements, models and other satellite data:
  - To derive coastal carbon budgets and determine whether coastal ecosystems are sources or sinks of carbon to the atmosphere.
  - To quantify the responses of coastal ecosystems and biogeochemical cycles to river discharge, land use change, airborne-derived fluxes, hazards and climate change.
  - To improve estimates of **fishery yields**, extent of **oxygen minimum zones**, and **ecosystem health** (including ocean acidification).

## **Measurement & Instrument Requirements**



|                                                                   | Threshold                                                                                                                              | Goal                                                                                                              |  |  |  |
|-------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|--|--|--|
| Spatial Resolution (nadir)                                        | 375 m x 375 m                                                                                                                          | 250 m x 250 m                                                                                                     |  |  |  |
| Temporal Resolution                                               |                                                                                                                                        |                                                                                                                   |  |  |  |
| Targeted Events                                                   | 1 hour                                                                                                                                 | 0.5 hour                                                                                                          |  |  |  |
| Survey Coastal U.S.                                               | ≤3 hours                                                                                                                               | 0.5 hour                                                                                                          |  |  |  |
| Region of Special Interest (RSI) & Other Coastal waters 50°N-45°S | 1 RSI at 3 scans/day                                                                                                                   | ≤3 hours                                                                                                          |  |  |  |
| Field of Regard for Ocean Color science retrievals                | 50°N to 45°S;<br>~145°W to 45°W                                                                                                        | same as threshold                                                                                                 |  |  |  |
| Coastal Coverage coast to ocean                                   | 375 km                                                                                                                                 | 500 km                                                                                                            |  |  |  |
| Spectral Range                                                    | 345-900 nm; 1245, 1640,<br>2135 nm                                                                                                     | 340-1100 nm; 1245, 1640,<br>2135 nm                                                                               |  |  |  |
| Spectral Resolution                                               | UV-VIS: 0.5 nm FWHM;<br>NIR: 1 nm; SWIR: 20-50 nm                                                                                      | UV-VIS: 0.25 nm FWHM;<br>NIR: 0.5nm; SWIR: 20-50nm                                                                |  |  |  |
| Signal-to-Noise Ratio (SNR)                                       | <b>1000:1 for 10 nm FWHM</b><br>( <b>380-800 nm</b> ); 600:1 for 40 nm<br>FWHM in NIR; 300:1 to 100:1 for<br>SWIR bands (20-50nm FWHM) | 1500:1 for 10 nm (380-800 nm);<br>600:1 for 40 nm FWHM in NIR;<br>300:1 to 200:1 for SWIR bands<br>(20-50nm FWHM) |  |  |  |
| Pointing stability (line-of-sight)                                | <25% of pixel size                                                                                                                     | within 10% of pixel size                                                                                          |  |  |  |
| Lunar Calibration                                                 | Monthly at 7° phase angle                                                                                                              | same as threshold                                                                                                 |  |  |  |
| Relative Radiometric Precision                                    | 1% through mission lifetime                                                                                                            | <0.5% mission lifetime                                                                                            |  |  |  |

## **Science Studies for Evaluation of Requirements**



### Spatial & Temporal measurement requirements

- GOCI, high latitude polar orbiters, and HICO data analysis
- Dissipation/dispersion of phytoplankton, contaminants and sediments
  - Lagrangian experiments show particle stocks and turnover times tracking net community production. (Salisbury)
- Exchange across land-sea interface
  - Tidal exchange yields optical & biogeochemical variability at hourly time scales. (Tzortziou)
  - Optical signature from tidal marsh is distinguishable to 1km distance.
- Sensitivity studies on observing strategies
- Diurnal phytoplankton physiology from fluorescence dawn to dusk sensitivity
- Atmosphere-ocean synergistic science
- Vertical migration of phytoplankton
- Process observations for algorithm development
- Atmospheric correction studies for ocean color

## **Atmospheric Correction Studies**



- Considerable day-to-day and diurnal variability in total column ozone.
  - Real-time ozone correction will lead to <0.3% error in water-leaving radiances at 551nm, while climatology could result in 0.5 to 3% error.
- Variability of NO<sub>2</sub> can exceed 0.5 DU over a period of an hour at near-coastal land sites.
  - Such changes in NO<sub>2</sub> results in ~15-20% error in water leaving radiances at 410nm for larger solar zenith (>40°) and look angles expected with GEO-CAPE.

NO<sub>2</sub> and possibly ozone must be measured nearly simultaneously with ocean color measurements to reduce errors in waterleaving radiances.

 $1 \text{ DU} = 2.69 \times 10^{16} \text{ NO}_2 \text{ molecules cm}^{-2}$ 



courtesy of Herman & Tzortziou

35

30

25

20

15

Percent Error

## Algorithm Assessment & Development Plan



- Develop advanced algorithms to take advantage of full spectral range & high spectral resolution
  - Initial approach to emulate SeaWiFS, MODIS and MERIS algorithms
  - Joint activity with PACE and ACE missions
  - Apply near real-time atmospheric correction
    - Coincident NO<sub>2</sub>, O<sub>3</sub>, aerosols, etc.
- Joint ACE/Geo-CAPE Ocean product assessments
  - Field ocean product uncertainty documentation
  - Planned satellite ocean product uncertainty assessment
- Further development work identified
  - Planning field activities with specific observational objectives
  - in situ sensor development (spectral range and resolution)

## **Cal/Val Plans & Requirements**



Calibration: Radiometric, Spectral, and Spatial

- Follow approaches for SeaWiFS and MODIS
- Extensive pre-launch calibration and characterization
- Hyperspectral spectrometer enables the use of solar Fraunhofer spectrum for on-orbit spectral calibration
- Post-launch (in-orbit) vicarious calibration
  - Requires continuous field vicarious calibration site
- Post-launch stability monitoring (lunar, solar and stable target)
- Validation
  - Directed field campaigns
    - Optical closure experiments
    - Diurnal variability
  - Existing observation networks
  - Opportunistic validation (research cruises, buoys, moorings)

## **Complementary Science Missions**



Global ocean color missions:

- *PACE (2018),* ACE (>2020)
  - Joint Cal/Val activities
- JAXA S-GLI; ESA MERIS-follow-on
- Geo constellation:
  - Korean GOCI-2
  - ESA's OCAPI

#### PACE



#### Geo-OCAPI: 2019?





#### GOCI-II: 2018-2019

# **View Limit and Resolution**





## **Resolution at 95W**







## Decadal Survey Tier 2 Mission Study Summative Progress Report

## Geo-CAPE Instrument Design Lab Study (GSFC) Coastal Ecosystem Dynamics Imager (CEDI)

Antonio Mannino November 15, 2010

## **Instrument Design Lab Study Goals**



(1) to develop an instrument design that meets requirements established in the Coastal Oceans STM(2) to reduce size and cost from a previous IDL design concept



Note: dimensions in millimeters

## Summary of Geo-CEDI



### Instrument Concept

- Enables scientific objectives of coastal ocean and atmospheric retrievals.
- Capable of pointing anywhere on Full Disk.
- Spatial Resolution: 375 m x 375 m (nadir)
- Telescope focal length set for 1:1 Offner Spectrograph
- Effective focal length = 1717.7 mm, F/3.44 focal ratio
- Employs three focal planes
  - (1) 345-600 nm, (2) 600-1100 nm
    - Two Teledyne custom HyViSi ROIC: 1k (spectral)
       x 2k (spatial) detectors (UV-A or NIR coating)
  - (3) 1225-2160 nm
    - One HgCdTe Hawaii-2RG ROIC: 2k x 2k detector (SWIR)
- All detectors have 18 µm pixels
- Spectral Resol: 0.5 nm (UV-NIR) and 2.5 nm (SWIR)

### Instrument Characteristics

- Volume 7.5 m<sup>3</sup>
- Mass 621.4 kg
- Power 392 W
- Data Rate 88.4 Mbps
- Scene: 750 km N-S x variable E-W
- Scene Integration Time: 9-17 min
- Pointing ~0.5 arc-sec
- Lifetime 3 yr (design); 5 yr (goal)

### Technology Development Needs

- Scan mirror pointing mechanism requires further study and technology enhancements.
- Dedicated effort required to investigate, characterize, and mitigate all sources of disturbances to scan mirror.
- 100Hz Attitude Determination may exceed existing proven technologies (133MHz BAE Rad750).

### Coastal Ecosystem Dynamics Imager (CEDI) Block Diagram





## **CEDI Conceptual Scanning Plan**



### >72 scenes per day (~750km x 375km nadir)

- ~18 hours of operation per day
- ~4 scenes per hour (15 minutes each)
- 1000+ iFOV scans per scene

### Avoid scanning cloudy scenes

- Targeted Events scheduled as necessary
- Survey Mode

### **U.S. Coastal Waters**

- East Coast 4 scenes (3-4x/day)
- Gulf Coast 4 scenes (3-4x/day)
- West Coast 3 scenes (3-4x/day)
- Puerto Rico 1 scene (3-4x/day)
- Great Lakes 4 scenes (3x/day)

### **Regions of Interest**

- Other coastal waters of North & South America
- Anywhere within Field of Regard (50°N to 45°S; ~145°W to ~45°W)





### Radiometry Requirements & Results 70° Solar Zenith Angle case



| $\lambda_{o}$ - Bands | FWHM                 | W/m <sup>2</sup> - $^{\Delta\lambda}$ um-ster |       | Req'd         | Well_Capacity | Averages | Ltyp        | Lmax        | eff     |         | Req'd       | Ltyp                  |
|-----------------------|----------------------|-----------------------------------------------|-------|---------------|---------------|----------|-------------|-------------|---------|---------|-------------|-----------------------|
| nm                    | $\Delta\lambda$ - nm | Ltyp                                          | Lmax  | Dynamic Range | Dynamic Range | Δλ       | Well_Volume | Well_Volume | Opt. Tx | Det. QE | $SNR_{req}$ | SNR <sub>actual</sub> |
| 350                   | 15                   | 39.26                                         | 117.5 | 2.99          | 21.49         | 60.00    | 46,538      | 139,247     | 0.24    | 0.65    | 500         | 1512                  |
| 360                   | 15                   | 38.00                                         | 124.1 | 3.27          | 16.71         | 60.00    | 59,840      | 195,393     | 0.31    | 0.65    | 500         | 1750                  |
| 385                   | 10                   | 32.16                                         | 125.7 | 3.91          | 17.65         | 40.00    | 56,656      | 221,513     | 0.31    | 0.68    | 1000        | 1385                  |
| 412                   | 10                   | 41.77                                         | 198.7 | 4.76          | 8.65          | 40.00    | 115,662     | 550,095     | 0.43    | 0.72    | 1000        | 2061                  |
| 425                   | 10                   | 40.63                                         | 193.1 | 4.75          | 8.70          | 40.00    | 114,935     | 546,085     | 0.42    | 0.73    | 1000        | 2054                  |
| 443                   | 10                   | 37.51                                         | 219.1 | 5.84          | 9.61          | 40.00    | 104,106     | 608,151     | 0.39    | 0.74    | 1000        | 1947                  |
| 460                   | 10                   | 33.14                                         | 238.9 | 7.21          | 10.60         | 40.00    | 94,319      | 679,962     | 0.38    | 0.75    | 1000        | 1844                  |
| 475                   | 10                   | 30.25                                         | 238.3 | 7.88          | 10.96         | 40.00    | 91,250      | 718,621     | 0.39    | 0.75    | 1000        | 1811                  |
| 490                   | 10                   | 29.25                                         | 226.4 | 7.74          | 10.45         | 40.00    | 95,675      | 740,472     | 0.41    | 0.75    | 1000        | 1859                  |
| 510                   | 10                   | 24.23                                         | 218.8 | 9.03          | 13.08         | 40.00    | 76,441      | 690,354     | 0.38    | 0.75    | 1000        | 1641                  |
| 532                   | 10                   | 20.09                                         | 214.8 | 10.69         | 15.96         | 40.00    | 62,645      | 669,884     | 0.36    | 0.75    | 1000        | 1467                  |
| 555                   | 10                   | 16.11                                         | 212.2 | 13.17         | 18.57         | 40.00    | 53,862      | 709,431     | 0.37    | 0.75    | 1000        | 1345                  |
| 583                   | 10                   | 14.56                                         | 205.9 | 14.14         | 22.22         | 40.00    | 45,007      | 636,418     | 0.33    | 0.74    | 1000        | 1210                  |
| 617                   | 10                   | 11.25                                         | 192.1 | 17.07         | 22.34         | 40.00    | 44,758      | 764,026     | 0.33    | 0.9     | 1000        | 1206                  |
| 640                   | 10                   | 9.39                                          | 186.1 | 19.82         | 25.53         | 40.00    | 39,177      | 776,529     | 0.33    | 0.91    | 1000        | 1114                  |
| 655                   | 10                   | 8.33                                          | 176.6 | 21.20         | 26.51         | 40.00    | 37,718      | 799,554     | 0.35    | 0.91    | 1000        | 1088                  |
| 665                   | 10                   | 7.83                                          | 176.9 | 22.59         | 25.58         | 40.00    | 39,087      | 882,988     | 0.38    | 0.91    | 1000        | 1112                  |
| 678                   | 10                   | 7.37                                          | 171.3 | 23.24         | 26.66         | 40.00    | 37,510      | 871,697     | 0.38    | 0.91    | 1000        | 1085                  |
| 710                   | 15                   | 5.36                                          | 161.4 | 30.10         | 35.39         | 60.00    | 28,256      | 850,622     | 0.38    | 0.9     | 1000        | 1114                  |
| 748                   | 10                   | 4.89                                          | 147.5 | 30.17         | 36.82         | 40.00    | 27,156      | 819,179     | 0.38    | 0.9     | 600         | 887                   |
| 765                   | 40                   | 3.62                                          | 141.9 | 39.18         | 51.32         | 160.00   | 19,486      | 763,516     | 0.36    | 0.9     | 600         | 1428                  |
| 820                   | 15                   | 2.82                                          | 129.7 | 46.04         | 62.24         | 60.00    | 16,067      | 739,677     | 0.36    | 0.89    | 600         | 766                   |
| 865                   | 40                   | 4.50                                          | 139.0 | 30.89         | 37.36         | 160.00   | 26,770      | 826,886     | 0.36    | 0.88    | 600         | 1758                  |
| 1245                  | 20                   | 0.88                                          | 59.5  | 67.61         | 67.72         | 368.00   | 1,477       | 99,843      | 0.336   | 0.85    | 300         | 637                   |
| 1640                  | 40                   | 0.29                                          | 17.6  | 60.69         | 156.00        | 736.00   | 641         | 38,903      | 0.336   | 0.85    | 250         | 514                   |
| 2135                  | 50                   | 0.08                                          | 4.7   | 58.75         | 424.41        | 920.00   | 236         | 13,843      | 0.336   | 0.87    | 100         | 263                   |

Challenge to overcome ocean requirements of high sensitivity (SNR) without saturating the detectors.

## Conclusions



- Geo-CAPE Oceans STM requirements are achievable with CEDI or similar class of instrument.
- Scan mirror pointing mechanism requires further study and technology enhancements.
  - e.g., SCH<sub>2</sub>OO<sub>3</sub>NERS IIP-heritage fast scanning mirror concept
  - Dedicated effort required to investigate, characterize, and mitigate all sources of disturbances to scan mirror.
- Additional design studies recommended
  - To reduce instrument size and cost
  - To extend design to meet goal requirements for temporal and spatial resolution



# **EXTRA SLIDES**

### Ltyp = $\sim$ TOA Radiances at 70° SZA\*



Total integration time = ~17.1 min per scene 0.8 sec integration time per scan line Co-add 2 frames for UV-VIS-NIR & 46 for SWIR

## Ltyp & Lmax equivalent to SeaWiFS values



Total integration time = ~10.3 min per scene 0.4 sec integration per scan line Co-add 3 frames for UV-VIS-NIR & 23 for SWIR Saturation of 1245 and 1640nm bands possible for extremely bright scenes. Lmax(Barnes) based on SeaWiFS data, only 0.2% of pixels saturated